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Abstract

The brain plans and executes volitionalmovements.The underlying patterns
of neural population activity have been explored in the context of move-
ments of the eyes, limbs, tongue, and head in nonhuman primates and ro-
dents. How do networks of neurons produce the slow neural dynamics that
prepare specific movements and the fast dynamics that ultimately initiate
these movements? Recent work exploits rapid and calibrated perturbations
of neural activity to test specific dynamical systems models that are capa-
ble of producing the observed neural activity. These joint experimental and
computational studies show that cortical dynamics during motor planning
reflect fixed points of neural activity (attractors). Subcortical control signals
reshape and move attractors over multiple timescales, causing commitment
to specific actions and rapid transitions tomovement execution.Experiments
in rodents are beginning to reveal how these algorithms are implemented at
the level of brain-wide neural circuits.
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INTRODUCTION

Movement is a fundamental building block of behavior.Wemove our eyes to explore visual scenes,
our hands to manipulate objects and tools, and our facial muscles to vocalize and express emotions.
Injuries and neurological disorders that impair our motor system have devastating consequences
for our daily lives and well-being.

Volitional movements involve a series of distinct computations. Consider an orchestra prepar-
ing to play Beethoven’s Symphony no. 5. Based on the conductor’s hand signals, the violinist pre-
pares to play the famous opening four-note motif at a specific speed and timbre. This information
is then stored in the violinist’s head. Another signal from the conductor releases the movement of
the violinist’s bow, in perfect synchrony with other strings, to create music. Motor planning (or
movement preparation) begins with the deliberation of multiple actions (decision-making), fol-
lowed by a commitment to a particular choice, and is terminated by movement execution (Cisek
& Kalaska 2010, Thura & Cisek 2014). Movements are more rapid and accurate when subjects
have time to plan (Rosenbaum 1980, Riehle & Requin 1989, Duan et al. 2021).

Motor planning has been studied extensively in memory-guided response tasks, in which a
sensory stimulus instructs an action that is executed after a delay (Figure 1a). Perturbation ex-
periments have revealed causal roles for the frontal cortex in motor planning: dorsal premotor
cortex (PMd) in reaching behaviors (Churchland & Shenoy 2007) and frontal eye field (FEF) for
eye movement (Acker et al. 2016) in nonhuman primates, secondary motor cortex in orienting
behaviors [frontal orienting field (FOF)] (Erlich et al. 2011, Kopec et al. 2015) and directional
licking [anterior lateral motor cortex (ALM)] (Komiyama et al. 2010, Guo et al. 2014) in rodents.
During the delay, neurons in these cortical areas and many connected brain areas show slowly
varying neural activity that predicts specific future movements (Svoboda & Li 2018) (Figure 1b).
This neural correlate of motor planning is referred to as preparatory activity. Preparatory activ-
ity is thought to set the state of neural activity to initial conditions that favor accurate and rapid
movements, with different initial conditions corresponding to different movements (Vyas et al.
2020) (but see the sidebar titled Motor Planning and Uninstructed Movements).
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Figure 1

Neural dynamics in a memory-guided movement task. (a) During the sample epoch, sensory cues (e.g., sound, touch) instruct action
types (e.g., direction of lick, saccade, limb movement). During the delay (or memory) epoch, animals remember the instruction and
develop a motor plan. After the delay epoch, animals execute a movement. In this example, a Go cue releases directional licking.
(b) Example ALM neurons during the memory-guided movement task showing preparatory activity selective for lick direction during
the delay epoch (left,middle) and a transient response to the Go cue (right). Spike rasters are shown on top and mean spike rates on
bottom. Blue indicates correct lick-right trials, and red correct lick-left trials. Time is aligned to the timing of the Go cue. Dashed lines
separate behavioral epochs. (c) Schematic showing activity trajectories in activity space. (d) ALM activity modes. Planning (selective)
and ramping (nonselective) modes explain ALM activity during the delay epoch. Execution (selective) and Go cue (nonselective) modes
explain activity during the response epoch. Abbreviations: ALM, anterior lateral motor cortex; D, delay epoch; R, response epoch; S,
sample epoch. Panels a, b, and d adapted from Inagaki et al. (2022).

MOTOR PLANNING AND UNINSTRUCTED MOVEMENTS

Decision-making and motor planning are often viewed as separated from the execution of actions. However, it has
been known for decades that cognitive processes are reflected in an ongoing manner in posture and movement. For
example, cognitive signals descend to brainstem nuclei that control pupil size (Kahneman & Beatty 1966, Joshi &
Gold 2020), and in perceptual decision-making tasks, decision variables are reflected in the reflex gains in skeletal
muscles (Selen et al. 2012). Neural dynamics in cortex causes muscle tension, and sensory feedback modulates
cortical activity in turn.

With the advent of high-speed videography, it has become routine to track fine-scale movements during behav-
ior (Huber et al. 2012,Musall et al. 2019, Stringer et al. 2019). Uninstructed movements are observed during motor
planning and correlate with preparatory activity. It is unknown whether preparatory activity causes idiosyncratic
micromovements, movement contributes to preparatory activity, or preparatory activity and movement are modu-
lated by a common input. These micromovements could be part of an embodied loop underlying motor planning
and have to be considered when dissecting the neural circuits producing preparatory activity.
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Short-term memory (STM) is a data buffer critical to maintaining and processing information
over times of seconds.Motor planning is a form of STM, linking decision-making and movement
execution. STM often correlates with persistent changes in spike rates, or slow dynamics in spike
rates, that are maintained in the absence of sensory input. Preparatory activity is an example of
such a memory trace. The network mechanisms underlying preparatory activity and the transition
to another state (e.g.,movement initiation) are of great interest because similar mechanisms might
underlie diverse cognitive functions, including working memory and integration of evidence for
sensory decision-making.

