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Abstract

Hippocampal place cells take part in sequenced patterns of reactivation af-
ter behavioral experience, known as replay. Since replay was first reported,
nearly 20 years ago, many new results have been found, necessitating revi-
sion of the original interpretations. We review some of these results with a
focus on the phenomenology of replay.
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1. INTRODUCTION

Hippocampal replay is one of the best-known specimens in the menagerie of modern systems
neuroscience phenomena. The story usually told is this: Neurons in the hippocampus replicate,
during sleep, patterns of activity from previous wakeful experience in a temporally compressed
form. This narrative was established about 20 years ago and suggested a mechanism for systems
memory consolidation—the putative process by which memories, initially dependent upon the
hippocampus, become independent of the hippocampus with time, supported instead by cortical
circuits (Squire 1992, Squire et al. 2015). However, as more results have been gathered, it has be-
come clear that many of these initially described properties of replay do not hold in general. The
purpose of this review then is to provide an update of results in the field of hippocampal replay.
Several recent reviews have covered similar ground, including some shorter reviews (Carr et al.
2011, O'Neill etal. 2010) and a very comprehensive review of related and overlapping phenomena
in the local hippocampal electroencelphalogram (EEG) (Buzsaki 2015). However, the particular
and narrower focus of this review is on the detailed phenomenology of hippocampal replay it-
self and how a properly updated picture changes the implications for how replay contributes to
hippocampal function.

2. HISTORICAL REPLAY

The hippocampus is one of the most intensively studied areas in the brain, arguably with good
reason. Deep in the medial temporal lobe, its connections to multiple cortical and subcortical areas
suggest an anatomical hub, it has a distinct role in memory, it has a relatively well understood
internal circuitry, its synapses are highly plastic, and its neurons are arranged conveniently for
electrophysiological recordings (Andersen et al. 2007).

The study of replay is based on the responses of individual hippocampal neurons during free
behavior that respond reliably to place (O’Keefe & Dostrovsky 1971, Wilson & McNaughton
1993). These responses have been interpreted as a cognitive map (O’Keefe & Nadel 1978), one
component of a network of brain areas with a variety of forms of spatial representation that can
support navigation (Moser et al. 2008). For example, grid cells in entorhinal cortex represent
current location using spatial frequencies and spatial phase information, and cells in several areas
represent current head direction in a manner resembling an internal compass. So the starting
point for our review is an observation. All these responses, although highly suggestive of the
processing of spatial information for the purposes of navigation, are limited in their application
to navigation in the same way. Responses are bound to the features that define them; for example,
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according to the classical description, a place cell may not fire outside its place field. The resultis
that exploration of the map is limited to the current location. A complementary observation can
be made taking a mnemonic perspective. Whereas the form of memory most closely associated
with the hippocampus, episodic memory, has been characterized as mental time travel (Tulving
2002), place cells and grid cells and the rest appear confined to the present. Thus, whether from
the perspective of navigation or that of memory, single-unit responses in the hippocampus and
related areas appear oddly ill-suited to their task.

The key question was, could hippocampal units be reactivated away from the original stimulus?
An early study reported that those place cells active in an environment, which typically comprise
30-50% of all place cells (Guzowski et al. 1999, Wilson & McNaughton 1993), were more active
in subsequent sleep than those that had not been active in the environment (Pavlides & Winson
1989). However, the key experimental development in uncovering hippocampal unit activity not
bound by present stimuli or behavior was the following. By recording the responses of multiple
hippocampal units simultaneously, the coordination between neurons became measurable, as a
separate channel of information processing beyond responses to an external stimulus. The tetrode
electrode design, comprised of four microelectrode wires twisted together, allowed extracellular
signal separation superior to that of a single electrode and the separation through triangulation of
signals from as many as 25 different units per tetrode. Lightweight microdrives were developed to
allow the independent depth-adjustment of many tetrodes simultaneously. These methods enabled
measurement of the coactivity of pairs of place cells, to find that cells with overlapping place fields
during behavior had elevated coactivity during subsequent sleep (Wilson & McNaughton 1994).
This result was very important in establishing a higher order of organization beyond the firing of
individual cells and in revealing the central importance of temporal coincidence of activity. Several
further studies elaborated the theme of pairwise reactivation (Gerrard et al. 2001, Kudrimoti et al.
1999, Skaggs & McNaughton 1996), but arguably the next breakthrough finding was that of
sequenced activity across four or more cells matching behavioral sequences (Lee & Wilson 2002,
Louie & Wilson 2001, Nadasdy etal. 1999). Together, these results established the classical picture
of hippocampal replay: After multiple repetitions of an experience (the repeated running laps), the
exact same sequential pattern of activity was repeated during subsequent sleep. The discrepancy
between the short duration of replay events (50-150 ms) and the duration of running events
(several seconds) was interpreted as temporal compression. However, these classical features of
replay do not hold in general, as we see below.

3. REPLAY AWAKES

An early study based on pairwise reactivation raised the possibility that replay-related activity
might occur during wakefulness (Kudrimoti et al. 1999), but it was a succession of later results from
several different labs that established highly robust replay sequences across tens of simultaneously
recorded cells occurring during the awake state (Csicsvari et al. 2007, Davidson et al. 2009, Diba
& Buzsaki 2007, Foster & Wilson 2006, Gupta et al. 2010, Karlsson & Frank 2009). These
reports established several new features. The immediacy of awake replay seconds after experience
suggested new functional possibilities, such as a role in initial learning, that would not be open to
a mechanism delayed by hours until sleep. Further, although the tasks involved the same sort of
repetition of running laps asin previous sleep replay studies (e.g., Lee & Wilson 2002), awake replay
could be observed after individual laps, when there were typically multiple replay events (Foster
& Wilson 2006). Replays were even observed after the first lap on a novel track (Foster & Wilson
20006). This inverted the story from sleep: Instead of multiple repetitions of experience generating
a replay, rather a single experience gave rise to multiple replays. The most striking difference was
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also the most unexpected. Awake replay, although on a similar temporally compressed timescale
as in sleep, was often in the reverse order to the order in which the fields were arranged along
the track (Csicsvari et al. 2007, Diba & Buzsaki 2007, Foster & Wilson 2006, Gupta et al. 2010,
Karlsson & Frank 2009). On the linear track, this reverse ordering is potentially confounded with
the order of place fields along the immediately subsequent outgoing lap; however, because of the
directional preference of place cells, these two kinds of sequences could be distinguished (Davidson
et al. 2009, Foster & Wilson 2006). The reverse replay after a single lap was also important, as
at that moment the animal had not yet run in the return direction, and this line of evidence was
later strengthened by the use of a running task in which rats only ever ran in one direction (Gupta
et al. 2010). The particular meaning of reverse ordering is considered further in Section 7, but
for now we note that reverse replay represents an abstraction from the original experience and a
challenge to the original conception of replay as recapitulation.

