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Abstract

The nuclear shell model has perhaps been the most important concep-
tual and computational paradigm for the understanding of the structure
of atomic nuclei. While the shell model has been used predominantly in
a phenomenological context, there have been efforts stretching back more
than half a century to derive shell model parameters based on a realis-
tic interaction between nucleons. More recently, several ab initio many-
body methods—in particular, many-body perturbation theory, the no-core
shell model, the in-medium similarity renormalization group, and coupled-
cluster theory—have developed the capability to provide effective shell
model Hamiltonians. We provide an update on the status of these methods
and investigate the connections between them and their potential strengths
and weaknesses, with a particular focus on the in-medium similarity renor-
malization group approach. Three-body forces are demonstrated to be im-
portant for understanding the modifications needed in phenomenological
treatments. We then review some applications of these methods to com-
parisons with recent experimental measurements, and conclude with some
remaining challenges in ab initio shell model theory.

307

mailto:stroberg@uw.edu
https://doi.org/10.1146/annurev-nucl-101917-021120
https://www.annualreviews.org/doi/full/10.1146/annurev-nucl-101917-021120


NS69CH12_Stroberg ARjats.cls October 9, 2019 19:47

Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
1.1. The (Long) Road Toward Ab Initio Shell Model Interactions . . . . . . . . . . . . . . . . 309
1.2. Fresh Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
1.3. Current Status of the Ab Initio Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
1.4. Organization of This Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

2. MICROSCOPIC EFFECTIVE INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
2.1. Quasi-Degenerate Perturbation Theory and the Q̂-Box Resummation . . . . . . . 314
2.2. Okubo–Lee–Suzuki Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
2.3. In-Medium Similarity Renormalization Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
2.4. Shell Model Coupled Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

3. COMPARISON OF VARIOUS APPROACHES
TO EFFECTIVE INTERACTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
3.1. Formal Effective Interaction Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
3.2. Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

4. THREE-BODY FORCES AND THE CONNECTION
WITH PHENOMENOLOGICAL ADJUSTMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . 330
4.1. Ensemble Normal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.2. Mass Dependence of the Effective Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

5. APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
5.1. Ground and Excited States of sd Shell Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
5.2. The Calcium Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
5.3. Heavy Nickel and Light Tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

6. CURRENT CHALLENGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.1. Electromagnetic Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.2. The Intruder-State Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

7. OTHER DEVELOPMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
7.1. Effective Field Theory for the Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
7.2. Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
7.3. Coupling to the Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8. CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

1. INTRODUCTION

Since its introduction by Goeppert Mayer and Jensen,Haxel, and Suess almost 70 years ago (1–3),
the nuclear shell model has provided the primary conceptual framework for the understanding
of nuclear structure. Its central idea is that protons and neutrons inside a nucleus move within
a self-consistently generated mean field. This mean field can be approximated by Woods–Saxon
or harmonic oscillator potentials, provided that a strong spin-orbit component is added. With
the inclusion of the latter, the spectrum of single-particle energies exhibits a shell structure that
explains the experimentally observed magic proton and neutron numbers. In this picture, the low-
lying structure of most nuclei results from the interactions between configurations of a few valence
particles on top of an inert core via a residual nuclear force.

From the beginning, it was hoped that the shell model and its residual force could be derived
from basic building blocks, in particular the interaction between free protons and neutrons. De-
spite early successes, this proved to be an enormously difficult task (4–8).Meanwhile, increasingly
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elaborate empirical interactions were used with spectacular success to describe a vast array of ex-
perimental data (9–11). In modern language, this is a clear signal that the shell model contains
the relevant degrees of freedom to describe most (if perhaps not all) phenomena observed in low-
energy nuclear structure.

In the last two decades, a combination of computational and theoretical advances has provided
fresh perspectives and opportunities for the systematic derivation of shell model interactions from
realistic nuclear forces,1 without the need for ad hoc phenomenological adjustments. The primary
aim of this review is to describe these developments. The story of the shell model, and of micro-
scopically derived effective interactions in particular, is long and full of false starts, dead ends,
accidental successes, circling back, and rediscoveries of old wisdom in new language. We are not
equal to the task of writing an authoritative history, and we do not attempt to do so. Indeed, we
only briefly mention recent developments in empirical shell model interactions or the compu-
tational aspects of configuration interaction calculations. Readers interested in such techniques
should consult the existing texts on the subject (12–15). For the status of phenomenological ap-
proaches, we refer the reader to several thorough reviews (16–22). For more details on effective
interaction theory, we recommend several books (23–25) and reviews (17, 26–30).

1.1. The (Long) Road Toward Ab Initio Shell Model Interactions

Soon after the publication of the seminal articles by Goeppert Mayer, Jensen, and colleagues, the
first parameterizations of the residual nuclear force based on fits to experimental spectra began to
appear (e.g., 9, 31–34). Dissatisfied with such approaches because they hide the link between the
effective valence-space interaction and the underlying nucleon–nucleon (NN) interaction, Bertsch
(5), Kuo & Brown (6), and Kuo (7) pioneered the program to systematically derive and explore
this connection. In the 1960s, considerable progress was made in the construction of realistic NN
interactions that provided a high-quality description of NN scattering phase shifts (35, 36). Fol-
lowing a similar strategy as theoretical studies of nuclear matter, Kuo and Brown used Brueckner
and colleagues’ G matrix formalism (37–39) to treat the strong short-range correlations induced
by these forces, and included up to second-order diagrams in G to account for important core-
polarization effects (5). Their research culminated in the publication of Hamiltonians for the sd
and p f shells (7, 8).While the first applications were successful, Barrett & Kirson (40) and Goode
& Kirson (41) soon demonstrated a lack of convergence in powers of the G matrix, and more
sophisticated treatments with random-phase approximation (RPA) phonons and nonperturbative
vertex corrections destroyed the good agreement with experiment (42–44). Moreover, Vary et al.
(45) found that the use of larger model spaces for intermediate-state summations in diagram eval-
uations also degraded the agreement with experimental data. Around the same time, Schucan &
Weidenmüller (46, 47) demonstrated that the presence of low-lying states of predominantly non-
valence character (so-called intruder states) renders the perturbative expansion for the effective
interaction divergent.

Because of these developments, enthusiasm for the perturbative approach to deriving the ef-
fective interaction dwindled (48). While Kuo and collaborators (24, 26, 28, 49, 50) pursued the
Q̂-box (or folded-diagram) resummation of the perturbative series, most efforts in shell model
theory focused instead on the construction and refinement of empirical interactions (10, 51–55).
Large-scale calculations with such interactions yielded impressive agreement with available nu-
clear data, and even provided predictive power. An example is the gold standard universal sd shell

1By realistic, we mean interactions that are rooted to some extent in quantum chromodynamics (QCD) and
accurately describe few-body scattering and bound-state data.
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(USD) interaction (10, 56, 57), which achieves a root-mean-square (rms) deviation from experi-
mental levels of merely 130 keV throughout the sd shell.

Meanwhile, serious efforts were undertaken to develop approaches that circumvent the prob-
lems plaguing the effective interaction methods by starting from the bare nuclear interactions
and treating all nucleons as active particles. Prominent examples are coordinate-space quantum
Monte Carlo (QMC) techniques (58–60) and the no-core shell model (NCSM) (61–63). The late
1970s also saw a wave of nuclear coupled-cluster (CC) calculations (64–66), which use systematic
truncations to solve the Schrödinger equation at polynomial cost, as opposed to the exponential
scaling of the NCSM. By the mid-1990s, computational advances had made quasi-exact calcu-
lations for nuclei feasible (58, 61, 62, 67, 68). However, such calculations were limited to light
nuclei by the sheer numerical cost of coordinate-space QMC and by the slow convergence of
configuration-space methods with realistic nuclear interactions.

1.2. Fresh Perspectives

Since the turn of the millennium, nuclear theory has undergone an important philosophical shift
with the adoption of renormalization group (RG) and effective field theory (EFT) concepts.
These tools provide a systematic framework for exploring long-existing questions pertaining to
the phase-shift equivalency of significantly differentNN interactions or the origin and importance
of three-nucleon (3N) forces (e.g., 69, 70). Most noteworthy for this review are the clarification
of the issues that led to the failure of the aforementioned G matrix–based approaches and the ca-
pability to reconcile the shell model, which is based on an (almost) independent particle picture
analogous to that of atomic physics, with the notion that strong correlations are induced by (most)
realistic NN interactions.

1.2.1. Chiral effective field theory. The essential idea of chiral EFT for the nuclear force is
that processes relevant for nuclear structure do not resolve the details of short-range interactions
between nucleons.2 There are in fact infinitely many potentials, differing at short distances, all
of which describe low-energy observables equally well. This is good news, because we can take
advantage of this arbitrariness and parameterize the short-range physics in a convenient way, for
instance, through a series of contact interactions. At long distances, the approximate chiral sym-
metry that chiral EFT inherits from QCD dictates that interactions be described by (multi)pion
exchange.

In two pioneering papers,Weinberg (71, 72) developed effective Lagrangians to model the in-
teraction between nucleons in terms of pion exchange and contact interactions, with increasingly
complicated contributions suppressed by powers of a nucleon’s typical momenta Q ∼ kF or the
pion mass mπ over the breakdown scale �χ of the EFT, (Q/�χ )n. This provided a framework to
treat two-body forces consistently with three- and higher-body forces, as well as a natural expla-
nation for the relative importance of these terms (see, e.g., References 73–75 for recent reviews).
Moreover, nuclear transition operators can be derived in a consistent fashion by coupling the
chiral Lagrangian to the electroweak fields (e.g., 76–80). Despite a number of subtle issues that
persist to this day, several families of chiral NN plus 3N interactions have been developed (81–92)
that reproduce low-energy observables with an accuracy comparable to that of phenomeno-
logical potentials. These interactions have become the standard input for modern nuclear
theory.

2Short, in this context, refers to distances r where kFr � 1, with kF ≈ 1.4 fm−1 the Fermi momentum at sat-
uration density.
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1.2.2. The renormalization group. The RG, particularly in the formulation developed by
Wilson (93, 94) and Polchinski (95), is a natural companion to any EFT. As discussed above, an
EFT requires a cutoff � that delineates between resolved and unresolved physics. The specific
form and location of the cutoff (i.e., the scheme and scale) are arbitrary, and observables for mo-
menta Q � � should not depend on this choice. Consequently, there are an infinite number of
equivalent theories that differ only in scheme and scale. The RG smoothly connects such equiv-
alent theories.

RG methods debuted in low-energy nuclear physics around the turn of the millennium (96–
103), finally providing a systematic framework that formalized ideas that had been discussed in
the nuclear structure community since the 1950s. For instance, both hard- and soft-core NN po-
tentials that reproduce NN scattering data can be devised, but nuclear matter calculations found
that soft potentials do not produce empirical saturation properties, so soft potentials were disfa-
vored (70). The missing piece in the saturation puzzle was the connection between the off-shell
NN interaction and the 3N interaction, as formally demonstrated by Polyzou & Glöckle (104).
Of course, hard-core potentials are much more difficult to handle in many-body calculations, ne-
cessitating the use of the Brueckner G matrix (38, 105–107) to deal with correlations due to the
short-range repulsion.

From the RG perspective, the hard- and soft-core potentials are related by an RG transfor-
mation that leaves NN scattering observables unchanged but shifts strength into induced 3N (and
higher) interactions. Neglecting these induced terms means that observables involving more than
two particles will no longer be preserved. This mechanism provides an explanation of the Phillips
line (108) and the Tjon line (109), which describe correlations between few-body observables
calculated using different phase-equivalent NN interactions.

In the context of this work, the RG provides a simple explanation of the observation that—
after being processed by the BruecknerGmatrix machinery—variousNN potentials produce very
similar spectroscopy (110, 111), as long as they reproduce NN scattering data. This can be under-
stood as an indication that theGmatrix approximately integrates out the short-distance physics of
the different potentials, leaving the universal long-distance physics. However, Bogner et al. (102)
have shown that the G matrix can retain significant coupling between off-shell low- and high-
momentummodes, rendering it nonperturbative. This explains why historical efforts to construct
the effective interaction perturbatively from G matrices were bound to fail. In contrast, meth-
ods such as the similarity RG (SRG) (102, 112, 113) achieve a more complete decoupling of the
short-distance physics and render the resulting transformedNN+3N interaction suitable for per-
turbative expansions (102, 114–116).The SRG has become the tool of choice in nuclear theory for
decoupling low and highmomenta because it also provides straightforwardmeans to track induced
many-body forces (117–120) and to construct consistently transformed observables (121–123).

1.3. Current Status of the Ab Initio Shell Model

Over the past decade, the adaptation of EFT and SRG methods has greatly extended the reach of
ab initio nuclear many-body theory across the nuclear chart. Simply put, themost convenient scale
for formulating a theory of nuclear interactions is often not the most convenient scale for solv-
ing that theory. The SRG connects one scale to the other and greatly improves the convergence
behavior of nuclear many-body calculations in the process. Large-scale diagonalization methods
such as the NCSM can be used in the lower sd shell (63, 120, 124, 125), and systematically trun-
cated methods such as self-consistent Green’s functions, CC, and the in-medium SRG (IMSRG)
can even be applied to nuclei as heavy as tin (126–129). While SRG-evolved interactions can-
not be easily used in QMC due to their nonlocality, new families of local chiral interactions yield
encouraging results in such applications (60, 87, 88, 90).
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Soon after their introduction to nuclear physics, EFT and RG methods also revitalized efforts
to systematically derive shell model interactions (130, 131). From a practical perspective, this of-
fered a convenient way to confront RG-evolved chiral NN+3N interactions with the wealth of
available spectroscopic data, using existing shell model codes (132–144). At the conceptual level,
these interactions validate the independent particle picture underlying the shell model. They al-
ready provide sufficient binding at the mean-field level and allow us to use it as the starting point
for the treatment of correlations, either through rapidly converging nonperturbative many-body
methods (127, 145, 146) or possibly even through finite-order perturbation theory (116, 147).
Furthermore, novel approaches such as the valence-space IMSRG (VS-IMSRG) or shell model
CC (SMCC), both discussed below, provide both the conceptual framework and practical tools to
relate no-core and valence-space methods, as shown by the consistent ground- and excited-state
results obtained thus far (see Section 5 and References 129 and 143). Thus, the end of the long
and winding road to ab initio shell model interactions appears to be in sight, although challenges
remain (see Sections 6 and 8).

1.4. Organization of This Review

The remainder of this review is organized as follows: In Section 2, we introduce common ap-
proaches to the construction of shell model interactions, from the traditional many-body pertur-
bation theory and theOkubo–Lee–Suzukimethod to theVS-IMSRG and SMCC. In Section 3,we
compare these approaches within a common formalism to illuminate the relations between them.
Section 4 discusses the role of 3N forces in the shell model context, and relates modifications
of (semi)empirical interactions that are supposed to capture such effects to the more systematic
treatment of these forces in modern approaches. In Section 5, we highlight selected applications
of ab initio shell model interactions. Section 6 describes the main challenges we are facing today,
and analyzes them primarily from the perspective of the VS-IMSRG. In Section 7, we address
new developments such as a direct EFT expansion for shell model interactions and a novel uncer-
tainty quantification effort. Section 8 provides concluding remarks along with a list of take-away
messages that summarize the key aspects of modern ab initio shell model calculations and clarify
common misconceptions. Certain technical details are presented in Appendices A–C.

2. MICROSCOPIC EFFECTIVE INTERACTIONS

The general problem of effective interaction theory is the following: Given a Hamiltonian H
expressed in a large (typically intractable) Hilbert space H , we wish to obtain an effective Hamil-
tonian Heff that acts in a smaller (tractable) Hilbert space Hmodel but reproduces a subset of the
eigenstates of the large Hilbert space:

H |�n〉 = En|�n〉︸ ︷︷ ︸
full-space Schrödinger equation

⇒ Heff|ψn〉 = En|ψn〉︸ ︷︷ ︸
model-space Schrödinger equation

. 1.

