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Abstract

The Trojan HorseMethod (THM) represents an indirect path to determine
the bare nucleus astrophysical S-factor for reactions among charged particles
at astrophysical energies. This is achieved by measuring the quasi-free cross
section of a suitable three-body process. The method is also suited to study
neutron-induced reactions, especially in the case of radioactive ion beams.
A comprehensive review of the theoretical as well as experimental features
behind the THM is presented here. An overview is given of some recent
applications to demonstrate themethod’s practical use for reactions that have
a great impact on selected astrophysical scenarios.
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1. INTRODUCTION

All nuclei have a positive charge, and because of the Coulomb repulsion between like charges,
any fusion process requires considerable energy to take place. This critical issue in nuclear astro-
physics makes the study of all nucleosynthesis processes at the relevant temperatures extremely
challenging. The Coulomb repulsion is indeed responsible for the exponential decrease of the
cross section σ (E) at energies that correspond to those temperatures. For this reason, the behav-
ior of σ (E) at low energy is usually extrapolated from higher energies (typically E > 100 keV) by
means of the astrophysical S-factor,

S(E ) = Eσ (E ) exp(2πη), 1.

where η is the Sommerfeld parameter of the colliding nuclei, and exp (2πη) is the inverse of the
Gamow factor that removes the energy dependence of σ (E) due to the barrier tunneling.However,
even an easier extrapolation can be a source of additional uncertainties for σ (E) due, for instance,
to the presence of unexpected resonances.

Another critical issue in the laboratory measurement of nucleosynthesis processes is the elec-
tron screening effect. Both the target and the projectile are usually embedded in neutral/ionized
atoms or molecules and lattices, and their electron clouds are responsible for a reduction of the
Coulomb barrier, which leads in turn to an increased cross section for screened nuclei, σ s(E), com-
pared with the cross section for bare nuclei, σ b(E) (1, 2). Therefore, the so-called screening factor,
defined as

flab(E ) = σs(E )/σb(E ) ≈ exp(πηUe/E ), 2.

where Ue is the so-called electron screening potential (1, 2), has to be taken into account to de-
termine the bare nucleus cross section. In the stellar plasma, the cross section σ pl(E) is related to
the bare nucleus cross section by a similar enhancement factor:

fpl(E ) = σpl(E )/σb(E ) ≈ exp(πηUpl/E ), 3.
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which can be calculated once the plasma screening potentialUpl is known, depending on important
properties of the plasma such as the Debye-Hückel radius. A measurement ofUe, which is needed
to calculate σ s(E) from Equation 2, would also improve our understanding of Upl. Low-energy
fusion reactions involving charged particles measured to date have indeed shown the exponential
enhancement according to Equation 2 (see also Reference 2). However, the deduced Ue values
are often larger than the adiabatic limit, which is provided by the atomic models as the difference
between the electron binding energies of the separate atoms in the entrance channel and that of
the composite atom (2, 3). This disagreement in laboratory experiments is yet to be justified, and
it prevents a full understanding of the effects under astrophysical conditions.

A weak point in the laboratory approach—and thus in the deduced Ue value—is the need to
make an assumption regarding the energy dependence of σ b(E) at ultralow energies.Thus, indirect
techniques (see 4–6 and references therein) have been introduced to overcome all these difficulties,
most of which involve the need to extrapolate the cross sections into the unknown. They make
use of direct reaction mechanisms, such as transfer processes (stripping and pickup) and quasi-
free (QF) reactions (knockout reactions). In particular, the Trojan Horse Method (THM) (for
recent reviews, see 6–10) provides a successful alternative path to determine σ b(E) for reactions
between charged particles. It has been successfully applied many times in the last two decades to
reactions connected with fundamental astrophysical problems (see 11–13 and references therein).
In the last few years, reactions involving heavier systems, such as 12C, have been investigated (14).
Here we review the basic ideas of the THM and show some recent results. We start with a com-
prehensive theoretical overview from the original idea to the most updated developments. Then
we describe applications of the method to determine the reaction rates relevant for astrophysics.