An interesting question is, why was awake replay not discovered before? One subtle difference
from previous studies was the avoidance of overtraining. Rats must be trained to run along a track
(unlike mice, for example), but with too much training, their behavior can become stereotyped,
with very little pausing between laps. This maximizes the measurement of run-time spiking for a
given period of time but reduces to nil the amount of time available for replay. The most critical
difference, however, was an increase in the number of tetrodes aimed at the CA1 region of the
hippocampus, from 12 to 18. With few cells, sleep replay is easier to observe because of the longer
duration of a sleep session compared to the few minutes in total of stopping during a track session,
thus increasing the amount of data and so its statistical power. However, increasing the numbers
of cells recorded simultaneously led to a qualitative transition from a statistical demonstration
of the probability of ordered sequences to the visual pop-out demonstration of large numbers of
ordered replay events. An analogy might be made to a microscope, in which structures become
visible only at a certain resolution. In the same way, successive increases in tetrode number up to
42 have revealed progressively more intricate replay-related phenomena (Figure 1).

Several further features of awake replay were established. Research using the same linear track
task as previous studies used showed that both forward and reverse replay occurred during wakeful-
ness (Diba & Buzsaki 2007). Thus, the conspicuous ordering difference with previously reported
replay in sleep was not after all fundamental. Another result that brought awake and sleep replay
closer together was the finding that awake replay does not always relate to the current environment
but can be remote replay of a different environment (Karlsson & Frank 2009). By this definition,
sleep replay is almost always remote replay, as it is usually recorded while the animal occupies a
small and visually isolated holding area. Nevertheless, these remote replays are relatively uncom-
mon in the awake state and may correlate inversely with the degree of engagement the animal has
in the current task. The more common observation is that awake replay tends to reflect behav-
ioral trajectories in the current environment and furthermore tends to start in the actual current
location of the animal (Karlsson & Frank 2009, Pfeiffer & Foster 2013a).

A particularly fascinating study of awake replay (Davidson et al. 2009) used a 10 m-long linear
track, which was much longer than the approximately 2 m-long linear tracks used in previous replay
studies, albeit twisted around so as to fit within the reach of the standard length recording tethers.
They reported that replays appeared to depict behavioral trajectories at a constant speed, that
is, with duration proportional to distance depicted. Indeed, the authors reported durations much
longer than any reported previously, up to 700 ms, matching the unusually long track length. There
was a very tight relationship between replay duration and the length of the depicted trajectory;
although for technical reasons, it is possible that some of this relationship might have resulted
from incomplete measurement of replay, further support for at least a monotonic relationship
between replay duration and represented distance came from another study in which complete
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Figure 1

The evolution of replay data as a function of numbers of cells recorded simultaneously. (#) Schematic of a simple replay experiment:
(Left) A rat runs along a linear track through the place fields of several hippocampal place cells (e/ipses). (Right) Replay phenomena can
be observed during subsequent rest periods, either on the track or in a separate sleep area. (b) An early example of replay, recorded
during sleep. Ten simultaneously recorded cells were ordered by the positions of their place field peaks along a linear track, and events
were detected in which at least four cells fired in the same order. Approximately six such events on average were found in sleep sessions
lasting up to 2 h. Panel adapted from Lee & Wilson (2002) with permission. () Example replays observed across 19 simultaneously
recorded place cells in awake rats. These 14 replays were observed within a single stopping period lasting less than a minute. Each
individual event could be analyzed using a simple rank correlation between position and cell order. Panel adapted from Foster &
Wilson (2006). (d) Greater place cell coverage has enabled measurement of replay during a spatial memory task in a 2-m x 2-m open
arena. (Top) Raw local field potential (LFP) trace recorded from the hippocampus, ripple-filtered LFP trace, and spike rasters from 263
simultaneously recorded hippocampal place cells during a replay event. (Bottorz) The event depicted a two-dimensional replay across
the open-field environment. Posterior probabilities of position found using Bayesian decoding methods (see Section 4 of main text)
were concentrated sufficiently to allow the whole event to be depicted spatially, collapsing across time. This format reveals gaps in the
representation where the replay jumps from one hover point to another as part of its intrinsic dynamics. Panel adapted from Pfeiffer &
Foster (2015).
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replays of behavioral trajectories of different lengths were compared (Wu & Foster 2014). A
picture emerges of replay representing not temporally compressed behavioral episodes but rather
traversable distances and thus a model of the world as opposed to the veridical recording of
experience. Also, by mapping distances into durations, replay might support the evaluation of
alternative paths in terms of length, for navigation.

The idea that replay represents a model of the world rather than stored experiences has received
support from several further studies. First, a direct study of whether replay would represent the
most recent of different preceding experiences demonstrated conclusively that this was not the case
(Gupta et al. 2010). Second, a study using a somewhat unusually shaped maze demonstrated that
replay captured several aspects of the unique maze topology (Wu & Foster 2014). Finally, studies
have now shown that replays can piece together previous experiences into whole trajectories that
have not been previously experienced together (Gupta et al. 2010, Pfeiffer & Foster 2013a). The
model of the world that informs replay is developed very rapidly, after only one to two experiences
(Foster & Wilson 2006, Wu & Foster 2014).

