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Abstract

Comparative neuroscience is entering the era of big data. New high-
throughput methods and data-sharing initiatives have resulted in the avail-
ability of large, digital data sets containing many types of data from ever
more species. Here, we present a framework for exploiting the new possi-
bilities offered. The multimodality of the data allows vertical translations,
which are comparisons of different aspects of brain organization within a
single species and across scales. Horizontal translations compare particular
aspects of brain organization across species, often by building abstract fea-
ture spaces. Combining vertical and horizontal translations allows for more
sophisticated comparisons, including relating principles of brain organiza-
tion across species by contrasting horizontal translations, and for making
formal predictions of unobtainable data based on observed results in a model
species.
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INTRODUCTION

Evolution provided comparative neuroscience with a compelling natural experiment in brain di-
versity. But understanding how the organization of the brain of one species is similar and how
it is different to those of other species is challenging. It requires the integration and synthesis of
data from disparate fields, often lacking common references and terminologies. Neuroscientific
data are difficult to obtain from outside of one’s field and often require specialized training to
interpret. By necessity, many researchers therefore focus on a particular data type in a particular
model species, leaving interpretation of the usefulness of their data to understanding other species,
including the human, to their colleagues. This has led to numerous confusions in the literature
about anatomical translatability (van Heukelum et al. 2020) and even about the terminology used
to describe behavioral tasks (Laubach et al. 2018). Alarmingly, these confusions might contribute
to the failure of some clinical trials in neuropsychiatry (Hay et al. 2014).

The emergence of various high-throughput methods for neuroscience has the potental to
change this. Where previously various types of data were only available for parts of the brain, in
a few species, and only to a few labs, high-quality data of various species’ entire brains are now
acquired and, crucially, made available to the community in a digital format. Multimodal high-
quality human neuroimaging databases, including those of the Human Connectome Project (Van
Essen et al. 2013) and UK Biobank Imaging (Miller et al. 2016), have set new standards for data
availability. Now, for comparative neuroscience, MRI databases of nonhuman data are increas-
ingly available thanks to initiatives such as the PRIMatE Data Exchange (Milham et al. 2018)
and multicenter mouse MRI projects (Grandjean et al. 2020). Outside MRI data, transcriptomic
databases from various species are becoming increasingly available (Keil et al. 2018), including the
well-established Allen Institute databases for the human and mouse (Hawrylycz et al. 2012, Lein
et al. 2007).

Comparing such data obtained from different species comes with challenges. A number of
recent studies have focused on the issues of standardizing analysis pipelines and quality control,
including comparisons of signal-to-noise ratios (Mandino et al. 2019, Milham et al. 2020, Xu et al.
2019). However, what has been largely absent is a framework to address the next stage in the
analysis: the comparison of brain organization across scales and species. To make sense of brain
differences, we need to be able to understand the data in the context of a shared frame of reference.
Here, we synthesize the approaches presented in the literature into a coherent framework that
allows just that.

THE COMMON SPACE APPROACH IN BRIEF

Brains can differ in many respects, including global or local size, the number and size of cortical
fields, the connections between brain areas, and the cortical folding pattern (Krubitzer & Kaas
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2005, Mars et al. 2018a) (Figure 1a). These features interact. For instance, a change in size of the
cortical sheet is often accompanied by an increase in the number of areas, which in turn can be
accompanied by changes in areal connections. In fact, in anthropoid primates, brain diversity may
be better characterized by brain reorganization than by changes in relative brain size (Smaers &
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Figure 1 (Figure appears on preceding page)

