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Abstract

Maps of the nervous system inspire experiments and theories in neuro-
science. Advances in molecular biology over the past decades have revolu-
tionized the definition of cell and tissue identity. Spatial transcriptomics has
opened up a new era in neuroanatomy, where the unsupervised and unbiased
exploration of the molecular signatures of tissue organization will give rise
to a new generation of brain maps.We propose that the molecular classifica-
tion of brain regions on the basis of their gene expression profile can circum-
vent subjective neuroanatomical definitions and produce common reference
frameworks that can incorporate cell types, connectivity, activity, and other
modalities.Here we review the technological and conceptual advances made
possible by spatial transcriptomics in the context of advancing neuroanatomy
and discuss how molecular neuroanatomy can redefine mapping of the ner-
vous system.
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INTRODUCTION

We review here how spatial transcriptomics (ST) can transform the mapping of the nervous sys-
tems of animals and humans. Today, advances in molecular biology have formed a new wave
of methods that reveal the spatial and molecular organization of the nervous system based on
mapping gene expression at a large scale (e.g., whole brain) and at subcellular resolution. Neu-
roanatomy is an investigation into structure–function relationships in the nervous system and in
essence aims to develop a formalized system to describe the spatial division of the brain into dis-
crete regions that represent biologically or functionally meaningful descriptions.

The main principles that guide the mapping of tissue organization in general and of the ner-
vous system in particular can be traced back to the comparative biology approach developed by
Aristotle in antiquity and to the fundamental neuroanatomy of Santiago Ramón y Cajal at the
turn of the twentieth century. The concepts and definitions widely used today to establish brain
atlases stem from the first attempts to annotate the human cerebral cortex based on differences in
tissue organization (i.e., cytoarchitecture), which are visible using light microscopy, an approach
pioneered and refined a century ago by Brodmann, von Economo, and Koskinas.

It is worth noting that the actual definition of a brain region or area is surprisingly opaque,
and variations in experimental and classification approaches have resulted in conflicting atlases.
Furthermore, the natural variability in brain structure between individuals complicates the es-
tablishment of strict neuroanatomical definitions, raising the question of what features should be
considered to define a brain region. In line with this, the establishment of the type of information
(i.e., modality) and level of detail (i.e., resolution) relevant for accurate and reproducible descrip-
tion of the tissue organization is a central challenge in brain mapping. Four characteristics have
been suggested to best define brain regions: function, architecture, connectivity, and topography
(Van Essen & Glasser 2018). Maps of the primate visual areas illustrate the challenges of neu-
roanatomical definitions, since the tissue architecture and functional signals form fluid borders
(Figure 1).

These challenges are also reflected in uncertainties regarding the parcellation of the human
cerebral cortex, with suggestions that there are 50–200 discrete brain regions (Fischl et al. 2004,
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Figure 1 (Figure appears on preceding page)

Maps of the mammalian brain. (a) A coronal section of the human brain showing anatomical delineations (left hemisphere) and Nissl
staining of the tissue (right hemisphere). Panel a adapted from Ding et al. (2016) and the Allen Adult Human Brain Atlas
(http://atlas.brain-map.org/). (b) A coronal section of the mouse brain showing anatomical delineations (left hemisphere) and Nissl
staining of the tissue (right hemisphere). Boxes show magnification of the stained tissue, with outline (green) of subregions in the
hippocampal region (dark purple box) and the isocortex (light purple box). Panel b adapted from Lein et al. (2007) and the Allen Adult
Mouse Brain Atlas (http://atlas.brain-map.org/). (c) 3D rendering of anatomical delineations of the adult mouse brain. Panel c adapted
from Wang et al. (2020) and the Allen Adult Mouse Brain Atlas (http://connectivity.brain-map.org/3d-viewer). (d) Anatomical
delineation of the isocortex in different mammalian species based on various tissue characteristics. Image of mouse brain adapted with
permission from Goulas et al. (2017), image of cat brain adapted from Beul et al. (2015), image of marmoset brain adapted with
permission from Atapour et al. (2019), and image of macaque brain adapted from Beul et al. (2017). (e) Example of the sampling method
for stereological analysis of tissue composition, here NeuN-stained sections from primary visual cortex (V1) and ventral subdivision of
area 8a (A8aV) in the marmoset cortex. Boxes show magnification of the cell-counting method for calculation of neuronal density,
which is used, for example, for the estimation of areal boundaries. Panel e adapted with permission from Atapour et al. (2019).