A final study to mention in this section is a causal study in which the hippocampus was elec-
trically stimulated to disrupt processing, either coincidentally or noncoincidentally with events in
the local field potential known to co-occur with replay, while animals performed an alternation
task on a W-shaped maze (Jadhav et al. 2012). This task required memory while on the central
arm, where the sensory stimuli did not indicate which choice was correct, but not on the outer
arms, where the choice was always to enter the central arm. Correspondingly, disruption of the
replay-associated events impaired choice on the central arm but not the outer arms, revealing
a role for awake replay in what is known as the working memory part of the task. The experi-
mental design is vulnerable to the classic criticism of the single dissociation: that one of the tasks
(working memory) may have been more demanding than the other (reference memory) (Shallice
1988). Nevertheless, the result is consistent with the idea that awake replay plays a role other than
memory consolidation—which by definition affects only memory in the future—by supporting
working memory function in the present. The representation of distances within replay might
usefully contribute to such a function.

4. PREPLAY, MORE PREPLAY, AND STATISTICS

A fundamental assumption in the consideration of replay function is that replays should represent
learned information—it is difficult to imagine a role in navigation or memory if this is not so.
So a major challenge to this conception was a series of reports of sequenced activations exactly
resembling replays that occurred prior to the experience being replayed (Dragoi & Tonegawa
2011, 2013a,b). To distinguish these events from replays, they were termed preplays, but in fact
this obscures a difficulty. If any given sequence can be preplayed, it is unclear how a replay is any
different, as it might also have occurred prior to experience, albeit unobserved during the short
experimental sample of pre-experience time. In this way, the existence of preplay undermines the
existence of replay.

The specific claim was that sequences of cells prior to experience predicted the relative position
of the constituent cells’ place fields during subsequent behavior. This implies an a priori ordering of
cells into sequences, which governs the recruitment of cells to places during subsequent behavior.
An analogy would be frames of movie tape, which preexistin a defined order and become associated
with experiences—that is, have images deposited onto them—only subsequently during filming.
So learning still occurs, in the associations between experiences (images) and place cells (frames),
but the structure is heavily restricted, being constrained to a single timeline. The metaphor isn’t

Foster



perfect: It should not be possible to predict how much tape is needed prior to an experience,
whereas in the preplay papers, the preplay events just like replay events spanned the track entirely.

We addressed preplay recently in a paper examining sleep prior to the exploration of several
linear tracks and presented three arguments against the existence of preplay (Silva etal. 2015). First,
despite using many more tetrodes than the original reports, we found no evidence for preplay in our
own data. Second, we identified certain methodological issues that led us to question the original
conclusions. Specifically, the statistical approach to preplay is complicated by the existence of two
possible future trajectories that could be preplayed, corresponding to the two running directions
along the linear track (Figure 2). Although the preplay papers recognized this factor, it was not
processed in the correct way: Each putative preplay event was apparently assessed against the best
correlated running direction, but the same procedure was not used on the shuffled data, which
were instead yoked to whatever running direction was best for the associated preplay event. The
telltale for this unfortunate error was a unimodal, zero-mean distribution of correlations for the
shuffles, which is inconsistent with a maximization step as described above.

The third argumentis perhaps the most important for future developments in the field. Increas-
ingly, probabilistic decoding methods are being used for measuring replay phenomena (Davidson
etal. 2009, Zhang etal. 1998). Spiking activity within a given time bin is converted into a posterior
probability distribution over some variable, such as position. A full discussion of the issues involved
with this approach could fill an entire review; here we simply note that although the calculated
quantity is position, the true value of this variable is rarely of interest to the experimenter, and
indeed can be extracted directly from the overhead camera. Rather, the decoding procedure acts
as a model of how the brain itself might process hippocampal activity patterns, and errors, such as
replay, are often interesting. For a historical perspective, the approach is close in spirit to the work
of Georgopoulos (Georgopoulos et al. 1989). One way to conceptualize replay in the context of
decoding is as a covert variable (Johnson et al. 2009).

In practice, individual replays of linear trajectories can be graphed as a two-dimensional matrix
of probabilities with time along one axis and position along the other (Figure 3). There are
excellent reasons to analyze replay in this way. Place fields come in a variety of shapes and sizes,
and the activity of place cells during replays appears to preserve these characteristics, so thata single
rank order parameter cannot capture the cell’s contribution. By contrast, probabilistic decoding
takes the whole place field into account. Further, where place field coverage is sparse, decoding can
effectively interpolate using the tails of place fields where coverage is good. Alternatively, when the
number of recorded cells is very large, plotting every cell’s spike raster becomes messy, whereas
the corresponding decoded replays become pin-sharp. Each decoded replay event can be assigned
a score using a variety of metrics, including amount of probability along a line representing an
idealized trajectory (Davidson et al. 2009), or a generalization of correlation weighted by the
posterior probabilities (Wu & Foster 2014). The problem comes in determining the statistical
significance of this score using Monte Carlo shuffle methods. With an ordered set of cells, shuffling
(i.e., permuting) cell order is the obvious choice. With decoded replays, it is no longer clear. Every
conceivable shuffle has some weakness (see Figure 4 and the sidebar titled The Problem with
Replay Decoding: Shuffles). A second laboratory recently reported preplay, using decoded events
and the weighted correlation method correlating position and time (Grosmark & Buzsaki 2016).
It turns out that in our paper we had also examined this measure, to find that even random data
generated by us yielded significance, therefore spuriously by definition (Silva etal. 2015). Naturally,
spurious significance was also found in our data during sleep periods preceding experience. These
forms of spurious significance can be eliminated by using stricter definitions of replay, but these
were not applied in any of the preplay reports.
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Figure 2