In the context of the nuclear shell model, the large Hilbert space consists of Slater determinants
of single-particle states, typically harmonic oscillator eigenstates. The number of single-particle
states included should be sufficient to obtain convergence. The smaller Hilbert space Hmodel is
defined by splitting the single-particle states into three categories—core, valence, and excluded3—
taking the subset of Slater determinants for which all core orbits are occupied and all excluded
orbits are unoccupied.

3In chemistry, valence orbits are usually called active states, while excluded orbits are referred to as virtual
states.
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We note in passing that different partitionings of the Hilbert space can be used for other pur-
poses. For example, choosing Hmodel to be a one-dimensional space corresponds to the single-
reference many-body methods for treating the ground state of closed-shell nuclei. Alternatively,
defining Hmodel in terms of low-momentum states leads to methods for softening an interaction,
such as Vlowk (99) or the SRG (100).

An important practical requirement for Heff is that it should obey a rapidly converging cluster
expansion, schematically

|V2N | � |V3N | � |V4N | . . . , 2.

whereV2N is the two-body potential,V3N is the three-body potential, and so forth, and the vertical
bars indicate some measure of size or importance. This property is essential for the feasibility of
large-scale shell model diagonalizations. Currently, such calculations can handle basis dimensions
upward of 109 Slater determinants (18, 20, 148), which would be impossible if the full matrix
needed to be stored. The limitation to two-body (or possibly three-body) interactions yields a
sparse matrix that can be treated efficiently by, for instance, the Lanczos or Davidson method
(149–151).

It is worth taking a moment here to explain why we would expect the cluster expansion to be
valid in nuclei and to consider where it might run into trouble. As mentioned in Section 1.2.1,
chiral EFT naturally generates a hierarchy of the type shown in Equation 2, with many-body
interactions suppressed by increasing powers of the ratio of low to high scales. In contrast, for a
system of A nucleons, the importance of an n-body term grows combinatorially, accounting for
all the different combinations of n particles that can interact, suggesting that for heavy nuclei,
many-body forces will dominate. For large A, this increases as A!/n!(A− n)! ∼ An.

Fortunately, we are saved by the short range of the nuclear force and the relatively low sat-
uration density of nuclear matter (152). Roughly, each nucleon does not interact with all other
nucleons but rather only with the other nucleons within some interaction volume V ∼ (4π/3)r3int,
where rint is the range of the interaction. At density ρ, the expectation value of an n-body force will
scale as 〈Vn〉 ∼ (ρV )n−1. With ρ � 0.16 fm−3, the cluster hierarchy will be maintained so long as
rint � 1 fm. This is satisfied for the short-range terms in a chiral force, which are characterized by
a cutoff scale on the order of 0.5 fm or less. The long pion-exchange tail, with range rπ ∼ 1.5 fm,
is not obviously suppressed or enhanced by the density, although its contribution to bulk bind-
ing is somewhat suppressed because its spin–isospin structure averages to zero in symmetric spin-
saturated matter.However, if we useWick’s theorem to express operators in normal-ordered form
with respect to a finite-density reference (see Sections 2.3.1 and 4.1), then the appropriate density
is not saturation density ρ but rather the quasi-particle density, which will typically be significantly
smaller (152).

When we derive an effective interaction, we are eliminating degrees of freedom, namely orbits
outside of the valence space. For high-lying orbits, the relevant interaction matrix element will be
dominated by high-momentum (short-distance) components, in which case the above argument
holds and the induced terms should still exhibit a cluster hierarchy (153). However, for excitations
near the Fermi surface, we have no short-distance argument. Indeed, as we discuss in Section 6.1,
low-lying collective excitations can be a source of trouble.

It is important to keep inmind that the above argument holds only if the observable in question
can be expressed in terms of connected diagrams (i.e., one can trace a continuous path through
the diagram between any two points on it). If a four-body term consists of two disconnected two-
body terms, then there is no reason why all four particles would need to be within some interaction
volume.We return to this point in Section 3.2.2.
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In the remainder of this section, we describe the most popular approaches to deriving effective
interactions for the nuclear shell model, using the notation that appears in the nuclear physics
literature. In Section 3, we treat these methods within a more general framework to illuminate
the relationships between them.

2.1. Quasi-Degenerate Perturbation Theory and the Q̂-Box Resummation

Let us introduce the projection operator P and its complement Q such that PH P = Hmodel and
P +Q = 1. If we assume |ψn〉 = P|�n〉, that is, that the eigenstates of the effective Hamiltonian are
simply the projection of the full eigenstates onto the model space, then the effective Hamiltonian
should satisfy

PHeffP|�n〉 = EnP|�n〉, QHeffP = 0. 3.

Straightforward manipulation then yields the Bloch–Horowitz energy-dependent effective
Hamiltonian (154, 155)

HBH(En ) = PHP + PHQ
1

En −QHQ
QHP. 4.

One important aspect of Equation 4 is that the effective interaction depends on the eigenvalue
En, so it must be solved self-consistently. A second point is that different valence-space eigenstates
will in general not be orthogonal, because they are eigenstates of different operators. The en-
ergy dependence can be removed by expanding the denominator about some starting energy E0,
yielding (138, 156)

Heff = HBH(E0) +
∞∑
k=1

1
k!

[
dk

dEk
0

HBH(E0)
]
(Heff − E0)k. 5.

Equation 5 may also be obtained in the context of time-dependent perturbation theory (24) or by
a similarity transformation combined with an iterative solution (157) for the decoupling condition
in Equation 3.

A simplification may be obtained by partitioning the Hamiltonian into a zeroth-order piece
and a perturbation H = H0 +V, and by assuming that the eigenvalues of H0 in the valence space
are degenerate, with energy ε. Then one uses Equation 5 with E0 = ε and (Heff − ε ) = Veff. In this
context, a popular approach is to define the Q̂-box (24, 49, 50), indicated as Q̂(ε ):

Q̂(ε ) = PV P + PVQ
1

ε −QHQ
QVP. 6.

The operator Q̂(ε ) is not to be confused with the projection operator Q. The effective valence-
space interaction, in analogy to Equation 5, is then obtained as

Veff = Q̂(ε ) +
∞∑
k=1

1
k!
dkQ̂(ε )
dεk

(Veff )k. 7.

The commonly adopted strategy for evaluating Equation 7 is to expand the inverse operator in
Equation 6 perturbatively (typically to second or third order in V ) and to solve Equation 7 self-
consistently by iteration, evaluating the derivatives numerically by calculating Q̂(ε ) for several
starting energies ε.
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2.1.1. The Ŝ-box correction. A technical point arises because the Q̂-box contains one-body
pieces, arising from, for instance, core-polarization diagrams (5–7). For computational conve-
nience, the one-body part is embedded in the two-body part, with an accompanying spectator
nucleon. This leads to disconnected two-body terms in Equation 7 that contain arbitrary num-
bers of interactions involving one particle, but no interactions between the two. These discon-
nected contributions can be understood as the dressed one-body part of the effective interaction
embedded into a two-body interaction. They can be removed by solving Equation 7 using only
the one-body piece of the Q̂-box, which is called the Ŝ-box (158, 159). The resulting effective
one-body interaction is subtracted off fromVeff, leaving only connected terms. In principle, these
same diagrams should then be added self-consistently to the degenerate single-particle energies:
εi = 〈i|H0|i〉 + Ŝi(εi ). In practice, they are often discarded and the single-particle energies are taken
from experiment.4 As an exception, when three-body forces are included in the normal-ordering
approximation (see Sections 2.3.1 and 4) and the single-particle energies are computed so that
the starting energy ε corresponds to the centroid of the valence-space single-particle energies, no
additional adjustments are required (136, 137).

2.1.2. ExtendedKuo–Krenciglowa approach. In general, one would like to be able to use non-
degenerate valence orbits, for example, when using a Hartree–Fock basis or when generating an
interaction for two (or more) major harmonic oscillator shells. Then, one should use Equations 4
and 5 rather than Equations 6 and 7. This approach has only recently been explored (138, 144,
160, 161). In the case of a valence space spanned by two major oscillator shells, taking harmonic
oscillator single-particle energies can lead to zero-energy denominators in Equation 7, while the
parameter E in Equation 5 may be chosen to avoid zero denominators. Of course, for a P space
with a very large spread in single-particle energies, one would expect that the size of certain con-
tributions to (Heff − E0)k in Equation 5 would be comparable to the corresponding energy de-
nominators, and the Taylor series (Equation 5) might converge slowly, if at all. However, for a
modest spread of energies (∼10 MeV), this does not appear to be a problem (138, 144).

2.2. Okubo–Lee–Suzuki Transformation

Another approach to the effective interaction is called the Okubo–Lee–Suzuki (OLS)5 approach,
often employed in conjunction with the NCSM (62, 63, 162); the paradoxical-sounding NCSM
with a core, or the double OLS approach (163–165); or, more recently, the CC method [or CC
effective interaction (CCEI)] (140, 166). The idea, illustrated schematically in Figure 1, is to
obtain a unitary transformation U that diagonalizes H in the large Hilbert space H , so that

UHU† = E , 8.

where E is a diagonal matrix. The effective Hamiltonian Heff acting in the smaller Hilbert space
Hmodel = PH P is given by (163)

Heff = U†
P√

U†
PUP

E UP√
U†
PUP

, 9.

4Determining the experimental single-particle energies is ambiguous, as one must either choose which exper-
imental state is the shell model one or consider an average of multiple states (e.g., 10, 56).
5Perhaps this would more appropriately be termed the Okubo–Lee–Suzuki–Okamoto approach (182, 183).
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Figure 1

A schematic of how the Okubo–Lee–Suzuki approach obtains the effective interaction. (a) The original
Hamiltonian. (b) The Hamiltonian is diagonalized by transformation U . (c) The transformation U†

P
approximately inverts U in the P space and yields the effective interaction Heff.

where UP ≡ PUP is the projection of the transformation U onto the model space. One can easily
confirm that the transformation in Equation 9 is unitary, so the eigenvalues of Heff in the model
space will be a subset of the eigenvalues of H in the full space.

So far, this does not appear to be a helpful procedure, because the first step is to solve the eigen-
value problem in the large Hilbert space, and the goal of effective interaction theory is to allow
applications for which the full solution is not tractable. The benefit arises when one assumes that
the effective interaction Heff will also provide a good approximation for other systems described
in the same model space. Assuming a cluster expansion, one obtains Heff for a few active particles
in the model space and then applies Heff to systems with more active particles.

As a concrete example, consider the system of two particles in the NCSM. It can readily be
diagonalized in a large space of many harmonic oscillator states, say, N ≤ Nmax = 500, where
N = 2n+ 
 is the number of oscillator quanta. In contrast, even a light nucleus such as 6Li with
only six particles cannot possibly be diagonalized in such a space. Using the OLS transforma-
tion (Equation 9), one can obtain an effective interaction for a manageable model space (say,
Nmax = 10) that exactly reproduces the low-lying eigenvalues of the two-body calculation in
the large space. The application of this effective interaction to 6Li then provides a reasonable
approximation to the eigenvalues one would obtain in the large space.

There are essentially two main assumptions here: (a) The effective interaction one would ob-
tain if one could apply the OLS procedure directly to the six-body system has a rapidly convergent
cluster expansion |V2N | > |V3N | > |V4N | . . . , and (b) the two-body-cluster component V2N of the
full effective interactionHeff for the six-body system is well approximated by the effective interac-
tion obtained for the two-body system.While both of these assumptions are plausible and have led
to encouraging results, we know of no rigorous proof. Indeed, as we discuss briefly in Section 3.2.2,
there is potential cause for concern related to disconnected diagrams.

2.3. In-Medium Similarity Renormalization Group

In the IMSRG (139, 143, 146, 167, 168), illustrated schematically in Figure 2, the effective Hamil-
tonian is also expressed in terms of a unitary transformationU acting on the initial Hamiltonian

Heff =UHU †. 10.

In contrast to the OLS approach, the IMSRG transformation is obtained without solving the
eigenvalue problem for a particularmany-body system. Instead, it is parameterized by a continuous
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Figure 2

A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

flow parameter s and applied to the Hamiltonian through the flow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally defined as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the flowing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a fixed point of the RG flow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
�(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator �:〈

φi

∣∣∣∣O�
∣∣∣∣φ j

〉
≡ 〈φi|O|φ j〉

εi − ε j
, 18.
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which can be thought of as element-wise division. Here, εi and ε j are energies associated with the
basis states φi and φ j . The quantity O/� is itself an operator whose Fock-space expression is

O
�

=
∑
i j

Oi j

εi − ε j
a†i a j +

1
4

∑
i jkl

Oi jkl

εi + ε j − εk − εl
a†i a

†
j al ak + . . . . 19.

Returning to the flow equation, it is clear that if Hod → 0, then η → 0, and from Equation 11
we see that dH (s)/ds → 0, so Heff is indeed a fixed point of the flow. One potential issue with
the generator in Equation 17 is that a vanishing energy denominator will cause η to diverge. An
alternative, also suggested by White (169; see also Reference 171), is

ηatan(s) ≡ 1
2
atan

(
2Hod (s)
�(s)

)
. 20.

The arctangent—motivated by the solution of a 2×2 system via Jacobi rotations—regulates the
divergent behavior of Equation 17 in the presence of small denominators. The arctangent and
division by the energy denominator in Equation 20 should be interpreted as operating element-
wise, as described above.

The IMSRG is formulated in terms of Fock-space operators, so its computational cost scales
polynomially with the basis size N but not explicitly with the number of particles being treated.
In practical applications, we truncate all operators at a consistent particle rank to close the sys-
tem of flow equations arising from Equation 11 (see Appendix A). We also set up the decoupling
conditions to be minimally invasive to avoid an uncontrolled accumulation of truncation errors
(discussed in detail in Reference 145). For this reason, in VS-IMSRG we perform the decoupling
in two stages: (a) decoupling the reference state from excitations, as in a direct ground-state cal-
culation, and then (b) decoupling the valence space in a second evolution (see Sections 5 and 6).

2.3.1. Normal ordering. An important feature of the IMSRG method is the use of operators
in normal-ordered form (e.g., 145, 146). Starting with the free-space Hamiltonian written as a
Fock-space operator with two- and three-body interactions,6

H =
∑
i j

ti ja†i a j +
1
4

∑
i jkl

Vi jkl a†i a
†
j al ak + 1

36

∑
i jk
lmn

Vi jklmna†i a
†
j a

†
kanamal , 21.

we may useWick’s theorem to express the strings of creation and annihilation operators in normal
order with respect to some reference state |�〉 (172).We denote the normal ordering with braces,
and the normal order of a pair of operators is defined so that their expectation in the reference is
zero:

〈�|{a†i a j}|�〉 = 0. 22.

Whether the normal order is a†i a j or a ja
†
i depends on whether or not the states created and anni-

hilated are present in the reference |�〉. If we choose |�〉 to be a single Slater determinant such
as the Hartree–Fock ground state of the system of interest, then application of Wick’s theorem
allows us to write H as

H = E0 +
∑
i j

fi j{a†i a j} + 1
4

∑
i jkl

�i jkl {a†i a†j al ak} + 1
36

∑
i jk
lmn

Wi jklmn{a†i a†j a†kanamal }, 23.

6In actual calculations, one subtracts the center-of-mass kinetic energy, so the kinetic term has a two-body
piece (146). We neglect that here for simplicity.
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where the new coefficients can be obtained from the old coefficients by

E0 =
∑
a

nataa + 1
2

∑
ab

nanbVabab + 1
6

∑
abc

nanbncVabcabc,

fi j = ti j +
∑
a

naVia ja + 1
2

∑
ab

nanbViab jab, 24.

�i jkl =Vi jkl +
∑
a

naVi jakla,

Wijklmn =Vi jklmn.

Operators other than the Hamiltonian can be rewritten in the same way.
In Equation 24, na is the occupation of orbit a in the reference (i.e., na = 〈�|a†aaa|�〉), and for a

Slater determinant reference, na is either zero or one. In Section 4.1, we discuss a different choice
of reference for which a can have fractional occupation. One may also use a correlated reference,
constructed out of a linear combination of Slater determinants, in which case one must use the
generalized normal ordering presented by Kutzelnigg &Mukherjee (173). This is the basis of the
multireference IMSRG (MR-IMSRG)method,which is used in ground-state energy comparisons
in Section 4.1 (125, 146).