The common space approach. (2) Brains can differ in many respects. Blue spheres indicate cortical regions, and gray lines represent
connections. Brain changes compared to an ancestral or reference state (top) can include overall and local expansion, increased
arealization, and changes in connectivity. (b)) Many data types are now readily available across species, allowing vertical translations
within species (columns) and horizontal translations across species (rows). Myelin map images adapted from Eichert et al. (2020); white
matter tract images adapted from Thiebaut de Schotten et al. (2012) with permission from Elsevier. (c) By describing the brain in terms
of a particular feature that has clearly defined homologs between species, it is possible to compare the brains in the same common
space. (d) This framework can be generalized across multiple species and levels or data types (indicated by the different colors), even
when not all data types are available in all species. For example, when we compare the human brain (bottom right) with the brains of
other species, we might be able to compare data from some modalities directly (for example, resting state—based estimates of
connectivity and diffusion-weighted imaging—based estimates of connectivity symbolized by yellow and green colors), but other data
modalities, such as tract-tracing data (b/ue), might not be available for the human brain.
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Soligo 2013). Any framework for comparative neuroscience has to be able to account for these
considerations. We propose a common space approach that satisfies these requirements and can
point the way to future advances. The proposed framework relies on three ingredients.

To visualize the issues the framework has to address, let us imagine we want to compare brain
organization between two brains (Figure 15). Identifying how the various aspects of brain organi-
zation that can differ between these brains manifest requires multiple types of information. Thus,
rather than focusing on data of one particular modality in great detail, as was done by many of
the great anatomists of the early twentieth century, the challenge for modern comparative neuro-
science is to integrate information from multiple sources. This gives rise to the first ingredient,
that of multimodality of the data.

The next question is at which scale the comparison should be made. By necessity, many large
comparative neuroscience studies were previously done at the scale of whole brains or large sec-
tions of the brain. Although this practice has led to very fruitful insights (Barton 2007, Dunbar
& Shultz 2007, Jerison 1973), it has also led to great controversies due to differences in regional
definitions (Barton & Venditti 2013, Passingham & Smaers 2014). Moreover, local effects may be
better reflections of the types of changes we outlined above. Thus, the second ingredient is local
data, which are ideally of subregional resolution.

The final challenge is to provide a meaningful way to compare such local and multimodal
information. This is particularly important when the brains under study are of vastly different
size and morphology. Given that changes at one level, such as a local expansion of brain size, can
have dramatic effects at other levels, such as the location of brain areas, it is essential to find a way
in which similar features can be meaningfully compared across species. In other words, we need
to ensure that we compare like with like. One way to solve this problem is to describe the local
organization of brains in terms of an abstract feature space, rather than using physical x, y, and
z coordinates. For instance, we previously showed that peak activations during functional tasks
have seemingly arbitrary spatial arrangements in physical space but cluster together meaningfully
when described in a space that encodes the similarity in their connectivity (Mars et al. 2018b).
The connections, rather than spatial dimensions, form a common space in which activation peaks
can be meaningfully compared (Figure 1c). The third ingredient is thus that of feature-based
comparisons in a common space.

Armed with these three ingredients—multimodal, local, and feature-based—we can now ad-
dress the question of how brains differ. First, using the multimodal data at each locality of the
brain, one can investigate how the different aspects of brain organization relate to one another
within a given species. We term this process vertical translation (i.e., comparing brains column-
wise in Figure 15). Second, one can investigate how a given modality differs between the species
by using an abstraction into features of interest that allows meaningful comparisons. We term this
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process horizontal translation (i.e., comparing row-wise in Figure 15). Finally, one can investigate
how the relationship between different modalities differs between species by combining insights
from both translations.

Figure 1d shows the generalized framework in four example species for which various types
of data are available (or, in some cases, missing). Vertical translation within a species follows the
dotted lines, and horizontal translation across species follows the dashed lines. One can compare
species according to increasing phylogenetic distance by following the dashed lines from the hu-
man to the macaque, marmoset, and mouse brain, or make more direct comparisons, such as a
translation from the mouse directly to the human. In what follows, we illustrate cases of these
possible translations and discuss how thinking about comparisons within this framework provides
structure and helps inspire novel questions.