2. GENERAL FEATURES OF THE TROJAN HORSE METHOD

The original idea to use breakup reactions as an indirectmethod to investigate low-energy charged
particle reactions relevant for nuclear astrophysics was introduced in References 15 and 16. In this
approach, the binary rearrangement reaction to be determined at sub-Coulomb energies,

A+ x→ C + c, 4.

is replaced by a suitable high-energy reaction with a three-body final state,

A+ a→ C + c + s, 5.

which is called a Trojan Horse (TH) reaction. Particle a, the TH, is assumed to be a well-clustered
nucleus with a x�s cluster configuration as the major component of its wave function. The TH
reaction can be seen as a transfer to the continuum, where the TH nucleus a breaks up into x,
the transferred nucleus, and s, the spectator to the subprocess. The link between the cross sec-
tions of the two reactions is established with the help of the theory of direct reactions. Since the
cluster x is bound in the TH nucleus a and moves with a certain distribution of momenta, the so-
called Fermi motion, it is possible that low energies in the A + x relative motion can be reached
despite the large energy in the A + a relative motion. At the same time, the electron screening
will be negligible. The TH reaction is supposed to be surface dominated, and the usual reduc-
tion of the cross section of the subprocess by the Coulomb barrier will be suppressed because
the particle x is brought close to the nucleus A inside the TH particle a at high energy. In this
original proposal of the THM, the tail of the x+ s wave function in momentum space is explored.
This interpretation, however, was later superseded. It was realized that the TH reaction has to
be studied under QF conditions for a successful application of the THM in experiments. These
kinematic conditions correspond to the region close to the maximum of the x + s momentum
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Figure 1

Scheme of a quasi-free Trojan Horse reaction. The upper vertex shows the a→ x + s breakup. The lower
vertex shows the reaction of astrophysical interest, which proceeds through the formation of intermediate
system B.

distribution where the momentum transfer to the spectator s is small. In this selected part of the
three-body phase space, the QF process gives the main contribution to the cross section of the
TH reaction compared with other mechanisms (e.g., sequential or compound-nucleus reactions).
TheQF reaction mechanism can be represented using a pole diagram (17) (see Figure 1) with two
vertices, one referring to the breakup of a (upper vertex in Figure 1) and the other to the binary
reaction of astrophysical interest (lower vertex in Figure 1), with s as a spectator. This picture
will be reflected in the expression relating the cross sections of the two reactions as a result of the
theoretical description in certain approximations.

It is worth considering the kinematic conditions in more detail. Energy conservation of the
TH reaction can be formulated as

EAa = ECc + EBs − QA+a→C+c+s 6.

with the Q value

QA+a→C+c+s = mA +ma −mC −mc −ms 7.

and the kinetic energies of relative motion Ei j = p2i j/(2μi j ) of two particles i and j that depend
on the relative momenta �pi j = μi j (�pi/mi − �p j/mj ) and reduced masses μij = mimj/(mi + mj). The
combined system C + c with total momentum �pB = �pC + �pc and mass mB = mC + mc is denoted
below as B. Introducing the binding energy Bxs = mx + ms − ma > 0 of the TH particle a and
using energy conservation of the two-body reaction, the effective kinetic energy

EAx = ECc +mC +mc −mA −mx = EAa − EBs − Bxs 8.

in the initial state of the subprocess is expressed by means of the energies of the TH reaction.
Momentum conservation of this reaction,

�pA + �pa = �pC + �pc + �ps = �pB + �ps, 9.

provides a further constraint for the kinematics.
The QF condition of zero momentum transfer to the spectator s determines its momentum

as �ps = ms�pa/ma—that is, no change in velocity. In the center-of-mass system of the TH reaction,
the relative momenta are given by �pAa = �pA = −�pa and �pBs = �pB = −�ps, and thus

EBs = p2s
2μBs

=
(
ms

ma

)2 p2a
2μBs

=
(
ms

ma

)2
μAa

μBs
EAa. 10.
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It follows that the QF energy

EQF
Ax =

[
1−

(
ms

ma

)2
μAa

μBs

]
EAa − Bxs 11.

in the entrance channel of the two-body reaction is completely determined by the energy in the
initial state of the TH reaction. It can become very small and even negative depending on the
binding energy Bxs of the TH particle a and the choice of EAa since the prefactor of EAa is smaller
than one. However, a change of EQF