Glasser et al. 2016). Recent human brain atlases incorporate multimodal definitions of brain re-
gions, based on features defined by histology and connectivity, and probabilistic models (Amunts
et al. 2020, Ding et al. 2016, Glasser et al. 2016).

Mouse and rat brain atlases have been constructed using basic histochemical tissue staining
(e.g., Nissl, acetylcholinesterase) for outlining anatomical structures (Lein et al. 2007, Paxinos &
Franklin 2004, Swanson 2018) and are sometimes combined with measurements of tissue struc-
ture and composition using MRI (Ma et al. 2005, MacKenzie-Graham et al. 2004). The most
recent mouse brain reference atlas from the Allen Institute for Brain Science [the Allen mouse
brain common coordinate framework version 3 (CCFv3)] outlines 658 individual regions parcel-
lated in 3D. The anatomical template is of unprecedented detail (isotropic resolution of 10 μm)
and represents the population averages of 1,675 specimens (mice) (Wang et al. 2020). The tem-
plate was constructed by imaging tissue autofluorescence of a very large number of sections, and
multiple reference data sets were overlaid with the average template to generate the final CCFv3
reference atlas. Importantly, the availability of coordinate frameworks like the CCFv3 enables the
scientific community to register image data sets into a reference atlas, for example, for anatomical
annotation or comparison of data sets.

We propose that ST offers a powerful solution to uncover and describe brain organization: It
introduces an unbiased classification of spatial territories based on biological signals, opening up
new possibilities for comparative neuroanatomy and functional classification of brain circuits.

GENE EXPRESSION IN NEUROANATOMY

Mapping of gene expression in the past decades has transformed our approaches to define cell
identify and tissue organization and has introduced a new dimension in neuroanatomy (Figure 2).
For example, early studies used microarray profiling and histological analysis for generating
genome-wide maps of transcript distributions in the adult human brain, mapping the global and
regional transcriptional architectures (Hawrylycz et al. 2012), and revealing region-specific gene
expression signals in the adult mouse brain (Ng et al. 2009, Sandberg et al. 2000).

Methods to Map Gene Expression in Cells

The development of transcriptomic technologies (i.e., techniques used to study an organism’s
transcriptome, the set of RNA transcripts), particularly single-cell RNA sequencing (scRNA-seq),
has greatly facilitated and accelerated the study of neuron diversity, and advancements in com-
putational tools have transformed how large-scale sequencing data are analyzed (Sandberg 2014,
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Figure 2 (Figure appears on preceding page)

Gene expression redefines neuroanatomy. (a) Illustration of RNA sequencing of tissue. Bulk RNAseq analysis reveals the combined
gene expression of the cells in the tissue, while single-cell RNAseq can capture the gene expression profile of individual cells and reveal
the cellular heterogeneity within a tissue. Regardless, the spatial organization of the cells is lost in both methods. Panel a adapted with
permission from 10x Genomics (LIT000027 Rev D; https://pages.10xgenomics.com/3p-getting-started-guide-single-
cell-gene-expression.html), and coronal section of the human brain adapted from Ding et al. (2016) and the Allen Adult Human
Brain Atlas (http://atlas.brain-map.org/). (b) ISH detecting the expression of the Rorb gene in the adult mouse brain (left) and in the
marmoset brain (right), showing similar laminar expression patterns in the isocortex. Image of mouse brain adapted from Lein et al.
(2007) and the Allen Adult Mouse Brain Atlas (https://mouse.brain-map.org/), and image of marmoset brain adapted from Shimogori
et al. (2018) and the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp). (c) In situ transcriptomics in intact tissue using
STARmap. Gene expression reveals a spatial map of cell types, here excitatory, nonneuronal, and inhibitory cell types in visual cortex.
Panel c adapted with permission from Wang et al. (2018). Abbreviations: Astro, astrocyte; cc, corpus callosum; eL, excitatory layer;
Endo, endothelial cell; HPC, hippocampus; ISH, in situ hybridization; L, layer; Micro, microglia; NPY, neuropeptide Y; Olig,
oligodendrocyte; PVALB, parvalbumin; RNAseq, RNA sequencing; Smc, smooth muscle cell; SST, somatostatin; STARmap, spatially
resolved transcript amplicon readout mapping; VIP, vasointestinal peptide.