VERTICAL TRANSLATION

One of the central tenets of neuroscience is that the brain is hierarchically organized: Cells form
areas that form networks, which perform computations that produce behavior (Churchland &
Sejnowski 1992, Mars 1987). Current high-throughput methods allow whole-brain measurements
that span across all these scales (Lerch et al. 2017). Thus, vertical translation means not only in-
tegrating across different sources of information but also integrating across different scales. The
traditional approach is to compare such measurements within specific parts of the brain. Early
work looking at subdividing the brain into multiple functional areas mainly focused on cytoar-
chitectonic features. Differences in cytoarchitecture between adjacent cortical fields was taken to
be an indication of a change in function. Later, these changes in cytoarchitecture were found to
coincide with changes in the density of certain receptor types (Geyer et al. 1998) and changes in
extrinsic connections (Passingham et al. 2002). More recently, multimodal MRI combining mi-
crostructure and functional measures allowed for the definition of areal borders in vivo and in
individual brains (Glasser et al. 2016).

Alternative approaches to comparing features of areas within a given species have emerged in
recent years. Importantly, the advantage of whole-brain data for these different modalities is that
they allow us to move beyond lining up areal borders to investigate principles of organization
across different levels. An impressive example of this is provided by Burt et al. (2018), who in-
vestigated whether the hierarchical organization of cortical areas, which was originally proposed
based on laminar patterns of interareal connectivity (Barbas & Rempel-Clower 1997), is reflected
at multiple levels of brain organization. As a proxy for anatomical hierarchy, they used an MRI-
derived T1w/T2w map of the human cerebral cortex. This map is thought to reflect regional
variation in gray matter myelin content, with high values in primary sensory areas and low val-
ues in association cortex (Glasser & Van Essen 2011). They then compared the T1w/T2w map
to spatial maps reflecting the expression of layer-specific genes, showing a positive correlation of
cortical hierarchy with supra- and infragranular layer genes and a negative correlation with gran-
ular layer 4 genes (Figure 2a). Hierarchical gradients in gene expression were also reported for
genes coding for specific neural cell types. Moreover, the authors found that the T1w/T2w map
topography corresponds strongly with the first principal component of spatial gene expression
profiles.

The study by Burt et al. (2018) demonstrates the use of the ingredients of the comparative
approach that we outlined in the previous section. Using data from different high-throughput
methods with high spatial resolution, in this case aggregating data from multiple subjects to
create a group map, allowed them to compare the results from different modalities in a common
space. As the brain under consideration is the same at each level, this common space can be a
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simple two-dimensional space representing the cortical sheet. However, their final analysis of
performing, in effect, a spatial principal component analysis demonstrates how the topographic
information can be effectively reduced to a lower-level space.

This idea of abstracting a complex spatial map to a low-dimensional space reflecting its essen-
tial features is present in numerous recent works looking at so-called cortical gradients (Blazquez

74 Mars o Fbabdi « Rushworth



Freches et al. 2020, Haak et al. 2018, Vos de Wael et al. 2020). In addition to linear dimensionality
reduction techniques such as principal components analysis, other techniques such as diffusion
embedding translate relationships between data points—such as connectivity strengths between
brain areas—into distances in an embedding space. In one prominent example of this approach,
Margulies et al. (2016) used diffusion embedding to describe the human brain in terms of connec-
tivity gradients. The first gradient runs from primary sensory and motor areas to the transmodal
areas that together form the default mode network; the second gradient differentiates the different
primary areas, thus dissociating different sensory modalities. The authors argue that the principal
gradient provides an organizing spatial framework for large-scale cortical networks and suggest
that it underlies the role of the default mode network in higher-level information processing that
is unrelated to immediate sensory input.

The approach of lower-dimensional embedding to demonstrate principles of brain organiza-
tion is well suited for comparisons across data modalities. Indeed, following the principle of vertical
translation, Huntenburg et al. (2018) explore the idea that the principal primary-to-transmodal
gradient is reflected in connectivity, tissue properties such as myelin, and function, referring to it
as an intrinsic coordinate system for the cortex. Of course, vertical translations are also informative
if the different levels do not line up. As a case in point, Paquola et al. (2019) showed that, although
different modalities indeed display a similar hierarchy, they become increasingly dissociated in
transmodal cortex.

HORIZONTAL TRANSLATION

The vertical translations discussed in the previous sections had the advantage that they all worked
in the same brain space. This is clearly not true for horizontal translations, where brains can differ
strongly in size and morphology. Before any comparison can be done, we must solve a correspon-
dence problem and describe each part of the brain in terms of features that are shared between
the different brains (Figure 1¢).