The advantage of expressing operators in normal-ordered form is that it puts as much infor-
mation as possible from the higher-particle-rank (i.e., many-body) operators into the lower-rank
operators. This is evident in Equation 24, where the normal-ordered zero-body term E0 contains
contributions from the free one-, two-, and three-body terms. If the reference |�〉 is a good ap-
proximation of the exact wave function |�〉, then the expectation value 〈�|{a†a†a†aaa}|�〉 ≈ 0,
and even formally nonvanishing 3N interactionsWijklmn can be neglected to a good approxima-
tion. Consequently, normal ordering may be thought of as a way to improve the convergence of
the cluster expansion described at the beginning of this section.

2.3.2. Magnus formulation. A particularly convenient formulation of the IMSRG approach
relies on the Magnus expansion (174, 175). The idea is to express the more general uni-
tary IMSRG transformation as the true exponential of the anti-Hermitian Magnus operator
�(s) = −�†(s). The evolved Hamiltonian can then be expressed in terms of an infinite series of
nested commutators

H (s)= e�(s)H (0)e−�(s),

=H (0) + [�(s),H (0)] + 1
2
[�(s), [�(s),H (0)]] + . . . . 25.

This formulation of the IMSRG allows for a more transparent comparison with canonical
transformation theory (169, 176) and the unitary CCmethod (177) used in quantum chemistry, as
well as with canonical perturbation theory (178), where the expansion in Equation 25 is evaluated
perturbatively.

Considering the flow equation (Equation 11), we see that under an infinitesimal step ds wemay
write

H (s + ds)=H (s) + [η(s),H (s)]ds,

= eη(s)dsH (s)e−η(s)ds, 26.

= eη(s)dse�(s)H (0)e−�(s)e−η(s)ds.
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By expressing H (s + ds) in Magnus form as well, we obtain an expression for �(s + ds):

e�(s+ds) = eη(s)dse�(s). 27.

Because�(s) and η(s) do not in general commute, we use the Baker–Campbell–Hausdorff formula
to take the logarithm on both sides and obtain

�(s + ds) = �(s) + η(s)ds + 1
2
[η(s),�(s)]ds + 1

12
[�(s), [�(s), η(s)]]ds + . . . . 28.

This may be expressed in compact form as (suppressing explicit s dependence)

d�
ds

=
∞∑
k=0

Bk
k!

ad(k)
� (η), 29.

where Bk are the Bernoulli numbers and the adjoint ad(k)
� (η) signifies a recursively defined nested

commutator:

ad(k)
� (η) =

[
�, ad(k−1)

� (η)
]
, ad(0)

� (η) = η. 30.

Fortunately, in most practical applications, only the first few terms of the infinite series in
Equations 25 and 28 are important, so the commutator may be evaluated iteratively until the
size of a given term is below some numerical threshold (for an example of an exception, see
Section 6.2). A major practical advantage of the Magnus method is that by solving for �(s), we
can compute arbitrary effective operators other than the Hamiltonian in a consistent and efficient
way (see Section 6.1 and References 123 and 174).

2.4. Shell Model Coupled Cluster

Initial attempts to derive an effective shell model interaction with CC methods were similar
in spirit to the NCSM-based double OLS approach (see Section 2.2 and References 162–165).
Equation-of-motion CC (EOM-CC) states defined in a space of up to four-particle two-hole
(4p2h) excitations are subsequently projected into the shell model space via the OLS method,
yielding the CCEI (140, 166). The cost of the EOM-CC calculations, however, presented a sig-
nificant obstacle to widespread application of this method. A much more efficient alternative is
the recently introduced SMCC method (179), illustrated schematically in Figure 3, which is for-
mulated in Fock space and can be viewed as a nonunitary cousin of the IMSRG.

P

Q

P

Q

P

Q

P Q P Q P Q

a b c

=
(t)

=
(t)

Figure 3

A schematic depicting how the shell model coupled-cluster approach obtains the effective interaction H=(t ).
Note that, in contrast to Heff in Figure 2,H= is non-Hermitian. (a) t = 0. (b) t = 5. (c) t = 30.
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In the standard CC method (25, 127), a similarity transformation is performed to decouple a
single closed-shell reference state |�〉 from all particle–hole excitations,

e−THeT |�〉 = EcorreT |�〉, 31.

where Ecorr is the correlation energy and T is the cluster operator, which is written as

T =
∑
ia

tai {a†aai} + 1
4

∑
abi j

tabi j {a†aa†b a jai} + . . . . 32.

Here, the indices a, b, c . . . denote unoccupied orbits, and i, j, k . . . denote occupied orbits. The
similarity-transformed Hamiltonian is written as

H̄ = e−THeT . 33.

SMCC extends the idea by performing a similarity transformation that decouples a valence space
rather than a single configuration. Denoting this transformation with an S, we have

H= = e−SH̄eS, QH= P = 0. 34.

The operator S is obtained by a flow equation closely mirroring the one used in IMSRG:

dS
dt

= −η[H=(t )], 35.

where η is the generator of the flow. As in the IMSRG, there is considerable freedom for choosing
η as long as the decoupling condition (Equation 34) is realized in the limit t → ∞. Reference 179
uses adapted variants of the White (Equation 17) and arctangent (Equation 20) generators. The
essential difference from the IMSRG formulation is thatT and S are not anti-Hermitian operators
and so the transformation is not unitary, and the resulting effective Hamiltonian is not Hermitian.
The inconvenience of a non-Hermitian Hamiltonian is compensated for by the greater simplicity
of the equations that need to be solved.

3. COMPARISON OF VARIOUS APPROACHES
TO EFFECTIVE INTERACTIONS

To investigate how the methods described in Section 2 (and a few others) are related to one an-
other, we consider the general structure of effective interactions and show how the above methods
sum the perturbation series.We then discuss how the exact summations are approximated in prac-
tical calculations. For more details, we refer readers to References 170, 178, and 180–183.

3.1. Formal Effective Interaction Theory

In this section, we develop a general framework for effective interactions, and use it to derive
several approaches that are popular in nuclear and atomic physics.

3.1.1. General considerations. We begin by expressing the effective Hamiltonian in terms of
a similarity transformation of the original Hamiltonian, parameterized as the exponential of a
generator G,

Heff = eGHe−G ,

=H + [G,H] + 1
2
[G, [G,H]] + . . . , 36.
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and the decoupling condition

QHeffP = 0. 37.

We partition the original Hamiltonian into an exactly solvable zeroth-order partH0 and a pertur-
bation V,

H = H0 +V, 38.

and consider an expansion of the generator G and the interaction Heff in powers of V :

G = G[1] + G[2] + G[3] + . . . , Heff = H [0]
eff +H [1]

eff +H [2]
eff + . . . . 39.

For convenience, we define the partial sum of the series up to order n as

G [n] ≡
n∑

m=1

G[m]. 40.

Then, the nth-order contribution to the effective Hamiltonian is

H [n]
eff =

(
eG

[n]
He−G [n]

)[n]
. 41.

One can easily verify that G[n] contributes to only a single term in Equation 41. Peeling this term
off, we have

H [n]
eff = [G[n],H0] +

(
eG

[n−1]
He−G [n−1]

)[n]
. 42.

Enforcing the decoupling condition (Equation 37) yields an equation for G[n] in terms of lower-
order contributions:

Q[H0,G[n]]P = Q
(
eG

[n−1]
He−G [n−1]

)[n]
P. 43.

Equation 43 is of the general form

[H0,X ] = Y. 44.

If we work in the eigenbasis ofH0 such thatH0|φi〉 = εi|φi〉, the commutator can be easily evaluated
in terms of the unperturbed energies:

〈φi|[H0,X ]|φ j〉 = (εi − ε j )〈φ j|X |φ j〉 ≡ �i j〈φ j|X |φ j〉. 45.

This suggests that a solution to Equation 44 can be written as

X = Y
�

+ Z, 46.

where Z is some arbitrary function that commutes withH0, and the superoperator notation intro-
duced in Equation 19 is used for brevity.
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Following this line of reasoning, we solve Equation 43 as7

QG[n]P = Q

(
eG [n−1]He−G [n−1]

)[n]
�

P. 47.

As we can see, the decoupling condition applies to the QGP block of the generator G, and we have
some freedom to choose the rest of G, namely PGP,PGQ, andQGQ. The various choices, which we
outline below, result in different effective Hamiltonians. There are a few important consequences
of these choices.

First, in order for the transformation to be unitary,we need the generator to be anti-Hermitian:
G = −G†. Consequently, the popular choice PGQ = 0 will result in a nonunitary transformation
and a non-Hermitian effective Hamiltonian. All else being equal, a Hermitian effective Hamil-
tonian is preferable, but the significant simplifications that come with taking PGQ = 0 can make
this choice attractive.

Second, the choice QGQ = 0 cannot be enforced in a Fock-space formulation, so this choice
can be made only when working directly in the A-body Hilbert space. To understand this point,8

consider a one-body Fock-space operator that excites a particle from the valence space to the ex-
cluded space. As illustrated in Figure 4, if this operator acts on a configuration that belongs to
the P space, it will generate a configuration that belongs to the Q space. However, if that same
operator acts on a Q-space configuration that already has some other particle–hole excitation, it
will generate a distinct Q-space configuration. Thus, the operator also connects Q-space config-
urations to Q-space configurations. In order to enforce QGQ = 0 while allowing QGP 
= 0, the
operator G needs to ensure that it acts only on P-space states, which means G must be an A-body
operator.

Third, if we choose both PGP = 0 and PGQ = 0, then we have

PeG = P(1 + G + 1
2
G2 + . . .) = P. 48.
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Figure 4

Schematic showing that the same operator (arrow) can connect (a) a P-space configuration to a Q-space
configuration as well as (b) a Q-space configuration to a Q-space configuration.

7The additional term such as Z in Equation 46, which commutes with H0, will vanish when sandwiched be-
tween Q and P, so we need not include it here.
8To our knowledge, this point was first made in the chemistry literature by Kutzelnigg (180) and Kutzelnigg
& Koch (181), but it has not been explicitly stated in the nuclear physics literature.
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If we denote the eigenstate of the full Hamiltonian by |�i〉 and the corresponding eigenstate of
the effective Hamiltonian by |ψi〉, these are related by the similarity transformation

|�i〉 = e−G |ψi〉, 49.

and since |ψi〉 exists entirely in the P space, Equation 48 implies that

|ψi〉 = P|�i〉. 50.

Physically, the eigenstate of the effective Hamiltonian is given simply by the projection of the
full-space wave function to the P space. This means that |�i〉 and |ψi〉 cannot be simultaneously
normalized to one, and we must employ an intermediate normalization 〈�i|ψi〉 = 1. In contrast,
if we do not require PGQ = 0, then the above argument no longer holds, and the eigenstates of
the effective Hamiltonian in general will not be simply projections of the full-space eigenstates.

Finally, before investigating various choices of G, we consider an iterative method for summing
the perturbative series to all orders.To do so,we note that selecting out the nth-order contribution
on the right-hand side of Equation 47 quickly leads to complicated formulas (see, e.g., section III
of Reference 170). Overall, the right-hand side of Equation 47 is of order n and higher, since
the lower-order terms in G have been selected to eliminate the undesired components of Heff to
their respective orders. This means that if we do not specifically select the nth-order terms on
the right-hand side but instead take everything, we obtain a contribution G[n] that suppresses the
nth-order term inHeff, as well as some contribution from higher-order terms. These higher-order
terms will be suppressed during later iterations. Because this is no longer a strict order-by-order
perturbative expansion, we use a subscript to denote the nth iteration so as to distinguish it from
the superscript indicating the nth-order contribution:

QGnP = Q
eGn−1He−Gn−1

�
P. 51.

Here, we have defined Gn ≡ ∑n
m=1 Gm in analogy with Equation 40. Defining the transformed

Hamiltonian after n iterations as Hn ≡ eGnHe−Gn , we may write it as

QGnP = Q
Hn−1

�
P 52.

or

QGnP = QGn−1P + Q
Hn−1

�
P. 53.

Beginning with G0 = 0, iterating Equation 53 successfully eliminates contributions to QHeffP of
increasing powers of the perturbation V and, for n → ∞, yields the exact generator: G∞ = G.

In the following subsections, we consider choices found in the literature for fully specifying G,
as well as the consequences of these choices.

3.1.2. Lee–Suzuki. We begin with the most restrictive combination QGQ = PGP = PGQ = 0,
which allows for the greatest simplification. Following the notation of Suzuki & Lee (157), for
this choice we write the generator as G = −ω. The effective Hamiltonian is

Heff = e−ωHeω, 54.

and we have the great simplification that ω2 = (QωP)2 = 0 so that e±ω = 1 ± ω. As noted above,
this choice will yield a non-Hermitian effective Hamiltonian that is necessarily formulated in the
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A-body Hilbert space. The decoupling condition is

QHeffP=Q(1 − ω)H (1 + ω)P

=QV P + QHωP − QωH0P − QωV P −QωVωP = 0, 55.

where in the second line we have used H = H0 +V . If we take a degenerate P space with energy
ε so that QωPH0P = εQωP, we may rearrange to solve for ω:

ω = 1
ε − QHQ

[QV P − ω(PV P + PVQω)]. 56.

As shown by Suzuki & Lee (157), defining

Heff = PH0P + PV P + PVQω 57.

and iteratively inserting Equation 56 into itself yields the Q-box folded-diagram expansion (7) or,
with a different iteration scheme,

Rn = 1

1 − Q̂1 −
n−1∑
m=2

Q̂m

n−1∏
k=n−m+1

Rk

Q̂, 58.

where Veff = R∞, Q̂ is the same Q̂-box defined in Equation 6, and Q̂m ≡ (dm/dεm )Q̂(ε ).
As pointed out in Section 3.1.1, the requirement QωQ = 0 implies that this approach must

be formulated in the A-body space. However, as discussed in the next subsection, a Fock-space
formulation yields the same effective interaction.

3.1.3. Generalized Bloch equation. If we drop the requirement QGQ = 0, we have PGQ =
PGP = 0. Following convention, we express the transformation in terms of the Møller wave op-
erator and its inverse:9

� = e−G , �−1 = eG . 59.

Noting that Q�−1(1 −�P) = Q�−1, we can satisfy the decoupling condition (Equation 37)
if

(1 −�P)H�P = 0. 60.

Again, by splitting up H = H0 +V and rearranging, we can rewrite this as

Q[�,H0]P = QV�P −Q�PV�P, 61.

which is the generalized Bloch equation (184).
The effective interaction in the P space is given by

PHeffP = PH�P = PH0P + PV�P. 62.

Expanding Equations 61 and 62 in powers of V yields a linked expansion for the Rayleigh–
Schrödinger perturbation series (23, 156). In the nuclear case, the order-by-order convergence
of this series is questionable (see Section 1).

9We use � for the Møller wave operator for consistency with existing literature in the present subsection, but
we caution that it should not be confused with the Magnus operator used in the IMSRG.
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The second term on the right-hand side of Equation 61 can be represented by folded dia-
grams (23, 156). The Q̂-box method described in Section 2.1 amounts to a perturbative expansion
of the first term in Equation 61, followed by a summation of certain higher-order terms in the
folded-diagram series. We note that if we express the wave operator as � = P + χ , where χ is
called the correlation operator, then Equation 61 is equivalent to Equation 55 with χ = ω. Inter-
estingly, while the Lee–Suzuki approach required QωQ = 0 and therefore could not be expressed
in a Fock-space formulation, the Bloch equation approach does not use that constraint and so may
be formulated in Fock space. Evidently, the Bloch equation approach does not make any reference
to QGQ, so setting it to zero does not alter the resulting effective Hamiltonian. For a discussion
of the differences between the Lee–Suzuki scheme and the Q̂-box approach, see, for example,
Reference 28.