Stegle et al. 2015, Stuart et al. 2019). Studies using scRNA-seq of the adult mouse brain have es-
tablished a basic catalog of the cell types (Saunders et al. 2018, Zeisel et al. 2018) and also revealed
aspects of gene expression that reflect the spatial organization in the brain (Märtin et al. 2019,
Saunders et al. 2018). The main limitation of single-cell sequencing approaches is the require-
ment of tissue dissociation for harvesting single cells, invariably separating spatial and molecular
mappings. Accordingly, the characterization of the gene expression profile of single cells is missing
information on how the cells were organized in the tissue.The Patch-seq method accounts for the
relationship between gene expression and the spatial location of neurons by combining mapping
of electrophysiological characteristics, morphology, localization, and gene expression but at the
expense of scalability (Cadwell et al. 2016, Fuzik et al. 2016).

Methods to Visualize Gene Expression in Tissue

The power of applying transcriptomic technologies to neuroanatomy lies in the possibility of
mapping gene expression signals in the tissue at very high resolution. Inspiration formost methods
that map the transcriptome in intact tissue comes from in situ hybridization (ISH) (Singer &
Ward 1982), a method that introduced the possibility of visualizing how RNA is distributed in
a cell or tissue (i.e., in situ) based on the hybridization of probes to predetermined and selected
RNA molecules. The most extensive ISH mapping of the adult mouse brain is compiled in the
gene expression atlas generated by the Allen Institute for Brain Science (Lein et al. 2007). This
resource catalogs the expression of approximately 20,000 genes in coronal and sagittal sections
from the entire adult mouse brain and established a new standard for visualizing and exploring
gene expression data (http://mouse.brain-map.org/). Themassive resources required for whole-
brain ISH mapping of several thousand genes limit the possibilities of applying this approach to
mapping neuroanatomy in multiple animals or across many experiments.

Over time, increasingly sensitive methods to quantify RNA molecules in tissue have been de-
veloped, providing the possibility of mapping the expression of any gene (or multiple genes) at
cellular resolution (Asp et al. 2020, Strell et al. 2019). For example, semiquantitative methods
with cellular resolution have been introduced with some multiplexing capability [e.g., RNAscope
(Wang et al. 2012)]. Further improving in situ mapping, single-molecule fluorescent in situ hy-
bridization (smFISH) detects individual RNA molecules, provides information about the cell-to-
cell abundance of transcripts, and builds on imaging of multiple hybridized complementary probes
conjugated with fluorescent dye (Femino et al. 1998). The advantage of smFISH is the combina-
tion of sensitive detection of RNA with subcellular resolution and the possibility of mapping the
spatial distribution of the RNA, resulting in high-resolution maps of how each RNA molecule
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is distributed in a tissue. A number of sensitive in situ methods for visualization of gene expres-
sion in tissue based on the detection of known RNA sequences have been developed, including in
situ sequencing (ISS) (Ke et al. 2013), multiplexed error-robust fluorescence in situ hybridization
(MERFISH) (Chen et al. 2015), sequential fluorescence in situ hybridization (seqFISH+) (Eng
et al. 2019), ouroboros single-molecule fluorescent in situ hybridization (osmFISH) (Codeluppi
et al. 2018), and spatially-resolved transcript amplicon readout mapping (STARmap) (Wang et al.
2018). These methods have in common the sensitive mapping of multiple known targets (i.e.,
preselected genes). In contrast, fluorescent in situ sequencing (FISSEQ) is based on sequencing
amplified probes directly in situ and was developed for transcriptome-wide quantitative visual-
ization of RNA, allowing mapping of unknown RNA sequences (Lee et al. 2014). In the meth-
ods mentioned above, multiplexing is achieved by multiple rounds of hybridization and imaging
and therefore depends on accurate registration of detected features in a single reference image.
The imaging time remains a significant limitation and restricts application of the most sensitive
approaches to only small tissue samples (Moffitt et al. 2018). While these limitations could be
resolved by using automated microfluidics for tissue and probe handling together with imaging
speed, the use of such approaches to comprehensively map cell types and regions at the whole-
brain scale remains a major challenge.