Ax is not accomplished in real experiments by changing EAa. It
is usually more suitable to keep the beam energy at a fixed value and to explore a certain range
in ps and thus pxs around its QF value pQF

xs = 0 with an upper limit κxs =
√
2μxsBxs that represents

the on-energy-shell (OES) wave number of the bound state of a. This procedure, outlined first
in Reference 18, is indeed a different approach to the THM compared with the original idea
from Reference 15, where the relevant values of pxs were much larger (of the order of hundreds
of MeV/c) because a high pxs was needed to compensate for the energy of the A + a relative
motion. The amplitude of the momentum distribution at such high momenta can be very small
compared with that at pxs = 0, and it becomes critical to separate the QF process from other
competitive reactionmechanisms. Since the analysis of the experimental data relies on the shape of
themomentum distribution, a reliable theoretical description is required.This is more challenging
for the tail than at small pxs values. The finite range of pxs in the intercluster motion is needed only
to select the region of astrophysical energies that is accessible in the TH experiment. Usually
it is of the order of few tens of MeV/c. A typical momentum distribution analysis is shown in
Figure 2 for the 18O(p, α)15N reaction studied using 2H as the TH nucleus (19). Figure 2 shows
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Figure 2

Experimental momentum distribution for the spectator (blue circles) from Reference 19 compared with
theoretical ones, given in plane-wave impulse approximation (solid black line) and distorted-wave Born
approximation (dashed red line) normalized to the experimental maximum. Figure adapted with permission
from Reference 19; copyright 2010 The American Astronomical Society.
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the experimental momentum distribution compared with the theoretical ones, given in plane-
wave impulse approximation (PWIA) by the square of the Hulthén wave function in momentum
space and calculated in the framework of the distorted-wave Born approximation (DWBA) using
the Fresco code (20) with optical potential parameters extrapolated from Reference 21. The two
curves are scaled to the experimental maximum for comparison. Agreement is apparent within
experimental errors for a neutron momentum ps ≤ 50 MeV/c (matching the κxs =

√
2μxsBxs value

for deuterons), and this regulates the selection of QF events for further data analysis.
If the momentum of particle x in the subprocess of the TH reaction were calculated as

�px = �pa − �ps = (1−ms/ma )�pa using the QF condition, the momentum

�pAx = μAx
(
�pA
mA
− �px
mx

)
= −μAx

[
1
mA
+
(
1− ms

ma

)
1
mx

]
�pa 12.

would enter in the usual dispersion relation of the relative energy

EAx = p2Ax
2μAx

= μAxμAa
[

1
mA
+
(
1− ms

ma

)
1
mx

]2
EAa, 13.

which is clearly different from EQF
Ax . Hence, the subprocess in the TH reaction is off the energy

shell, and x has to be considered as a virtual particle.
The QF condition that pxs should be close to zero also affects the choice of TH nuclei used in

actual TH experiments. A dominance of the QF reaction mechanism is expected at the maximum
of themomentum distribution.Hence,THnuclei with a strong cluster component in an S-wave of
relative motion are preferred—for instance, 2H for two-body reactions with protons or neutrons
or 6Li for the transfer of deuterons or α particles.

3. THEORY OF THE TROJAN HORSE METHOD

The theoretical description of the TH reaction can follow different approaches to establish the
relation of the TH cross section to that of the binary reaction of astrophysical interest. It can
be split into two separate steps: a first one that expresses the cross sections in terms of kinematic
quantities and the corresponding transitionmatrix elements, and a second one to actually calculate
the matrix elements. Different approximations that have been used in the literature for the latter
step are discussed below.

3.1. Cross Sections

There is a standard way to derive expressions for the cross sections of reactions with two and three
particles in the final state (see, e.g., 22, 23). These expressions depend on the choice of a reference
frame and the selection of the measured quantities in the final state. For the binary reaction,
the final state is described by two momenta (i.e., six variables). Energy and momentum con-
servation reduces the number to two independent quantities—for instance, the emission angles
�Cc = (θCc, φCc) of the relative motion of the ejecta. Then the differential cross section assumes
the form

dσA+x→C+c
d�Cc

= μAxμCc

(2π )2�4
pCc
pAx

1
(2JA + 1)(2Jx + 1)

∑
MAMx

∑
MCMc

|TA+x→C+c|2 14.

with the usual summation over spin projections,MC andMc, in the final state and averaging over
that in the initial state,MA andMx, for nuclei with total angular momenta JA and Jx, respectively.
Corresponding expressions to Equation 14 can be given for the TH reaction. Here the final state
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is fully characterized by (3× 3)− 4= 5 independent variables, and it is possible to choose different
combinations of quantities that are observed in the final state. Choosing the energy and momen-
tum direction of a particle i and the momentum direction of a particle j as kinematic quantities,
the differential cross section is given by

dσA+a→C+c+s
dEid�id� j

= μAamimj

(2π )5�7
pi p j
pAa

[
1+ mj

mk

(
1−

�P( jk) · �p j
p2j

)]−1
15.