3.1.4. Shell model coupled cluster. Instead of working with the wave operator, we may work
directly with the generator G. Following the notation of Reference 179, we write G as −S. We
employ the iterative procedure presented in Section 3.1.1 to obtain an iterative expression for S:

Sn = Sn−1 − Q
Hn−1

�
P, 63.

where we have denoted the similarity-transformed Hamiltonian10 at the nth step,Hn = e−SnHeSn .
The effective Hamiltonian is then Heff = H∞. In arriving at Equation 63, we have implicitly as-
sumed that the terms in QSQ are only those that also contribute to QSP. Consequently, if a term
in S connects only Q configurations, then it is taken to be zero.

Often, the iterations are better behaved with the help of a convergence factor, which we de-
note dt to connect with the formulation of Reference 179. By multiplying the second term of
Equation 63 and taking the limit dt → 0, we can reinterpret it as a flow equation:

dS
dt

= −η(t ) ≡ −QH (t )
�

P. 64.

Taking the P space to be a single Slater determinant, Equation 63 yields an iteration scheme to
solve the CC equations, while defining the P space in terms of a valence space yields the SMCC
approach (179) described in Section 3.1.4. As discussed above, the requirement PSQ = 0 means
thatHeff is not Hermitian in this approach. Additionally, the SMCC effective interaction is equiv-
alent to the other two non-Hermitian effective interactions discussed in Sections 3.1.2 and 3.1.3,
as long as no approximations are made.

3.1.5. Canonical perturbation theory. Next, we drop the condition QGP = 0, enabling us to
enforce G† = −G so that the transformation is unitary and Heff is Hermitian. We retain the con-
dition QGQ = 0, with the consequence that we cannot express the theory in terms of Fock-space
operators. However, this restriction greatly simplifies the analysis. For consistency with the liter-
ature, we write the generator as G = −G. One can show (178, 185) that the operator G is related
to the operator ω from Section 3.1.2 by11

G = arctanh
(
ω − ω†) , 65.

and the transformation is (185)

eG = (1 + ω − ω†)(1 + ωω† + ω†ω)−1/2. 66.

10In practical applications, the procedure is applied to the CC Hamiltonian (Equation 33; see Section 2.4).
11Here, the hyperbolic arctangent of an operator is defined in terms of its Taylor-series expansion (178).
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The effective Hamiltonian obtained in this approach is the Hermitized version of the effective
Hamiltonian resulting from Equation 55.To connect this result with the OLS approach presented
in Section 2.2, we write that transformation out explicitly:

Heff = U†
P√

U†
PUP

UHU† UP√
U†
PUP

. 67.

By inserting a sum over the eigenstates of H and using |�i〉 = (1 + ω)P|�i〉, one can show (162,
163) that U†UP = (1 + ω)P, and the OLS effective interaction is equivalent to Pe−GHeGP.

An iterative scheme very similar to the one described in Section 3.1.1 was proposed
by Suzuki (171) but not directly pursued further. The unitary model operator approach
(UMOA) (185) follows this formalism, with the valence-cluster expansion (see Section 3.2.2) car-
ried out on the generator rather than on the effective Hamiltonian. So far, studies with the UMOA
have focused on ground-state energies of closed-shell nuclei (186), so we do not discuss it further
here.

3.1.6. Fock-space canonical perturbation theory. If we desire a Hermitian effective oper-
ator with a Fock-space decomposition, then we should drop the restriction QGQ = 0, leaving
only PGP = 0.Writing out Equation 47 order-by-order with the requirement G† = −G yields the
canonical perturbation theory of Primas (187) and Klein (170). Interestingly (181), the resulting
expansion is different from the expansion obtained in Section 3.1.5; that is, the Fock-space and A-
body space formulations are not equivalent, in contrast to what was found for the non-Hermitian
formulation. This approach has not been pursued in the nuclear physics literature.

3.1.7. Unitary coupled cluster. Alternatively, we may take PGP = 0 and G† = −G and follow
the iterative procedure of Section 3.1.1 to obtain

Gn = Gn−1 +Q
Hn−1

�
P + P

Hn−1

�
Q. 68.

This yields a unitary CC expansion for the effective interaction. As with the SMCC solution, this
may be recast as a differential equation (here, we use s instead of t):

dG(s)
ds

= Q
H (s)
�

P + P
H (s)
�

Q. 69.

This approach has also not been pursued in nuclear physics, although it is very closely related to
the Magnus formulation of the IMSRG, as we discuss in the following subsection.

3.1.8. Magnus in-medium similarity renormalization group. Finally, we may drop the con-
straint PGP = 0 and instead specify G by the requirement that it should reproduce the flowing
Hamiltonian H (s) along its entire trajectory. Following Reference 174, we write G = �(s), which
we call the Magnus operator, and require

e�(s)He−�(s) = H (s), 70.

where H (s) is the solution of the flow equation (Equation 11). It may be reorganized as a flow
equation for the Magnus operator �(s), as described in Section 2.3.2. Considering the first few
terms in the series, we have

d�(s)
ds

= η(s) − 1
2
[�(s), η(s)] + . . . . 71.
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If we choose the White generator (Equation 17), which may be written as

ηWh(s) = Q
H (s)
�

P + P
H (s)
�

Q, 72.

and neglect all terms on the right-hand side of Equation 71 aside from the first one, we recover the
unitary CC in Equation 69.The difference between theMagnus IMSRG and the unitary CC then
lies in the commutator terms of Equation 71. A perturbative analysis reveals that the leading-order
effect of the first commutator term is to induce contributions to P�P and Q�Q at third order.
If the transformation is evaluated exactly, these terms of course have no effect on the resulting
observables. However, if approximations are made—as they inevitably must be—then these terms
may produce a different result. This issue has not yet been investigated in detail.

Integrating Equation 71 numerically with a step size ds = 1—again neglecting all but the first
term—we find, following the discussion leading to Equation 53, that the first integration step
yields a generator that satisfies the decoupling condition to first order in perturbation theory
(see Appendix C). Likewise, the second step in ds satisfies the decoupling condition to second
order, and the nth step satisfies decoupling to nth order. Thus, numerical integration of the flow
equation with step size ds = 1 corresponds to an order-by-order summation of the perturbation
series. If instead we take a smaller step size, ds = 0.5, then after the first integration step we will
have suppressed only half of the first-order term in the decoupling condition. After the second
integration step, taking us to s = 1, we have suppressed half of the remaining first-order term, as
well as half of the second-order term. Taking the continuous limit ds → 0, we find the first-order
off-diagonal piece suppressed as e−s, with the higher-order terms also suppressed at the same rate.

In light of this discussion, we can view the numerical integration of the flow equation
(Equation 71) with some finite step size ds as a summation of the perturbative expansion (145,
146), with the step size specifying anything from an order-by-order summation (ds = 1) to all
orders at once (ds → 0). This connection may have important consequences in cases where the
perturbative expansion does not converge (see Section 6.2).

3.2. Approximation Schemes

An exact evaluation of the formulas forHeff presented in the preceding subsections will inevitably
be at least as expensive as a direct diagonalization of the Hamiltonian in the full Hilbert space—
precisely the task we set out to avoid. The utility of the effective interaction framework is that it
facilitates approximations that greatly reduce the required effort while minimally affecting the ac-
curacy of the computed quantities of interest, namely observables related to low-lying eigenstates.
Within the shell model context, this implies the need for some sort of cluster truncation.

Perhaps the most straightforward approximation scheme is a truncation in powers of the resid-
ual interaction V, that is, perturbation theory. Unfortunately, in nuclear physics the effective in-
teraction often converges slowly in powers ofV, and as discussed in Section 6.2, the intruder-state
problem suggests that in most cases the perturbation series is divergent.

Nonperturbative truncation schemes have been made essentially along two lines. Either a
cluster truncation is imposed within a Fock-space formulation, as for IMSRG and CC (see
Sections 2.3.2 and 3.1.4), or the problem is solved directly in the A-body system for a few va-
lence particles, followed by a cluster expansion.

3.2.1. Fock-space cluster truncation. When working in a Fock-space formulation, it is natural
to perform a cluster truncation on the generator G or on all operators, typically limiting them to
consist of zero-, one-, and two-body pieces. From a practical point of view, such a truncation is
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a necessity; keeping three-body terms is unpleasant but feasible, while the need for, for instance,
six-body terms would be sufficiently onerous to render the method useless.

For the special case of a one-dimensional P space (i.e., a single-reference calculation), using
the non-Hermitian formulation of Section 3.1.4, truncating G to one- and two-body operators is
equivalent to CC with singles and doubles (CCSD) (25). Here, we find the desirable feature that
the Baker–Campbell–Hausdorff expansion (36) formally truncates after a finite number of nested
commutators (four in the CCSD approximation, if H has at most two-body terms).

For the case of interest in the context of the shell model, with the dimension of the P space
greater than one, the Baker–Campbell–Hausdorff expansion does not formally truncate (179).One
approach to this issue is to truncate the series at a finite order of perturbation theory, or else at
a finite power of G (e.g., 177). Alternatively, one can specify a form for the Fock-space operators,
such as retaining one- and two-body terms while discarding the rest, allowing the series to be eval-
uated iteratively (169, 175).While the series remains infinite with this truncation, in most cases of
interest the series converges so that for a given precision only a finite number of nested commu-
tators must be evaluated. Importantly, this truncation scheme retains only connected diagrams,
so it maintains size extensivity. This approach is used in the VS-IMSRG and SMCC, described
above, and in the canonical transformation theory presented by Yanai & Chan (176) and Watson
& Chan (188).

When operators are normal ordered with respect to a finite-density reference, many-body
operators can feed back into fewer-body operators through the commutators in the Baker–
Campbell–Hausdorff expansion. However, the reduction in particle rank of an operator always
comes with an occupation number (see the flow equation in Appendix A), corresponding to a fac-
tor of the density, so the discussion in Section 2 about the cluster hierarchy justifies this truncation.

3.2.2. Valence-cluster expansion. The other approximation scheme is to work within the A-
bodyHilbert-space formulation and build up the effective interaction in order of increasing cluster
rank (163). One diagonalizes the Acore, Acore + 1, and Acore + 2 systems successively and extracts
the consistent core energy, single-particle energies, and two-body matrix elements (TBMEs) by
subtracting the contributions of lower particle rank. One could continue this procedure to obtain
a higher-body effective interaction,with rapidly increasing effort. Instead, assuming that the effec-
tive interaction has a sufficiently convergent cluster expansion, the effective interaction obtained
in the zero-, one-, and two-valence-particle systems can then be applied to systems with more
valence particles. For self-bound systems such as nuclei, one must take care to properly treat the
mass dependence of the intrinsic kinetic energy in the construction procedure for the effective
interaction (163, 165, 166), although this effect becomes less important for heavier systems.

This scheme is used in the OLS approaches based on the CC (140, 166) and the NCSM (162,
163, 165), as well as in the Q̂-box approach ofKuo and collaborators (26, 30, 158).A potential draw-
back of the valence-cluster expansion is that the optimal cluster decomposition for two valence
particles might differ significantly from the optimal decomposition for many valence particles.
Considering the sd shell as a specific example, the appropriate mean field for an empty valence
space, corresponding to 16O, will be quite different from the appropriate mean field for a filled
valence space, corresponding to 40Ca, so one would expect that different single-particle energies
would be optimal.

Another, potentially more serious issue arises from a perturbative analysis. As discussed in
Section 3.1.1, the requirement QGQ = 0 cannot be enforced in a Fock-space formulation. If it
is enforced in the A-body formulation, an analysis reveals that disconnected diagrams arise (181,
189). For example, in a system with four valence particles and a purely two-body interaction, a
disconnected four-body contribution to the effective interaction arises at fourth order. Such a
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contribution—essentially two-body interactions between two independent pairs—is not subject
to the arguments presented at the beginning of Section 2 about short-range interactions at low
density, because it does not depend on the separation between the clusters. We may expect such
terms to be combinatorially enhanced, which would be a serious problem. This issue calls for
further investigation.

The above point may provide some explanation for the surprising finding in Reference 166,
where a single interaction for the sd shell obtained with the CCEI method produced impressive
agreement with experimental binding energies throughout the shell. While at first glance such a
result is cause for celebration, a closer look suggests trouble. As a specific example, other ab initio
calculations (including CC) (126, 143, 190, 191) using the same input interaction find 40Ca to be
overbound by nearly 40 MeV, with relatively small variation among the calculations, while the
CCEI result is underbound by only 2 MeV. The supplemental material in Reference 166 makes
note of this, since it is unreasonable to expect that the CCEI method should be more accurate
than the CC method upon which it is based. In the present context, we may speculate that the
combination of (a) the overbinding inherent in the input force, (b) the missing valence many-
body effects (see Section 4.2) enhanced by the effect of disconnected diagrams, and (c) truncation
errors in high-lying eigenvalues from the EOM-CC method (192) incidentally conspire to cancel
out in the sd shell. However, one cannot and should not rely on such a cancellation in general.

4. THREE-BODY FORCES AND THE CONNECTION
WITH PHENOMENOLOGICAL ADJUSTMENTS

Shortly after Yukawa’s formulation of the nuclear interaction in terms of pion exchange, it was
pointed out (193) that a description of a quantum field theory in terms of an instantaneous (or,
equivalently, energy-independent) potential inevitably leads to three-body and higher-body forces.
The connection between these many-body forces and nuclear saturation was also suspected early
on (70, 194, 195), although the calculations were necessarily schematic. Likewise, mean-field cal-
culations using a Skyrme (196, 197) or Gogny (198) parameterization of the force require a three-
body, or density-dependent two-body, term.

Of course, even if the initial interaction were solely of a two-body nature, the effective in-
teraction in the valence space will still in general contain three-body and higher-body forces. In
fact, these so-called effective or induced 3N forces and the genuine 3N forces are essentially of
the same origin: the elimination of degrees of freedom. These forces are illustrated in Figure 5,
where both the elimination of the� isobar degree of freedom and the elimination of an excitation
to a Q-space configuration lead to effective 3N interactions. Some previous studies have found
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Figure 5

Three-body forces generated from (a) elimination of the � isobar degree of freedom and (b) elimination of
an excitation to a Q-space configuration.
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that the induced and genuine 3N forces are of comparable magnitude (199, 200), although this
depends on the renormalization scheme and scale of the interaction.

As a practical matter—due to the ambiguity in producing a three-body term consistent with
the two-body interaction, as well as the difficulty in handling a three-body term in a many-body
calculation—explicit three-body forces have historically been neglected in shell model treatments,
although there were some exploratory calculations (e.g., 199–203). There have also been more
recent calculations evaluating 3N forces in the valence space either perturbatively (204) or ex-
plicitly (179). Zuker (205) and Caurier et al. (18) argued that the main effect of the three-body
forces should be to modify the monopole (i.e., diagonal, J-averaged) component of the effective
interaction. This argument simultaneously justified the omission of explicit three-body terms as
well as the phenomenological adjustment of monopole terms in the effective interaction, which
resulted in excellent reproduction of the experimental data. Further supporting this point of view
were (a) the fact that the various realistic NN interactions produced similar shell model matrix
elements,12 allowing little room for improvement, and (b) there was an observed improvement in
spectroscopy of light nuclei obtained of QCM and NCSM calculations when explicit three-body
forces were included (207, 208).

An important demonstration of the effect of three-body forces in the shell model was a calcula-
tion showing that three-body forces could help explain the location of the neutron drip line in oxy-
gen (132), followed by an explanation of the N = 28 magic number in the calcium isotopes (134).
These calculations used a normal-ordering approximation (see Section 2.3.1) for the three-body
force and obtained essentially the monopole effect described by Zuker (205), although they used
empirical single-particle energies and scaled the TBMEs by A1/3 as in phenomenological calcu-
lations. The same effect was soon confirmed in ab initio calculations without phenomenological
adjustments (125, 209, 210).