SPATIAL TRANSCRIPTOMICS

First-Generation Glass Array Spatial Transcriptomics

With advances in mapping gene expression in tissue based on ISH methods, it is possible to map
the expression of a selected number of genes at very high resolution.However, transcriptome-wide
quantification across a whole brain, for example, the adult mouse brain, requires a method that
is scalable and captures gene expression with high spatial resolution. The ST method introduced
an innovative approach to quantitatively map gene expression in tissue sections through unbiased
high-throughput RNA sequencing (i.e., without selecting candidate genes) at the supracellular
scale (Ståhl et al. 2016) (Figure 3). ST builds on the development of glass slides with printed
spots holding oligonucleotide (capture) probes. The first-generation ST arrays consisted of 100-
μm-diameter spots arranged in a rectangular pattern (6.2mm × 6.6mmwith 1,007 spots), but the
spot configuration can be designed according to specific experimental requirements using oligo
printing technologies. The probes include an oligo-dT sequence to capture polyadenylated RNAs
[messenger RNA (mRNA)], and probes in the same spot are assigned a unique spatial identity
with a spatial barcode (i.e., a unique probe sequence). Thin tissue sections are placed on the glass
slides with ST spots, and the spots are imaged together with a histochemical stain of the tissue
(e.g., hematoxylin and eosin) using bright-field microscopy to map the exact position of the spots
relative to tissue landmarks.This allows registration of the spot locations into a common reference
framework. The ST spots capture the RNA in the tissue, and after in situ complementary DNA
(cDNA) synthesis, cDNA-RNA hybrids (including barcodes) are cleaved off the glass slides. The
unique barcodes can then be identified in the sequencing libraries and are used to identify the
location in tissue (i.e., ST spot) where the RNAwas captured. A key advantage of the STmethod is
that the probes capture all polyadenylated RNAs, establishing ST as a uniquely unbiased approach
to tissue transcriptome mapping.

Advancing Spatial Transcriptomics

An important step in improving ST is to increase both sensitivity (i.e., genes detected and dynamic
range) and resolution (i.e., size of spot). The commercially available Visium array (10x Genomics)
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offers an improved spatial resolution, allowing detection of gene expression signals from smaller
spots (55 μm in diameter). In an attempt to approach single-cell resolution, Slide-seq (Rodriques
et al. 2019) and high-density spatial transcriptomics (HDST) (Vickovic et al. 2019) have been
developed based on barcoded beads deposited on a surface. Slide-seq and HDST offer an im-
provement in cellular resolution compared to ST due to the small bead size; nevertheless, this
seems to come at the cost of reduced detection efficiency (Asp et al. 2020). To circumvent the re-
duction in detection efficiency, it is possible to computationally bin beads together to form virtual
spatial features at the expense of spatial resolution. An improved Slide-seq version (Slide-seq2)
was developed by increasing the sensitivity by a factor of 10 and reaching 550 median transcripts
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Figure 3 (Figure appears on preceding page)