The neural dynamics underlying motor planning have recently been reviewed (Svoboda & Li
2018, Vyas et al. 2020).Here we focus on two related questions: How do networks of neurons pro-
duce preparatory activity, and how do neural dynamics switch from decision-making to movement
execution?We highlight recent work exploring these algorithms and sketch out the multiregional
neuronal circuits that may implement them.

COMPUTATION WITH NEURAL DYNAMICS

Preparatory activity is maintained over many seconds in the absence of sensory instruction. Af-
ter a transient input, isolated neurons sustain activity for only tens of milliseconds, limited by
membrane biophysics (Abbott & Dayan 2005) (see the sidebar titled Single-Cell Versus Network
Mechanisms of Memory-Related Activity). Preparatory activity, and other memory-related neu-
ral processes with seconds-scale dynamics, therefore arises from network interactions between
neurons with short time constants.

Dynamical systems theory provides a mechanistic framework for explaining population neu-
ronal activity (Amari 1972, Wilson & Cowan 1972, Hopfield 1982, Sompolinsky et al. 1988,
Kleinfeld et al. 1990, Amit & Brunel 1997, Laurent 2002, Brody et al. 2003b, Stopfer et al. 2003,
Sussillo & Abbott 2009, Druckmann & Chklovskii 2012, Gallego et al. 2017, Vyas et al. 2020,
Ebitz & Hayden 2021). A dynamical system is defined by differential equations that govern how a
point (referred to as a state) evolves in a space that spans the dynamical variables of the equations.
For example, Newton’s equations describe the physical motion of a pendulum and determine how
the pendulum state evolves in the two-dimensional (position, speed) state space. Neuronal activ-
ity is also often treated in a dynamical systems framework. Depending on the problem, different
state variables are modeled, ranging from the microscopic membrane conductances of individual
neurons (Markram et al. 2015) to the mesoscopic functional MRI signals measured across brain
areas (Ryali et al. 2011). In this review, we treat an intermediate level, in which the activity of
populations of individual neurons is described, as a state in a high-dimensional space, where each

SINGLE-CELL VERSUS NETWORK MECHANISMS OF MEMORY-RELATED
ACTIVITY

Intracellular recordings of membrane potential during short-termmemory in behaving animals find no evidence for
cell-autonomous mechanisms (Aksay et al. 2001, Inagaki et al. 2019, Kim et al. 2021). First, neurons with very short
membrane time constants sustain persistent activity. Second,membrane potential manipulations that are expected to
perturb voltage-dependent conductances that could sustain persistent activity do not affect persistent activity.These
experiments suggest that network mechanisms play a key role in sustaining persistent activity. Nevertheless, cell-
autonomous mechanisms for maintaining persistent activity may exist in some cell types and conditions (Zylberberg
& Strowbridge 2017, Deemyad et al. 2018).
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dimension corresponds to the spike rate of one neuron (or a group of neurons with similar inputs).
The population activity trajectory, r(t), evolves as

dr
dt

= f (r(t ),W , I(t )),

where the function ( f ) is an abstraction of cellular biophysics, W describes the structure of the
network, and I(t) describes the external inputs to the network. Because of constraints imposed by
the connectivity matrix W, activity trajectories propagate only through certain subspaces of the
activity space.

This model ignores multiple biological processes that may be critical for signal propagation
through neural networks, including millisecond-timescale synchrony across neurons (Kremkow
et al. 2010, Yu et al. 2016) and cell type–specific biophysics such as short-term synaptic plastic-
ity (Pouille & Scanziani 2004). Nevertheless, this simplified framework can reveal the network
constraints that produce particular activity trajectories and test possible algorithms underlying
decision-making (Mante et al. 2013, Hunt & Hayden 2017), motor control (Sussillo et al. 2015),
and STM (Druckmann & Chklovskii 2012).

The Attractor Hypothesis

Some states in activity space can be stable, and nearby states relax into these stable states.The activ-
ity near such attractors thus recovers in response to small perturbations (Strogatz 1994). Because
activity can linger near attractors for much longer than neuronal membrane time constants, attrac-
tors have been hypothesized as a mechanism of memory (Amari 1972, Hopfield 1982, Chaudhuri
& Fiete 2016).

An attractor memory system resembles a ball rolling in a hilly landscape. The bottom of each
valley (the attractor) is attractive in that a ball (the state) will roll down the side of the hill to the
bottom. The memory is resistant to small inputs or perturbations, but a sufficiently large kick can
move the ball across a ridge into another valley, corresponding to another memory. An attractor
could correspond to a point in activity space (referred to as a fixed point, or a point attractor) or
a set of contiguous states forming a line or ring (continuous attractors). Point attractors can store
discrete memories (Amari 1972, Amit & Brunel 1997,Hopfield 1982), whereas continuous attrac-
tors allow integration and storage of continuous variables (Cannon et al. 1983, Ben-Yishai et al.
1995, Seung 1996, Samsonovich & McNaughton 1997, Lim & Goldman 2013). In the context
of motor planning, a point attractor could correspond to a specific state of preparatory activity
leading to a specific future movement, with different point attractors corresponding to different
movements (Shenoy et al. 2013).

