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Abstract

Synaptic plasticity, the activity-dependent change in neuronal connection
strength, has long been considered an important component of learning
and memory. Computational and engineering work corroborate the power
of learning through the directed adjustment of connection weights. Here
we review the fundamental elements of four broadly categorized forms of
synaptic plasticity and discuss their functional capabilities and limitations.
Although standard, correlation-based, Hebbian synaptic plasticity has been
the primary focus of neuroscientists for decades, it is inherently limited.
Three-factor plasticity rules supplement Hebbian forms with neuromod-
ulation and eligibility traces, while true supervised types go even further by
adding objectives and instructive signals. Finally, a recently discovered hip-
pocampal form of synaptic plasticity combines the above elements, while
leaving behind the primary Hebbian requirement. We suggest that the ef-
fort to determine the neural basis of adaptive behavior could benefit from re-
newed experimental and theoretical investigation of more powerful directed
types of synaptic plasticity.
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INTRODUCTION

A fundamental objective of neuroscience is to understand how brains produce the learned or adap-
tive behaviors that allow animals to thrive in complex environments. The prevailing core idea is
that learning is associated with persistent experience-driven changes to animals’ brains that sub-
sequently aid them in the successful performance of important tasks such as the acquisition of
necessities like food and shelter while avoiding the unpleasantness that accompanies injury or
predation. Obviously, this behavior is complicated, requiring an accurate perception of the sen-
sory elements of an environment, a capacity to make suitable decisions, and an ability to move
appropriately within the environment. On top of this, sensory and motor systems are imperfect,
and it remains impossible to perceive anything about the future. Thus, it is also important for
brains to generate inferences and predictions about the world that can fill in perceptual gaps, cor-
rect for inappropriate motor commands, and guide decision-making. Because of this complexity,
the process of acquiring a particular adaptive behavior involves modifications to many brain re-
gions, with the actual site of the adjustments being found within the individual neurons that make
up these regions. In the end, the adaptations should manifest themselves as alterations in the re-
sponsiveness of the neurons to particular input patterns. That is, the adaptive changes should alter
the input-output transformations of neurons within a given region so that the population can best
perform the specific computations that enable successful behaviors (e.g., improved perception,
enhanced value to action mappings, efficient movement).

While it seems likely that there are multiple mechanisms involved in such an important
function, we focus here on just one: experience-dependent alterations in the strength of synap-
tic connections between neurons. Long-lasting changes in the synaptic weights within partic-
ular networks have been hypothesized for many decades to mediate the task-relevant shaping
of neuronal population activity. As a result, there has been an extraordinary amount of exper-
imental, theoretical, and technical/engineering work that has resulted in tens of thousands of
published manuscripts and numerous life-impacting devices. Not surprisingly, synaptic plastic-
ity is nearly ubiquitous throughout brains, and a dizzying array of forms have been reported.
Our goal here is not to survey these various forms but instead to broadly group them into sev-
eral, perhaps overlapping, categories and coarsely present the current understanding of their dif-
ferent fundamental elements and functional capabilities. We then turn our attention to a plas-
ticity that was recently discovered to underlie place fields in hippocampal area CA1, because
it appears to uniquely combine features of the different plasticity forms, allowing it distinct
abilities.
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Common synaptic plasticity forms. (a) Standard correlative plasticity driven by repeated coactive input-output. (b) NM-gated
correlative plasticity, where repeated coactive input-output generates ETs (τ e is ET decay time constant) that are gated by a global
signal (i.e., NM), potentially representing a behavioral variable. (c) Standard correlative plasticity, except that the postsynaptic term is
replaced with an error term delivered by an instructive pathway that drives dendritic Ca2+ spikes (IS). (d) BTSP combines many of the
above features without the requirement of correlated input-output (note lack of output actional potential). In all panels, black circles
and arrows labeled output are postsynaptic neurons. In panels c and d, the black Y-shaped element is an apical dendrite. Abbreviations:
BTSP, behavioral timescale synaptic plasticity; ET, eligibility trace; IS, instructive signal; NM, neuromodulator; STDP, spike
timing–dependent plasticity, �W, synaptic weight change.

CORRELATIVE HEBBIAN SYNAPTIC PLASTICITY

One of the most influential ideas about how learning-related changes might occur in brains was
first articulated by Donald Hebb (1949) around seventy years ago. Hebb’s famous postulate states
that if cell A “repeatedly or persistently takes part” in firing cell B, then the strength of their con-
nection should increase. In this statement, Hebb points out that learning-related changes should
be found in the strength of the synaptic connections between individual neurons within a neu-
ronal population or assembly and that these changes should, in his view, be based on causality and
repetition. The underlying ideas here are that synapses responsible for correct responses (reward,
escape, etc.) should be properly credited (this is known as credit assignment) and that this process
should be gradual to avoid the errors associated with noise.

In the following decades, the pioneers of artificial neural networks (ANNs) interpreted Hebb’s
idea to be that weight changes among the units of single-layer networks should be based on co-
incidence, or the product of pre- and postsynaptic activity, thus transforming the causality into
changes proportional to the coactivity or correlation of the input and output units (Rosenblatt
1959, Woodrow & Hoff 1960) (Figure 1a). The most straightforward of these network learning
rules, the unsupervised forms, produces a rudimentary form of memory by linking a system’s par-
ticular input patterns with the output patterns that are consistently associated with them. Here,
inputs driving a given output will have their connection strengths enhanced, forming a simple
association that allows even fragments of the associated input pattern to evoke the correct output
activity (Andersen 1972, Kohonen 1972,Hopfield 1982). In addition, these unsupervised Hebbian
learning rules autonomously find low-order statistical structure in the input stream, allowing them
to mediate some types of fundamental feature selectivity and to generate self-organizing topo-
graphical representations of those features (von der Malsberg 1973, Grossberg 1976, Kohonen
1982, Oja 1982, Erwin & Miller 1998, Song & Abbott 2001, Brito & Gerstner 2016).