Spatial transcriptomics (ST) to map the molecular organization of the adult mouse brain. (a, left) A single
coronal tissue section from the adult mouse brain is placed on a ST array. Each ST spot (red) holds barcoded
oligonucleotide (capture) probes (black vertical bars). The probes include an oligo-dT sequence that captures
polyadenylated RNAs (messenger RNA, colored vertical bars), and probes with the same barcode are located in
the same spot, providing the probes with a spatial identity. (Right) The spots are imaged together with a
histochemical stain of the tissue (e.g., hematoxylin and eosin) using bright-field microscopy to map the exact
position of the spots relative to tissue landmarks. The magnification shows each spot capturing the RNA of
multiple cells. (b, left) 3D rendering of all spots in 75 coronal sections, registered into a common reference
framework. (Right) Example of visualization of the spatial expression of a single gene. Spots show areas with
high expression of Rorb (top 1% of the spots with Rorb expression across the data set). (c, left) Six clusters of
spots (color coded) identified by their respective gene expression pattern. (Right) The molecularly defined
clusters can be used to delineate the spatial organization of the brain and for the ultimate establishment of a
brain atlas. Data used to generate figure from Ortiz et al. (2020).

per bead while maintaining high spatial resolution using the same bead diameter (Stickels et al.
2020). The accuracy and sensitivity are sufficient to detect mRNA transcripts localized to subcel-
lular domains (e.g., the dendrite of a neuron). Finally, in addition to improving resolution, it will
be important to increase the size of the ST arrays for use in mammalian species with larger brains,
as the dimensions of commercially available ST arrays canmaximally fit one coronal section of one
hemisphere of the adult mouse brain per array (6.5mm × 6.5mm). Scaling the ST technology
to match the dimension of human brain regions such as the human cerebral cortex would require
extending the array surface by at least two orders of magnitude.

COMPUTATIONAL METHODS IN SPATIAL TRANSCRIPTOMICS

Data Analysis Pipelines

ST experiments can generate very large sequencing data sets, introducing the same computa-
tional challenges as large-scale single-cell RNA sequencing (scRNA-seq) experiments. Since ST
and scRNA-seq data are similarly structured, the same methods can be applied by inputting gene
expression from single spots instead of single cells. Standardized computational pipelines such as
Seurat (Satija et al. 2015) and Scanpy (Wolf et al. 2018) are widely used to analyze and explore
scRNA-seq data.These pipelines have been expanded to analyze and visualize ST data. In addition,
dedicated ST pipelines have been developed for sequencing analysis together with visualization of
spatial information (Dries et al. 2020, Fernández Navarro et al. 2019). To integrate multiple tissue
sections into a common reference space, several semiautomated pipelines can be used to register
brain sections into preexisting atlases, also allowing for further manual annotation (Fürth et al.
2018, Niedworok et al. 2016, Renier et al. 2016). In the following sections, we briefly present the
key steps for the analysis of sequencing data from ST experiments.

Data Normalization

Gene expression experiments often include technical variability that interferes with the quantifi-
cation of biological signals (Hicks et al. 2018). Therefore, a critical first step in the ST analysis
workflow is to normalize the data by transforming the absolute gene counts into a new expression
that is normalized across the whole data set. Importantly, the aim of normalization is to correct
the technical bias while preserving meaningful biological signals. A broad range of methods cor-
recting different sources of technical noise are available and being updated to improve this step
(Tran et al. 2020, Vallejos et al. 2017).
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An important source of technical noise is the differences in sequencing depth between samples,
which results in differences in the number of detected reads per spot. Relative counts normaliza-
tion is the most straightforward solution to account for this variability and simply consists of di-
viding each gene count by the total number of reads per spot. Technical noise also stems from the
systematic difference in expression levels of tissue sections that have been processed in different
batches (Tung et al. 2017). Batch normalization algorithms can be applied to remove systematic
differences in gene expression between batches (Haghverdi et al. 2018, Polański et al. 2020). Fi-
nally, the difference in the number of reads detected per gene can partially be explained by the fact
that the number of reads also depends on transcript length (Oshlack &Wakefield 2009). To com-
pensate for this bias, gene counts are usually converted into reads per kilobase per million reads
(Mortazavi et al. 2008) or transcripts per million (Wagner et al. 2012). This normalization does
not remove biases in downstream analyses that tend to overemphasize the contribution of highly
expressed genes, a bias that can be reduced by applying a scaling factor and a logarithmic function
(Satija et al. 2015). For genes that are sparsely or lowly expressed, showing a high incidence of
missing values (zeroes) in the data set, it is challenging to determine whether missing values rep-
resent selective expression, missing data, or low sensitivity (Hicks et al. 2018). Some algorithms
such as scran (Lun et al. 2016) or SCnorm (Bacher et al. 2017) implement strategies to correct for
zero values arising due to low sensitivity.