A first solution to this problem is to describe homologous spatial landmarks that can be reliably
identified on the brains of different species and to use these to guide a registration algorithm. An
early version of this approach was pioneered by Van Essen and colleagues. As a prime example, Van
Essen & Dierker (2007) defined a series of homologous locations, such as the primary sulci, on the
cortical sheet of the macaque and human brain. These homologous features in effect formed the
common feature space between the two brains. A surface-based registration algorithm was then
used to find a spatial warping that best matched the locations of these landmarks, while interpo-
lating between them. Once a transformation was found, they could then ask which parts of the
cortical sheet had to be particularly distorted to allow alignment of the homologous landmarks.
They found that the association cortex in lateral frontal, inferior parietal, and middle temporal
cortex showed particularly strong distortions. Subsequent work showed similar effects in compar-
isons between marmosets, capuchins, and macaques (Chaplin et al. 2013). A more recent variant
on this approach has been proposed by Auzias et al. (2013), who parameterized the cortical sheet
in terms of a rectangular plane where different sulci run either mostly horizontally or vertically.
Defining homologous sulci across species under this parameterization greatly simplifies the cor-
respondence problem (Coulon et al. 2018).

An alternative approach to spatially matching cortical sulcal landmarks has emerged in recent
years. The idea still relies on defining corresponding landmarks, but rather than matching their
spatial location, the approach defines the landmarks to describe different brains in terms of a
common connectivity space. This approach builds on the notion that brain areas have a unique
connectivity fingerprint with the rest of the brain (Mars et al. 2018b, Passingham et al. 2002). For
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example, subdivisions within premotor cortex may be more or less strongly connected with an-
other given region, but what distinguishes them most clearly is the overall profile of connections
that they have with other areas (Tomassini et al. 2007). The same is true in cingulate and parietal
cortex (Beckmann et al. 2009, Mars et al. 2011). Thus, if one can identify a suitable number of
homologous areas between two brains (landmarks), one can describe other areas in terms of their
connectivity profiles with those landmark areas (Mars et al. 2016). The homologous areas form
the dimensions of a connectivity space in which all areas of the brains under comparison can be
described.

This connectivity fingerprint matching approach has been used to systematically compare
most parts of human and macaque brain (Mars et al. 2013, Sallet et al. 2013, Xia et al. 2019).
Importantly, it allows one not just to show whether a region is the same or different across
species but to provide a more continuous assessment. For instance, Neubert et al. (2014, 2015)
demonstrated that some areas of human anterior prefrontal cortex show a connectivity profile
that is slightly different from any pattern found in the macaque. In a similar vein, Balsters et al.
(2020) extended the approach to much more phylogenetically distant species by comparing
striatal organization across mouse, macaque, and human and showed that parts of human striatum
have no homolog in the other species.

The main determining factor for the validity of such a horizontal translation using a common
space is whether a sufficient number of well-established homologous features can be defined. In the
case of macaques and humans, many homologous areas are well defined, but as one moves outside
of the common model species, the definition of homologous areas becomes more problematic. An
alternative approach is to base the common space not on gray matter areas but on white matter
tracts. For instance, a connectivity fingerprint of human medial and lateral frontal pole can be
defined based on their differential connectivity with the frontal association tracts (Hartogsveld
et al. 2017). This approach can be generalized by describing the entire cortical sheet in terms
of its connectivity with each of the major white matter tracts, creating a cortex x white matter
connectivity blueprint for each species in which the tracts form the common space (Mars et al.
2018c). This is an attractive approach since the bodies of many major white matter bundles can be
identified reliably across different primate species, whereas the branching patterns of these tracts as
they approach the cortex provide the key species differences. Thus, one can define automated and
robust standardized protocols to reconstruct major tracts across species based on the tract bodies
and then use tractography to investigate how each tract reaches the cortex in each brain. Protocols
for all major white matter tracts have now been defined for the human, chimpanzee, and macaque
(Bryant et al. 2020, Mars et al. 2018c, Warrington et al. 2020), and partial reconstructions are
available for several additional species (e.g., Barrett et al. 2020, Roumazeilles et al. 2020, Schaeffer
etal. 2017).