Actual synaptic plasticity was first discovered in the hippocampus in the early 1970s, where it
was established that repeated, near-synchronous activation of both pre- and postsynaptic neurons
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produced an increase in the strength of the synaptic input of only the stimulated connections
(Bliss & Lomo 1973, Levy & Steward 1983). This phenomenon became known as long-term
potentiation (LTP), and in the intervening decades,LTP and its counterpart, long-term depression
(LTD), have been heavily studied in a variety of brain areas (see reviews by Malenka & Bear 2004,
Caporale & Dan 2008, Kandel et al. 2014, Nicoll 2017). The primary mechanism thought to
mediate the above input-output correlation revolves around the special properties of N-methyl-
d-aspartate glutamate receptors (NMDARs), which require a coincidence of glutamate binding
and membrane potential (Vm) depolarization for gating (Mayer et al. 1984). This aspect allows
them to report, via an increase in postsynaptic intracellular Ca2+ levels, the temporal overlap of
synaptic input and action potentials (APs) backpropagating from the axon to the synapse (Magee
& Johnston 1997, Koester & Sakmann 1998, Luscher & Malenka 2012). Most synaptic plasticity
forms investigated thus far fall under the standard autonomous correlative Hebbian category, and
this includes practically all types of spike timing–dependent plasticity (STDP), the quintessential
Hebbian protocol for experimentally inducing either LTP or LTD (Markram et al. 1997, Bi &
Poo 1998). Indeed, STDP retains the fundamental autonomous correlation-based property while
adding timing requirements that somewhat refine and extend its capabilities (Song&Abbott 2001,
Young et al. 2007, Feldman 2012).

As would be expected from theory,most evidence of a role for autonomous correlative plasticity
in actual network functional properties has come from studies examining the development of
fundamental feature selectivity in sensory systems or in associative forms of learning where the
conditioned stimulus (CS) (e.g., tone, odor, location) overlaps with the unconditioned stimulus
(US) (generally aversive stimuli) (McKernan & Shinnick-Gallagher 1997, Rogan et al. 1997, Yao
& Dan 2001, Li et al. 2008, Butts & Kanold 2010, Ryan et al. 2015, Tonegawa et al. 2015, Kim
& Cho 2017). Several of these studies have used different forms of artificial activation (electrical
or optogenetic) paired with sensory stimuli and examined the shifting of receptive fields or the
formation of simple associations and changes in associative learning (Schuett et al. 2001, Yao &
Dan 2001, Meliza & Dan 2006, Nabavi et al. 2014, Carrillo-Reid et al. 2016, El-Boustani et al.
2018). These effects are usually dependent on the repeated (many dozens) occurrence of tightly
timed input-output pairings and thus implicate STDP-like synaptic plasticity phenomena. It is, of
course, difficult to know for certain if these forms of plasticity were actually those that naturally
occurred to produce the given feature selectivity. However, further support is offered by reports
that the formation of certain types of basic associative memories is correlated with what appears
to be LTP and can be blocked by manipulations that inhibit synaptic plasticity (Morris et al. 1986,
McKernan & Shinnick-Gallagher 1997, Rogan et al. 1997,Nakazawa et al. 2004, Ryan et al. 2015,
Kim Cho 2017). Thus, all things considered, there is appreciable evidence that synaptic plasticity
mechanisms approximating those formulated byHebb 70 years ago play a role in the development
of the feature extraction capabilities of many brain networks and perhaps also in simple forms of
associative memory.

However, having said this, there are a few fundamental issues concerning the standard varieties
of synaptic plasticity discussed above that should also be considered. Simple autonomous cate-
gories of plasticity, such as correlative Hebbian forms, all support a kind of unsupervised learning
that is inherently limited in the classes of problems it can solve. To begin with, without some sort
of regulation over which synapses can change and when, synaptic weight modifications will be
frequent and storage capacity quickly saturated, resulting in a ruinous overwriting of old memo-
ries (Fusi 2002, Fusi & Abbott 2007). In addition, it is difficult for synaptic plasticity mechanisms
operating on physiological timescales (tens of milliseconds) to handle the time course of behavior
(at least seconds) (Sutton & Barto 1981). Furthermore, because these forms lack a target for neu-
ronal activity to approach, there simply is no obvious way for a neuron to know if a given change
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in a particular synaptic weight is useful, thus limiting these self-organizing mechanisms to the
formation of fundamental types of representations that are not always sufficient for achieving a
specific learning objective (Fremaux & Gerstner 2016, Marblestone et al. 2016). We discuss sev-
eral proposed solutions to these problems below as well as present evidence for a type of synaptic
plasticity, recently uncovered in the hippocampus, that may point toward additional routes taken
by the mammalian nervous system.

NEUROMODULATION, ELIGIBILITY TRACES, AND THREE-FACTOR
PLASTICITY RULES

A large and complex literature exists describing the relationship between neuromodulatory activity
and certain behaviors. The dependence of reward-motivated behavior on dopamine (DA) neuron
activity and DA receptor activation is a well-documented example (Schultz 2007, Steinberg et al.
2013, Pignatelli & Bonci 2015, Berke 2018). Because most modulatory regions project broadly to
numerous cortical and subcortical brain areas, and because neuromodulator release is mediated
through nonsynaptic volume transmission, the action of these transmitters is thought to be global;
that is, they more or less equally effect most neurons within a large volume of brain tissue. In addi-
tion, neuromodulators have been shown to profoundly alter standard correlative types of synaptic
plasticity in a concentration- and receptor subtype–dependent manner, and this has led to the
concept that specific neuromodulators could gate Hebbian plasticity (Gu 2002, Nadim & Bucher
2014, Brzosko et al. 2017). Such global neuromodulatory gating potentially obviates the ruinous
effects of uncontrolled correlative plasticity, and it could also provide a degree of supervision if the
neuromodulators communicate some type of behaviorally related message (e.g., reward, novelty).