Dimensionality Reduction

After normalization of gene expression, it is necessary to reduce the data set into a compact repre-
sentation that preserves the key biological information.This dimensionality reduction is necessary
since downstream analyses require a smaller number of dimensions and cannot handle data struc-
tures holding many thousands of genes (Beyer et al. 1999). Dimensionality reduction replaces the
expression levels across all genes with the expression on a reduced set of new variables.

The most common dimensionality reduction method is principal component analysis (PCA)
(Abdi & Williams 2010). PCA calculates a reduced set of components that replace the large
number of genes while capturing the largest possible degree of variance. As a result, a lower-
dimensional representation of the gene expression data is captured by a small number of PCA
components that explain most of the data variance. PCA forces each component to be orthogonal
to all others to ensure that the variance accounted for by one component is not captured by any
other component. Instead, independent component analysis (ICA) is a method for dimension-
ality reduction where the calculated components represent the independent sources of variance
in the data. Compared to PCA, ICA relaxes the orthogonality requirement and allows shared
variance across the dimensions (Hyvarinen 1999). ICA tends to generate more interpretable com-
ponents, allowing researchers to differentiate components carrying technical signals from those
representing biological phenomena. As a result, the biological components can be specifically se-
lected for further processing, which also helps in reducing batch effects. Among its broad range
of applications, ICA has been successfully used to analyze various types of gene expression data
from microarrays (Lee & Batzoglou 2003), scRNA-seq (Saunders et al. 2018), and ST (Ortiz et al.
2020).

Dimensionality reduction can also be used to project high-dimensional data directly into 2D or
3D space for visualization.Nonlinear methods perform better compared to linear dimensionality-
reduction methods (e.g., PCA) to position data points that share similar molecular signatures in
close distance in 2D or 3D plots. The disadvantage is that coordinates in the low-dimensional
space are harder to interpret and can lead to erroneous conclusions regarding the presence of
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clusters, their size, or the biological significance of relative distances (Wattenberg et al. 2016).
The most popular nonlinear algorithms are t-stochastic neighbor embedding (t-SNE) (van der
Maaten & Hinton 2008) and uniform manifold approximation and projection (UMAP) (McInnes
et al. 2018). UMAP has been suggested as a superior method compared to t-SNE for sequencing
data, especially in its ability to preserve the global data organization and in terms of execution time
(Becht et al. 2019). This conclusion has been challenged by authors arguing that the difference is
mostly due to suboptimal use of t-SNE (Kobak & Berens 2019).

Clustering

In order to identify brain regions that share common molecular signatures, clustering algorithms
can be applied to the PCA- or ICA-calculated components to identify ST spots that show sim-
ilar gene expression patterns. A broad range of clustering methods are available, although most
of them are built on top of a few core algorithms. Among them, k-means is probably the most
popular clustering technique (Lloyd 1982), and it is suitable for very large sequencing data sets
since the algorithm scales linearly with the amount of data. A disadvantage of k-means cluster-
ing is the tendency to identify equal-sized clusters (Kiselev et al. 2019), which could lead to the
misclassification of clusters formed by data from a few spots.