The measurement of preplay. (#) Schematic depicting hypothetical preplay prior to experience: There are two running directions that
any given preplay could refer to that will not in general be ordered in the same way, and each gives rise to a template that events can be
tested against. In the drawings, cells B, E, F, X, Y, and Z have place fields in only one direction, whereas cells A, C, and D have place
fields in both directions. () When each potential preplay is assessed against both templates, there are twice as many comparisons as
data, and shuffles are centered around zero correlation. In these data from Silva et al. (2015), the distribution of real data overlapped
completely with shuffled data. () When each potential preplay is assessed against its best correlated template, there is only one
comparison per event, and both shuffles and real data are pushed away from zero correlation, toward 1 or —1. Again, in these data from
Silva et al. (2015), the two distributions were completely overlapping. (d) Schematic of the reported results from Dragoi & Tonegawa
(2011). The number of comparisons was equal to the number of potential events, indicating that a selection of template was made for
each potential event. However, the shuffles were centered on zero, whereas the real data were pushed towards —1 and 1. One erroneous
way that this could have occurred is if the best template was chosen for each real event and the shuftles were yoked to this choice.
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Bayesian decoding of replay. (#) A replay event across 142 place cells, ordered by the positions of their place field peaks along a linear
track. Some degree of order to the spiking is clear, but the relationship is noisy. () The same event expressed using Bayesian decoding.
Time and position are both binned (and arranged along the x and y axes, respectively), and a posterior probability is calculated for each
joint position-time bin and displayed using a color scale. Although Bayesian decoding is often used as a framework for leveraging
assumptions about cell spiking for more accurate estimation, in this case the only assumed knowledge for each cell is its place field.
From this deliberate restriction follow a likelihood model with independence between cells and Poisson spike numbers, and a uniform
prior. As shown, the posterior probabilities of position are extremely sharply defined during the replay event.
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Schematics of different shuffling methods used for evaluating the significance of decoded replay (see the sidebar titled The Problem
with Replay Decoding: Shuffles).
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THE PROBLEM WITH REPLAY DECODING: SHUFFLES

Shuffling is a nonparametric statistical method for evaluating the significance of a data set, in which data labels
are randomized to simulate chance data. Ideally, shuffles randomize the factor of interest (e.g., sequential order
of cells) while leaving all other factors (e.g., temporal structure of spike trains) the same. In the case of decoded
replay data, poor choices of shuffle can introduce randomness unrelated to the factor of interest, and any increase
in the randomness of the shuffles is tantamount to an increase in the reported significance of the original data. We
consider five example shuffle methods.

Pre probability methods apply shuffles to the raw data (i.e., place fields and spike trains) (Figure 4a,b). The shuffled
data are subsequently transformed into probabilities, making the effects of shuffling hard to interpret.

® Cell identity shuffle (Figure 44): The relationship between fields and spike trains is randomly shuffled. This
produces combinations of spike train and place field that did not (and perhaps could not) exist in the real data,
adding excessive noise to the shuffles.

® Place field shift (Figure 45): This method, explicitly devised to overcome the above problem with the cell
identity shuffle, shifts the position of place fields independently for each cell. This is closer to a jitter than a
shuffle, as positions can be generated that are not in the original data, with the result that excessive noise is
introduced. Further, edge effects of the shift introduce further noise.

Post probability methods act on decoded posterior probabilities. We illustrate these methods with a correlated event
(Figure 4c—e) that could have been generated by a binary transition between two activity states (e.g., transition into
or out of a sharp wave) and therefore is not necessarily indicative of a trajectory-depicting replay event.

B Position shuffle (Figure 4¢): This method randomly permutes rows (positions), with the result that smoothness
in the representation of nearby positions is disrupted. Even the decoding from a single place cell’s activity could
lead to significance with this shuffle.

® Circular shift of position (Figure 4d): This method preserves local smoothness in position by circularly shifting
probabilities independently for each time bin. Like the place field shift, this can generate position representations
(and edge effects) that do not exist in the original data, which adds excessive noise to the shuffles.

® Time shuffle (Figure 4e): This method, a true shuffle, is unlikely to disrupt smoothness in the temporal domain
because of the relatively large time bins usually used. Nevertheless, even this method will lead to reported
significance in our test case when using, for example, the weighted correlation measure, because correlation does
not by itself imply an extended sequence of activation across many neurons. The method is also underpowered,
as with only a handful of time bins, the number of shuffles that can be generated is small.

We recommend the strategy of increasing the number of constraints to be satisfied jointly by true trajectory-
depicting events, for example, high correlation combined with a restricted step size between successively represented
positions. These constraints are arbitrary but can function as a threshold that, given sufficiently powered recordings,
will be exceeded only by real instances of sequenced activity.

5. LEARNING TO PLAY

If replays are after all learned, the next question is how. NMDA receptor activation is a well-
established mechanism of synaptic plasticity associated with memory formation (Morris 2013,
Morris etal. 1986), and several studies have investigated its role in hippocampal reactivation. These
findings converge on the result that, whether assessed as pairwise coordination or the presence
of full replay sequences, NMDA receptor activation and associated downstream processes are
necessary for the formation of the coordinated activity (Dupret et al. 2010, Gerrard et al. 2008,
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McHugh etal. 1996, Silva etal. 2015, Suh etal. 2013). This dependence matches that of behavioral
memory, in that it is specific to the encoding of replay and not retrieval (Silva et al. 2015). These
results are in contrast to the effects that have been reported for the run-time place field responses of
the cells. The literature is not completely settled: Reports vary from no effect of NMDA receptor
antagonism on place field formation in a novel environment for at least an hour (Kentros et al.
1998) to reduced spatial definition of fields (McHugh et al. 1996, Silva et al. 2015). But across all
reports, the effects on fields are much less striking than the effects on replay-related coordinated
spiking. It is worth considering the differences between the two objects of measurement. Replay
spikes represent an instantaneous sample from the whole population. Place fields are arguably
more artificial, formed by averaging firing over multiple running laps while at the same time
ignoring population effects. They are presumably less sensitive to small changes and of course
not dependent on the number of cells recorded. Nevertheless, the location represented by a place
cell may be, at least initially, solely a function of its inputs [which can be spatially tuned (e.g.,
combinations of grid cells) (Solstad et al. 2006)] without requiring learning, whereas synaptic
plasticity may be required to stitch together the representations of places within the environment
to reflect the spatial contingencies between them.