Of course, even here there remains a problem related to the fact that much of the sensory ex-
perience of an animal is separated in time by at least seconds from any associated consequences
[this is known as the distal reward problem (Hull 1943)]. It was demonstrated many decades ago
that correlative Hebbian learning rules alone are of limited use in explaining the predictive re-
sponses observed in many classical conditioning experiments, since the timescales of these rules
do not allow them to directly adjust the weights of inputs preceding the US by relevant amounts
of time (Sutton & Barto 1981). To correct for this deficiency, Sutton & Barto (1981) implemented
non-stimulating eligibility traces (ETs): internal signals, local to the synapse and not related to
electrical output activity, that decay away over several seconds, thereby marking a given synapse as
eligible for modification (Figure 1b). The use of such traces, basically filtered versions of synaptic
input, alleviates the distal reward problem by linking presynaptic activity with distant postsynap-
tic activations. In essence, ETs generate plasticity rules that are asymmetric in time, in that the
time course over which they elevate synaptic weights stretches farther backward than forward,
and such rules are known to produce predictive neuronal activity (Abbott & Blum 1996, Blum &
Abbott 1996, Bittner et al. 2017). It was even shown that the asymmetric plasticity rule present in
STDP can itself produce predictions (but of course these are limited by the tens-of-millisecond
timescales of the plasticity rule) (Mehta et al. 2000; Rao & Sejnowski 2001, 2002).

Eventually, the inclusion of a number of other modifications to the standardHebbian rule, such
as replacing postsynaptic activity with a reinforcement signal (reward minus expected reward or
temporal difference), allows many models to accurately capture details of classical conditioning
experiments, including the linking of seconds-long CS-US intervals and the production of the
useful predictive responses, even with short ETs (Sutton 1988, Sutton & Barto 1990, Montague
et al. 1996, Ludvig et al. 2008). As such, these models have been connected to the midbrain DA
reward system and reinforcement learning in general (Houk et al. 1995, Montague et al. 1996,
Schultz 1998, Sutton & Barto 2018).
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However, perhaps because the above discussed models require the use of specially prescribed,
and potentially fictional, network input patterns, the concept of ETs has persisted. Currently, ETs
can be found in three-factor plasticity rules based on original STDP, except that now the repeated
coincident pairing of pre- and postsynaptic activity does not itself induce plasticity but instead gen-
erates ETs that are then gated by a later-occurring neuromodulator to drive plasticity (Izhikevich
2007, Fremaux & Gerstner 2016, Gerstner et al. 2018). Here, by using STDP rules for credit
assignment, the resulting plasticity is restricted to only those inputs that are correlated with AP
output. Unfortunately, the biological data supporting these ideas are still somewhat uncertain, as
the effect sizes are small and variable in the mammalian circuits examined (usually striatum but
also neocortex) and the reported effective STDP-neuromodulator intervals are highly inconsis-
tent [coincident (Yagishita et al. 2014), approximately 1 s (Fisher et al. 2017), exactly 2 s (Shindou
2019), and also coincident in the neocortex (He et al. 2015)] (see also Cassenaer & Laurent 2012).

In the end, the concept that STDP-like correlations actually generate ETs that function as a
transient memory of these coincidences, instead of directly producing synaptic weight changes,
extends the functionality of correlative-type plasticity by overcoming the distal reward problem.
Furthermore, the use of neuromodulatory signals, linked to behavioral variables such as reward
and novelty, allows some type of regulation or supervision of the learning-related plasticity. Now,
plasticity only proceeds as long as a stimulus remains novel or associated with a reward or pun-
ishment. However, the non-synaptic volume transmission mode of neuromodulator release im-
pedes the ability of ascending modulatory systems to selectively adjust the activity of individual
neurons in a fine-grained manner. This global nature of neuromodulation thus limits the abil-
ity of three-factor plasticity rules to function in a truly supervised manner (Richards & Lillicrap
2019). In addition, certain patterns of input alone seem capable of generating ETs in particular
circuits, raising the idea that input-output correlations may not always be the optimal structure on
which to base credit assignment for learning adaptive behaviors (Bittner et al. 2017). At any rate,
the preponderance of evidence indicates that neuromodulators impact synaptic plasticity, and the
interesting relationships between behavioral variables and neuromodulatory area activities leave
little doubt that neuromodulation could play a role in the regulation of learning-related neuronal
changes.The exact nature of this role, however, remains to be determined, and it may turn out that
neuromodulation works more in a permissive-type capacity than as a direct instructor (see below).

SUPERVISED SYNAPTIC PLASTICITY

A variation on standard Hebbian plasticity produces a true supervised form of learning. Although
Hebb did not consider teaching or target inputs, these rules are still based on the product of pre-
and postsynaptic activity, except that here, the postsynaptic term is the difference between the
actual output and a target or teacher activity pattern (Figure 1c). Supervised learning rules are
part of error-correcting algorithms, where networks are trained to optimize their performance by
incrementally reducing this error or difference. As such, these systems require the formulation of a
goal or objective for learning (objective functions); the determination of how far current network
activity is from that objective; and, finally, a method for minimizing this difference. The objective
functions can be overt and externally driven, as in a teacher that explicitly indicates the exact target
pattern, or something less specific, internally generated, andmore dynamic, such as a target toward
sparse output activity or the minimum information needed to encode sensory input (Olshausen
& Field 1996, Rao & Ballard 1999, Marblestone et al. 2016). Either way, there is a goal and an
incremental process to achieve that target.

Even the simplest single-layer networks using supervised learning procedures (Figure 2a,b)
are quite powerful and are in widespread use in signal processing and adaptive control (Woodrow
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Supervised learning in ANNs and brain regions. (a) Single-layer network with input (red) and output (blue)
units showing ANN elements in a single-layer net and potential neuronal equivalents in brains. (b) Single PC
(blue) receiving GC input (red) and AP output. Here, error signal calculation or comparison (Compare), the
difference between the desired (green) and actual (purple) motor patterns, is performed external (black circle)
to the PC and delivered via CF (black arrow), which drives dendritic spiking and standard LTD. (c) Multilayer
network where the calculation of intermediate-layer (gray) weight changes (�Wij) uses an error signal based
on properties of the subsequent layer (left side, green). Such information seems unlikely to be available for real
neurons and, as such, specialized target signals may be used (right side, green). (d) Cortical circuits, which may
use specialized target input that varies from neuron to neuron to produce dendritic Vm changes (dendrite)
that drive dendritic spikes and LTP of feedforward input until somatic output (soma) matches the target-
canceling local error signal through inhibitory circuit elements (yellow). Abbreviations: ANN, artificial neural
network; AP, action potential; backprop, backpropagation of error algorithm; CF, climbing fiber; dc,
dendritic compartmentalization; DCN, deep cerebellar nuclei; GC, granule cell; LTD, long-term
depression; LTP, long-term potentiation; PC, Purkinje cell; PF, parallel fiber.