The first VS-IMSRG calculations of the oxygen isotopes did not obtain the correct drip
line (139), even though three-body forces were included in the normal-ordered approximation.
More troubling was that the heavier oxygen isotopes were systematically overbound by approxi-
mately 10 MeV. The issue was that the normal ordering of the Hamiltonian used the core wave
function as a reference state in these initial VS-IMSRG calculations; thus, the effects of three-body
interactions between valence nucleons were not properly captured. This deficiency was remedied
by the use of ensemble normal ordering (ENO) (143), which enables an approximate treatment of
the effect of three-body forces that does not degrade as valence particles are added. This echoes
the results of previous investigations of the effects of three-body forces in the shell model (29, 199,
200, 211). Since only a brief account of ENO has been given in the literature (143), we provide a
more detailed description in the following section.

4.1. Ensemble Normal Ordering

When performing a VS-IMSRG calculation, a natural choice for the normal-ordering reference
|�〉 is the core of the valence space. This allows an approximate treatment of 3N forces in which
a sum over particles in the core yields effective one-body and two-body forces in the valence
space.However,VS-IMSRG calculations of the oxygen isotopic chain using chiralNN+3N forces
overpredicted the binding energy of neutron-rich oxygen nuclei compared with an earlier MR-
IMSRG study with the same interactions (125, 139). Calculations involving both protons and
neutrons in the valence space yielded even more significant overbinding (142).

12This observation is easily understood from the RG/EFT point of view—the various potentials differ in their
high-momentum content but reproduce the same low-momentum physics (206).
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(a) The binding energy as a function of mass number A for the oxygen isotopes, calculated with a variety of many-body methods (125,
126, 140, 212, 213). The blue curve labeled VS-IMSRG, no ENO corresponds to the scheme in panel b with the core taken as the
normal-ordering reference, while the red curve labeled VS-IMSRG + ENO corresponds to the scheme in panel c with an ensemble
reference. Abbreviations: CCSD, coupled cluster with singles and doubles; CRCC, completely renormalized coupled cluster; ENO,
ensemble normal ordering; GGF, Gor’kov Green’s function; IT-NCSM, importance-truncated no-core shell model; MR-IMSRG,
multireference in-medium similarity renormalization group; SCGF, self-consistent Green’s function; VS-IMSRG, valence-space
in-medium similarity renormalization group. Figure adapted from Reference 143.

This discrepancy was essentially due to the fact that the normal ordering in the MR-IMSRG
calculation is performed directly with respect to the system of interest, not with respect to the core
of the valence space. This meant that, in 24O for example, the MR-IMSRG was better at captur-
ing the 3N interactions between the eight valence neutrons. Indeed, taking the normal-ordering
reference to be the nearest closed-shell nucleus brought the VS-IMSRG binding energies back in
line with the MR-IMSRG results (142), as shown in Figure 6.

This approach was then generalized to treat systems that are not close to any closed subshell
by allowing fractional occupation numbers. As an example, consider 19O, which in a naïve shell
model picture has three neutrons in the 0d5/2 orbit on top of a closed 16O core. Equivalently, it
could be considered as three neutron holes in 22O.When using an 16O reference, the occupation
number for the neutron 0d5/2 orbit would be zero, whereas it would be one for an 22O reference.
The 16O reference will underestimate the missing three-body effects, while the 22O reference
will overestimate them. The compromise is then to take the occupation to be 0.5, that is, filling
the orbit halfway. This strategy is frequently used in mean-field theory, and it is known as the
equal-filling approximation or simply the filling approximation (for an application in chemistry,
see Reference 188).

A question then arises: What reference state (if any) is actually being used when we select
fractional occupation numbers? As explained in References 214 and 215, the equal-filling approx-
imation can be framed in terms of a mixed state or ensemble, in the sense of quantum statistical
mechanics, specified by a density matrix13

ρ =
∑
α

cα|�α〉〈�α| 73.

for some set of coefficients cα (here, α labels different Slater determinants). The expectation value
of an operator O in the ensemble is obtained by a trace over the density matrix: 〈O〉 = Tr [Oρ] =∑

α cα〈�α|O|�α〉.
13Not to be confused with the one-body density matrix ρpq = 〈�|a†paq|�〉.
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As discussed in Section 2.3, for a single reference |�〉, the normal order of a pair of creation and
annihilation operators is the one that gives zero expectation value in the reference. The normal
order of a string of more than two creation/annihilation operators can be chosen so that every
pair of operators in the string is in normal order.

Wick’s theorem (172), which expresses a string of creation/annihilation operators in terms
of normal-ordered strings and contractions, was extended to more general reference states by
Kutzelnigg & Mukherjee (173). In this case, the normal ordering is still defined so that the ref-
erence expectation value of a normal-ordered string of creation/annihilation operators vanishes.
However, the concept of a contraction now involves one-body, two-body, and higher-body den-
sity matrices, which encode the correlations contained in the reference. This generalized Wick’s
theorem is used, for instance, to formulate the MR-IMSRG (125, 146).

As shown by Kutzelnigg and Mukherjee, Wick’s theorem also applies to a mixed-state, or en-
semble, reference:

〈{a†paq}〉 = Tr
[
{a†paq}ρ

]
=
∑
α

cα〈�α|{a†paq}|�α〉 = 0. 74.

This is an extension of the original formulation of the finite-temperature Wick’s theorem (216–
218), which applied only to the expectation value of an operator in the ensemble. The formula-
tion of Kutzelnigg and Mukherjee, in contrast, is an operator identity, just like the original zero-
temperature Wick’s theorem.

Our goal, then, is to find an ensemble such that contractions have the same form as in the single-
reference case, except that the occupation of an orbit may have some noninteger value between
zero and one.That is,wewant all two-body and higher-body irreducible densitymatrices, as well as
the off-diagonal one-body density matrix, to vanish. Such an ensemble must necessarily contain a
variable number of particles. This may be easily understood by considering a single particle placed
in two levels. If we require that there always be a fixed total number of particles (as in canonical or
microcanonical ensembles, for instance), then the occupation of one level implies that the other
level must be empty and so the occupations are correlated, leading to an irreducible two-body
density matrix. A grand canonical ensemble, however, will meet our needs.

The ensemble that has been used in VS-IMSRG calculations published thus far corresponds
to the zero-temperature limit of a finite-temperature Hartree–Fock calculation (218), with the
chemical potential chosen to fix the average particle number.To illustrate the application ofWick’s
theorem,we consider a single level with degeneracy d = 2 j + 1, so a configuration hasN particles
with 0 ≤ N ≤ 2 j + 1. The contraction of two operators is given by

a†paq = 〈a†paq〉 = δpq 1Z
2 j+1∑
N=0

(
2 j

N − 1

)
eβ (ε−μ)N ,

= δpq 1Z
2 j+1∑
N=0

(
2 j + 1
N

) N
2 j + 1

eβ (ε−μ)N , 75.

= δpq 1
2 j + 1

〈N 〉,

= δpqnp.

Here, β is the inverse temperature, μ is the chemical potential, ε is the energy of the level, Z is
the partition function, and the binomial coefficients count how many of the configurations with
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N particles will have orbit p occupied. Of course, other ensembles may be selected, and they
need not be thermal ensembles; that is, multiple levels could be fractionally occupied, and there
need not be a connection between the energy of a level and its occupation (215). Another very
reasonable choice of occupations is to use natural orbitals, or a perturbative approximation of them
(147).

In actual calculations, this ensemble need not be explicitly constructed; we use the correspond-
ing definition of the contraction only when we use Wick’s theorem. In fact, there is another ref-
erence that can be constructed to produce the same fractional occupations. Instead of employing
an ensemble state, we may use a single-determinant reference built from a single-particle basis
that is slightly different from the one used in the calculation. To fractionally fill an orbit p, we
admix in some other inert orbitQ that is orthogonal to all of the single-particle states used in our
calculation: (

|p〉
|Q〉

)
→
(

| p̄〉
|Q̄〉

)
=
( √

n
√
1 − n

−√
1 − n

√
n

)(
|p〉
|Q〉

)
, 76.

where 0 ≤ n ≤ 1. If we choose a reference in which the orbit p̄ is filled, that is, 〈�|a†p̄ap̄|�〉 = 1, then
the occupation in terms of the original orbit p is 〈�|a†pap|�〉 = n. Because the reference� is a single
Slater determinant, all higher-body density matrices vanish automatically. In addition, there will
be a nonzero occupation of the inert orbit Q, 〈�|a†QaQ|�〉 = (1 − n), as well as off-diagonal one-
body densities, 〈�|a†paQ|�〉 = √

n(1 − n), which are not desirable. However, we have asserted that
the orbitQ is inert. By that we mean that a†Q and aQ do not appear in any operator we consider, and
we may neglect terms involving orbit Q without changing the physics. While the introduction of
inert orbits might seem contrived, it is no more contrived than the ensemble with variable particle
number. Indeed, we could say that the inert orbits live somewhere in the reservoir that supplies
the additional particles.

Again, for practical purposes, it is irrelevant whether the reference is an ensemble or is
constructed with an inert orbit mixed in. What matters is that we may use Wick’s theorem
with fractional occupation numbers, and that this procedure constitutes an exact rewriting of
our operators—given an operator that is normal ordered with fractional occupations, we are
able to reexpress that operator in normal-ordered form with respect to the true vacuum. The
importance of this point is that by employing fractionally filled orbitals we have not introduced
an additional approximation. If we retain all the induced operators, then the IMSRG calcula-
tion is exact. What the fractional filling does is reduce the impact that discarding the residual
three-body terms has on the low-lying states. Because standard shell model codes typically work
with valence particles (not valence holes), after the IMSRG decoupling, we again use Wick’s
theorem to rewrite all operators in normal order with respect to the core (which is a single Slater
determinant).14

Certainly, an uncorrelated ensemble reference is a crude approximation of the exact wave func-
tion, and one might envision that a correlated reference state as used in the MR-IMSRG could
do better (125, 146). However, as argued in Reference 188, it is not clear that this is the best way
to proceed in a valence-space context. If correlation effects are included in the reference in order
to better approximate a particular state, then this might well deteriorate the description of other
low-lying states (which contain different correlations), leading to a worse overall description of
the spectroscopy.

14This renormal ordering is easily achieved by using Equation 24, replacing na with (nnewa − nolda ).
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4.2. Mass Dependence of the Effective Interaction

A significant consequence of the ENO procedure is that a different valence-space interaction is
obtained for each nucleus. It is important to emphasize here that because the procedure does not
involve any fitting to data, there is no loss of predictive power. The ENO should be considered
a technique for reducing the impact of the truncation to two-body operators. In terms of com-
putational effort, the need to generate a new interaction for each nucleus makes a study of the
full sd shell more laborious, but still manageable. For nuclei in the middle of the p f shell, the
exponential scaling of the valence-space diagonalization catches up with the polynomial scaling
of the VS-IMSRG, so generating the effective interaction takes about as long as the shell model
calculation that uses it.

The need for some mass dependence of the effective interaction has been known for a long
time. The sd shell interactions presented by Kuo & Brown (6) and Kuo (7) yielded a good de-
scription of spectroscopy for a few valence particles or valence holes, but agreement deteriorated
for midshell systems (219). Investigations by Wildenthal (10) and Chung (52) suggested that a
single phenomenological adjustment could not remedy the situation, and a scaling of the TBMEs
according toA0.3 was introduced.This prescription has been adopted inmany later treatments (11,
30, 134). The scaling is typically justified in terms of the increasing nuclear radius changing the
optimal harmonic oscillator frequency (10, 11, 56, 144). While such an argument would suggest
that the core and single-particle energies should also change with mass, these effects could in prin-
ciple be absorbed into the scaling of the TBMEs (10). In contrast, the need for mass dependence
of TBMEs could be interpreted as a signal of nonnegligible three-body terms in the effective
interaction, and indeed this has been suggested a number of times (199, 200, 211).

We may expect that ENO should capture the effects of both a changing mean field and
the residual three-body effective interaction.15 Figure 7 displays binding energies per nucleon
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Figure 7

Energy per nucleon for (a) the oxygen isotopes 16 ≤ A ≤ 28 and (b) the N = Z nuclei in the sd shell
obtained with VS-IMSRG using the EM1.8/2.0 interaction compared with the results obtained with the
USDB interaction. The thinner lines indicate the effect of turning off the ENO in the VS-IMSRG
calculation or of turning off the A0.3 scaling of two-body matrix elements in the USDB interaction.
Abbreviations: ENO, ensemble normal ordering; USD, universal sd shell; VS-IMSRG, valence-space
in-medium similarity renormalization group.

15Indeed, these effects are not entirely distinct; the induced three-body interaction depends on the choice of
reference.
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(a) Single-particle energies in the sd shell obtained with the VS-IMSRG normal ordered with respect to a 28Si reference, using an NN
interaction, with or without the 3N piece. (b) Neutron–neutron and proton–neutron monopoles of the TBMEs, with and without the
3N force. (c) The difference between matrix elements obtained with NN only and NN+3N , with and without a monopole correction.
All calculations use the EM1.8/2.0 interaction of Reference 220. Abbreviations: TBME, two-body matrix element; USD, universal sd
shell; VS-IMSRG, valence-space in-medium similarity renormalization group.

obtained for oxygen isotopes and N = Z nuclei in the sd shell nuclei with the USDB interaction,
both with and without the mass scaling of the TBMEs. These are compared to the binding
energies of the same nuclei calculated using the VS-IMSRG with and without ENO. It is evident
that ENO has qualitatively the same effect as the scaling of the TBMEs, although an investigation
of the VS-IMSRG TBMEs reveals no such smooth scaling (the effect is largely captured in the
core and single-particle energies).

Figure 8 shows the single-particle energies and monopoles of TBMEs obtained for a 28Si
reference with and without explicit 3N forces. Including the 33N force has a significant impact
on the single-particle energies; indeed, the neutron single-particle energies are shifted closer to
the USD (57) values (USD does not include the Coulomb interaction). Figure 8b shows that
the effect of the 3N interaction on the TBME monopoles is repulsive, as expected from binding
energy calculations, and that it shifts the monopoles toward the USDB values. Figure 8c shows
the difference between each of the TBMEs obtained with the NN-only and NN+3N interactions
and the difference when the NN-only monopoles have been shifted to the NN+3N values. The
monopole shift does not yield perfect agreement—there is still some scatter—but the remaining
discrepancy is approximately Gaussian and centered on zero. It is not unreasonable that there
would be moderate cancellation between the remaining terms, and that the monopole correction
would approximately account for the missing 3N forces, as claimed by Zuker (205). For a related
approach using density functionals to inform the monopole correction, see Reference 221.
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On the basis of this discussion, we can conclude that the standard phenomenological adjust-
ments made to shell model interactions can be understood essentially in terms of the effect of
missing (normal-ordered) three-body forces (see, e.g., the discussion in section 8 of Reference 156,
as well as References 199, 200, 211, and 222):

� Historically, the core energy was taken from experiment (typically no effort was made to cal-
culate it consistently from the input force), andmodern ab initio calculations have confirmed
the importance of three-body forces to binding energies (190, 209, 223).

� Likewise, single-particle energies were typically taken from experiment, as those obtained
from theNN interaction did not reproduce the spectra of one-valence-particle systems.The
normal-ordered contribution of three-body forces to the single-particle energies essentially
accounts for this discrepancy.

� Even with the core and single-particle energies taken from experiment, realistic NN
forces typically did not yield good spectroscopy, and needed phenomenological adjustment.
Zuker (205) argued that themost important adjustment was that of the two-bodymonopoles,
and that this shift should be understood in terms of missing three-body forces. Indeed, when
the three-body contribution to the normal-ordered two-body interaction is taken into ac-
count, no phenomenological shifts are needed. Moreover, as shown in Figure 8, the bulk
of the discrepancy between an interaction derived from only NN forces and one including
3N effects can be corrected by a shift of the monopoles. The remaining discrepancy (the
multipole terms) is approximately Gaussian and centered on zero, so the net effect will in
general be small.

� Finally, the ∼A1/3 scaling of TBMEs can be understood as a way to capture the bulk effects
of three-body forces among valence particles. This same physics is captured by employing
ENO (204, 224).