Dimensionality Reduction in Search of Attractors

Large-scale neurophysiological recordings ( Jun et al. 2017, Paninski &Cunningham 2018) enable
analysis of population activity at the level of single trials (Churchland et al. 2007, Cunningham &
Yu 2014, Peixoto et al. 2021). The art of dimensionality reduction is to extract the dimensions in
activity space that contain the computations performed by the network.Neural trajectories r(t) oc-
cupy low-dimensional subspaces (manifolds; i.e., the surface of the hilly landscape).Modes are par-
ticular directions in these subspaces and are typically chosen to reveal interpretable features of the
data. For example, in a licking task, projections along a vector in activity space that maximally dis-
tinguish movement directions contain nearly all licking direction-selective activity (Figure 1c,d).
This projection also helps reveal attractor dynamics related to motor planning. Trajectories pro-
jected to these modes can be interpreted as multineuron peristimulus time histograms, with each
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neuron contributing a specific amount of information. Projections of population trajectories along
modes combine activity across neurons, providing statistical power for moment-by-moment anal-
ysis of behavior in terms of neural activity (Cunningham & Yu 2014).

New methods for dimensionality reduction provide increasingly refined windows into popu-
lation dynamics (Kobak et al. 2016, Low et al. 2018, Pandarinath et al. 2018,Williams et al. 2018,
Aoi et al. 2020). Low-dimensional representations of population data enable comparisons of dy-
namics and neural network models, which have led to insights into the mechanisms underlying
decision-making (Mante et al. 2013), motor control in cortical (Hennequin et al. 2014, Sussillo
et al. 2015) and subcortical (Aksay et al. 2007) networks, and gating of information flow across
brain regions (Finkelstein et al. 2021). Below we focus on experimental tests of the attractor hy-
pothesis as a mechanism for motor planning and initiation, which rely on large-scale recordings
and trial-by-trial analysis of neural activity aided by dimensionality reduction.

Tests of the Attractor Hypothesis

During motor planning, activity trajectories converge to discrete locations in activity space, con-
sistent with relaxation into point attractors (Churchland et al. 2006, 2010b; Afshar et al. 2011;
Inagaki et al. 2019). But measuring neural activity alone is insufficient to test the attractor hy-
pothesis and distinguish between specific implementations because multiple dynamical systems
can produce identical low-dimensional neural dynamics (Prinz et al. 2004, Fisher et al. 2013, Li
et al. 2016). For example, discrete states in preparatory activity could reflect point attractors or
continuous attractors driven by discrete inputs. Perturbation experiments are required to distin-
guish between these models (see the sidebar titled Limitation of Perturbation Experiments).

Behavioral effects of the perturbations have been used to test algorithmic models. For example,
silencing FOF biases choice in a perceptual decision-making task (Erlich et al. 2011, Piet et al.
2017), consistent with models in which FOF maintains the binary choice (motor plan) with point
attractors but not with FOF making decisions with continuous attractors.

Directly monitoring neural dynamics and behavior after temporally precise perturbations pro-
vides even stronger constraints on models (Figure 2). Following a perturbation, a continuous
attractor will maintain a trace of the perturbation, corresponding to a displacement in activity

LIMITATION OF PERTURBATION EXPERIMENTS

Optogenetic perturbations can reveal the causal relationships between activity in different brain regions and be-
havior. However, optogenetic perturbations have to be considered in the context of complex circuit responses to
perturbations. First, because of nonlinear feedback loops, unexpected effects of optogenetic perturbations, such as
rebound excitation after inhibition, are the rule rather than the exception. Second,manipulating activity in one area
inevitably modulates activity in connected areas, making it difficult to ascribe behavioral effects to perturbations
of one brain area. Third, the impact of a manipulation could be permissive instead of instructive, in the sense that
baseline activity in one brain area may simply be required to fuel a connected area for computation. Fourth, the
brain adapts to optogenetic perturbations by plasticity and learning so that the physiological and behavioral effects
can attenuate over trials. Fifth, optogenetic perturbations can bring the population activity to an unnatural state.
For some questions, more targeted two-photon perturbations may be required. Given these caveats it is essential to
invest in extensive measurement of neuronal activity during manipulation and interpret the effects of the manipu-
lations in the context of these measurements (for further discussions, see Jazayeri & Afraz 2017,Wolff & Ölveczky
2018, Li et al. 2019).
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Tests of attractor hypotheses. Models explaining preparatory activity in a memory-guided movement task.
Projections of population activity along planning mode (left) and corresponding energy landscapes (right;
time points T1, T2, and T3). In both models, instruction initiates movement type–selective preparatory
activity (blue or red dotted lines). Perturbations are applied on blue trials. (a) In the continuous attractor
model, optogenetic perturbation (left, cyan bar; right, cyan arrow) shifts activity. The shift outlasts the
perturbation (blue solid line; a ball stays there because of the flat landscape). (b) In the point attractors model,
activity either recovers (dark blue solid line; the ball does not clear the ridge) or switches (light blue solid line;
the ball goes over the ridge) to the other attractor.

space. In contrast, in point attractors, activity will relax back to the same fixed point (rolling back
to the same valley). For strong perturbations, activity may occasionally switch to other attractors
(kicked across a hill into a different valley). The network response after perturbations tests the
attractor hypothesis and distinguishes between continuous and point attractors.

This approach has been applied to ALM in a memory-guided licking task. Dimensionality
reduction methods identify a mode of population activity that best separates direction-selective
activity; this mode reveals attractor dynamics because it transects two valleys and the ridge sep-
arating them. Transient optogenetic inactivation of ALM during the memory (or delay) epoch
results in a binary (left/right) outcome: The activity state either recovers to the previous activity
trajectory or switches to the alternative trajectory, followed by the movement predicted by the
trajectory measured after the perturbation (Inagaki et al. 2019). Similarly, stimulation of input to
ALM in the memory epoch causes bistable dynamics: either recovery to the initiated trajectory
or switching to the trajectory corresponding to the other choice (Finkelstein et al. 2021). These
results provide direct support for the point attractors hypothesis.