et al. 1994). While the incorporation of additional intermediate or hidden layers allows for more
complex internal representations and significantly more powerful functionality, the learning rules
used are essentially the same (Woodrow & Hoff 1960, Rumelhart et al. 1986, LeCun et al. 2015)
(Figure 2c–e). The main difference in multilayer or deep networks is that the method employed
to achieve the objective is more involved, since it is also necessary to calculate how to change
intermediate-layer connection weights such that those changes improve final network output.
While there are relatively straightforward methods to accomplish this in ANNs (Rumelhart et al.
1986,LeCun et al. 2015), the commonly used back-propagation of error algorithm requires knowl-
edge of downstream weights, the derivatives of output nonlinearities, and other aspects that have
led authors to question its direct biological plausibility (Crick 1989, Bengio et al. 2016). However,
this is an active research area, and recent work suggests that there may be more compatibilities
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between the biology and theory than were originally appreciated (Bengio et al. 2016, Lillicrap
et al. 2016, Roelfsema & Holtmatt 2018, Whittington & Bogacz 2019).

There is, in fact, a rising appreciation that many neuronal circuits could and indeedmay engage
in certain forms of supervised learning, although the implementation may be quite distinct from
the artificial types. The most familiar example is that of the mammalian cerebellum and associated
nuclei (Figure 2a,b).These areas have been frequentlymodelled as single-layer neuronal networks
where the adaptive elements (Purkinje neurons) receive two different inputs. The first is delivered
by tens of thousands of feedforward synaptic inputs (parallel fibers) from granule cells whose
weights are adjusted by a standard anti-Hebbian LTD to modulate axonal Na+ AP output. The
other input is a single very strong climbing fiber (CF) feedback that drives dendritic Ca2+ spikes,
which in turn induce the above LTD (Kawato 1990, Ito 2008, Raymond &Medina 2018). Recent
evidence suggests that ETs may also be present within Purkinje neurons to link the PF input with
temporally delayed CF feedback (Suvrathan et al. 2016, Suvrathan 2019). Thus, in contrast to
standard correlative learning forms, there are two separate voltage signals at work here: one that
controls learning (dendritic Ca2+ spikes) and another that transmits the activation level of the
adaptive element to downstream areas (axonal Na+ APs). The activity of the CF input is thought
to be related to a comparison, performed external to the cerebellum, of the desired and actual
movement trajectories and therefore is considered to function as a type of error signal whose
minimization is the objective of the system (Kawato 1990, Lang et al. 2016, Kostadinov et al.
2019).That each Purkinje neuron receives only a single CF input allows for a fine-grained synaptic
credit assignment within the layer by allowing the error signal to drive plasticity within specific
individual neurons (Richards & Lillicrap 2019). Thus, the single-layer cerebellum uses an external
comparator to calculate and deliver an error signal that, by varying from neuron to neuron, can
appropriately drive synaptic plasticity within different Purkinje neurons such that the error signal
is minimized as the network output is optimized.

There are three new elements introduced here that are not found in the standard correlative
plasticity forms considered above. The first is the concept of an objective output pattern to be
achieved. The second is an additional excitatory input from another brain region that we call
an instructive pathway (Figure 1c), since it carries information related to reaching the objective.
Third is an additional voltage signal within neuronal dendrites (dendritic spikes) that are pri-
marily involved in the induction of synaptic plasticity. We call this third element an instructive
signal (Figure 1c), since these dendritic spikes are evoked by instructive pathway input and trig-
ger learning-related synaptic plasticity.We can contrast this situation with that seen in correlative
Hebbian forms, where the output APs responsible for inducing plasticity are driven by the same
input that is being modified by learning-related weight changes (Figure 1a,b versus Figure 1c,d).
The additional instructive elements play a critical role in the cerebellum’s ability to improve per-
formance by incrementally optimizing its output (Raymond & Medina 2018).

A variation on this theme that is potentially more relevant for other brain areas has been heavily
studied in cerebellar-like structures in nonmammalian species. These structures appear similar to
a multilayer network, which theoretically requires them to make or find a signal that can be used
to appropriately adjust hidden-layer synaptic weights (Bell et al. 2008, Enikolopov et al. 2018,
Muller et al. 2019) (Figure 2c,d). Thus, it is perhaps not surprising that instead of a standard
error signal, the instructive pathway for the intermediate layer appears to bring a specialized target
directly to the dendrites of these neurons, where an internal comparison is performed between the
target and the feedforward synaptic input (Knudsen 1994, Enikolopov et al. 2018, Muller et al.
2019) (Figure 2c,d). Any deviation between the target and the feedforward input alters dendritic
spiking, thereby generating an internal error signal that drives adaptive synaptic plasticity in each
intermediate-layer neuron (Bell et al. 1997). Since the instructive pathway to the hidden layer
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carries a target and not an error signal, the activity in the instructive pathway does not change
in response to the generation of appropriate network output. What does change is the internal
error signal, that is, the rate of dendritic spiking in the individual intermediate-layer neurons.
This is an example where nature has discovered a target whose use in driving instructive signals
in intermediate-layer neurons is guaranteed to reduce the output error when combined with the
correct type of synaptic plasticity and circuit wiring.

The new elements introduced by the above circuit, a specialized target input driving local error
signals within the dendrites of each individual intermediate-layer neuron, may also be applicable
to learning in other circuits, such as those in mammalian cortical areas (e.g., neocortex and hip-
pocampus). Cortical areas are part of complex, perhaps hierarchical, networks that appear to form
progressively higher-order representations (Hubel & Wiesel 1962, 1968; Cadieu et al. 2014; Issa
et al. 2018). This organization may also require them to find specialized signals that are useful in
promoting proper credit assignment within what are the equivalent of intermediate-layer cortical
synapses.What mechanisms are available to cortical areas that could allow them to operate within
such a supervised learning theoretical framework (Figure 2c,d)?