5. APPLICATIONS

As discussed above, shell model calculations with ab initio interactions allow us to confront our
starting point, the underlying chiral NN+3N force of our choice, with a wealth of available
experimental data. Until recently, applications have been focused primarily on ground- and
excited-state energies, with very encouraging results. In the following subsections, we highlight
selected examples.

5.1. Ground and Excited States of sd Shell Nuclei

In Section 4, above, we discuss the importance of chiral 3N forces for the correct description
of nuclear shell structure. Their effect on the location of the oxygen drip line was one of the
first high-profile applications of ab initio interactions in the nuclear shell model (132), which has
subsequently been confirmed inmore consistent calculations with both valence-space and no-core
methods (Figure 6).

Multiple studies for sd shell nuclei with a progressively more consistent perturbative con-
struction of the valence-space interaction followed (134–136, 141, 204), including the derivation
of multishell interactions (138, 144), until the nonperturbative VS-IMSRG and CCEI/SMCC
emerged (139, 140, 142, 143, 179). The VS-IMSRG, in particular, has been widely used to com-
pute ground- and excited-state energies (129, 142, 143, 225–238), although theoretical uncertain-
ties stemming from the method still prove challenging (see Section 6).

Figure 9 shows results from a VS-IMSRG survey of 391 levels in the sd shell, starting from
the EM1.8/2.0 chiral NN+3N interaction (220). The figure shows the deviation between the
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Figure 9

Deviation from experiment for excited states throughout the sd shell, obtained with (a) the EM1.8/2.0 interaction without
transformation, (b) the EM1.8/2.0 interaction transformed with the VS-IMSRG using ENO, and (c) the USDB interaction. The points
indicate the deviations between the computed and experimental energies for all of these levels, which contribute to the specified
cumulative rms deviation between theory and experiment. Abbreviations: ENO, ensemble normal ordering; rms, root mean square;
USD, universal sd shell; VS-IMSRG, valence-space in-medium similarity renormalization group.

computed and experimental energies for all of these levels, which contribute to the specified
cumulative rms deviation between theory and experiment. Figure 9a uses the bare matrix
elements of the EM1.8/2.0 interaction in the sd shell valence space, and Figure 9b shows the
results obtained by applying the VS-IMSRG with ENO, as described in Sections 2 and 4.1. Since
our starting interaction has been evolved to a low-resolution scale, correlations due to the strong
short-range repulsion and the tensor force have largely been accounted for. Thus, the shell model
picture is reasonable: Low-lying nuclear states are bound, and excitation energies are at least of
the correct order of magnitude, with a sizable rms deviation of 1,696 keV.

The deviations from experiment are reduced significantly when we use the VS-IMSRG to de-
couple the sd shell valence space from other excitations, accounting for core polarization and other
types of long-range, many-body correlations (see Section 2). With an rms deviation of 647 keV,
we are not doing as well as the gold-standard USDB interaction, for which the deviation is merely
220 keV for the selected levels (and only ∼130 keV for all 600-plus measured sd shell levels). This
is not unexpected: USDB is essentially the best possible fit to experimental data under the cho-
sen model assumptions, including the choice of a valence space containing only the 1s1/2, 0d3/2,
and 0d5/2 orbitals; the mass dependence of the TBMEs; and the omission of residual three- and
higher-body effective interactions. The accuracy of the VS-IMSRG results is subject to the un-
certainties of the input interaction and the truncation used in the method. Both can and will be
systematically improved in future applications.

5.2. The Calcium Region

Soon after the successful application of perturbatively constructed shell model interactions in the
sd shell, the first results for the calcium isotopes followed, including a successful prediction of the
two-neutron separation energies at the subshell closure in 52Ca (133, 137, 239). More recently,
the masses of 55−57Ca were measured at RIKEN, showing the onset of a flat trend in the sepa-
ration energies beyond 54Ca that would be consistent with the filling of the neutron 0 f5/2 shell
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(a) Two-neutron separation energies of neutron-rich calcium isotopes from recent measurements at RIKEN, compared with
VS-IMSRG and MBPT results obtained with the EM1.8/2.0 interaction, as well as results for phenomenological interactions (KB3G,
KTUY05, SDPF-MU) and mass models (FRDM12, HFB24). (b) VS-IMSRG (solid lines) results for three-point energy differences in
the calcium isotopes and neighboring chains, compared with both AME data and new titanium measurements at TITAN. VS-IMSRG
results used the EM1.8/2.0 interaction, while Gor’kov Green’s function results for the scandium chain (dashed line) used a different
chiral interaction. See References 233 and 235 for additional details. Abbreviations: AME, atomic mass evaluation; FRDM, finite range
droplet model; HFB, Hartree–Fock–Bogoliubov; IMSRG, in-medium similarity renormalization group; MBPT, many-body
perturbation theory; VS-IMSRG, valence-space in-medium similarity renormalization group. Panel a adapted from Reference 235.
Panel b adapted from Reference 233.

(Figure 10). Such a trend had also been found in MR-IMSRG and Gor’kov Green’s function
(GGF) ground-state calculations using chiral interactions (212), although absolute two-neutron
separation values (S2n) could not be determined precisely because of theoretical uncertainties in
the interactions and the many-body methods.

Recent high-precision mass measurements of the titanium isotopes at TITAN aimed to shed
new light on the evolution of theN = 32 shell closure (233).Figure 10b shows three-point energy
differences �2n ≡ S2n(N ,Z) − S2n(N + 2,Z), extracted from the new data alongside the atomic
mass evaluation data, in comparison with results from the VS-IMSRG for isotopic chains in the
lower p f shell and GGF calculations for the scandium chain.While the theoretical �2n compare
favorably with experimental data overall, the strength of theN = 32 closure is overestimated with
increasing Z. This artificial enhancement of shell closures is frequently observed in calculations
with current chiral interactions (e.g., 191, 212, 240) and might provide important clues regarding
the refinement of next-generation forces.

5.3. Heavy Nickel and Light Tin

For sufficiently soft interactions, IMSRG andCC calculations for nuclei in the upper p f and lower
sdg shells can be converged (126, 128, 129). The limiting factor is a truncation in the three-body
matrix elements e1 + e2 + e3 ≤ E3max, where e = 2n+ 
. Memory constraints have restricted cal-
culations to E3max ≤ 18. The dimension of the valence space also becomes an issue during the
diagonalization of the effective interaction, but approaches such as the Monte Carlo shell model
(241) or importance-truncated configuration interaction (242) can be used to tackle this problem.
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Energies of the first excited 2+ states in Ni isotopes from valence-space in-medium similarity
renormalization group and coupled-cluster (CC) calculations including triples corrections (128), using
EM1.8/2.0 and other chiral two- plus three-nucleon interactions as input (see Reference 220 for details).

Figure 11 shows the evolution of the first excited 2+ state in neutron-rich nickel isotopes,
which serves as a strong indicator for (sub)shell closures. The jump in the 2+ energy at 78Ni
suggests that this nucleus is indeed doubly magic. The VS-IMSRG reproduces the available ex-
perimental data (243) well, and the energies are insensitive under (admittedly small) variations of
the interaction’s resolution scales or low-energy constants (see Reference 220 for more details on
these Hamiltonians).

Recently, Hagen et al. (128) also computed the 2+ energies of 78,80Ni using the EOM-CC ap-
proach.Figure 11 presents their excitation energies from the so-called EOM-CCSD(T) method,
which are approximately 1 MeV lower than the VS-IMSRG results with the corresponding in-
teractions. This difference can be traced back to the effects of triples (i.e., 3p3h) correlations and
continuum effects that are currently not included in the VS-IMSRG.

Moving to even heavier nuclei, the structure of the lightest tin isotopes was the subject of
a recent joint EOM-CC and VS-IMSRG study (129). Figure 12 shows results for the energy
gap between the two lowest-lying states in light odd-mass tin isotopes and 105Te. The no-core
EOM-CC and the VS-IMSRG results for 101Sn are consistent, and the VS-IMSRG produces a
near degeneracy of the Jπ = 5/2+ and Jπ = 7/2+ states that is compatible with experiment. The
systematic uncertainties of the method must be properly quantified—and, most likely, reduced—
before one can make spin assignments with confidence.

6. CURRENT CHALLENGES

While great strides have been made in deriving effective interactions for the shell model, chal-
lenges remain. Here, we focus on two in particular, and analyze them from the perspective of the
VS-IMSRG.

First, electric quadrupole (E2) observables that are sensitive to low-lying collective excitations,
and that have historically been treated phenomenologically by introducing effective charges, are
not captured well with present techniques. This failure can be qualitatively understood in the
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Figure 12

VS-IMSRG and EOM-CC results for the ground and first excited states of odd-mass tin isotopes and 105Te, using chiral NN+3N
interactions (220). (a) The energy difference between the lowest 7/2+ and 5/2+ states as a function of mass number. (b) The
convergence of the states as a function of the model-space truncation in the importance-truncated configuration interaction
diagonalization. Abbreviations: EOM-CC, equation of motion coupled cluster; VS-IMSRG, valence-space in-medium similarity
renormalization group. Figure adapted from Reference 129.

context of the cluster expansion discussed at the beginning of Section 2. It is precisely the low-lying
collective modes that are expected to violate the cluster hierarchy upon which the IMSRG relies.

Second, several regions of the nuclear chart—such as the so-called islands of inversion (244,
245), or the charge radii of the calcium isotopes (246, 247)—display features that suggest that
a naïve valence space of a single major harmonic oscillator shell is not an appropriate first-order
description.However, the derivation of effective interactions for nonstandard valence spaces leads
to difficulties related to the well-known intruder-state problem.

6.1. Electromagnetic Transitions

The first attempt at a microscopic treatment of E2 observables was made by Horie & Arima (248),
who investigated the role of configuration mixing on quadrupole moments. A series of investiga-
tions by Siegel & Zamick (249–251) demonstrated the importance of terms beyond first order in
perturbation theory. Specifically, they investigated the impact of Tamm–Dancoff approximation
(TDA) and RPA graphs to the effective charge, with the physical interpretation that the effective
charge comes largely from a coupling to the giant quadrupole resonance. A subsequent calcula-
tion byKirson (44) indicated that a self-consistent treatment including screening effects essentially
canceled the effect obtained with RPA. For a discussion, see Reference 27.

An important development came with the application of the OLS approach to an effective in-
teraction for 6Li in the p shell (162), where the resulting effective E2 operator could be reasonably
approximated by the use of effective charges. This approach was investigated in more detail more
than a decade later (164), showing that a nonperturbative treatment could produce the collective
effects of E2 observables. Of course, it is not always clear what lessons learned in the p shell carry
over to heavier masses.

As discussed in Section 2.3.2, the Magnus formulation of the IMSRG provides a straightfor-
ward way to construct effective valence-space operators for general observables. All operators are
consistently transformed according to

Oeff = e�Oe−� = O + [�,O] + 1
2
[�, [�,O]] + . . . . 77.
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Electric quadrupole transition matrix element 〈0+‖E2‖2+〉 in 14C, 22O, and 32S, computed using the
valence-state in-medium similarity renormalization group with several choices of input chiral interaction.
Also shown are the energy of the 2+

1 state and the point proton radius squared. Experimental radii are from
Reference 252; energies and transition matrix elements are from Reference 243. Abbreviations: N2LO,
next-to-next-to-leading order; N3LO, next-to-next-to-next-to-leading order.

An early application of this approach was to electromagnetic transitions in light andmedium-mass
nuclei (123), which showed that the observables were well converged with respect to the model-
space truncation (i.e., frequency and number of major shells included in the initial harmonic os-
cillator basis). However, the computed values for collective observables such as magnetic mo-
ments or electric quadrupole and octupole transitions were substantially smaller than experimental
data.

The possible explanation for this discrepancy is that either the truncation of Equation 77 to
two-body operators is insufficient to capture this type of collectivity or the input chiral interactions
are deficient in some way. Most likely, both are in effect to some degree. The interaction used
in Reference 123 is known to underpredict charge radii in these same nuclei (240). Given that
the electric quadrupole operator is proportional to r2, where r is the point proton radius, and
that the transition strengths B(E2) go as r4, one would naturally expect some underestimation
of the quadrupole strength. However, as demonstrated in Figure 13, this cannot be the whole
story.

The point proton radius squared (R2
pp in Figure 13) is underpredicted at approximately the

same level in 14C and 32S. In contrast, while the E2 strength for 14C is reasonably reproduced, in
32S it is underpredicted by∼25–50%, and the strength in 22O is underpredicted by∼65%.Clearly,
the underprediction of E2 strength in 32S cannot be explained solely by the radius deficiencies.

Supporting this interpretation, unpublished calculations in a small space where exact diago-
nalizations are possible show unambiguously that the IMSRG(2) truncation misses a significant
fraction of the E2 strength, and that capturing the full strength requires inclusion of correlated
many-particle many-hole excitations. In addition, symmetry-adapted NCSM calculations of sd
shell nuclei yielded significantly greater E2 strength using the same starting interaction (231).

It is interesting to compare the IMSRG results with the above-mentioned approach of Siegel
& Zamick (251). They considered three levels of approximation for the E2 operator, first-order
core polarization, TDA, and RPA. Figure 14 presents typical diagrams contributing to these ap-
proximations.The effective operator generated by the VS-IMSRG via Equation 77 contains TDA
and RPA graphs to all orders. The VS-IMSRG also sums higher-order diagrams such as that in
Figure 14d, but because of the truncation to two-body operators, certain types of diagrams are
undercounted or missing altogether (see References 145, 174, and 175 for more details).
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(a–d) Examples of diagrams contributing to the one-body part of the effective E2 operator. X represents the
bare operator. Abbreviations: IMSRG, in-medium similarity renormalization group; RPA, random-phase
approximation; TDA, Tamm–Dancoff approximation.

Table 1 presents the effective charge for a neutron in the sd shell in these various levels of
approximation. The orbit-dependent effective charge is (251)

eab = 〈a‖OE2
eff ‖b〉

〈πa‖OE2
bare‖πb〉

, 78.

where in the denominator we take the matrix element for the corresponding proton orbit. We
work in a Hartree–Fock basis constructed from an oscillator basis with frequency �ω = 16MeV
and emax = 10. In this basis, we obtain a bare proton matrix element 〈πd5/2‖OE2

bare‖πd5/2〉 =
−9.03e fm2, and we see that, in order to reproduce the experimental quadrupole moment of 17O
[Q = −2.56(2)e fm (253)], we require an effective neutron charge of en ≈ 0.37.16 Likewise, the
bare proton matrix element 〈πd5/2‖OE2

bare‖π s1/2〉 = −9.29e fm2, so to reproduce the experimen-
tal transition strength B(E2; 1

2
+ → 5

2
+
) = 6.21(8)e2 fm4, we require an effective neutron charge

en ≈ 0.38. We find that while the IMSRG generates a larger neutron effective charge than the
other methods, the result is still well below the experimental value.

These IMSRGeffective charges are essentially the same as those found in a previous study (123)
with a different chiral interaction.That study also found proton effective charges close to one, that
is,with almost no renormalization.As discussed inReference 27, this can potentially be understood
by considering that in order to dress a valence nucleon, that nucleon must excite a proton out of
the core. A valence neutron can do so through the T = 0 channel, while a valence proton must
act in the weaker T = 1 channel.

Table 1 Neutron effective charges for the sd shell obtained with first-order core polarization,
including TDA and RPA graphs to all orders, and from IMSRGa

d5/2d5/2 d3/2d3/2 d5/2d3/2 d5/2s1/2 d3/2s1/2

Core polarization 0.110 0.035 0.064 0.034 0.026
TDA 0.121 0.037 0.062 0.040 0.031
RPA 0.119 0.037 0.061 0.038 0.030
IMSRG 0.202 0.098 0.222 0.163 0.093

aThese results were obtained with the EM1.8/2.0 interaction (220) in a Hartree–Fock basis constructed from an oscillator
basis with emax = 10 and �ω = 16MeV.
Abbreviations: IMSRG, in-medium similarity renormalization group; RPA, random-phase approximation; TDA,
Tamm–Dancoff approximation.