A full horizontal translation between two brains opens up a realm of possibilities (Mars et al.
2018c) (Figure 2b). One can investigate relative similarities on an area by area basis, but one can
also take the connectivity fingerprint of a particular part of one brain and search for similarities
across the entire brain of another species. This was done first to search for an area in macaque
temporal cortex similar to the human temporoparietal junction area (Mars et al. 2013). Having
established a whole-brain to whole-brain mapping, one can then use this to predict how a cortical
map, such as a map of cortical myelin or a functional activation map, should look in another brain.
For example, the white matter tract blueprint mentioned above was used by Mars et al. (2018c)
to transform a human myelin map onto macaque brain geometry, and the resulting map showed
strong resemblance to an empirical map based on macaque MRI. This approach arguably has
great potential for comparative neuroscience, allowing one to make quantitative predictions about
how a map should look in one brain based on knowledge of another. Finally, having established
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cross-species similarity across entire brains, one can investigate which parts of the brain match
least across species. For macaque—human comparisons, this approach shows areas in human lateral
frontal and particularly some other parts of temporal association cortex that have a connectivity
fingerprint that cannot be matched to any area in the macaque brain (Mars et al. 2018c). These
areas in the human brain thus have access to a combination of information that no macaque brain
area has.

As in the vertical translation, the common space can be used to create a low-dimensional em-
bedding space where different species’ brains can be concurrently projected. This approach was
taken by Xu and colleagues (Xu et al. 2020) in a comparison of macaque—human connectivity.
They defined a common space based on homologous areas, established the areas’ connectivity
fingerprints, and then used a gradient approach to define a low-dimensional joint embedding
space. This joint space can then be used to describe each part of the two brains, showing how
homologous areas occupy similar places and showing areas of low similarity in—again—frontal
and temporoparietal association cortex as well as in parts of the default mode network on the me-
dial wall of the hemispheres. Since the gradients are defined in the joint embedding space, their
surface representation can be used to guide a surface-based registration between the two brains,
simplifying the brain-to-brain translation.

The common spaces that we have described thus far have always been anatomical, based on
known areal homologs, sulci, or gray or white matter connectivity. However, the common space
can also be formed at a higher level of abstraction. For instance, in an approach that shares some
similarities to the connectivity fingerprint-matching approach, Caspari et al. (2018) used a func-
tional fingerprint-matching approach to investigate human/macaque similarities in areas involved
in attentional processing. They required human subjects to perform various conditions of an
attention-shifting paradigm and characterized the functional profiles of an area in the medial
superior parietal lobule that shows activation when subjects shift their locus of attention. They
then required macaque monkeys to do the same task and searched across the brain for voxels that
matched the human functional profile, showing significant similarity in macaque areas V6 and V6a.

Another approach to defining an abstract common space is to describe brain areas in terms of
neural representations. One particularly powerful example is given by representational similarity
analysis. This method describes multivariate brain signals in terms of the geometry of the activity,
i.e., how the collective multivariate response to different stimuli or conditions changes. Thus, it
abstracts away not only spatial location but also the nature of the measured signal. This means that
such methods can equally be applied to functional MRI signals or to electrophysiological record-
ing, making it a powerful tool for cross-species comparisons (Barron et al. 2020) or even explicit
comparisons between biological and artificial brains. As an example, Kriegeskorte et al. (2008)
used a representational similarity approach to compare macaque extracellular recordings and hu-
man functional MRI. They found strikingly similar neuronal representations in inferior tempo-
ral cortex of the two species, suggesting a similar representational code in the two brains. Hunt
etal. (2015) found similar single-trial indices of internal decision-making state in dorsolateral pre-
frontal cortex in local field potentials recorded from the macaque and magneto-encephalography
recorded from the human.