The individual pyramidal neurons composing these networks receive both feedforward exci-
tatory inputs from lower levels (on the order of tens of thousands of synapses) and feedback ex-
citatory synapses (thousands) from a variety of brain regions, some of which could be considered
farther up a hierarchy (Steward & Scoville 1976, Cauller et al. 1998, Megias et al. 2001, Petreanu
et al. 2009, Fiser et al. 2016,Marques et al. 2018) (Figure 3a, subpanel i). The cable filtering and
active membrane properties of cortical pyramidal neuron dendrites produce at least two separate
integrative compartments, one around the soma (the perisomatic or proximal region) that is near
the axonal output region of the neuron, and another in the apical tuft dendrite (or distal region)
that is as far away from the output site of the neuron as possible (Magee 1998, Stuart & Spruston
1998, Harnett et al. 2013, Harnett et al. 2015) (Figure 3a). The proximal compartment mainly
receives the feedforward input, while the feedback primarily innervates the distal compartments
(Figure 3a). Each compartment also has its own feedforward and feedback inhibitory elements
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Figure 3

Cortical microcircuit. (a, i) Pyramidal cell–based principal neuron with proximal and distal integrative
compartments. Each compartment receives separate excitatory input (red, blue) and inhibitory
(ii) feedforward (FF) and (iii) feedback (FB) inputs. These compartments are also under inhibitory control by
(iv) disinhibitory elements as well as neuromodulatory inputs (v). Active signals are generated in (b) distal
(Ca2+ plateau) and (c) proximal (Na+ action potentials) compartments.
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(Figure 3a, subpanels ii,iii). The level of dendritic compartmentalization is such that the inter-
action between these distinct feedforward and feedback excitatory inputs is minimal. In addition,
each integrative compartment generates its own active signal, where the proximal compartment
initiates Na+ APs in the axon (Turner et al. 1991, Stuart & Sakmann 1994) (Figure 3c), while
the distal compartment produces Ca2+ plateau potentials (Schiller et al. 1997, Larkum et al. 1999,
Magee & Carruth 1999, Xu et al. 2012) (Figure 3b). These dendritic plateaus are mediated by
voltage-gated Ca2+ channels and NMDAR currents whose activation requires strong depolariza-
tion delivered by the distal excitatory input (Tsay et al. 2007, Takahashi & Magee 2009, Xu et al.
2012, Williams & Fletcher 2019). Plateau probability and duration (from tens to hundreds of
milliseconds) are subject to inhibitory regulation (Figure 3a, subpanel iv) and neuromodulatory
control (Figure 3a, subpanel v), with noradrenaline (NA) and acetylcholine (ACh) producing de-
creases in threshold and increases in duration, respectively (Palmer et al. 2012, Royer et al. 2012,
Harnett et al. 2013,Milstein et al. 2015,Labarrera et al. 2018,Williams & Fletcher 2019,Williams
& Holtmaat 2019). As in the cerebellar structures, cortical dendritic plateau potentials are very
effective drivers of synaptic plasticity (Golding et al. 2002; Kampa et al. 2006; Sjöström&Häusser
2006; Takahashi & Magee 2009; Gambino et al. 2014; Bittner et al. 2015, 2017).

Several computational studies have suggested that the cortical circuit architecture and physi-
ology discussed above, where feedback inputs carrying information related to the output of net-
work innervate the distal dendritic regions in relative isolation from the feedforward input, allow
error-like signals to be locally calculated within the dendrites of individual hidden-layer neurons
(Körding & König 2001, Urbanczik & Senn 2014, Guerguiev et al. 2017, Sacramento et al. 2018).
Since these local error signals, perhaps mediated by dendritic plateau potentials, reflect the dif-
ference between the desired and actual network output, intermediate-layer neurons are able to
adjust their feedforward synaptic weights as necessary to enhance the final output of the network.
In addition, regulation of dendritic voltage signals by inhibitory and disinhibitory microcircuit
elements as well as neuromodulatory input could provide these components a permissive control
over learning, or even a direct role in credit assignment (Roelfsema&Holtmaat 2018, Sacramento
et al. 2018).Thus, the physiology of cortical-type pyramidal neurons and the circuits in which they
are embedded may allow them to implement the neuron-by-neuron attribution of credit at inter-
mediate layers that could also be regulated by attention or other factors (Richards & Lillicrap
2019). Of course, in the end it is completely unknown if cortical circuits are functioning within a
supervised learning–type framework; however, it has come to light recently that they do appear to
possess several mechanisms that could allow them to perform some of the required computations.
The above observations justify continued research along these lines.

BEHAVIORAL TIMESCALE SYNAPTIC PLASTICITY

A form of synaptic plasticity that appears to uniquely combine several features of the above learn-
ing forms such as instructive pathways, instructive signals, seconds-long ETs, and neuromodu-
lation has been found to underlie place fields in the CA1 hippocampal region (Figure 1d). In
addition, this plasticity is rapidly induced (within as few as a single trial), allowing for single-shot
forms of learning and memory formation. The seconds-long time course suggests the name: be-
havioral timescale synaptic plasticity (BTSP) (Bittner et al. 2015, 2017; Grienberger et al. 2017;
Zhao et al. 2019). Remarkably, at least for cortical areas, BTSP appears to break the primary Heb-
bian requirement, because the weight changes driven by it are not proportional to input-output
correlations and there is a solid biophysical basis for this non-Hebbian property.We devote much
of the remainder of this review to a detailed discussion of the basic properties of BTSP as well as
its functional implications.
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CA1 place field formation via behavioral timescale synaptic plasticity. (a) Balance between unpotentiated,
tuned CA3 excitatory inputs and a uniform, relatively constant level of inhibition. (b) Initiation of plateau
potential drives plasticity. (c) Plasticity increases the weight of a set of tuned inputs that in turn produce
membrane potential (Vm) ramp. Green line is action potential (AP) threshold. (d) Arrow indicates how far
back in time inputs are potentiated before plateau. The start position of Vm ramp is indicated by blue lines in
panels c and d. Note the lack of APs (or even somatic depolarization) anywhere other than those driven by
the plateau itself.