How does a neural network play a sequence? One class of models of sequence generation
that does not even require learning uses transient disinhibition to expose successively lower levels
of subthreshold drive onto place cells (Foster & Wilson 2006). This is similar to a well-known
model of sequence generation during theta cycles (Mehta et al. 2002). The drive could come from
subthreshold fields that span the entire environment smoothly (monotonically on each side of
the peak) or from an activity trace (Buzsaki 1989). However, although intracellular recordings of
place cells do in some cases show larger subthreshold fields than spiking fields, the data do not
support monotonically peaking fields that span entire environments (Epsztein et al. 2011, Harvey
et al. 2009). The activity trace model is unlikely, at least in its simplest form, because of the
long periods, up to several minutes, during which awake replays can be observed after experience
(Foster & Wilson 2006) and because replays do not in general replay the most recent experience
(Gupta et al. 2010). Moreover, inhibition increases during replay events (Klausberger & Somogyi
2008), and the controlled and steady recruitment of spikes through a replay event does not suggest
progressive disinhibition (e.g., Pfeiffer & Foster 2015).

The next simplest idea to account for neuronal sequences is something like an activity chain—
the place cells representing one place connect to and drive the place cells representing the next
place along. This could be accomplished within a single circuit containing recurrent connectivity,
with CA3 being the obvious candidate. However, there are reasons to doubt this model. The first
awake replay study showed that replays became stronger with each lap of experience on a novel
track, recruiting more cells and more spikes per cell; however, the propagation speed of replay
progressively slowed down across laps, with replay events on later laps taking approximately twice
as long as early laps to depict the same trajectory (Foster & Wilson 2006). This is the opposite of
what a simple chain mechanism would do, as increases in spiking, perhaps driven by increases in
synaptic strength, ought to lead to faster synaptic integration and hence a faster moving sequence.
Indeed, this logic is reflected in a recent prediction that replays will slow down eventually as the
strength of replay memory decays (Schwindel & McNaughton 2011).

A more complex mechanism for replay sequence generation was proposed recently, based in
part on recordings from a relatively large number of neurons as rats ran in the classic linear track
task (Pfeiffer & Foster 2015). Although the behavioral trajectories taken by the animals progressed
smoothly from one end of the track to the other, the increased cell resolution revealed that
awake replays were strikingly discontinuous, alternately hovering at, and jumping between, several
locations along the length of the track. One should naturally suspect a measurement artifact due to
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insufficient place field coverage, but several analyses confirmed that given the actual place cells and
fields, a smooth trajectory could have been decoded if the underlying represented trajectory had
been smooth. It might have been the case that the hovering locations were of special significance
to the animal, although nothing in the animals’ behavior or in the environment indicated that this
was so. The more disruptive interpretation is that the hippocampus was attempting to depict a
smooth running trajectory, but this was the best approximation that it could produce. One possible
explanation for this is as follows. Given the highly distributed nature of the hippocampal place
code, with 30-50% of all hippocampal place cells recruited to each environment, out of presumably
thousands of potential environments, the problem of creating a simple chain between place cells
becomes analogous to that of storing sequences of distributed patterns in a recurrent neural
network such as a Hopfield network (Hopfield 1982). As Hopfield noted, this architecture does not
store sequences well, in contrast to the way in which the network is guaranteed to relax into a fixed-
point attractor. A solution is to use rapid Hopfield dynamics to recover attractors representing
discrete stored memory items, but embed this within a slower heteroassociative network that can
recover the next item in sequence (Kleinfeld 1986, Sompolinsky & Kanter 1986). Interestingly,
this scheme predicts jumpy sequences. The important point mechanistically is that this scheme
requires two sets of synapses, fast and slow, which can be satisfied by a network architecture that
combines multiple brain areas, such as CA3 for fast autoassociative sharpening of individual items,
and a wider hippocampal loop for slower heteroassociative jumping between items (Lisman 1999,
Lisman et al. 2005). Finally, the alternation between hovering and jumping was weakly locked to
the slow gamma rhythm in the local hippocampal EEG, which is consistent with a prior report
that ripple amplitude is also weakly locked to slow gamma (Carr et al. 2012). Ongoing work in
my laboratory suggests that the slowing of replay with experience results from the strengthening
of attractors (Feng et al. 2015).

A further question of interest is how reverse replay sequences can result from forward experi-
ence. The simplest models of sequence formation from spike timing—dependent plasticity (STDP)
(Bi & Poo 1998) suggested that this is problematic (e.g., Mehta et al. 2002), as they were exquisitely
sensitive to the order of firing of cells during encoding, but recent results in the STDP litera-
ture ameliorate this concern. In visual cortical slices (Seol et al. 2007) and cultured hippocampal
neurons (Zhang et al. 2009), researchers have shown that the neuromodulatory environment can
render the STDP rule temporally symmetric; for example, dopamine promotes symmetric poten-
tiation in the hippocampus. Consider hippocampal place cells firing in two adjacent place fields,
say, locations A and B. There will be thousands of A cells and thousands of B cells, both in CA3
and in CAl. Without specifying precisely the circuits in which A cells connect to B cells (given
the uncertainty about this that was noted above), we can state unequivocally that some A cells will
be presynaptic to some B cells, and some A cells will be postsynaptic to some B cells. Under a
symmetric STDP rule, both sets of synapses may be potentiated by the experience of traveling
from A to B (Figure 5). With symmetry breaking accomplished by diverse mechanisms such as
short-term synaptic depression (York & van Rossum 2009) or spike adaptation (Ben-Yishai et al.
1997), such weights can generate place cell sequences in either direction (Romani & Tsodyks
2015). One important point to note is that, for any given environment, effective bidirectional con-
nections between places represent only a subset of all possible connections and in this way capture
the spatial topology. For example, A cells might be connected symmetrically with B cells, and B
cells with C cells, but not A cells with C cells. Further, neuromodulatory control of plasticity might
also be a mechanism by which novel transitions between locations are encoded but not familiar
ones, so that replay captures a model of transition probabilities rather than being dominated by
recency or familiarity.
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Figure 5

A schematic depiction of possible mechanisms underlying replay. A-E represent not individual place cells but
rather populations of thousands of cells representing each of five locations A-E. During repeated experience,
autoassociative connections between the cells representing individual locations become strengthened,
supporting error correction of the representations of these locations during replay and also forcing replay to
hover in these locations. Heteroassociative connections are also strengthened between connected locations
and in both directions. These connections drive the movement of replay between locations and are strong in
both forward and reverse directions, to support both forward and reverse replay (with some momentum
supplied by adaptation mechanisms to prevent jiggling back and forth). However, not all pairs of locations
are connected, and thus this pattern of connections defines an environmental topology.