This view ofmotor planning is likely an oversimplification.Additional mechanisms such as hid-
den feed-forward connectivity (Goldman 2009, Murphy & Miller 2009) and short-term synaptic
plasticity (Mongillo et al. 2008) likely also play roles in decision-making and motor planning.
Exploring these mechanisms will require highly specific manipulations of activity modes during
different phases of behavior.

The behavioral tasks used in the experiments mentioned above have two behavioral choices,
which likely explains two fixed points in neural dynamics. What happens in tasks with multiple
choices? Attractor networks can accommodate a large number of fixed points (Hopfield 1982,
Amit et al. 1985). Continuous variables could be stored in continuous attractors or approximated
by closely spaced point attractors (Brody et al. 2003b,Wimmer et al. 2014, Panichello et al. 2019).
Other fundamental questions remain to be answered. For example, can a single network multiplex
multiple attractor landscapes to performmultiple tasks (Gallego et al. 2018,Yang et al. 2019)?How
is the attractor landscape shaped by learning (Sadtler et al. 2014, Sun et al. 2022)? And how does
the sensory information feed into the attractor landscape? Probing attractor landscapes in tasks
with multiple movements and during training is an important area for future investigation.
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Control Signals Shaping the Attractor Landscape

The standard implementation of point attractors produces dynamics as activity trajectories ap-
proach fixed points and stationary activity once the fixed points are reached (Amit & Brunel 1997).
Importantly, attractor landscapes are modifiable by external input (Machens et al. 2005,Wong &
Wang 2006, Vyas et al. 2020). Nonselective inputs can change the number and locations of attrac-
tors in activity space, altering the computation performed in response to selective input, including
transitions from decision-making to memory (Machens et al. 2005,Wong &Wang 2006) and re-
setting of memories. The external inputs can change gradually or abruptly and thus cause rich
changes in neural population dynamics. The same network can thus participate in multiple com-
putations that require distinct attractor landscapes.

The attractor framework can model behaviors that require multiple computations in sequence
(Heeger & Mackey 2019). Changes in inputs to the attractor network trigger changes in the se-
quence. For example, in memory-guided movement tasks, subjects make a decision based on sen-
sory information during the sample epoch, maintain a memory of the choice during the delay
epoch, and execute the movement during the response epoch. ALM is involved in all of these
processes (Guo et al. 2014, Xu et al. 2022, Inagaki et al. 2022). Below we discuss examples in the
context of memory-guided movement tasks where external signals reshape attractor landscapes to
implement different computations.

Ramping Activity

In general, memory-related neural activity is not stationary but changes predictably over time,
even in tasks without an explicit need to estimate time (Funahashi et al. 1989; Brody et al. 2003a,b;
Maimon & Assad 2006; Machens et al. 2010; Erlich et al. 2011; Shenoy et al. 2013; Thura &Cisek
2014; Kobak et al. 2016; Cueva et al. 2020). For example, in typical memory-guided movement
tasks, a Go cue instructs the timing of the action, sparing the subject the need to keep track of time.
Still, activity of many ALM neurons ramps up or down until the time of movement (Li et al. 2016,
Inagaki et al. 2018) (Figure 1). When the delay is short/long, the ramp is steep/shallow, which
is referred to as temporal scaling (Wang et al. 2018). When the delay duration is unpredictable,
ramping is rapid, commensurate with the earliest possible Go cue, followed by persistent activity
(Tanaka 2007, Inagaki et al. 2019).

These ramping activity trajectories could be the result of two different dynamical processes.
First, the activity trajectory could reflect relaxation of the system toward a fixed point (the ball
slowly rolls down the sides of a shallow hill in a static landscape) (Figure 3a). Second, the system
could remain near a point attractor for the duration of the memory, but the attractor moves over
time as the landscape is deformed (dynamic attractor, Figure 3b).

Rapid perturbations of activity shift the activity state. The rate of recovery after perturbation
distinguishes between models. The first model implies shallow attractors and thus slow recovery
of the activity trajectory, similar to the dynamics of the unperturbed trajectories (Figure 3a).
Optogenetic perturbation experiments in ALM instead reveal rapid recovery after perturbation,
much faster than the normal dynamics of activity trajectories, consistent with rapid decay into
attractors and gradual deformation of the attractor landscape to produce ramping (Li et al. 2016,
Inagaki et al. 2019, Finkelstein et al. 2021) (Figure 3b).

Several lines of evidence suggest that the ramping signal originates outside of ALM. First, the
nonselective ramping activity recovers after bilateral perturbation of ALM,while selective activity
does not (Li et al. 2016). A parsimonious explanation is that ALM is required to maintain motor
planning (what to do) but the ramping signal (when to act) is provided by an external source.
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Second, training a recurrent neural network to mimic ALM activity patterns and their response
to perturbations requires an external ramping input (Finkelstein et al. 2021).