Recent data suggest that CA1 place fields are formed by BTSP according to the following
scheme (Figure 4). It appears that all CA1 pyramidal neurons receive a constant barrage of tuned
excitatory inputs, perhaps from upstream place cells in area CA3 (Bittner et al. 2015, Grienberger
et al. 2017, Davoudi & Foster 2019, Zhao et al. 2019). In addition, the local population of in-
hibitory interneurons in CA1 produces a sustained level of inhibition that more or less exactly
balances this excitation, leaving the soma of these neurons fluctuating around their resting Vm

(Grienberger et al. 2017). At this point, these neurons are so-called silent cells that do not exhibit
any selective firing in a given environment (Harvey et al. 2009, Epsztein et al. 2011) (Figure 4a).
At some location in the environment, a Ca2+ plateau potential is initiated in the distal apical den-
drites of a silent CA1 cell, and the large, long-lasting depolarization associated with the plateau
effectively spreads throughout the neuron (Grienberger et al. 2014), inducing a potentiation of
excitatory synaptic inputs that arrive around the plateau (Golding et al. 2002; Bittner et al. 2015,
2017) (Figure 4b). On the next trial, the enhanced weights of the now potentiated inputs drive the
Vm out of excitation-inhibition balance to produce a slow ramp of depolarization that eventually
crosses the threshold when the animal is near the location of the initial plateau potential, thus
producing location-specific or place field firing (Harvey et al. 2009, Epsztein et al. 2011, Bittner
et al. 2015, Diamantaki et al. 2018) (Figure 4c). Because of this arrangement, every CA1 pyrami-
dal neuron is capable of rapidly expressing any place field relevant to a given environment with
the exact location of the field being determined, perhaps solely, by the location of the plateau po-
tential. These properties potentially provide a mechanism whereby the hippocampal place field
representation in CA1 can be shaped by the behavioral experience of the animal (Bittner et al.
2015, 2017; Grienberger et al. 2017; Fischler et al. 2019; Zhao et al. 2019).

What is the evidence that synaptic plasticity is responsible for CA1 place field firing? First,
plateau-driven synaptic plasticity is found in CA1, and it shows the same large magnitude
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(threefold peak potentiation), extended time course (asymmetric, seconds-long timescale), and
pharmacology (sensitive to NMDAR and Ca2+ channel antagonists) as plateau-driven CA1 place
field formation (Bittner et al. 2015, 2017). Second, Vm fluctuation analyses suggest that the de-
polarization responsible for driving place field firing is the result of an increased input ampli-
tude as opposed to input frequency. Furthermore, the fact that place field induction is so rapid
(within a single trial, <10 s) is inconsistent with the amount of rewiring that would be required
to double or triple the number (or frequency) of similarly tuned CA3 inputs received by the
CA1 neuron (Bittner et al. 2015). Finally, data indicate that the level of inhibition received by
a given CA1 pyramidal neuron does not change following place field induction, strongly sug-
gesting that location-dependent changes in inhibitory input are not involved (Grienberger et al.
2017).

The asymmetric, seconds-long time course of BTSP is interesting and unique compared to
most plasticity forms discussed above. Modelling results demonstrate that this time course could
arise through the interaction of two biochemical signals, one a slowly decaying ET generated by
active input from presynaptic place cells and another gating-type signal evoked by the plateau
potential that decays somewhat faster (∼1 s) (Bittner et al. 2017). The overlap of these two signals
initiates synaptic plasticity expression mechanisms that are perhaps the same as those found for
standard LTP (Luscher & Malenka 2012, Kandel et al. 2014).

While it seems fairly straightforward for a plateau potential actively propagating throughout
the neuron to produce a global biochemical signal (Larkum et al. 1999, Takahashi &Magee 2009,
Grienberger et al. 2014, Li et al. 2016), it is less obvious how long-lasting ETs are generated,
since there are essentially no APs preceding the plateau potentials that induce CA1 place fields
(Bittner et al. 2017) (Figure 4d). In this case, ETs are produced by subthreshold synaptic input
alone, and conventionally this would not only be biophysically problematic but also raise cer-
tain conceptual issues concerning the appropriate limitation of synapse eligibility (i.e., to only
properly tuned inputs). As far as the mechanisms go, several studies have found that pyramidal
neuron spine neck resistance is relatively high (approaching 1 G�) and, as a result, average-sized
unpotentiated excitatory postsynaptic potentials reach ∼25 mV in spines (Bloodgood et al. 2009,
Gulledge et al. 2012, Harnett et al. 2012, Jayant et al. 2017, Beaulieu-Laroche & Harnett 2018).
This level of depolarization is enough to begin gating NMDARs, and the addition of a small
amount of depolarization from neighboring active synapses nonlinearly increases this activation
(Mayer et al. 1984, Harnett et al. 2012) (Figure 5a). Thus, repetitive stimulation of individual
or small groups of synapses alone, without any correlated AP output, is adequate to generate an
NMDAR-mediated Ca2+ entry that, in turn, could activate a biochemical signalingmolecule func-
tioning as an ET (e.g., CaMKII) (Lee et al. 2009, Yagishita et al. 2014) (Figure 5b). In addition,
plasticity of spine neck resistance (Bloodgood & Sabatini 2005, Grunditz et al. 2008) can protect
synapses from saturation following potentiation without adversely affecting the current delivered
( Johnston & Wu 1995), and an inverse relationship between spine resistance and synaptic con-
ductance has been reported in cortical pyramidal neurons (Beaulieu-Laroche & Harnett 2018)
(Figure 5c). These same mechanisms also allow neurons to deal with the above conceptual issues,
since neurons possessing high-resistance spines could implement credit assignment rules based on
the spatiotemporal structure of the synaptic input, where only those inputs showing a sufficient
amount of repeated activation or spatial clustering will drive ETs (Harvey & Svoboda 2007, Yu
et al. 2009, Makino & Malinow 2011, Harnett et al. 2012, Druckmann et al. 2014; Kerlin et al.
2018).Although a small amount of theorywork has explored the use of ETs driven by input alone in
reinforcement learning (so-called noncontingent ETs) (Sutton & Barto 2018), additional thought
on the unique credit assignment capabilities provided by noncontingent ETs is justified. For in-
stance, action-related areas (e.g., striatum) might use a credit assignment rule based on causality
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High-resistance spines eliminate the input-output pairing requirement. (a) NMDA receptor (NMDAR)
activation by a single input is increased by the excitatory postsynaptic potential (EPSP) amplitude boosting
of high-resistance spines. Enhanced input is cooperativity reflected in increased nonlinear interaction
between nearby inputs. High-resistance spines lower the number of neighboring inputs required to activate
the eligibility trace (ET). (b) A few coactive nearby inputs are sufficient to evoke ETs without the need of
backpropagating action potentials. The gray trace represents spine kinase with lower sensitivity to spine
Ca2+, requiring a repetitive synaptic input (five times) before ET activation. (c) Decreasing spine neck
resistance after potentiation can counter the impact of an increased conductance on local spine EPSP
amplitude without adversely affecting the elevated current delivered to the rest of the neuron. Spine
membrane potential (Vm) is shown in black, and dendrite Vm is shown in green.