1
(2JA + 1)(2Ja + 1)

∑
MAMa

∑
MCMcMs

|TA+a→C+c+s|2 ,

where �P( jk) = �pA + �pa − �pi, and the particle k is not detected in the experiment. Alternatively, rel-
ative coordinates can be used for the following result:

dσA+a→C+c+s
dEi jd�i jd�(i j)k

= μAaμi jμ(i j)k

(2π )5�7
pi j p(i j)k
pAa

16.

1
(2JA + 1)(2Ja + 1)

∑
MAMa

∑
MCMcMs

|TA+a→C+c+s|2 ,

which has a simpler structure than Equation 15. The T-matrix elements TA + x→ C + c and
TA + a→ C + c + s in Equations 14–16 contain the essential information on the reaction and are con-
sidered in the following section.

3.2. Transition Matrix Elements

The T-matrix element of the TH reaction has been considered in different approximations in the
literature. The simplest approach is the PWIA (see, e.g., 24), which was originally used for re-
actions at high energies. It provides a simple expression for the cross sections in factorized form.
However, a heuristic modification was necessary to account for the effect of the reduced Coulomb
barrier penetration. Other approaches use the plane-wave Born approximation (PWBA) or the
DWBA to derive the relation of the cross sections for the TH reaction and the two-body subpro-
cess. They provide an explanation for the Coulomb penetration correction in the modified PWIA.
To simplify the notation, spins of the particles are not considered below, and relative coordinates
are used. General expressions with full angular momentum coupling can be found in the original
literature. Antisymmetrization is also not taken into account.

3.2.1. Modified plane-wave impulse approximation. The PWIA is the simplest approach to
understand the main features of the TH theory. The T-matrix elements of the two reactions of
interest can be written in symbolic form as

TA+x→C+c(�pCc, �pAx ) = 〈ψCc(�pCc )|T̂A+x→C+c|ψAx(�pAx )〉 17.

and

TA+a→C+c+s(�pCc, �pBs, �pAa ) = 〈ψCcs(�pCc, �pBs )|T̂A+a→C+c+s|ψAa(�pAa )〉 18.

with the corresponding transition operators T̂A+x→C+c and T̂A+a→C+c+s, which are solutions
to the appropriate integral equations for reactions in general (22). The wave functions
ψi j (�pi j ) = φiφ j exp(i�pi j · �ri j/�) and ψi jk(�pi j , �p(i j)k ) = φiφ jφk exp[i(�pi j · �ri j + �p(i j)k · �r(i j)k )/�] in
Equations 17 and 18 are given by plane waves for the relative motion of the nuclei i, j, and k
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with internal cluster wave functions denoted by φA, φa, φC, φc, φs, and φx. The ground state wave
function of the TH can be written in the cluster approximation as

φa = φxφsχxs(�rxs ) = φxφs
∫

d3q
(2π�)3

χ̃xs(�q) exp(i�q · �rxs/�) 19.

with the wave function of relative motion χxs(�rxs ) in coordinate space and χ̃xs(�q) in momentum
space. The essential step in the PWIA is to replace T̂A+a→C+c+s in Equation 18 with T̂A+x→C+c,
assuming that the spectator s is not involved in the TH reaction. A change of coordinates from
�rAa and �rxs to �rBb and �rAx and integration over �rBs and �q (see 25) lead to the factorization

T PWIA
A+a→C+c+s(�pCc, �pBs, �QAa ) = χ̃xs( �QBs ) TA+x→C+c(�pCc, �QAa ) 20.

with the momenta �QAa = �pAa − mA
mA+mx

�pBb and �QBs = �pBs − ms
mx+ms �pAa. The meaning of the argu-

ment �QBs of the momentum space wave function χ̃xs is most easily seen in the center-of-mass
system. In this case, �QBs = ms

mx+ms �pa − �ps; that is, it is the (negative) momentum transfer to
the spectator s, and thus the QF scattering condition corresponds to �QBs = 0. Combining
Equation 20 with the expressions of the cross sections from Equations 14 and 16, the relation

dσA+a→C+c+s
dECcd�Ccd�Bs

= K
∣∣∣χ̃xs( �QBs )

∣∣∣2 dσHOES
A+x→C+c
d�Cc

21.

is obtained with a kinematic factor

K = μAaμBs

(2π�)3μAx
pAx pBs
pAa

2Jx + 1
2Ja + 1

22.

if the choice of i = C, j = c, and k = s is made and relative coordinates are used to specify the final
state. Similar relations are found for other choices of the kinematic variables. The cross section
of the two-body reaction in Equation 21 carries the superscript HOES (half off the energy shell)
because the momentum in the entrance channel of the two-body reaction is not �pAx, as required
by energy conservation, but �QAa.