The ramping appears to signal increasing commitment to the selected action (Cisek & Kalaska
2010, Thura & Cisek 2014). In a memory-guided movement task in mice, distractors early in the
memory epoch, or on trials with low ramping, biased choices by shifting ALM dynamics, whereas
distractors late in the delay, or on trials with high ramping, did not affect choice or ALM dynam-
ics (Finkelstein et al. 2021). Similarly, in rat, transient unilateral silencing of FOF and superior
colliculus (SC; receiving input from FOF) biased choices early but not late in the memory epoch
(Kopec et al. 2015). These results imply that a nonselective ramping signal gradually reshapes
the landscape from shallow point attractors (or a continuous attractor) to deeper point attractors
(Figure 3b). In the shallow attractor regime, input can easily shift the dynamics (a ball can readily
move from valley to valley over the low ridge). In the deeper point attractors regime, the dynamics
becomes more robust to distractors (a ball cannot cross the high ridge). This gradual shift may
help the motor system to prepare actions seconds before movement initiation, while retaining
flexibility to alter decisions, with benefits for survival in uncertain environments (Cisek & Kalaska
2010).
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From Planning to Execution

Movement initiation is preceded by dramatic changes in cortical activity (Churchland et al. 2012;
Kaufman et al. 2014, 2016) (Figure 1). In directional licking tasks, ALM activity is causally related
to movement initiation (Komiyama et al. 2010, Li et al. 2015, Xu et al. 2022, Inagaki et al. 2022,
Bollu et al. 2021, Takahashi et al. 2021) in addition to planning. Given the dual roles of ALM in
planning and execution, key questions include how is motor planning maintained without trig-
gering actions and what mechanisms cause the transition to movement initiation?

An early hypothesis suggested that preparatory activity is a subthreshold version of the activity
that later causes movement (Tanji & Evarts 1976, Hanes & Schall 1996). However, the tuning
of individual neurons (Figure 1b) and the state of population activity (Figure 1d) differ greatly
between planning and execution, arguing against this simple notion (Guo et al. 2014, Kaufman
et al. 2014, Li et al. 2015, Elsayed et al. 2016, Inagaki et al. 2018).

Population activity encoding future movement during the memory epoch can be decomposed
into a few activity patterns (planning modes) (Figure 1d). Following the Go cue, the activity along
planning modes collapses, and a new activity pattern with multiphasic dynamics emerges, which
presumably controls movement (Churchland et al. 2012, Kaufman et al. 2014, Elsayed et al. 2016,
Economo et al. 2018, Inagaki et al. 2022). These execution modes (Figure 1d) occupy different,
near-orthogonal subspaces from the planning modes in both primate primary motor cortex and
PMd (Kaufman et al. 2014, Elsayed et al. 2016) and mouse ALM (Economo et al. 2018, Inagaki
et al. 2022). In other words, preparatory activity remains in a separate subspace from activity that
executes movement. This has been used as a geometrical explanation for why movements may
not be triggered during planning (Kaufman et al. 2014) (Figure 4). A mechanistic explanation
requires an analysis of the neuron types that contribute to motor planning versus execution and a
mechanism coupling motor cortex activity and movement (see the section titled Cell Types).

Although planning and execution modes are orthogonal, information is transferred between
these modes (Elsayed et al. 2016, Wei et al. 2019, Inagaki et al. 2022). At the level of single trials,
activity projected to these modes is correlated so that trials with strong preparatory activity for
one movement direction have strong execution activity for the same direction. This explains
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Activity trajectories and attractors. (a) Activity trajectories projected to the planning (top) and execution
(bottom) modes. (b) Evolution of anterior lateral motor cortex activity in the activity space defined by planning
and execution modes. During the delay epoch, activity evolves along the planning mode. After the Go cue
(dark blue/red circles), activity moves along the execution mode, followed by recovery to baseline (gray circle).
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the correlation between preparatory activity before movement and the fine-scale parameters of
upcoming movement (Churchland et al. 2006, 2010a; Li et al. 2016; Even-Chen et al. 2019).
Networks with a hidden feedforward structure (Ganguli et al. 2008, Goldman 2009) could
underlie this transfer of information from one mode to another.

TheGo cue triggers transient nonselective activity in both primate primarymotor cortex/PMd
(Kaufman et al. 2016) and mouse ALM (Guo et al. 2014, Inagaki et al. 2022). This Go cue mode
(Figure 1d) is the most prominent activity mode during the memory-guided movement tasks and
is transduced to cortex via thalamus to initiate the transformation from planning to execution
(discussed in the section titled Ascending Multiregional Circuits).

Distinct planning, Go cue (referred to as condition-invariant signal), and execution modes
appear across behavioral tasks (Lara et al. 2018,Zimnik&Churchland 2021).The near-orthogonal
relationships across all activity modes may allow simultaneous processing without interference.
For example, when animals plan an action while executing another action, an execution mode of
the current action and a planning mode of the following action can coincide in motor cortex. This
enables multiplexed processing of multiple movement primitives during natural behavior.

MULTIREGIONAL NEURAL CIRCUITS

Although most neurophysiological studies of motor planning have focused on frontal cortex
(ALM, FEF, FOF, PMd, etc.) or SC, one brain area at a time, preparatory activity is generated
and maintained in multiregional neural circuits (Alexander & Crutcher 1990, Kopec et al. 2015,
Kunimatsu et al. 2018, Svoboda & Li 2018, Wang et al. 2018). In neural networks, attractors
are maintained by positive feedback: Excitatory feedback compensates activity dissipated in each
neuron, which slows network dynamics beyond the time constant of individual neurons. This
feedback could be local or arise via long-range loops involving multiple brain regions (Figure 5a).
Moreover, the inputs shaping attractor landscapes, such as ramping and Go cue signals, ascend
from subcortical structures via the thalamus. Large-scale recordings together with optogenetic
manipulations are beginning to reveal how brain regions interact during motor planning and
movement initiation.