COMPARING COMMON SPACES

Using a common space allows one to build a brain-to-brain translational mapping that in turn
can be used to predict how any particular feature map from one brain might look in the other.
If different modalities are used to construct the common spaces, an obvious question is whether
the results obtained are consistent. As a case in point, Fulcher et al. (2019) were interested to see
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whether the vertical relationship observed in primates between the cortical hierarchy evident in
T1w/T2w maps and spatial gradients evident in other modalities is also present in the mouse. As
one piece of evidence, they were able to show significant spatial correlations between the gene
expression maps of a number of receptor subunit and cell type marker genes and the T1w/T2w
map. They then focused on genes that have a known human ortholog and compared the gene—
T1w/T2w correlation values between the mouse and the human. This resulted in a significant
correlation of correlations, suggesting that the relationship between the modalities was preserved
across species. In effect, whether one uses the T1w/T2w or the gene expression maps as a common
space between the mouse and human brain, the results should show significant similarity.

Such a similarity between the T1w/T2w and gene expression maps as common spaces
across the mouse and the human is comforting. The fact that the principle of organization—
operationalized here as the relationship between different levels of the biological hierarchy—is
comparable across the two species means that knowledge of multiple areas in the mouse can be
used, in some cases, to make inferences about the nature of an area that is only found in humans
and not in the mouse itself. However, it would be wrong to assume that horizontal translations
using data from different modalities should always line up. Indeed, in discussions of homology in
the context of the biological hierarchy, a number of authors have pointed out that homologous
high-level characteristics can be due to low-level nonhomologies and vice versa (Sommer 2008,
Striedter 2019). As an example of the former, Striedter & Northcutt (1991) discuss the example of
the grasshopper Calliptamus italicus, which produces songs similar to those of other grasshoppers
and in similar circumstances, but does so using a different part of the body. A parsimonious in-
terpretation of grasshopper phylogenetic relations suggests that the behavior is homologous, but
the way it is produced diverged. The so-called neural recycling hypothesis, which suggests that
homologous anatomical regions contribute to highly species-specific behavior such as reading in
the human brain (Dehaene & Cohen 2007), can be interpreted as an example of the opposite sit-
uation. The key message from these observations of homology at different levels of organization
for the present framework is that in order to fully understand differences across brains, one needs
to investigate how different horizontal translations line up. In fact, exploring differences between
horizontal translations using different common spaces is a suitable way of investigating the types
of changes that have occurred between brains.

Motivated by this line of thinking, Eichert et al. (2019, 2020) investigated whether various
differences observed in the white matter organization of the human temporal lobe compared to
that of other primates were all due to the same type of change. One of the hallmark results of
primate comparative neuroscience using neuroimaging is the observation that the arcuate fascicle
projects much more ventrally in the human temporal lobe than in the macaque and chimpanzee
(Rilling et al. 2008). However, the horizontal translation based on homologous areas suggests
that the temporal and inferior parietal territory close to the gray matter projection areas of the
arcuate has vastly expanded in the human brain (Van Essen & Dierker 2007). This has, among
other outcomes, led to area MT+ moving from a dorsal superior temporal sulcus location in the
nonhuman primate to a much more ventral location in the human (Huk et al. 2002). This means
that the ventral projections of the arcuate can be explained both by an expansion or relocation
of its existing gray matter projections or, as suggested by Rilling et al. (2008), by invasion by the
arcuate of new cortical territory (Mars et al. 2018a). Comparing horizontal translations based on
multiple modalities can resolve this question.

In two studies, Eichert et al. (2019, 2020) used a common space based on one modality to
determine the expansion and relocation of areas and then investigated whether the resulting
horizontal translation could account for differences between species in the cortical projections of
the arcuate fascicle. In the first study, they used the Van Essen & Dierker (2007) translation based
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on cortical homologs and showed that this map could not predict changes in arcuate projections
between macaques and humans (Eichert et al. 2019). In a second study, they used surface-based
registration to align macaque, chimpanzee, and human T1w/T2w maps (Eichert et al. 2020).
The resulting translations were able to account for some of the major relocations of cortical
areas in occipitotemporal cortex, including the lateral-to-medial shift of primary visual cortex
and the dorsal-to-ventral relocation of MT+ (Figure 34). When applied to projection maps of
certain cortical tracts, including the ventral inferior fronto-occipital fascicle, these translations
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Figure 3 (Figure appears on preceding page)