Another widely used method is hierarchical clustering, based on establishing a hierarchy be-
tween spots. A major benefit of using hierarchical clustering is that results can be graphically
represented as dendrograms, which offer an intuitive and compact visualization of the data set.
However, the algorithm has a quadratic complexity in terms of both time and memory require-
ments, making it computationally impractical for very large data sets (Day & Edelsbrunner 1984).

Another alternative is graph-based clustering, where sequencing data sets of up to tens of mil-
lions of data points can be represented as a graph of interconnected nodes (Waltman & van Eck
2013). Clusters are identified in the graph by detecting groups of highly interconnected nodes
(Blondel et al. 2008). In graph-based clustering, the number of clusters is not directly imposed.
Instead, the number of clusters is adjusted mostly via two parameters: k, which is used for con-
structing the graph, and the resolution,which is an important setting for the community detection.
A possible disadvantage of this approach is its applicability to small data sets and the identification
of rare clusters (Fortunato & Barthélemy 2007). Nevertheless, graph-based clustering was able
to identify small spatial clusters in a whole-brain ST data set, with some clusters consisting of
less than 0.1% of the total number of spots (Ortiz et al. 2020). Ultimately, and regardless of the
algorithm applied, the clustering approach offers a conversion of the data into possibly biologi-
cally meaningful groups and represents an important first step toward converting the ST data into
applicable knowledge.

Downstream Analysis and Applications

Following the identification of molecular clusters in ST data, it is possible to investigate the gene
expression differences that drive the assignment of spots to specific clusters. Differential expres-
sion analysis (DEA) is a powerful tool to systematically detect genes whose expression levels differ
betweenmultiple groups of spots (Anders&Huber 2010,Robinson&Oshlack 2010).UsingDEA,
one can apply specific selection criteria, for example, the anatomical location of spots or their as-
sociation with a selected tissue marker, to compare gene expression between subsets of spots. For
instance, ST was used to identify a subset of genes associated with the formation of Aβ plaques in
an animal model of Alzheimer’s disease by grouping spots according to the density of Aβ (Chen
et al. 2020).
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Another application of ST is to support computationalmethods that aim to recreate and predict
the spatial organization of isolated single cells based on their gene expression (e.g., from scRNA-
seq experiments). Importantly, accurate predictions of spatial identity rely heavily on the access to
a preexisting tissue reference map outlining spatial gene expression patterns (Achim et al. 2015,
Karaiskos et al. 2017, Nitzan et al. 2019, Satija et al. 2015). Offering a complete solution, the
spatially defining gene expression patterns found in ST maps can form the basis for improving
computational predictions on the spatial origin of single cells (Ortiz et al. 2020).

SPATIAL TRANSCRIPTOMICS IN NEUROANATOMY

A data-driven approach to define brain organization, void of potential biases introduced by expert-
based definition, would be an ideal framework for establishing brain reference atlases. The poten-
tial of a molecular-based classification of the brain was demonstrated in a recent study, which
used unbiased ST mapping of gene expression to develop the concept of a data-driven molec-
ular atlas (Ortiz et al. 2020). In this study, a whole-brain molecular atlas was built by capturing
the expression of approximately 15,000 genes from 34,000 ST spots across 75 coronal tissue sec-
tions. The position of each spot in the tissue was determined by imaging all sections followed
by image registration in a common coordinate framework of the mouse brain (CCFv3), result-
ing in a whole-brain view of the expression of each gene in every spot. To reveal the relation-
ship between the molecular and neuroanatomical organization in the tissue, unsupervised algo-
rithms were used to identify spots with a shared molecular profile and the molecular clusters
were thereafter visualized in the reference coordinate system. To facilitate 3D visualization of the
molecular clusters, machine learning was used to define continuous volumes based on the iden-
tity and distribution of the spots, generating a 3D atlas with molecularly defined brain regions.
The 3D atlas allows for further visualization of 2D sections of any virtual angle. Altogether, the
computational analyses unbiasedly classified the adult mouse brain into 181 unique molecular do-
mains (https://www.molecularatlas.org/). Supporting the value of the ST-based classification in
generating new atlases, the molecular domains showed a high level of agreement with current
structure-based reference atlases and, importantly, also established new and finer subdivisions in
several brain areas, including the isocortex and striatum. For example, the molecular atlas revealed
a new classification of subregions in the dorsal striatum and provided evidence for the separate
molecular identity of different parts of layer 2/3 in isocortex. Furthermore, the molecular atlas
suggests a new classification of isocortical subregions in the anteroposterior and mediolateral di-
mension. The molecular annotation of isocortical domains showed that gene expression defines
the isocortical layers in a domain-specific manner, thereby providing a molecular identity that
identifies both layer and position (e.g., distinguishing layer 6 in frontal versus posterior domains).