16With our definition of the E2 operator,Q = √
16π/5〈J,M = J|OE2|J,M = J〉.
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6.2. The Intruder-State Problem

Over the last few decades, experimental investigations of nuclei far from stability have revealed the
existence of several so-called islands of inversion, where nuclei near traditional shell closures have
ground states that indicate significant deformation or correlated particle–hole excitations out of
the closed shell (244, 245, 254). The classic examples are 31Na and 32Mg, both with N = 20. 31Na
has a ground-state spin parity of 3

2
+, while shell model calculations predicted 5

2
+
, and 32Mg has

a 2+ excitation energy of 885 keV, far lower than expected for a closed neutron shell. Both have
greater binding energies than predicted by the shell model. If these correlations are sufficiently
important, then it is possible that the ground state will not be among the subset of eigenstates
reproduced in the valence-space diagonalization. Indeed,Watt et al. (255) found that by explicitly
allowing neutron excitations out of the standard sd shell and into the f7/2 shell, the discrepancies
for 31Na and 32Mg could be understood. Of course, even if the correlated ground state is formally
among the valence states, it is likely that incorporating the correlated excitations into an effective
Hamiltonian would require large many-body forces.

It is therefore desirable to be able to produce an effective interaction for a valence space that
spans more than one major shell, such as the sd– f p space, and indeed phenomenological interac-
tions for such a space have been successful at describing the island of inversion effects (245), as well
as the charge radii of the calcium isotopes (246). Unfortunately, in deriving such an interaction
from first principles, one runs into the well-known intruder-state problem,which we discuss in the
following three subsections. In fact, attempts to include effects of the continuum—essential for
studies near the drip lines—suffer from the same problem (B. Hu, personal communication). Un-
derstanding and solving this problem, particularly in the context of a nonperturbative approach,
are clearly of great interest.

6.2.1. The intruder-state problem in perturbation theory. As demonstrated by Schucan &
Weidenmüller (46, 47), there are serious reasons to doubt the convergence of the perturbative
expansion for the effective interaction. To illustrate, we split the Hamiltonian, as above, into a
zeroth-order piece and a perturbation, with a dimensionless power-counting parameter x:

H (x) = H0 + xV, 79.

such thatH (0) is the zeroth-orderHamiltonian andH (1) is the fullHamiltonian.The perturbative
expansion of Heff can therefore be regarded as a Taylor expansion about x = 0 evaluated at x = 1.
The trouble arises if one of the states belonging to the Q space has an energy lower than one of
the P-space states. Such a state is called an intruder state. If we assume that the P states are all at
lower energy than the Q states at x = 0, this implies a level crossing for some x ∈ [0, 1]. The value
of x at which such a crossing occurs (even if it is an avoided crossing) corresponds to a branch
point that places an upper limit on the radius of convergence of the effective Hamiltonian (47).

Unfortunately, such level crossings are the rule, not the exception. Moreover, if the zeroth-
order levels in the valence space are nondegenerate—for example, if aHartree–Fock basis is used—
then as more particles are added to the valence space, the energy of the highest P space can quickly
become higher than the energy of the lowest Q space, even without the residual interaction.

6.2.2. The intruder-state problem in the in-medium similarity renormalization group.
There are a few reasons why one might expect the IMSRG to avoid the intruder-state problem.
First, it is formally a nonperturbative method, so the above argument does not directly apply.
Second, because it is formulated in Fock space, the energies of the A-body system do not enter
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Figure 15

(a) Decoupling of the psd valence space using an 16O reference, shown with the Hartree–Fock single-particle
spectrum. (b) The zero-body part of the flowing Hamiltonian, the norm of the generator η, and the norm of
the Magnus operator � as a function of the flow parameter s. At s ∼ 12, the core is decoupled and the
decoupling of the valence space begins.

into any energy denominators, so one would not naïvely expect divergences due to crossings in
the A-body system.

Unfortunately, the IMSRG suffers from a related but distinct intruder-state problem.
Figure 15 illustrates an example of the type of behavior encountered. Here, we aim to decou-
ple a valence space consisting of the p and sd major shells from a large space constructed from
seven major harmonic oscillator shells (emax = 6). We use an 16O Hartree–Fock reference state,
which is indicated schematically in Figure 15. Also shown in Figure 15 are the zero-body term
E0(s), the norm of the generator ‖η(s)‖, and the norm of theMagnus operator ‖�(s)‖ as a function
of the flow parameter s. As usual, we proceed in two steps, first decoupling excitations out of the
core (4He in this case), then decoupling the valence space (see Section 2.3). The core decoupling
is achieved at s ≈ 12. At this point, we observe a jump in ‖η(s)‖ because our new definition of
off-diagonal now includes many more matrix elements. In a well-behaved calculation, these terms
would then be suppressed by the IMSRG flow. Indeed, the size of η initially decreases, but it soon
begins to grow again, and the calculation fails to converge. We also observe that the flow of the
zero-body term E0 turns around and diverges, and the Magnus operator � grows indefinitely. At
some point,� grows beyond the radius of convergence of the Baker–Campbell–Hausdorff expan-
sion. As a result, no effective interaction is obtained.

We note that there has been some success using the IMSRG to decouple valence spaces other
than those defined by a single major harmonic oscillator shell, as long as they are reasonably well
separated by a shell gap. These spaces correspond to the “extruded–intruded” spaces described by
the Strasbourg group (18), in which, due to the spin-orbit potential, the orbit with the largest- j
orbit drops out (i.e., is extruded) and the largest- j orbit from the next shell up comes down
(i.e., it intrudes). An example is the space consisting of the orbits 1p3/2, 1p1/2, 0 f5/2, and 0g9/2.
This space (for neutrons) was used to treat heavy chromium isotopes (236). However, the results
obtained suggested that this space was not sufficient to describe the ground states of those
isotopes.

The connection between intruders and failed convergence of the IMSRG flow can be un-
derstood schematically by considering the flow equation formulation (d/ds)H = [η,H]. Imagine
that we have two levels labeled p and q, both with degeneracy greater than two, and with
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single-particle energies εq > εp. We intend to decouple the q orbit from the Hilbert space, which
means suppressing terms such as Vqqppa†qa

†
qapap that excite particles from the p level to the q level.

The flow equation for Vqqpp is, schematically,

d
ds
Vqqpp ∼ Vqqpp

2εp − 2εq +Vpppp −Vqqqq
2εq − 2εp

+ . . . . 80.

If the one-body terms dominate the right-hand side of Equation 80, then (d/ds)Vqqpp ∼ −Vqqpp,
and the off-diagonal term is suppressed exponentially. In contrast, if the interaction terms V are
larger than the one-body terms and of opposite sign, then Vqqpp will be exponentially enhanced.
This can be achieved if Vqqqq is negative (attractive) and Vpppp is positive (repulsive), and a positive
numerator in Equation 80 corresponds to an inversion of the states |pp〉 and |qq〉.

In fact, terms such as Vpppp and Vqqqq can be included in the denominator by repartitioning
the Hamiltonian so that the diagonal (i.e., bra–ket) parts of V are included in H0, avoiding the
exponential growth. However, intruders can also be driven by collective effects that cannot be
tamed by a straightforward repartitioning. Consider the case where we have multiple included
and excluded levels, p, p′ . . . q, q′ . . . . In this case, we should also consider contributions such as

d
ds
Vqqpp ∼ Vqqp′ p′

2εq − 2εp′
Vp′ p′ pp −Vqqq′q′

Vq′q′ pp
2εq′ − 2εp

+ . . . . 81.

If there aremany such terms involvingVp′′ p′′ pp and so forth, and these terms add coherently,with the
Vqqq′′q′′ type terms having opposite sign, they can compete with the contributions in Equation 80
and potentially lead to growth of the off-diagonal terms. Such a situation will also lead to a crossing
of collective levels. Clearly, this situation and the previous one will be exacerbated by the small
energy denominators that occur in multishell valence spaces.

There is another way in which intruders can cause trouble, which is by spoiling the cluster
hierarchy. We illustrate with a toy system in the next section.

6.2.3. Toy model for the intruder-state problem. To illustrate how intruders and level cross-
ings can lead to large induced many-body terms, we consider the problem of three kinds of
fermion—which could be, say, spin-up neutron, spin-down neutron, spin-up proton—living in
a three-level Hilbert space.We require three particles because we wish to monitor induced three-
body forces.

The initial Hamiltonian is H (x) = H0 + xV, where

H0 ≡
∑
i

εia†i ai, V ≡ 1
4

∑
i jkl

Vi jkl a†i a
†
j al ak. 82.

Additionally, three-body terms will be induced by the transformation. All three species have the
same single-particle energies: (ε1, ε2, ε3) = (0, 1, 20). We define the valence space as consisting of
the lower two orbits for each flavor. The antisymmetrized matrix elements of the perturbationV
are

vQQ =V1323 = V1331 = V1332 = V2331 = V2332 = V3132,

vPP =V1122, 83.

vPQ =V2213 = V2231 = V1113 = V1131.
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We take vPP = 8, vQQ = −8, and vPQ = 1. Essentially, vPP and vQQ mix configurations within the
P and Q spaces, respectively, leading to a collective Q state that comes down in energy as the
interaction is turned on, while a collective P state is pushed up, and eventually the states cross.
The remaining term, vPQ, is initially the term we want to suppress. It couples the P and Q states
and makes the level crossing an avoided crossing. To reduce somewhat the size of the problem, we
exclude the highest level for the third particle (call it the proton), reducing the three-body Hilbert
space to 3 × 3 × 2 = 18 configurations.We take vQQ and vPQ to act only between neutrons, while
vPP acts on all species.

The eigenstates of this problem may easily be found by forming the 18 × 18 Hamiltonian
matrix and diagonalizing. However, our aim here is to first decouple the P and Q spaces, and then
diagonalize within the decoupled spaces.

We perform a nonperturbative decoupling in the three-body Hilbert space using the iterative
method outlined in Section 3.1.6 [this is essentially the approach proposed by Suzuki (171) to deal
with the intruder-state problem]. The first step is to construct the matrix H0, where the subscript
denotes iterations. Next, we form an anti-Hermitian generator Gn, which is defined as

〈q|Gn|p〉 = 〈q|Hn|q〉
〈q|Hn|q〉 − 〈p|Hn|p〉 , 84.

where p and q label A-body configurations belonging to the P and Q spaces, respectively. We
obtain the next iteration of H by the Baker–Campbell–Hausdorff expansion:

Hn+1 = Hn + [Gn,Hn] + 1
2
[Gn, [Gn,Hn]] + . . . . 85.

The nested commutators are evaluated until the norm of the last nested commutator falls below
10−7. The iteration in n is performed until the norm of Gn falls below 10−6, at which point the P
and Q spaces are decoupled.

We also perform an IMSRG decoupling,17 using the flow equation formulation, directly on
the Fock-space representation of the Hamiltonian in Equation 82.We use the flow equation for-
mulation because in the Magnus formulation for x � 0.5, the Magnus operator � grows suffi-
ciently large that the Baker–Campbell–Hausdorff expansion does not converge. We perform an
IMSRG(2) calculation, discarding three-body terms, and we also perform an IMSRG(3) calcu-
lation, including the full three-body commutators, so the calculation is exact for the three-body
problem. Figure 16 presents the results as a function of the perturbation strength parameter
x. The figure shows the results of the decoupling in the A-body space following the iteration
procedure in Equations 84 and 85, as well as the IMSRG(2) and IMSRG(3) solution in Fock
space.

We immediately make two observations. First, before the level crossings the IMSRG(2)
eigenvalues are in agreement with the exact ones, while after the level crossings they go astray
(Figure 16a). Second, at the first level crossing near x ≈ 0.5 the size of the three-body con-
tribution to the Hamiltonian begins to grow rapidly (Figure 16c). These two observations are
clearly connected. We may understand the error of the IMSRG(2) calculation straightforwardly
as the consequence of discarding important three-body terms. Alternatively, one can compare the
IMSRG(2) results with those presented in, for example, figure 1 of Reference 256, which studied
a two-level system with an avoided crossing in perturbation theory. At low orders of perturbation
theory, the avoided crossing is not reproduced.With increasing orders in the perturbation series,

17Strictly speaking, because there is no core and no normal ordering is performed, there is no medium, so this
is really just an SRG calculation.
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Figure 16

(a) The eigenvalues after decoupling the P and Q spaces in the IMSRG(2) approximation. (b) Eigenvalues
after decoupling with the full IMSRG(3). (c) The cluster decomposition of the P-space component of the
transformed Hamiltonian. All are as a function of the interaction strength parameter x. In panels a and b, the
gray lines represent the results of the decoupling in the A-body space following the iteration procedure in
Equations 84 and 85. The blue and red lines and symbols correspond to the IMSRG(2) and IMSRG(3)
solution in Fock space. Abbreviation: IMSRG, in-medium similarity renormalization group.

the levels slowly bend back to reproduce the avoided crossing. One must go to very high orders
(e.g., fiftieth order in Reference 256) to fully recover the avoided crossing.

The generation of three-body terms can be understood by considering the flow equation for a
P-space three-body contribution:

d
ds
V111222 ∼ η1123V1322 −V1123η1322 + . . . . 86.
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The level crossing prevents the off-diagonal TBMEs such asV1322 from being rapidly suppressed,
and keeps the door open for strength to leak into the three-body sector via terms such as those in
Equation 86.

This investigation of a toy problem illustrates how the effects that lead to intruder configu-
rations also cause problems with decoupling within the IMSRG framework, even without small
denominators and even if the flow equation converges. Presumably, such effects will also arise in
the SMCC framework because of the strong similarity between the two approaches. This remains
an open and important problem, and we hope that a better understanding of these effects will lead
to a solution in the near future.

7. OTHER DEVELOPMENTS

7.1. Effective Field Theory for the Shell Model

As mentioned in Section 1, the success of shell model phenomenology strongly indicates that
the shell model provides the relevant degrees of freedom for nuclear structure. It is therefore
tempting to formulate the shell model as an effective theory with some scheme for systematic im-
provement. The main difficulty is in identifying a separation of scales that one can use to form an
expansion.

Twenty years ago, Haxton and colleagues (257–260) put forward the idea of formulating the
shell model as an effective theory. The method presented in those papers amounts to an effec-
tive theory for the NN interaction with the harmonic oscillator basis serving as the regulator, and
the Bloch–Horowitz effective interaction (Equation 4) cast as an RG flow equation. Similar ideas
have been pursued by Stetcu et al. (261, 262) and Yang (263), as well as by the Oak Ridge
group (264, 265).This type of approach is appealing because it is formulated in the harmonic oscil-
lator basis and thus yields an interaction well suited to a number of popular many-body methods.

Using the harmonic oscillator basis as a regulator is conceptually distinct from formulating the
standard shell model directly as an EFT. In the latter case, one should use the shell model to define
the degrees of freedom, and write down all possible terms in the Hamiltonian consistent with the
relevant symmetries (parity, rotational invariance, charge, baryon number, etc.). Then one should
assign an importance to those terms on the basis of some power counting. A recent attempt more
along these lines (266) employs aWeinberg chiral power counting in a shell model basis, modified
by the Galilean invariance breaking terms due to the presence of the core.While a rigorous basis
for the use of Weinberg’s power counting is still lacking—core excitations introduce a new scale,
for instance, that might make it more natural to treat the Fermi momentum as a hard scale—very
encouraging order-by-order convergence has been obtained.

Another possibility might be, à la Landau–Migdal theory (267), to exploit the similarities be-
tween the valence shell model philosophy and Landau’s Fermi liquid theory for infinite systems. In
modern parlance, the latter can be viewed as an EFT for low-lying excitations (i.e., quasi-particles)
in the vicinity of the Fermi surface. As with any EFT, the effective Hamiltonian of Landau’s
theory incorporates the underlying symmetries of the system, and the low-energy couplings—the
Landau parameters—can be either fixed by experiment or calculated microscopically based on the
underlying theory. Lending credence to the analogy with the valence shell model, Shankar (268),
Polchinski (269), and Chen et al. (270) have shown that Landau’s theory can be understood as an
IR fixed point of the RG as one integrates out modes away from the Fermi surface. Intriguingly,
their analysis shows that (a) three- and higher-body quasi-particle interactions are irrelevant in
the sense of the RG, which might shed light on why phenomenological shell model interactions
with one- and two-body terms are so effective, and (b) the natural small parameter is the ratio
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of excitation energy to the Fermi energy, which could provide guidance for formulating an
appropriate power counting for an EFT tailored to the shell model.