Extending translations. (#) Comparing horizontal translations. One can use the T1w/T2w maps of the macaque, chimpanzee, and
human brain (7, zop row) to calculate a horizontal translation across the species. By creating the best possible registration from macaque
to human and from chimpanzee to human (7, bottom row), it is possible to estimate how areas have relocated or expanded across species.
These registrations can then be applied to other modalities such as maps of the projection of the arcuate fascicle (i7). The predicted
projection maps based on the macaque to human (ii7, green) and chimpanzee to human (77, blue) projection maps can then be compared
to the actual human map (7, red). If they do not match, as is the case here, reorganization across levels has occurred between the brains.
Panel 2 adapted from Eichert et al. (2020). () Combining translations allows one to make predictions for modalities that are not
present in one of the species. For instance, a horizontal translation from macaque tracers to the human is not possible, as tracer data
cannot be obtained in humans. Therefore, one can compare macaque tracers to macaque diffusion MRI tractography in a vertical
translation and then compare tractography across species in a horizontal translation. Two example applications are (7) the amygdala-
fugal tract that could be reconstructed using tractography only by using strong priors based on tracer data and (i) the demonstration of
a connectional hub in rostral anterior cingulate cortex across species. Panel » subpanel 7/ macaque and human tractography adapted
from Folloni et al. (2019) and tracer image reproduced with permission from Springer Nature: Brain Structure and Function,
Connectivity Between the Central Nucleus of the Amygdala and the Bed Nucleus of the Stria Terminalis in the Non-Human Primate:
Neuronal Tract Tracing and Developmental Neuroimaging Studies, Jonathan A. Oler, Do P.M. Tromp, Andrew S. Fox, Rothem
Kovner, Richard J. Davidson, Andrew L. Alexander, Daniel R. McFarlin, Rasmus M. Birn, Benjamin E. Berg, Danielle M. deCampo,
Ned H. Kalin, Julie L. Fudge, 2016; subpanel i/ adapted from Tang et al. (2019).

could account for some between-species differences in cortical projections. However, this was
not the case for the arcuate, whose ventral temporal projections far exceeded those predicted
by the translations based on the T1w/T2w common space. Applying this approach to a range
of temporal tracts showed a variety of degrees in which between-species differences in cortical
projections were driven by cortical relocation or the expansion of projections.

Comparing common spaces thus allows one to investigate how the relationships between dif-
ferent levels of brain organization have diverged across species. This, in turn, allows a better un-
derstanding of the homology of features across species. An interesting example is the default mode
network of the brain. This network was originally identified as a task-negative network of areas
that tends to be more activated when the brain is not engaged in a specific task (Shulman et al.
1997), but it is now more generally interpreted as a network involved in generic high-level cog-
nition through dynamic interactions with more task-related networks (Vatansever et al. 2015). As
discussed above, Margulies et al. (2016) described the default mode network as situated at the
extreme end of a gradient ranging from primary to transmodal cortices. A default mode—type net-
work has now been reported in many different species, including in other primates such as the
chimpanzee, macaque, and marmoset (Barks et al. 2015, Liu et al. 2019, Vincent et al. 2007) and
also in carnivores and rodents (Lu et al. 2012, Szab6 et al. 2019). At one level, one might interpret
these networks as equivalent across the species, as they are suggested to fulfil the same role of
dealing with the most abstract information a brain is capable of processing. On the other hand, at
a lower level, the anatomical regions that form these networks need not be homologous. In the
human, for instance, the default mode seems to involve regions in middle temporal cortex that
might not have clear homologs in other species, especially outside the primate order (Bryant &
Preuss 2018). Indeed, the default mode seems to have the connectivity fingerprints that differ the
most between the human and macaque monkey (Xu et al. 2020). Therefore, the default mode net-
work’s function might be comparable across species, but the areas of which it is composed might
not be.