It has become clear from scRNA-seq experiments that neuron identity cannot be accurately
defined by the expression of a single gene, and instead the expression of several genes must be
combined to capture the diversity of neuron subtypes. Similarly, even if expression of single genes
can reveal some aspect of brain organization, it is unlikely that the full neuroanatomical complex-
ity can be represented with a small number of genes. The full molecular atlas was based on the
expression of the 7,000 most variable genes, demonstrating the power of gene expression as a tool
to map the adult brain, and the number of genes is beyond what is feasible to map using cellular
resolution methods such as STARmap or MERFISH. As a possible solution, Ortiz et al. (2020)
showed that most of the whole-brain neuroanatomical classification details could be recapitulated
using only a small subset of genes by demonstrating classification of the brain into 181 molecular
clusters using a restricted set of 266 spatially defining genes (i.e., the brain palette). This suggests
that the whole-brain ST data are a valuable resource for extraction of region-specific palettes,
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palettes that could guide the establishment of regional identities using in situ expression mapping
of cellular resolution. In addition, spatially defining genes are also important to machine learning
approaches used to predict the spatial origin of cell types identified by single-cell transcriptomics.

In summary, the first application of whole-brain ST clearly demonstrates the potential of data-
driven molecular neuroanatomy on the whole-brain scale, and it serves as a roadmap toward the
unbiased classification of mammalian brain organization.

CONCLUSION

Pioneering work used cyto- and chemoarchitecture to establish the main principles of tissue orga-
nization in the nervous system, and the concepts emerging from neuroanatomical investigations
have deeply influenced how we study the brain. Today, we are witnessing an evolution of neu-
roanatomical definitions and an intense investigation of the modalities that can optimally capture
principles of brain organization in a reference map. This new era capitalizes on high-resolution
molecular tools that enable large-scale mapping of markers, which, in an unbiased and unsuper-
vised fashion, capture the complexity of the nervous system. In this vein, ST offers a roadmap to
define and study brain regions in any species, importantly, independent of prior neuroanatomi-
cal knowledge. ST gives a new view of brain organization but does not provide in itself a final
map. It will be essential to develop experimental and computational tools that integrate different
definitions of tissue organization into a single reference map of the brain.

For future efforts, it will be important to consider how detailed the definitions need to be to best
serve the purpose of developing neuroanatomical frameworks that support understanding of brain
function.We need to consider at what point the addition of an increasing number of borders and
small subregions benefits the functional investigation and understanding. For example, it remains
unclear whether mapping single cells in high detail on a whole-brain scale in tissue is necessary to
establish a neurobiologically relevant and reproducible subdivision of brain regions.

We expect that spatially restricted gene expression signatures are conserved across mammalian
species, and the ST approach can guide the development of new atlases in several species, including
the human brain. The large-scale imaging of RNA distribution in intact brain tissue will be an
important challenge to solve in the coming years, as current state-of-the-art methods realistically
are restricted to imaging small tissue volumes. The combination of a molecular atlas (Ortiz et al.
2020) with high-definition, cell type–specific wiring diagrams (Huang et al. 2020) and brain-wide
activity maps can inform the building of new reference atlases and provide a united framework for
understanding how circuits are organized to shape behavior.
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