The multiregional circuits involved in planning and initiating movements have been studied
extensively in licking tasks in mice (Figure 5a). Key results have been reproduced in multiple
laboratories across three continents (e.g., Guo et al. 2014, Chen et al. 2021, Duan et al. 2021,
Esmaeili et al. 2021, Wang et al. 2021) and have provided general insights. First, preparatory
activity is maintained in multiregional neural circuits with multiple obligatory partners. Second,
different brain regions have distinct roles in shaping preparatory activity. Third, the strength of
functional coupling between brain regions can be gated in a time-dependent manner, which can
be implemented via dynamic attractors.We focus on these insights and highlight parallels to other
behaviors and brain regions in rats and primates.

Cortico-Cortical Loops

A striking feature of the neocortex is the complex matrix of connections linking any one cortical
area with many other cortical areas (Markov et al. 2014,Oh et al. 2014,Harris et al. 2019). ALM is
interconnected with primarymotor cortex, somatosensory cortex, andmultiple parietal cortical ar-
eas, mostly in a bidirectional manner. Information from the sensory cortex is the basis of decision-
making and ultimately initiates preparatory activity in ALM (Guo et al. 2014, Esmaeili et al. 2020).
During the memory epoch, the same input from the sensory cortex that drives decision-making
and preparatory activity in ALM loses influence (Finkelstein et al. 2021). This temporal gating of
information flow between sensory cortex and motor cortex is based on attractor dynamics: During
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ALM-projecting thalamic regions are in turn differentially innervated by SNr, PPN/MRN, SCm, and Cb (Inagaki et al. 2022). Other
parts of the rodent frontal cortex, such as FOF, have similar long-range connectivity (Erlich et al. 2011), as do cortical regions in
primates that are involved in reaching and eye movements (Strick 1976, Alexander & Crutcher 1990, Tanaka 2007, Kunimatsu et al.
2018,Wang et al. 2018). (b) Two types of ALM PT neurons in layer 5. The Thal-projecting PT neurons (black) maintain
planning-related activity during the memory epoch, presumably by forming a loop with thalamocortical neurons (red). In contrast, the
medulla-projecting neurons (pink) develop execution-related activity (motor command) after the Go cue. Abbreviations: ALM, anterior
lateral motor cortex; ALMc, contralateral anterior lateral motor cortex; Cb, cerebellum; Ctx, somatosensory and motor cortex
interconnected with ALM; FOF, frontal orienting field; Med, medulla; MRN, midbrain reticular nucleus; PN, pontine nuclei; PPN,
pedunculopontine nucleus; PT, pyramidal tract; SCm, motor-related superior colliculus; SNr, substantia nigra reticulata; Str, striatum;
Thal, ALM-projecting thalamus.

thememory epoch,ALMpreparatory activity enters a fixed point thatmoves away fromother fixed
points in activity space and thus becomes more resistant to sensory input (Finkelstein et al. 2021).

Remarkably, bilateral silencing of large regions of cortex posterior to ALM, including pri-
mary motor cortex, sensory cortex, and parietal cortex, has little effect on preparatory activity and
subsequent behavior (Guo et al. 2014). During motor planning, ALM appears to be functionally
uncoupled from connected cortical regions.

The robustness of preparatory activity is in part enabled by coordination between ALM hemi-
spheres, which are connected via the corpus callosum. Silencing or activation of neurons in one
ALM hemisphere has often little effect on preparatory activity in the other hemisphere, implying
that each hemisphere can maintain preparatory activity independently (Li et al. 2016, Chen et al.
2021). Moreover, after the perturbation, the perturbed hemisphere recovers selectivity, with pre-
cision at the level of individual neurons. This recovery is produced by information flow from the
unperturbed hemisphere via the corpus callosum.These experiments reveal modular organization
(modules have strong within-module connectivity and relatively weak intermodule connectivity),
where one brain region (here, an ALM hemisphere) can maintain preparatory activity indepen-
dently and help the perturbed brain region recover preparatory activity after perturbations.

Modular intracortical connectivity also appears on finer spatial scales. Two-photon-mediated
optogenetic stimulation of a small number (<10) of ALM neurons revealed sparse subnetworks
that independently maintain activity and are only weakly coupled to other subnetworks (Daie
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et al. 2021). This fine-scale modular organization may provide higher memory capacity than
standard point attractors models while maintaining robustness. How such architectures and
dynamics are shaped during learning and/or development and how such modules map onto
specific cell types are not yet known.

Cortico-Thalamocortical Loops

Frontal cortical areas connect bidirectionally to nonsensory thalamus. For example, ALM is con-
nected bidirectionally with parts of the ventromedial and ventral anterior-lateral nuclei, intralam-
inar nuclei, and the mediodorsal nuclei (Guo et al. 2017, 2018; Collins et al. 2018; Economo et al.
2018; Inagaki et al. 2022). Thalamus is a key hub of multiregional connectivity because subcortical
inputs enter the frontal cortex via the thalamus (Shepherd & Yamawaki 2021). ALM also projects
to the striatum,multiple regions in the midbrain, and the cerebellum (via the pons).Most of these
regions in turn send information back to ALM via the thalamus in closed multiregional loops.
Similar multiregional loops via the thalamus have been documented in the context of reaching
(Strick 1976, Sauerbrei et al. 2020) and eye movements (Tanaka 2007).

Thalamic neurons show preparatory activity, similar to the frontal cortex (Tanaka 2007, Guo
et al. 2017, Catanese & Jaeger 2021). The connections between frontal cortex and thalamus are
strong (driving) in both directions (Guo et al. 2017). Preparatory activity is therefore maintained
in an obligatory cortico-thalamocortical loop. These anatomical and functional features suggest
that the thalamus is operationally an extension of cortex, specialized for processing input from
multiple subcortical structures. What kind of information is conveyed by these diverse inputs to
thalamus and how they are parsed and combined in thalamus before transmission to the cortex
are major questions that have yet to be answered.