Equation 21 shows the typical structure with three factors as a result of the PWIA: a kinematic
factor, a momentum distribution, and a cross section of the two-body subprocess. In this form,
however, it is not directly applicable in the THM. The HOES cross section has to be converted
to the OES cross section from Equation 14 for the reaction of interest. This is accomplished
heuristically by introducing a simple factor,

dσHOES
A+x→C+c
d�Cc

= N
TAx

dσA+x→C+c
d�Cc

, 23.

with a normalization constantN and penetrabilityTAx.The latter is assumed to compensate for the
Coulomb suppression of the cross section in the regular OES two-body reaction. The Coulomb
penetrability is defined in general as

TAx =
[
F2
lAx
(kAxRAx )+G2

lAx
(kAxRAx )

]−1
24.

with regular and irregular Coulomb wave functions Fl and Gl, respectively. It depends on the
orbital angular momentum lAx and momentum �kAx = pAx and is calculated at a certain radius RAx.
For lAx = 0, which is valid for almost all applications of the THM, the limit RAx→ 0 can be taken
for the following result:

TAx → 2πηAx
exp(2πηAx )− 1

, 25.
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where the Sommerfeld parameter,

ηAx = ZAZxe2

�

μAx

pAx
, 26.

contains the charge numbers ZA and Zx of the nuclei in the entrance channel of the two-body
reaction. At low energies EAx, ηAx becomes very large, and the factor pAx in the kinematic factor
(Equation 22) combines with the penetrability as

pAx
TAx
→ pAx

2πηAx
exp(2πηAx ) ∝ EAx exp(2πηAx ), 27.

which is the factor in the usual definition (Equation 1) of the astrophysical S-factor. It shows only a
weak energy dependence in the absence of resonances and is used frequently for the extrapolation
of cross sections to low energies.Hence, theTHMgives direct access to the S-factor of low-energy
reactions of astrophysical interest. The introduction of the factor N/TAx in Equation 23 needs a
justification that is found with improved approximations of the T-matrix element in Equation 16.
Nevertheless, it is the standard description used in most experimental applications of the THM.

3.2.2. Postform distorted-wave and plane-wave Born approximations. This approach was
developed in References 25 and 26 to justify the heuristic penetrability correction (Equation 23)
to relate the HOES and OES cross sections for the two-body subprocess. It was used in the first
successful applications of the THM (18, 27–32). For a transfer reaction to a bound state in the
final B = C + c system (i.e., A + a→ B + s), the exact T-matrix element is given by the postform
expression

T post
A+a→B+s = 〈φBφsχ (−)

Bs (�pBs )|VBs −UBs|� (+)
Aa (�pAa )〉 28.

with the full many-body interaction VBs in the final state, a distorted wave χ (−)
Bs generated from the

optical potentialUBs, and the full solution of the scattering problem�
(+)
Aa in the initial state. In the

application to the THM, a transfer reaction to the continuum, the bound state wave function φB
is replaced by the scattering wave function � (−)

Cc (�pCc ), and the full solution � (+)
Aa is approximated

by a distorted wave φAφaχ
(+)
Aa (�pAa ). Then one arrives at the following postform DWBA:

TDWBA,post
A+a→C+c+s = 〈� (−)

Cc (�pCc )φsχ
(−)
Bs (�pBs )|VBs −UBs|φAφaχ (+)

Aa (�pAa )〉, 29.

where the imaginary parts of the optical potentials cause a strong suppression of the wave function
amplitudes at small distances of the clusters.Hence, the main contribution arises from the external
part of themany-body integral, and the internal part can be neglected. It is customary in the theory
of direct reactions to replace the full transition potentialVBs −UBs by the approximationVxs.Then,
similar to Equation 19, it is possible to introduce a momentum amplitudeW through the relation

Vxsφa = φxφs
∫

d3q
(2π�)3

W (�q) exp(i�q · �rxs/�), 30.

which can be expressed as W (�q) = −[Bxs + q2/(2μxs )]χ̃xs(�q) when the Schrödinger equation for
the bound state wave function φa is used.