6. REPLAY WITH A PURPOSE

At this point, several important features of awake replay have been established. It is learned,
rapidly, but can express the learned information in an entirely different form, such as in reverse.
The learning requires NMDA receptor activation. The resulting replays appear to reflect a model
of which paths are traversable rather than recordings of specific experiences, and sampling from
this model may be necessary for choice in spatial tasks. However, the picture remains of a rather
spontaneous and undirected phenomenon, like echoes of the original experience. In this section,
we find that this picture is misleading and that there is striking selectivity in terms of which replays
occur and at what times.

Using a creative experimental design that switched between tasks each day, Gupta et al. (2010)
demonstrated that the less frequently experienced trajectory out of two was the more frequently
replayed. This pattern is consistent with a long-standing theoretical proposal that when training
neural networks on new patterns, retraining on the old patterns must be interleaved so as to avoid
catastrophic interference (McClelland et al. 1995), although the window over which this retraining
can occur remains to be determined, with little direct evidence for retrieval of experiences from
previous days. For the present discussion, it is noteworthy that the selection of replay appears
selective rather than random. However, one of the many other interesting observations in this
study was that during an alternation task, the selection of replay did not predict behavior. Similarly,
in an earlier study from the same group, activity during the theta state was reported to represent
places ahead of an animal paused at a choice point but also did not predict which of two trajectories
would be taken (Johnson & Redish 2007). Theta activity is not replay but is organized similarly
into sequences across different neurons. This tendency to replay both of two future choices with
equal probability was also reported by others (Singer et al. 2013). This last example is particularly
interesting because the occurrence of replay was found to be predictive of correct performance on
the task. It is of course the case that a single, random sample of future outcome in a binary task
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informs the decision fully. So although some evidence was offered for selection in replay, much
of the passive, neutral character remained.

With these previous results in mind, we set out to test for replay selectivity by designing a
spatial memory task in which the goal location was one of 36 similar locations in a large arena
(Pfeiffer & Foster 2013a). The task used alternating phases of random foraging and goal-directed
navigation to meet the twin demands of sampling of place fields from the entire environment
and drawing on hippocampal memory. Given the 10-20 place cells needed to observe linear track
replay, it was expected that roughly the square of this would be required in the square arena; this
was accomplished by miniaturization of the microdrive, allowing an increase in the number of
tetrodes deployed simultaneously, to 42, and a corresponding increase in cell yield of up to 250
neurons that were active in the environment. The major findings were that (#) two-dimensional
replay sequences that depicted realistic behavioral trajectories occurred whenever the rat stopped;
(b) replays just prior to goal-directed navigation tended to move toward and terminate at the
remembered goal location and predicted the actual trajectory that would be taken; and (¢) predictive
replays occurred mostly during the phase of the task when they might be needed, that is, before
goal-directed navigation rather than before random foraging. Note that these results require a
modification to the models of sequence learning discussed in the previous section, as it is not
obvious how goal selectivity can or should bias sequences. A curiosity in the data was that often
during a stopping period, more than one trajectory would be replayed, but both could be predictive.
For example, during a stop preceding goal-directed movement, the trajectory to the goal, butalso a
different trajectory, might be replayed. Sometimes, this other trajectory was relevant to where the
animal explored immediately after visiting the goal, as if reflecting a multistep planning process.
This offers a potential explanation for the failure to discern behaviorally predictive replay using a
maze with only two choices: Replay often generates multiple alternatives while still being targeted
toward future choices. Such selectivity is hidden when there are too few options.

An interesting question is, how much further can the problem-solving phenomenology of
replay be taken? One is reminded of the work of behavioral psychologists in the early part of
the twentieth century studying the problem-solving behavior of maze-running rats—for exam-
ple, Maier (Maier 1929, Maier & Schneirla 1935), whose three-table experiment anticipated the
shortcutting phenomenon of Gupta et al. (2010), and of course Tolman (Tolman 1949, Tolman
& Honzik 1930), whose notion of inference inspired the changing goal aspect of the Pfeiffer study.
The intriguing possibility exists of identifying Tolmanian inference in the activity of hippocampal
neurons, for example, in more navigationally complex environments, but without behavioral con-
founds, as animals are typically stationary during replay events. Moreover, such activity is likely
generated by a small number of neural circuits, offering a reduced biological substrate for studying
high-level cognition. This atleastis the promise. In the next section, more precise theoretical ideas
are presented for the roles these various features of replay may have.

7. THEORETICAL PERSPECTIVES

Ideally, we would like to consider the functional relevance of replay to behavior in a precise
way. What would help is a general and mathematical framework for how internal representations
such as replay promote reasonable behavior. Fortunately, such a framework exists in the form of
reinforcement learning (RL) (Sutton & Barto 1998). We begin by considering the appropriateness
of RL for understanding replay and then turn to specific ways of formalizing some of the more
recent findings in replay that are described in this review.

Replay expresses relationships between places, and whether the animal can travel between the
places appears to be much more important for replay than whether the places are physically close
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together in space. This is particularly striking in the Davidson et al. (2009) study, in which replay
can take 700 ms to wend its way around a bendy track without ever seeming to jump between
physically close (but uncrossable) points, but this has been just as true in every experiment we
are aware of. This contrasts with the responses of grid cells, head direction cells, and the other
recently discovered spatially responsive cells associated with the cognitive map (Moser et al. 2008),
all of which have a more geometrical character. RL methods are often general learning methods
that are capable of learning arbitrary relationships between elements and thus fit well with this
characteristic of hippocampal replay.