Cortico–Basal Ganglia–Thalamocortical Loops

Most ALM projection neurons send collaterals to the lateral striatum (Hintiryan et al. 2016,
Hunnicutt et al. 2016). Striatum in turn directly/indirectly projects to basal ganglia outputs, in-
cluding substantia nigra reticulata (SNr), which inhibits parts of thalamus (for example, ventro-
medial and mediodorsal thalamus). Thalamocortical projections close the loop by projecting back
to ALM (Lee et al. 2020).

The roles of cortico–basal ganglia circuits have been explored in the context of action selection/
initiation (Mink 1996, Hikosaka et al. 2000, Klaus et al. 2019) and movement vigor (Turner &
Desmurget 2010). Recent experiments show that basal ganglia circuits also play critical roles
in motor planning (Wang et al. 2021) and action timing (Thura & Cisek 2017, Kunimatsu
et al. 2018, Paton & Buonomano 2018, Wang et al. 2018, Catanese & Jaeger 2021). Neurons in
SNr show preparatory activity that depends on input from ALM (Wang et al. 2021). Similar to
ALM, activity in the basal ganglia ramps in a timing-dependent manner (Thura & Cisek 2017,
Kunimatsu et al. 2018). Interestingly, optogenetic modulation of activity in SNr axons projecting
to thalamus (ventromedial) causes a dramatic reduction of selectivity in ALM (a collapse of the
planning mode; Figure 1d) (Wang et al. 2021). These experiments suggest that the basal ganglia
could be a source of the external ramping signal that shapes the attractor landscape in the ALM
cortico-thalamocortical loop.

Additional timing signals may arise in the cerebellum (Ohyama et al. 2003, Chabrol et al.
2019). Further investigations are required to probe the neural basis of signals that shape prepara-
tory activity. Identification and manipulation of the relevant neural substrates will facilitate direct
tests of the hypothesis that an external signal shapes the attractor landscape and computations in
ALM.
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Other ALM-Subcortical Loops

ALM projects to the motor segment of the superior colliculus (SCm). During the memory epoch,
ALMprojections to the SCm carry preparatory activity (Li et al. 2015,Chen et al. 2017,Duan et al.
2021). Downstream, SCm neurons also show preparatory activity, and silencing SCm unilaterally
during the memory epoch causes a response bias toward the silenced side (Kopec et al. 2015,
Duan et al. 2021). However, SCm projects back to ALM via the thalamus, as well as directly to
premotor areas in the medulla (Rossi et al. 2016). It is unclear whether the behavioral effects of
SCm inactivation are caused by effects on ALM preparatory activity, direct effects on medulla
circuits, or other SCm targets. Strong coupling between the frontal cortex and the SC has also
been revealed in studies of eye movements in primates (Wurtz & Goldberg 1972) and orienting
behaviors in rats (Kopec et al. 2015).

ALM also connects to the cerebellum via the pontine nuclei (Gao et al. 2018, Li & Mrsic-
Flogel 2020). Output from the deep cerebellar nuclei (DCN) projects back to ALM via the thala-
mus. Preparatory activity in the cerebellum depends on ALM activity. Optogenetic manipulation
of DCN in turn changes activity patterns in ALM. Activation of DCN rotates the direction in
ALM activity space that contains movement direction–selective activity, suggesting that cerebel-
lum shapes the attractor landscape in the cortico-thalamocortical loop (Li & Mrsic-Flogel 2020).

Ascending Multiregional Circuits

The neural mechanisms that terminate preparatory activity and trigger a movement also involve
multiregional neural circuits (Hikosaka et al. 2000, Inagaki et al. 2022, Dacre et al. 2021). Re-
cent work has revealed key roles for ascending signals from midbrain structures, including the
pedunculopontine nucleus (PPN) and midbrain reticular nucleus (MRN), in movement initiation
in directional licking tasks (Inagaki et al. 2022). PPN/MRN neurons show short latency (∼5 ms)
and transient responses to the auditory Go cue triggering movement (Figure 1a), caused by in-
put from midbrain auditory centers. Optogenetic stimulation of thalamus-projecting PPN/MRN
neurons triggers correct movements. Importantly, the optogenetic stimulus also triggers the pre-
cisely choreographed sequence of neuronal dynamics associated with movement initiation: col-
lapse of the planning mode, initiation of the Go cue mode, and the execution mode (Figure 1d).
These results show that an ascending PPN/MRN to thalamus to ALM pathway provides Go cue
information to ALM,which triggers mode switching from preparatory activity to execution mode
that releases planned movement. Similarly, in a cued reaching task, DCN activity is necessary and
sufficient for the Go cue signal in MCx and movement initiation (Dacre et al. 2021). PPN/MRN
and DCN project to partially overlapping thalamic nuclei and frontal cortical areas. It remains to
be answered whether PPN/MRN and DCN are redundant, serving as parallel Go cue pathways
for different sectors of MCx, or are recruited differently depending on task requirements.