(i.e., pre/postactivity correlation), while areas more involved in representing external stimuli or in
episodic memory formation and one-shot learning (e.g., cortical regions) could take advantage of
ETs driven by input alone, as the causality requirement or contingency is less relevant (Sutton &
Barto 2018).

Another consequential element of BTSP, reminiscent of the learning-related plasticity found
in cerebellar structures, is the ability of dendritic plateau potentials to act as an instructive signal
to induce synaptic plasticity in a feedforward pathway. This raises the obvious question of what
is driving dendritic Ca2+ plateaus in CA1? As discussed above for cortical circuits, the current
biophysical understanding suggests that a combination of membrane excitability enhancing neu-
romodulation (ACh, NA), reduced levels of dendritic inhibition, and strong excitatory input from
the thousands of entorhinal cortex feedback projections (EC3) targeting the distal integrative
compartment are involved in regulating plateau initiation (Witter et al. 2000, Suh et al. 2011,
Lovett-Barron et al. 2012, Bloss et al. 2018, Labarrera et al. 2018, Turi et al. 2019, Williams
& Fletcher 2019, Kauffman et al. 2020). Given this, it appears that a complex circuit-level
computation is involved in generating what could be a fine-grained instructive signal permissively
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controlled by behavioral variables delivered by neuromodulatory input to the circuit (Turi
et al. 2019, Kauffman et al. 2020). Determining what information and behavioral variables are
represented by the various elements involved could shed light on how proper credit assignment
is achieved in CA1. Future experiments should also explore the possibility that, in analogy
to the cerebellum-like structures, EC3 provides CA1 with a specialized target that generates
local error signals mediated by plateau potentials in the apical dendrites of pyramidal neurons
(Figure 2c).

In sum, the synaptic plasticity responsible for CA1 place fields appears to combine several
signature elements of the forms discussed above but with substantial alterations. When com-
pared with standard Hebbian plasticity types, BTSP is not driven by input-output correlations;
it changes the weights of inputs over a period of time that covers seconds instead of milliseconds
and only requires a single instance for induction, as opposed to the many dozens of repetitions
required in STDP protocols. The extended time course suggests an ET-like filtering of input that,
in contrast to the three-factor rules thought to be in action in the striatum, requires certain pat-
terns of input alone. Furthermore, although it is still incompletely understood, neuromodulation
does not appear to be functioning as a third factor in BTSP but instead, perhaps, plays more of a
permissive role in regulating when the plasticity can occur by altering the probability of plateau
potential initiation or the generation of ETs. In addition, an instructive-like signal reminiscent
of that observed in cerebellar areas appears to control BTSP through an interaction with ETs,
except that in CA1 this signal is so strong that it requires only a single trial for induction. The
signal itself is also somewhat different from that found in Purkinje neurons in that it potentially
reflects a calculation of error within the individual pyramidal neurons themselves, as opposed to
the externally generated error signal that is subsequently brought to Purkinje neurons by CFs.
Thus, CA1 appears to possess a directed plasticity that uses ETs produced by input alone and a
very strong local instructive signal generated in the dendrites of individual neurons by a second
input carrying information related to overall hippocampal output.

FUNCTIONS OF BEHAVIORAL TIMESCALE SYNAPTIC PLASTICITY

The unique features of this synaptic plasticity produce several valuable functions within area CA1.
First, the capability to form accurate predictions of near-future events and states is highly bene-
ficial to an agent operating in a complex environment. Asymmetric plasticity rules automatically
produce predictions of the future, and indeed, BTSP produces place fields that have a peak and
center of mass shifted some 10–15 cm before the location in the environment where the plateau
was initiated (Abbott & Blum 1996, Bittner et al. 2017) (Figure 6). That is, CA1 place fields are
encoding something about a location approximately 1 s ahead of the mouse. If this interpretation
is correct, the output of hippocampus is not actually a cognitive map of the animal’s current lo-
cation; instead, the hippocampus has computed and is transmitting some quantity concerning a
property of the near future, perhaps the value of a future state (Stachenfeld et al. 2017, Wayne
et al. 2018).