The key issue for RL in sequential decision problems such as navigation is that planning by
forward search of possible action sequences is prohibitively inefficient, owing to a combinatorial
explosion in the number of possible future sequences. Many sequential decision problems can be
expressed as Markovian decision problems or MDPs, in which states can be defined such that
the optimal action choice in each state is independent of state history. For navigation to a fixed
goal, locations are the states of an MDP, and so place cells have been modeled as providing
states in an RL network for navigational learning (Foster et al. 2000). Location can become non-
Markovian if other dependencies are introduced, such as dependency on the previous trial in
an alternation task. A solution is to use states that capture both location and trial memory, and
evidence suggests hippocampal cells develop similar representations (Foster & Knierim 2012,
Frank et al. 2000, Wood et al. 2000). An efficient solution to MDPs is to run planning backward,
starting from the goal and moving back along incoming trajectories. The reason why this is
efficient is obvious: Unlike in the forward direction, the horizon in the reverse direction is always
only a single step because of the Markovian property. What this means in practical terms is that
an algorithm proceeding in reverse can learn in a single sweep about the multiple navigation
problems corresponding to each of the states along the trajectory as a potential starting point.

These considerations suggested immediately that reverse replay could provide a mechanism
for associating places with values, hypothetically through connections between place cells and
downstream value-representing neurons such as those of ventral striatum (Roesch et al. 2009) or
prefrontal cortex (Kennerley et al. 2011). A simple model was proposed in which reverse replays
co-occur with a fast onset, slowly decaying reward-related signal, such as the phasic release of
dopamine, with both signals converging in a value-representing area (Foster & Wilson 2006).
Indeed, both nucleus accumbens (Lansink et al. 2009, Pennartz et al. 2004) and prefrontal cortex
(Jadhav et al. 2016) exhibit activity that is temporally coordinated with hippocampal replay, as is
the activity of dopamine neurons in the ventral tegmental area (Gomperts et al. 2015), in line with
this model. The result of pairing reverse replay and reward signaling in the model is that place cells
drive a gradient of reward expectation during subsequent navigation, which has been reported in
subsequent studies (van der Meer & Redish 2009, 2011). Curiously, actual reverse replay takes a
different form from those proposed previously in the computational literature. As noted above,
reverse replay is not a buffer of recent experience, as within the same stopping period, multiple
reverse trajectories can be replayed. However, reverse replay also does not resemble an algorithm
such as value iteration (Sutton & Barto 1998) in which values spread out along multiple incoming
trajectories simultaneously. This is particularly clear in two-dimensional replay, for which the
focus on a single location is clearly preserved throughout the entirety of the replay event (Pfeiffer
& Foster 2013a). Nevertheless, the actual form of reverse replay observed is perfectly compatible
with the value learning function proposed.

The idea that reverse replay is for learning values from rewards predicts a special relationship
between reward and reverse replay. This is interesting because phenomenologically, forward and
reverse replay appear similar (Diba & Buzsaki 2007). This idea was tested recently by varying
reward magnitude at certain locations in a very simple linear track running task (Ambrose et al.
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2016), extending earlier work examining the effect of reward on replay-related events in the
local hippocampal field potential (Singer & Frank 2009). Changing reward magnitude, either by
increasing or removing it, increased or decreased the rate of reverse replay correspondingly but
not the rate of forward replay, which remained constant. This was especially striking because both
reverse and forward replays occurred intermingled within the same stopping periods and while
animals were engaged in the same reward consumption behavior. Moreover, the key variable
predicting the rate changes was not the absolute magnitude of reward but the change in reward
from the previous experimental period and the relative amount compared to the total reward
available. Both these effects resemble the pattern of dopamine signaling in response to rewards
[prediction error effects (Schultz et al. 1997) and menu effects (Tobler et al. 2005), respectively],
suggesting that dopamine mightregulate replay, and reverse replay specifically. Recent results have
shown that stimulation of dopamine neurons can promote hippocampal reactivation, although it
is not known whether replay, and in particular reverse replay, is involved (McNamara et al. 2014).

If reverse replay is for learning values, a natural suggestion is that forward replay in contrast
is for retrieving values, for the purposes of decision making, particularly at choice points. This
suggestion has been made explicitly (Carr et al. 2011, Jadhav et al. 2012), and a similar role has
been suggested for place cell sequences during theta, which sweep ahead of an animal’s position
along different future paths while the animal is paused at a choice point (Johnson & Redish 2007,
Redish 2016). However, from an RL perspective, this intuitive forward replay idea is, ironically, the
problematic one. As mentioned above, forward search is inefficient, and the notion that forward
replay searches agnostically along all possible paths is already disproved by the data when the
number of potential future choices is made very large (Pfeiffer & Foster 2013a). However, even
if we posit that forward replay allows consideration of an animal’s top two or three choices prior
to movement, there is a problem. Tolman’s (1948) cognitive map idea was famously criticized for
leaving his rats buried in thought; similarly, we may consider a simple-minded but vivid example
of the cost to a rat or mouse of replaying even two alternative future trajectories in succession.
Thirty-six km/h is a fairly easy running speed for a cat, or 1 cm/ms. The time required to sit
still and replay (or theta sweep) two different trajectories is at least several hundred milliseconds,
as each event may take about 100 ms and there is often a gap of at least 100-200 ms between
them. The cat will cover several meters before the rat decides on an escape route. Clearly the
predictive nature of forward sequences demands an explanation, as does the necessary role of
replay-related activity in immediate choice (Jadhav et al. 2012), but any explanation must pass the
test of computational reasonableness.