The two-body subprocess can be considered a peripheral reaction at the low energies of in-
terest. Thus, the full scattering wave function can be replaced by its asymptotic form for large
distances rα of the clusters in all channels α = Cc, Ax, . . . . It is given by

�
(±)
Cc (�pCc )→

4π
kCc

∑
α

∑
lm

ξ
(±)
l (α, rα )
rα

ilYlm(r̂α )Y ∗lm(k̂Cc )�α 31.
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when an expansion in partial waves is introduced with �pCc = �kCc. The �α describes the internal
wave functions of the clusters (e.g., �Cc = φCφc, �Ax = φAφx). The radial wave function in a
channel α

ξ
(+)
l (α, rα ) = 1

2i

√
vCc

vα

[
SlαCcu

(+)
l (kα , rα )− δαCcu(−)l (kα , rα )

]
32.

with ξ (−)l (α) = ξ (+)∗l (α) contains the channel velocities vα = pα/μα , the S-matrix elements Sl
αCc for

the reactionC+ c→ α, and linear combinations u(±)l (kα , rα ) = exp[∓iσl (ηα )] [Gl (kαrα )± iFl (kαrα )]
of the Coulomb wave functions with Coulomb phase shifts σ l. With the selection of the channel
α = Ax, the results above combine to the approximation

TDWBA,post
A+a→C+c+s=

1
2ikCc

√
vCc

vAx

∑
l

(2l + 1) 33.

[
SlAxCc U

(+)
l (�pBs, �pCc, �pAa )− δAxCcU (−)

l (�pBs, �pCc, �pAa )
]

of the T-matrix element with functionsU±l (�pBs, �pCc, �pAa ), which are defined in Reference 26. This
result closely resembles the definition of the scattering amplitude

f (Cc→ Ax) = 4π
2ikCc

√
vCc

vAx

∑
lm

Y ∗lm(r̂Ax )Ylm(k̂Cc )
[
SlAxCc − δAxCc

]
, 34.

which appears in the cross section

dσ
d�Ax

(Cc→ Ax) = vAx

vCc

∣∣ f (Cc→ Ax)
∣∣2 35.

of the reaction C+ c→ A+ x. Since it is the inverse of the subprocess of interest, its cross section
is easily transformed to that of the inverse reaction with the help of the theorem of detailed
balance. The calculation of the functions U (±)

l is rather complicated in general, and there is no
simple connection between the T-matrix element (Equation 33) and the scattering amplitude
(Equation 34) if many partial waves contribute. In particular, the momentum distributionW does
not appear as an overall factor.

A connection to the PWIA can be made when the distorted waves χ (+)
Aa and χ

(−)
Bs in

Equation 29 are replaced by plane waves. Following the same steps as in the derivation of
Equation 20, the result

T PWBA,post
A+a→C+c+s =W ( �QBs ) 〈� (−)

Cc (�pCc )|φAφx exp(i �QAa · �rAx )〉 36.

in the postform PWBA is obtained with a factorization as in the PWIA. Introducing the
partial-wave expansion of � (−)

Cc , the T-matrix element (Equation 36) assumes a product form

T PWBA,post
A+a→C+c+s =

�

kAxQAa
W ( �QBs ) fTHM(Cc→ Ax) 37.

with the THM scattering amplitude

fTHM(Cc→ Ax)= 4π
2ikCc

√
vCc

vAx

∑
lm

Y ∗lm(Q̂Aa )Ylm(k̂Cc ) 38.

[
SlAxCcJ

(+)
l (R, kAx,QAa )− δAxCcJ(−)

l (R, kAx,QAa )
]
,

which includes the off-shell effects explicitly in the form of dimensionless functions J(±)
l , which

are defined and studied in detail in Reference 26. The scattering angle is defined with respect to
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the direction of �QAa instead of �rAx. Finally, if only one partial wave l contributes to the reaction,
the relation

dσA+a→C+c+s
dECcd�Ccd�Bs

= μAaμBs

(2π�)3μAx
pAx pBs
pAa

2Jx + 1
2Ja + 1

∣∣∣χ̃xs( �QBs )
∣∣∣2 Fl dσl

d�Aa
(Ax→ Cc) 39.

of the cross sections with the dimensionless factor

Fl = 1
(2π )2v2

AxQ
2
Aa

(
Bxs + Q2

Bs

2μxs

)2 ∣∣∣J(+)
l

∣∣∣2 40.

is found and can be compared immediately with Equations 21–23. As shown in Reference 26, the
integrals J(±)

l behave as (kAx/QAa)3/2exp(πηAx) for low energies EAx, and thus Fl ∝ kAxexp (2πηAx),
which is the inverse of the penetrability TAx in Equation 25. Hence, the conversion of the HOES
cross section to the OES cross section in Equation 23 is well founded.