7.2. Uncertainty Quantification

A major deficiency in essentially all shell model applications to date is the absence of quantified
theoretical uncertainties. This is no small matter; at a fundamental level, a theoretical prediction
without some confidence interval cannot be falsified. In particular, since experimental binding
energies and excitation energies can routinely bemeasured at parts-per-million precision,whether
or not theory and experiment are compatible depends on the theoretical uncertainty.

In fact, there are various meanings one can assign to error bars. Perhaps the most straight-
forward form of shell model uncertainty is the rms deviation from experiment (Figure 9). As
mentioned above, the phenomenological USDB interaction (57) has a very small rms deviation
of 130 keV throughout the sd shell, which may be interpreted in the following way. There exist
a large number of states that can be interpreted as shell model configurations mixed by the same
universal residual interaction. In the context of effective interaction theory, these are the states that
get mapped to the P space.We may then interpret levels where the deviation is much larger than
130 keV as not belonging to the P space. A clear illustration can be found in Reference 57, in which
the ground-state energies of 29,30Ne, 30,31Na, and 31,32Mg have conspicuously large deviations—a
clear signal that these island of inversion nuclei have a different character than the others.

This notion of uncertainty has recently been made more quantitatively rigorous by Yoshida
et al. (271), who explored the various possible effective interactions in the p shell and obtained
marginal distributions for each parameter based on the deviation from experiment. These distri-
butions were then propagated to the calculated spectra, yielding an error bar indicating the range
of values that could be obtained by a universal p shell interaction. Comparison to experiment then
yielded a well-defined quantification of how appropriate the naïve shell model picture of a given
state is.

A different type of uncertainty is sought by ab initio approaches employing chiral interactions.
Here, one should quantify and propagate three sources of uncertainty: (a) contributions from
truncated higher orders in the EFT expansion, (b) the experimental uncertainty in data used to
fit the parameters of the EFT, and (c) the uncertainty due to approximations made in solving
the many-body problem. In this case, because one has begun with the most general Lagrangian
compatible with the symmetries of the Standard Model, the resulting theoretical error bar would
then indicate compatibility with the StandardModel.While we certainly expect such compatibility
from the known nuclear energy levels, this becomes very important for testing extensions to the
Standard Model through, for instance, searches for neutrinoless double-β decay (272) or dark
matter (273). While uncertainty quantification is feasible for QMC or NCSM calculations, as
yet there is no rigorous means for uncertainty quantification of ab initio shell model effective
interactions. This is an important avenue for future research.

7.3. Coupling to the Continuum

Throughout this review, we have briefly mentioned the need to account for continuum effects in
theoretical calculations. Of course, this will be especially relevant as we seek to understand the
structure of increasingly neutron-rich nuclei.While a variety of approaches for coupling the shell
model and other many-body methods to the continuum exist (see, e.g., References 274–276, as
well as the reviews in References 277 and 278), methods based on the Berggren basis (279) appear
to be most suitable in the context of VS-IMSRG and SMCC.
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The Berggren basis adds resonant and scattering states to the single-particle basis from which
many-body states are constructed. In valence-space configuration interaction calculations, one
obtains what is colloquially known as the Gamow shell model (GSM), which entails the large-
scale diagonalization of a complex symmetric Hamiltonian (277). Applications of this method to
weakly bound nuclei have been quite successful (280–288), and there is a push to move from the
commonly used phenomenological interactions to fundamental ones (288). The Berggren basis
has been used successfully in ground- and excited-state CC calculations (e.g., 128, 210); therefore,
the inclusion in VS-IMSRG and SMCC is technically straightforward.However, the proliferation
of states due to the inclusion of the continuum aggravates the intruder-state problem discussed
in Section 6. If this issue can be solved, it would allow us to properly account for the continuum
coupling in the derivation of effective interactions. For the time being, research is under way
to at least treat the impact of the continuum on the dynamics of the valence particles via the
GSM.

8. CONCLUDING REMARKS

In this article, we have reviewed the current state of efforts to derive effective interactions for
the shell model from modern nuclear forces, with an emphasis on the impact of RG and EFT
ideas on our understanding of the shell model itself.We have summarized the popular approaches
and discussed their relations at a formal level. We have emphasized the importance of three-
body forces in eliminating the need for phenomenological adjustments and described the ENO
approach to efficiently including three-body effects. We have presented highlights from recent
applications of ab initio shell model calculations and discussed the current challenges of low-lying
collective excitations and intruder states.

Before concluding, we make some remarks and clarify some common misconceptions about ab
initio valence-space methods:

1. The shell model picture is inherently a low-momentum description of nuclear structure.
The basic assumptions of the shell model are that nucleons are (almost) independent par-
ticles moving in a mean-field potential and that nuclear spectra can be explained by the
mixing of a few valence configurations above an inert core via a residual interaction. The
bound mean-field solution and weak (possibly even perturbative) residual interaction that
are the foundation of this intuitive picture can be obtained only if low and high momenta
are decoupled in the Hamiltonian (102, 115, 116).
Of course, nuclear observables—energies, radii, transition rates—must be independent of

the resolution scale at which a theory operates. In principle, there is nothing that prevents
one from microscopically constructing a valence shell model Hamiltonian starting from a
high-resolution description, for instance, using an input interaction with a highly repulsive
core. However, such a choice not only makes computations more difficult but also compli-
cates interpretations as the resulting shell model wave functions bear little resemblance to
the exact ones, which contain sizable contributions from a vast number of configurations
and defy simple interpretation. In contrast, the exact wave functions of a low-resolution
Hamiltonian at least qualitatively resemble those that come out of the shell model diago-
nalization, providing a simple and intuitive picture.

2. Approaches such as the VS-IMSRG, SMCC, and Q̂-box resummation are methods for solv-
ing the nuclear many-body problem, not new shell model interactions. The approaches
described in this article combine the derivation of effective interactions with a shell model
diagonalization. This should be understood as an efficient alternative to a large-scale, full
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no-core configuration interaction (e.g., NCSM) calculation that would yield exact results
for nuclear spectra but is infeasible in most cases.

3. A careful comparison with experimental data or theoretical results requires that the method
and underlying nuclear interaction be specified. When comparing two phenomenological
shell model calculations to experimental data, the interpretation is generally straightfor-
ward: The interaction that better reproduces the data is the better interaction. With ab
initio approaches, such an interpretation is no longer appropriate. Disagreements between
theory and experiment must be caused either by deficiencies in the underlying nuclear inter-
actions or by the approximations employed in deriving the effective interaction (provided
that the shell model calculation is done without further approximations of its own). It is
therefore crucial to specify both the method and the input interaction when comparisons
with experimental data or other theoretical results are presented. It should also be kept in
mind that the major advantage of ab initio approaches is the ability to systematically im-
prove the precision of the theoretical result by lifting approximations or by improving the
input nuclear interactions.

4. Three-body forces are inevitable and nonnegligible in nuclear structure. So long as we
choose to use protons and neutrons as our active degrees of freedom—excluding explicit
�s, antinucleons, and so forth—there will be genuine (in the traditional language) many-
body forces accounting for these integrated out degrees of freedom. So long as we wish to
work in a valence space, there will be effective many-body forces accounting for excitations
outside the valence space. The relative importance of these many-body forces will depend
on the details of the implementation (scheme and scale). Indeed, an excellent description
of a local region of the chart can be obtained with a purely two-body interaction, such
as USDB for the sd shell (57). But such an interaction will only work locally and will
need modification (e.g., scaling of matrix elements with mass—again, think of USDB)
in order to be used over a wider range of nuclei. The theoretical evidence supports the
expectation that three-body forces are the underlying source of such ad hoc modifications
(see Section 4).

5. The mass dependence of modern effective interactions does not imply a loss of predictive
power. Effective interactions for different target nuclei are derived from the same NN+3N
force, and there are no parameter refits or phenomenological modifications. Again, the
derivation of the effective interaction and subsequent shellmodel diagonalization aremerely
an efficient alternative to a full no-core configuration interaction calculation.

6. All observables, not just the Hamiltonian, must be treated consistently to produce a true ab
initio result. As discussed in Section 3, the effective interaction corresponds to a similarity
transformation of the original Hamiltonian, and in order to perform a consistent calcula-
tion, all operators must also be transformed. As a simple example, consider computing the
deuteron ground state by generating an effective interaction for the 0s shell. By construc-
tion, the energy obtained by a (trivial) diagonalization in the 0s shell would be identical to
the result from a diagonalization in the full space with the bare Hamiltonian. Now, if one
were to calculate the deuteron quadrupole moment using the bare E2 operator with the
valence-space wave functions (which would be pure s-wave), the result would be zero. Us-
ing a consistently transformed E2 operator will give the full-space result (for an illustration,
see Reference 123).
One could argue that the bare operator gives the leading-order contribution to the

effective operator (see Equation 77). Trouble arises when the contribution of the leading
term is suppressed by a symmetry, or missing degrees of freedom. Examples are the case for
the E2 operator in the deuteron or in sd shell oxygen isotopes, which have only neutrons
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in the valence space. Along these same lines, the use of phenomenological effective charges
in conjunction with an ab initio shell model interaction should be considered inappro-
priate. In general, it is difficult to make meaningful conclusions based on inconsistent
calculations.

7. The use of an inert core does not constitute an ad hoc approximation.Calculations based on
effective interaction theory do not formally rely on an assumption that excitations out of the
core are negligible. Such excitations are accounted for by the effective interaction.Certainly,
there will be states in the experimental spectrum that are not generated in the valence-space
calculation even with a perfect effective interaction—these belong to the excluded Q space.
However, those states that are generated will not be improved by, for example, allowing core
excitations described by a schematic interaction, as this would amount to double counting.
Instead, to include core excitations explicitly, one should redefine the P and Q spaces and
derive a new effective interaction.

The shell model has been the primary intellectual and computational framework for low-
energy nuclear structure for the past 70 years. While the computational research has been
largely phenomenological during that time, an enormous amount of knowledge and intuition has
been developed. At the same time, perhaps no problem in nuclear structure has so stubbornly
resisted a satisfactory solution as the microscopic derivation of shell model interactions. The
general path has been more or less known for more than half a century, but only recently has
the available computational power, combined with a more systematic way of thinking about
nuclear forces and the many-body problem, given rise to a direct connection among the shell
model, the forces applicable to few-body scattering, and the underlying physics of the Standard
Model.

We are not quite in the promised land.While there are certainly many details remaining to be
worked out (including those mentioned here) and several clear extensions to be made (continuum
effects, reactions), there are still two major hills to climb: a fully consistent and satisfactory power
counting for the interaction and a rigorous uncertainty quantification for ourmany-bodymethods.
We hope that progress can be made on these fronts in the near future, which will enable a broadly
applicable, quantitatively predictive theory of nuclear structure.

APPENDICES

A. IN-MEDIUM SIMILARITY RENORMALIZATION GROUP
FLOW EQUATIONS

For reference, we present the IMSRG(2)/VS-IMSRG(2) flow equations (145, 146, 167). Ground-
state and valence-space decoupling differ only by the choice of the generator η (146, 168).

The system of flow equations for the zero-, one-, and two-body parts of H (s) result from
evaluating

dH
ds

= [η(s),H (s)] 87.

with normal-ordered Fock-space operators that are truncated at the two-body level:18

18These expressions can be easily adapted to evaluate the nested commutators appearing in the Magnus for-
mulation of the IMSRG.
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H =E0 +
∑
i j

fi j{a†i a j} + 1
4

∑
i jkl

�i jkl {a†i a†j al ak}, 88.

η=
∑
i j

ηi j{a†i a j} + 1
4

∑
i jkl

ηi jkl {a†i a†j al ak}. 89.

Then, the flow equations are

dE0

ds
=
∑
ab

nan̄b(ηab fba − fabηba ) + 1
4

∑
abcd

nanbn̄cn̄d (ηabcd�cdab − �abcdηcdab), 90.

dfi j
ds

=
∑
a

(ηia fa j − fiaηa j ) +
∑
ab

(na − nb)(ηab�bia j − fabηbia j )

+ 1
2

∑
abc

(nanbn̄c + n̄an̄bnc )
(
ηciab�abc j − �ciabηabc j

)
, 91.

d�i jkl
ds

=
∑
a

(1 − Pi j )(ηia�a jkl − fiaηa jkl ) − (1 − Pkl )(ηak�i jal − fakηi jal )

+ 1
2

∑
ab

(n̄an̄b − nanb)(ηi jab�abkl − �i jabηabkl ) 92.

−
∑
ab

(na − nb)(1 − Pi j )(1 − Pkl )ηb jal�aibk,

where Pi j exchanges indices i and j, na is the occupation of orbit a, and n̄a ≡ 1 − na.

B. CANONICAL PERTURBATION THEORY TO SECOND ORDER

We partition the Hamiltonian into a zeroth-order piece and a perturbation,

H = H0 + xV, 93.

and we consider a perturbative expansion in powers of the dimensionless order parameter x, where
in the end we take x = 1.We further distinguish between diagonal and off-diagonal components,
V = V d +V od , where off-diagonal generically means the terms we wish to suppress by the
transformation

Heff = eGHe−G . 94.

As in the discussion leading to Equation 39, we use the superoperator notation to express a
commutator withH0 in terms of an energy denominator�. Through second order in x, we obtain
for G

G[1] = V od

�
,

G[2] = [G[1],V d]od /�+ 1
2
[G[1],V od]od /�. 95.
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The second term in G[2] will vanish for A-body Hilbert-space formulations, but not in general
for a Fock-space formulation. This is related to the different meanings of off-diagonal in the two
formulations. The transformed Hamiltonian through second order is

H [0]
eff =H0,

H [1]
eff =V d , 96.

H [2]
eff = [G[1],V d]d + 1

2
[G[1],V od]d .

C. INTEGRATION OF THE MAGNUS FLOW EQUATION
TO SECOND ORDER

Here,we integrate the flow equation (Equation 28) explicitly to second order.As in Appendix B,we
partition the Hamiltonian into a zeroth-order pieceH0 and a perturbationV, and we split the per-
turbation into diagonal and off-diagonal pieces.We use the White generator, which we write as

η(s) ≡ Hod (s)
�

, 97.

using the superoperator notation introduced in Section 2.3. To first order in x, the flow equation
for � is

d�[1]

ds
= η[1](s) = H [1]od (s)

�
= V od

�
+ [�[1](s),H0]od/� = V od

�
−�[1](s). 98.

A differential equation for �[2](s) may be obtained in a similar manner. The solutions, given the
initial condition �(0) = 0, are

�[1](s)= (1 − e−s )
V od

�
,

�[2](s)= (1 − e−s − se−s )
[
V od

�
,V d

]od
/�+ 1

2
(1 − e−2s )

[
V od

�
,V od

]od
/�. 99.

The flowing Hamiltonian through second order is

H [0] =H0,

H [1] =V d + e−sV od ,

H [2] = (1 − e−s )
[
V od

�
,V d

]d
+ 1

2
(1 − e−2s )

[
V od

�
,V od

]d
100.

+ se−s
[
V od

�
,V d

]od
+ e−s(1 − e−s )

[
V od

�
,V od

]od
.

We see that at first order, the off-diagonal part of the perturbation is exponentially suppressed.
At s = 0, the second-order piece is by definition zero. As s increases, we initially induce both
diagonal and off-diagonal second-order terms. Eventually, the induced second-order terms are
suppressed exponentially, leaving a purely diagonal second-order correction.
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Taking the limit s → ∞, we obtain the same generator and effective Hamiltonian as the canon-
ical perturbation theory in Appendix B. Note that this equivalence requires the same definition of
off-diagonal and that the results will differ at higher orders if we include the commutator terms
on the right-hand side of the Magnus flow equation (Equation 28).
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