The timescales that the rule is operating on (seconds versus milliseconds) as well as the asym-
metry in the kernel primarily determine how much of a prediction, if any, is produced (Abbott &
Blum 1996) (Figure 6). This property perhaps provides an explanation of the right (acausal) side
of the BTSP plasticity curve. Since the shape of the BTSP time course determines the amount of
prediction produced by the rule, it appears that CA1 arrived at a rule to produce exactly the ob-
served level of prediction. Thus, different circuits could be tuned to different levels of prediction
depending upon their functional requirements, and all this necessitates is a judicious use of either
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Eligibility trace (ET) and gating signal kinetics determine the level of prediction. On the left side of each
panel is a silent cell with the first occurrence of a plasticity-inducing plateau near the center of the track (lap
10). (a) Mouse on track with arrow indicating direction of travel. (b) Tuned synaptic inputs arriving as mouse
enters presynaptic neurons’ place field. Colored traces in panels b and c highlight four particular inputs, and
all others are gray. (c) ETs (convolution of synaptic inputs in panel b and exponential with τET = 3 s) filter
the input, such that synapses active (green in panel b) hundreds of milliseconds before the plateau potential
produce ETs (green in panel b) that overlap more with the plateau gating signal (black; convolution of square
step in panel e and exponential with τP = 0.1 s) than inputs arriving at exactly the same time (blue in
panels b,c). For lap 10, synaptic weights are unpotentiated in panel d, membrane potential (Vm) trace shows
only plateau in panel e, and there is no place field–related action potential firing in panel f. On the right side
of each panel, the next lap (lap 11) is shown. The difference in the overlap of ETs and gating signals increases
the weights of synapses arriving before the plateau more than those arriving coincidently (panel d). Thus,
information arriving current with the plateau is stored in the weights of synaptic inputs that arrived seconds
in the past. The weight profile heavily shifts Vm ramp (dark gray line in panel e), causing the resulting place
cell to fire well before the location of the initiating plateau (orange line in panels b–f ), thus reporting on an
aspect of future locations. Compare predictive Vm ramp and place field (dark gray line) with those produced if
the two signals have the same time constants (gray dashed lines in panels e, f; lines were generated by running
the simulation again with τET = 1.5 s, τP = 1.5 s). Here, a symmetric Vm ramp produces a place field that
reports on the present location. The duration of the left side of the BTSP time course is set by τET, while
the right side is set by τP. When τET is greater than τP, the Vm ramp shifts backwards; if they are equal
there is no shift, and finally, if τP is greater than τET, the resulting Vm ramp will actually shift to the right.
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different signaling molecules or posttranslational modifications to produce the desired activation
time courses (Suvrathan et al. 2016, Raymond & Medina 2018, Suvrathan 2019).

A second function provided by plateau-driven plasticity is the ability to tailor CA1 population
activity to the environmental experience of the animal such that behavior is potentially improved.
Of course, this appears to be similar to the error-correcting abilities of a supervised form of plas-
ticity. Recent data suggest that CA1 may be involved in producing a map related to the value
of a given environment, where salient regions are more densely represented by particular neu-
rons (Hollup et al. 2001, Dupret et al. 2010, Zaremba et al. 2017, Turi et al. 2019). Putting this
in the context of the known properties of plateau-driven plasticity in CA1, it is possible that the
thousands of excitatory EC3 inputs received by each CA1 pyramidal neuron are able to provide
a unique instructive input to every cell, which drives learning with the objective of producing
hippocampal output that reconstructs network input to the hippocampus (Gluck & Myers 1993,
Gluck & Granger 1993,Wayne et al. 2018). If this is correct, the EC3 should also show enhanced
activity around particularly salient locations, as has recently been reported (Boccara et al. 2019,
Butler et al. 2019). In the end, it remains unknown if CA1 is operating within a supervised learn-
ing framework, but it does appear that a plasticity form combining elements of three-factor and
supervised learning rules allows CA1 to generate unique internal representations of the world
that are rapidly shaped by the exploratory experience of the animal to produce predictions of the
near future. These fundamental properties of BTSP could potentially mediate the ability of the
hippocampus to very rapidly (one-shot) learn and store episodes of events.

CLOSING

The successful learning of adaptive behaviors requires experience-driven alterations in the com-
plex representations and computations that brains produce.These changes enhance the perception
of relevant environmental objects and the generation via inference, prediction, and valuation of
features that are not directly perceivable. Ultimately, this activity supports the appropriate deci-
sions, action selection, and implementations that promote survival. Producing this range of brain
functions is challenging for any intelligent system and may require types of neural plasticity that
go beyond autonomous synaptic plasticity based exclusively on pre-post activity correlations. In-
stead, what seems to be needed for learning through experience are plasticity forms that enable a
neuronal population to refine its activity toward a target or goal pattern that is, in the end, useful
to the animal in a specific behavior. The recent discovery that such a directed type of plasticity
(BTSP) is involved in shaping hippocampal place cell representations suggests that comparable
forms may also be prevalent in cortical areas as well as in cerebellar structures.

Thus, future experiments should attempt to determine how widespread directed forms of plas-
ticity are within the mammalian brain. Two of the more important concepts here are ETs and
instructive signals, since these elements determine the impact that a plasticity will have on popu-
lation activity. Along these lines, a comparison of the types of neuronal activity required to evoke
ETs in various brain regions (e.g., action-related striatum versus representation-related cortical
regions) could shed light on the basic logic used to drive learning-related changes (rules using
pre-postcorrelation versus presynaptic activity patterns alone) (Sutton & Barto 2018). In addi-
tion, the kinetics of the ETs and perhaps their biochemical identity could vary from one region to
another, depending on the computations performed (internal representations of the present ver-
sus predictions of the future) (Suvrathan et al. 2016, Bittner et al. 2017, Suvrathan 2019). As for
instructive signals, determining what information feedback pathways are carrying and how their
activity changes during learning will be critical to revealing the role of these pathways in adaptive
behavior, particularly if these signals are involved in the optimization of something similar to an
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objective function. Additionally, a thorough comparison of the basic physiological mechanisms of
instructive signals and how they are modulated and regulated by microcircuit elements in a variety
of regions will lead to an improved understanding of how behavioral and cognitive variables (e.g.,
attention) control learning in different areas.

In the past, the experimental examination of synaptic plasticity was heavily biased toward in
vitro preparations, and an inability to accurately recreate the myriad conditions found in the
brains of behaving animals may have led to the excessive variability present within the results.
While in vitro work still has its place, the inclination in the future should be more toward in vivo
experiments capable of determining the plasticity rules responsible for regional feature selectivity
and its alteration during actual learning. Such experiments will surely rely on an ability to mea-
sure and manipulate intracellular Vm. While certain experimental tools are currently available,
additional devices are needed for these experiments to be most fruitful (see review by Humeau
& Choquet 2019). Furthermore, new and improved biochemical sensors and rapidly activatable
antagonists for a variety of kinases and phosphatases will be beneficial in the hunt for ETs. Finally,
improved labeling and recording methods to examine how the activity of feedback pathways to in-
dividual neurons change during learning would be extraordinarily useful. In the end, the endeavor
to find the biological basis of adaptive behavior has had a good start.What is needed now is a refo-
cusing of neuroscientists’ attention toward more powerful and directed forms of learning-related
plasticity.
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