COMBINING TRANSLATIONS

Arguably the greatest potential for comparative neuroscience lies in combining various transla-
tions. We already saw an example of this in the translation of cortical myelin maps in a common
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space of white matter connections (Mars et al. 2018c¢) (Figure 2b). In essence, this corresponds to
a vertical translation (myelin to connectivity space), followed by a horizontal translation (based on
common connectivity space), which is then followed by another vertical translation (connectivity
back to myelin). This type of explicit prediction of how a particular data type would look in one
brain based on another is the true goal of comparative neuroscience.

Depending on what types of data are available for each species, we can dissociate two scenarios.
In the first, the data from the species under investigation share at least one modality in common
that can be used to build a common space for the horizontal translation, but other data modalities
are only present in one of the species. Measurements of anatomical (axonal) connectivity are a
good example. In animals, we can use neuroanatomical tracers to very accurately map the origin,
termination, and sometimes the entire trajectory of axons. These techniques are not available in
humans. Diffusion MRI tractography is a technique that can provide information about anatomical
connections in humans, but it is a rather indirect probe of connectivity, and that makes it error
prone. But diffusion MRI tractography is available for use in animals. Having this same technique
in both humans and animals is a great opportunity for horizontal comparisons, as differences
between the species cannot trivially be attributed to differences in measurement techniques.

Combined translational approaches of this type have been possible for some time. Croxson
(2005) and colleagues, for instance, used diffusion-weighted imaging estimates of white matter
pathways and their probabilities of interconnection with frontal cortical areas to compare humans
and macaques. However, this approach has become increasingly refined. For example, Folloni et al.
(2019) defined a protocol to reconstruct the amygdalofugal tract in the macaque monkey in a way
that captured its course and projections as known from invasive tracers (vertical translation) and
then used these protocols to study this tract in the human using tractography (horizontal transla-
tion) (Figure 3b). A similar approach has shown that it is possible to identify similar connectional
hubs in anterior cingulate cortex based on tracers and tractography in the macaque and tractogra-
phy in the human (Tang et al. 2019). By comparing tractography to tracers in the macaque mon-
key, we can also understand why some of the errors made by diffusion tractography algorithms
occur (Jbabdi et al. 2013). We can then use this knowledge to predict or correct errors made in
human tractography and obtain more anatomically faithful results despite the unavailability of
neuroanatomical tracers in humans (Haber et al. 2020).

In the second scenario, all modalities might be present in both species, but we want to use
one particular modality for the common space. This is the scenario discussed above in which
the myelin map is translated based on a connectivity common space, but it can be extended to
validate and improve the use of model animals to understand human brain function. An interesting
example case is the use of rodents in the study of the neural basis of social behavior (Grimm
et al. 2021). The rodent has a much less encephalized neocortex, many of whose subdivisions
are implicated in social information processing in the human (Olsson et al. 2020, Rushworth et al.
2013). However, using a rodent model allows a much wider range of vertical translations, including
the use of genetic mutants, optogenetics, and invasive tracers (Bicks et al. 2020, Velez et al. 2010).
Horizontal translations based on connectivity or expression of orthologous genes can be used to
first validate the model. For instance, one can predict brain morphological changes in individuals
with particular genetic alleles based on changes observed in mutant mice models. If successful, the
horizontal translations can then be used to predict effects that cannot be studied directly in the
human, formalizing the link between preclinical and clinical research. Such a methodology would
usher in a more quantitative approach to the use of model species, allowing finer predictions in
the human, but also—using the reverse translation—by determining more carefully which model
is appropriate to study any human condition or any particular aspect of the human brain. This
could help refine the use and reduce the number of animals in research.
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CONCLUSION

We have presented a framework for comparative neuroimaging. By exploiting multimodal data
that provide local detail and constructing feature-based common spaces, we compare both
across scales within a species through vertical translations and across species through horizontal
translations. Importantly, this framework helps us to understand the different principles of brain
organization across species through comparisons of horizontal translations and to make formal
predictions, even when data are available in only a subset of species, by combining translations.
Ultimately, such a formal framework benefits both translational neuroscience using model species
and large-scale comparative neuroscience investigating diversity among large sections of the
evolutionary tree.
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