Cell Types

So far we have considered neural representations and dynamics in brain regions and connections
between brain regions, all with anonymous populations of neurons. Inputs to any brain region
connect to defined cell types (Hooks et al. 2013, Collins et al. 2018, Anastasiades et al. 2020),
each with specific local connections (Pouille & Scanziani 2004, Kiritani et al. 2012, Pfeffer et al.
2013, Yu et al. 2019). Computation mediated by such local circuits propagates to other brain
regions via diverse projection neurons (Hooks et al. 2013, Shepherd 2013, Winnubst et al. 2019,
Muñoz-Castañeda et al. 2021). Understanding the logic of multiregional communication requires
measurement of neural dynamics in these defined cell types. The diversity of cell types is being
mapped in mice using single-cell genomics (Tasic et al. 2018). For example, ALM alone contains
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potentially up to 100 cell types, including more than a dozen glutamatergic projection neurons.
Classically, projection neurons have been grouped into intratelencephalic (IT) neurons, which
project to other cortical areas and extensively to the striatum, pyramidal tract (PT) neurons
project to the midbrain and brainstem but have few intracortical axons and small arborizations in
the striatum, and corticothalamic neurons project mainly to the thalamus. These cell types form
structured intracortical circuit motifs. For example, IT neurons in the motor cortex receive input
from sensory cortical areas (Hooks et al. 2013). IT neurons connect to PT neurons, whereas
PT neurons do not connect back to IT neurons (Brown & Hestrin 2009, Morishima et al. 2011,
Kiritani et al. 2012, Shepherd 2013).

It has long been known that specific cortical projection types carry distinct information
(Movshon & Newsome 1996, Hahnloser et al. 2002, Sato & Svoboda 2010). In the context of
motor planning, ALM PT neurons, but not IT neurons, develop preparatory activity with a
contraversive bias late in the memory epoch (Li et al. 2015, Duan et al. 2021). ALM PT neurons
can be subdivided further into one class that projects to the thalamus but not to premotor
centers in the medulla and another class that projects to the medulla but not to the thalamus
(Economo et al. 2018) (both classes share projections to the SCm, pons, and striatum). The
thalamus-projecting PT neurons maintain planning-related activity during the memory epoch. In
contrast, the medulla-projecting neurons develop selectivity late and also carry a large proportion
of the execution mode after the Go cue (Figure 5b). These measurements provide a circuit-based
explanation of the geometrical picture for why movements may not be triggered during planning
(Kaufman et al. 2014) (see the section titled From Planning to Execution). More generally,
these studies illustrate how specific types of information are transmitted across brain regions via
structurally and molecularly defined projection neuron types.

Despite their obvious importance for understanding the principles underlying multiregional
communication, recordings from defined cell types are rarely done. A deeper understanding of
information flow in the brain will require the development of methods to routinely link recorded
neurons to specific cell types, including projection types, that correspond to nodes of neural
circuits.

CONCLUSIONS AND OUTLOOK

In this review we discussed the neural algorithms and circuits underlying motor planning and
transitions to movement initiation. Converging evidence from primates and rodents implicates
dynamic attractors in creating preparatory activity in the motor cortex. Slow changes in prepara-
tory activity are caused by the movement of attractors in activity space. The attractor landscape is
controlled by subcortical signals from the basal ganglia,midbrain, cerebellum, and medulla, which
ascend into the frontal cortex via the thalamus. Subcortical signals also terminate preparatory ac-
tivity and initiate motor commands that trigger execution of movement.

The principles revealed here may apply to computations beyond motor control (Mante et al.
2013, Hunt & Hayden 2017, Stavisky et al. 2017, Wu et al. 2020, Yoo & Hayden 2020, Libby &
Buschman 2021). Animal behavior often consists of multiple distinct phases, each corresponding
to different computations. STM, mediated by attractor dynamics, is required to link these com-
putations. Control signals could reshape such attractor landscapes to gradually or abruptly switch
between computations.

Similar circuit motifs could also be shared across cognitive functions. For example, prepara-
tory activity is maintained in cortico-thalamocortical circuits involving motor cortex and motor
thalamus (Guo et al. 2017). Similar cortico-thalamocortical loops, involving different cortical
and thalamic areas, could underlie working memory, integration of sensory evidence, and other
cognitive functions (Ito et al. 2015, Schmitt et al. 2017).
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Recent computational models have explored the notion that thalamus routes simple signals that
control flexible and complex dynamical systems implemented by cortical connectivity (Heeger &
Mackey 2019). This division of labor between cortex and inputs to thalamus maps onto powerful
machine learning algorithms such as long short-term memory networks. Cortico-thalamocortical
loops correspond to the recurrent neural network, whereas inputs to thalamus provide the update
and reset signals that select the information to process and to erase. These networks are computa-
tionally powerful because they allow representing and manipulating long-term dependencies, as
required for most behaviors. Concurrent optogenetic perturbations and physiological recordings
guided by dynamical systemmodels, as described here,will pave the way to test specific hypotheses.

The investigations of neural network mechanisms are only in their initial stages. Linear de-
compositions of population activity in ALM in the context of a simple directional licking task
have already revealed constraints on network models and required modification to standard at-
tractor models. Additional structure of the population activity likely plays key roles in behavior.
Recently developed methods to analyze activity manifolds, cell type–specific and multiregional
recording methods, and cellular-resolution perturbations are promising to reveal finer features of
behavior-related neural dynamics.

So far, the study of cognitive processes in mammals has focused on representations and dynam-
ics produced by networks of anonymous neurons. The last decade has seen an explosion of studies
mapping the brain’s cell types and connections, especially in fruit flies and mice (Tasic et al. 2018,
Bates et al. 2019,Winnubst et al. 2019, Scheffer et al. 2020). Evolution acts on the genome, which
in turn tunes the properties of cell types and their synapses, which in turn constrain computation.
Neural computations therefore have to be understood in the context of biophysics and structured
neural circuits. Cell type–specific analysis of neural dynamics will reveal how neural circuits im-
plement computations to drive behavior and will reveal novel principles of computation.
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