The calculation of the functions J(±)
l , and more generally that of the functions U (±)

l in
Equation 33, is a delicate numeric problem because it involves a product of radial scattering wave
functions in the integrals with an infinite upper boundary.The origin of this difficulty can be traced
back to the replacement of a bound state wave function φB in the T-matrix element (Equation 28)
by a scattering wave function � (−)

Cc . In contrast, for a transfer reaction to a bound state, the in-
tegrals converge properly because of the exponential decrease of the radial wave functions. The
numeric problem can be circumvented in a different approach, which is described in the following
subsection.

3.2.3. Prior-form distorted-wave Born approximation and surface-integral approach.
Instead of using the postform expression (Equation 29) for the T-matrix element of the THM
reaction, it is possible to start with the exact prior-form expression

T prior
A+a→B+s = 〈� (−)

Ccs (�pCc, �pBs )|VAa −UAa|φAφaχ (+)
Aa (�pAa )〉 41.

in obvious notation for the wave functions and potentials. The full solution of the three-
body scattering problem �

(−)
Ccs (�pCc, �pBs ) is replaced in the DWBA by � (−)

Cc (�pCc )φsχ
(−)
Bs (�pBs ) as in

Section 3.2.2. This expression has been used to introduce the surface-integral approach as
developed in References 33 and 34 and applied to the THM (see, e.g., the review in 35). The
matrix element is split into two contributions:

TDWBA,prior
A+a→B+s = TDWBA,prior

A+a→B+s,int + TDWBA,prior
A+a→B+s,ext, 42.

where the integration over rAx is limited to the intervals [0, RAx] and [RAx,∞], respectively, with a
channel radius RAx. The external matrix element is small and can be neglected with a reasonable
choice of the channel radius RAx. The main point of the surface-integral approach is that the
transition potential in the internal matrix element is now rewritten as

VAa −UAa=VAs +VAx −UAa 43.

= (VAs +Vxs −UBs )− (Vxs +UAa )+ (VAx +UBs )

with three operators in parentheses. The first is the transition potential VBs − UBs as in the
postform DWBA matrix element (Equation 29). The latter two terms can be identified with the
potentials in the Schrödinger equations of the initial and final channel wave functions withHamil-
toniansHi =mA +mx +ms + Txs + Vxs + TAa +UAa andHf =mC +mc +ms + TCc + VCc + TBs +
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UBs when using VAx = VCc. Hence, the internal contribution can be transformed into

TDWBA,prior
A+a→B+s,int = TDWBA,post

A+a→B+s,int − 〈� (−)
Cc (�pCc )φsχ

(−)
Bs (�pBs )|

←
T −

→
T |φAφaχ (+)

Aa (�pAa )〉 44.

with the kinetic energy operator of relative motions T = Txs + TAa = TCc + TBs = TAx + TBs
acting on the bra and ket state and expressed in different sets of Jacobi coordinates. It is essential
that the matrix element with the kinetic energy operators not vanish as for a Hermitian operator
because the wave functions do not belong to the proper class of functions. The internal postform
matrix element in Equation 44 can be neglected, as in Section 3.2.2, because it is small. It is
argued in Reference 34 that the kinetic energy operator TBs gives no contribution to the second
matrix element and that only the TAx part remains. Then, a final partial integration with respect
to the coordinate �rAx leads to a surface integral over a sphere with channel radius RAx but volume
integrals with respect to the other coordinates.

This surface-integral reformulation of the T-matrix element is useful because the calculation
of integrals with external wave functions over an infinite volume is avoided. It is also possible to
establish a direct connection to R-matrix theory (36) (see below), introducing parameters like the
reduced width amplitudes if the TH reaction proceeds through a resonance in the A + x system
in the intermediate state before decaying into the C + c channel (35). This treatment of the TH
reaction, however, raises a new question. The DWBA-type calculation of the T-matrix element
assumes a direct single-step process in the TH reaction reflected by the appearance of a single
transition potential in the matrix element. The TH nucleus a breaks up into a spectator s, and
the particle x is transferred to the nucleus A, initiating the reaction to the C + c system. This
description is reflected in the factorization of the T-matrix element (e.g., in Equations 20 and 36),
or in the cross section in Equation 21, and corresponds to the two vertices in Figure 1. However,
the (off-shell) propagation of the transferred particle x after the breakup of a and before reacting
with A is not explicitly considered in the formulations discussed above. Such an approach has been
studied in the context of the R-matrix surface-integral approach (e.g., 35). The picture of a two-
step process is also supported when a connection of the THM to the inclusive nonelastic breakup
(INEB) theory is made (37, 38). Finally, we would like to recall that since the TH reaction involves
genuine three-body bound and scattering states, a Faddeev-like formulation of three-body systems
(39) might be required for a more precise and quantitative description. In particular, the scattering
problem with three charged particles poses a challenge in the theoretical description of the wave
function asymptotics. This issue has to be explored in the future and can help to assess the validity
of the approximations employed thus far. In what follows, we provide the most relevant details of
the R-matrix approach (usually referred to as modified R-matrix) that is routinely used in many
THM studies.