The specific functions hypothesized for reverse and forward replay have different implications
for their downstream circuits. As discussed above, reverse replay is likely to engage circuits re-
lated to reward and value. Forward replay may also engage circuits related to value; however, if
forward replay is related to planning immediate behavior, several different strategies might be
deployed, with different implications. The simplest strategy is what we have argued on computa-
tional grounds is the least likely, which would be that forward replay is used to evaluate and plan
the immediate action based on retrieved information about the reward available at the end of the
trajectory. Some short-term memory would be required across two or three successive replays to
remember the retrieved outcomes of each and choose the best associated initial action. Speaking
to this, we have not found evidence that the last trajectory to be replayed corresponds to the action
chosen, as might be expected from an efficient deployment of this strategy. A different strategy is
if extended forward replays reflect a planned sequence of actions, sometimes called options in the
RL literature (Sutton et al. 1999). The use of these extended plans can reduce the dimensionality
of a large state space by constraining exploration, which can be especially useful for generalization
between similar tasks (Parr & Russell 1997, Singh 1992), as in our open-field navigation task
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(Pfeiffer & Foster 2013a). The extended plans can be evaluated using the same RL networks as
for ordinary actions (Sutton et al. 1999). However, under this interpretation, the forward replay
represents an extended plan of action that the animal must commit to and evaluate upon its con-
clusion. It is not clear exactly how this commitment can occur, but it would involve a short-term
memory, in this case lasting for the entire duration of the planned behavior and through to the
outcome. It may be relevant that replays did in fact predict future behavior over at least 10 s in
the open-field task, as if the behavior did tend to be constrained by the replay (Pfeiffer & Foster
2013a). A third very different possibility is that forward sequences have no immediate behavioral
consequence at all but are part of a separate prediction system existing outside behavioral con-
trol, one that generates predictions of future behaviors and compares these with the actual future
behaviors and the outcomes of those behaviors to learn a model of the animal’s own behavior,
although studies demonstrating the necessity and correlation of replay to performance in choice
tasks would seem to contradict this (Jadhav et al. 2012, Singer et al. 2013). Determining which of
these schemes is correct will require the precise manipulation of hippocampal replay contingent
on trajectory and of the downstream circuits hypothetically involved.

8. CONCLUSIONS

We have presented many new results in the replay field that revise considerably the classical pic-
ture of replay. To summarize the most salient revisions: Replay occurs not only in sleep but also at
any time that an awake rat stops running. It does not repeat activity patterns: It may, for example,
ignore recent patterns or create new patterns never experienced before. It does not temporally
compress experience, but rather draws speeded-up samples from a model of the spatial contin-
gencies available to the moving animal, a cognitive map in the sense of Tolman (1948). It can be
selective for the current goal location, and for current task phase, and predict the immediate future
behavior of the animal. Indulgently speaking, it looks less like dreaming and more like thought.

Many omissions in this presentation demand explanation. For one, the treatment of replay has
not explicitly contrasted awake and sleep replay. Many of the newer studies have been of awake
replay only. However, we have deliberately avoided emphasizing this distinction because the fact
is that precious little evidence separates the phenomenology of awake and sleep replay. Where
we have examined sleep replay in our studies, activity patterns appear strongly conserved. For
example, we found exactly the same sort of behavior-like trajectory events in sleep after a spatial
memory task as occurred during task performance (Pfeiffer & Foster 2013b). Where differences
exist, they tend to be more quantitative; for example, there is certainly more remote replay in sleep
than in the awake state, but it can nevertheless occur in either state. Similarly, the presentation
has not carefully demarcated replay results according to hippocampal subfield, for example, CA1
versus CA3 (there have not been comparable studies of replay in dentate gyrus or CA2 at this
point). Different studies have in fact examined one or the other area, or both, but again, no
phenomenological differences have yet been reported, and one study to show examples of replay
in CAl and CA3 recorded simultaneously is striking for how undifferentiated the activity in the
two areas is (Karlsson & Frank 2009). So although hypotheses have been presented for the role
of CA3 compared to other subregions, the distinction has not been made at the level of data.

A large and increasing literature has focused on the interaction between the hippocampus and
other areas of the brain. Although some of this work was referred to, much has been omitted. Again,
this has been deliberate, as the focus of this review has been to describe the phenomenology of
hippocampal replay. Understanding how hippocampal activity patterns respond to, and influence,
activity outside the hippocampus is clearly fundamental to future progress, but it is also worth
proceeding cautiously. For example, interactions between hippocampal and cortical activity have
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been interpreted as evidence in favor of a consolidation account of hippocampal replay (Squire etal.
2015), but if the hippocampus is not actually repeating patterns of previously experienced activity,
then no amount of communication with cortex is going to support a consolidation mechanism, at
least according to the simple models of consolidation that have been proposed.

Another large body of work that is potentially relevant but has not been much discussed
here concerns the phenomenon of theta sequences. A huge amount of work has been published
on theta-related activity in the past decade, including sequences. In many ways, activity during
theta can resemble replay. However, there are conspicuous differences, such as the shortness
of the sequences and, most importantly, the way that during theta there is marked interplay
between incoming stimuli and internal dynamics. Clearly, replay also has some of that interplay,
but it seems safe to suppose that replay is more largely representative of internal dynamics in the
hippocampus than theta sequences are, and so the specific focus of this review on characterizing
replay phenomenology can be seen to have an integral whole without the inclusion of theta
sequences.

A final area of omission has been events in the hippocampal local field potential and, in partic-
ular, sharp-wave ripples. Expansion of the scope to include these events would easily increase the
size of this review by an order of magnitude. A recent review gives a comprehensive account of
work in this larger field (Buzsaki 2015) and in so doing highlights an interesting possible relation-
ship to neuropsychiatric disease. Indeed, it is fascinating to consider that there might be diseases of
replay. Many neuropsychiatric diseases have been linked with abnormal rest-state activity assessed
by functional neuroimaging (Buckner et al. 2008), and so an effect on replay is plausible. In my
own work, we found that an animal model of schizophrenia exhibited a remarkable pattern of
hippocampal activity: Place cell firing was completely normal during running, but the moment
the animal stopped, overall excitability increased sixfold, entirely because of overactive and over-
abundant sharp-wave ripple events during which replay was completely swamped by noise (Suh
et al. 2013). In a follow-up study with a second, completely genetically distinct animal model of
schizophrenia, we found a similar pattern of results, which we suggested might model how a disease
with a heterogeneous etiology such as schizophrenia could exhibit convergence in information
processing abnormalities that might account for common symptoms (Altimus et al. 2015). Given
our revised understanding of hippocampal replay, it is interesting to note that psychosis has been
proposed to result from an overdominant internal model (Dolan & Dayan 2013).

In summary, hippocampal replay is an extremely active area of investigation in many labora-
tories. Our understanding of the phenomenon has changed much in the past 20 years, leading
necessarily to changes in interpretation and new insight into how the hippocampus supports mem-
ory. Additionally, hippocampal replay offers a window on a degree of complexity that may exist
throughout the cortex, but which in most other brain areas is not yet amenable to large-scale
simultaneous recording. This in the end may be its most important contribution.
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