3.2.4. Connection to R-matrix theory. Assuming that the system B is populated following the
a breakup and the emission of the spectator nucleus s, the TH reaction amplitude describing the
process is given in the prior form by (disregarding particle spins)

M(P,�kaA ) ∝ 〈χ (−) (�ksB )�
(−)
B |�VsB|ϕaϕA� (+)

i 〉, 45.

where � (+)
i is the exact a + A scattering wave function, �(−)

B is the wave function of the system
B = c + C = x + A, χ (−) (�ksB ) is the distorted wave of the system s + B, ϕi is the i-th nucleus
bound state wave function,�ki j is the relative momentum of nuclei i and j, P = {�ksB,�kcC} is the six-
dimensional momentum describing the three-body system s, c, andC, and�VsB =VsB −UsB.Using
the spectral decomposition of the�(−)

B wave function given by equation 3.8.1 in Reference 40, we
can easily establish the connection with the R-matrix approach. Indeed, the shell model–based
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resonant R-matrix representation for�(−)
B τ with respect to the τ channel is very similar to the level

decomposition in the internal region of the wave function in the R-matrix approach:

�
(−)
Bτ ∝

N∑
ν,μ=1

Ṽντ (Eτ ) [D−1]νμ �μ. 46.

Here N is the number of levels in the decomposition, Eτ is the relative kinetic energy of nuclei in
the τ channel, and �μ is the bound state wave function of system B excited to the level μ.Dντ is
the same-level matrix as in the R-matrix theory (36), given by equation 4.2.20b in Reference 40,
depending on the entrance and exit channels’ reduced width amplitudes, energy levels, and energy
shifts. Finally,

Ṽντ (Eτ ) = 〈χ (−)
τ ϕτ |�Vτ |�ν〉 47.

is the resonant form factor for the ν resonance level decay described by the �ν wave function
into the channel τ , and χ (−)

τ is the distorted wave in the same channel. As shown, for instance, in
Reference 41, such amplitude is directly connected to the formal partial resonance width for the
decay of this level into the τ channel:

�̃ντ (Eτ ) = 2π |Ṽντ (Eτ )|2. 48.

Following the discussion in Reference 6, the amplitude (Equation 45) directly leads to the triple
differential cross section of the a + A→ c + C + s THM process:

d3σ
dEcC d�kcC d�ksB

= μcC μsB μaA
2π5

kcC ksB
kaA

1

Ĵa ĴA

×
∣∣∣∣∣∣

N∑
ν,τ=1

Ṽν cC (EcC ) [D−1]ντ Mτ (ksB,kaA )

∣∣∣∣∣∣
2

, 49.

where Ĵ = 2J+ 1, and Ji is the spin of particle i.
Since Dντ is the same-level matrix as in the conventional R-matrix theory, the entrance and

exit channels’ reduced width amplitudes γ and energy levels can be extracted by fitting the exper-
imental THM cross section and then can be used to deduce the A(x, c)C astrophysical factor with
no need for extrapolation down to astrophysical energies.

Equation 49 takes a simpler and more intuitive form under the assumption of isolated nonin-
terfering resonances, explicitly showing the reduced width amplitudes γ (42–44):

d2σ
dExAd�s

=NF
∑
i

(2Ji + 1)

×
∣∣∣∣∣∣
√
kf (ExA )
μcC

√
2Pli (kcCRcC )Mi(pxARxA )γ icCγ

i
xA

Di(ExA )

∣∣∣∣∣∣
2

, 50.

where N is a normalization constant, kf (ExA ) =
√
2μcC (ExA +Q)/� (Q is the reaction Q value), Pli

is the penetration factor in the li-wave, and RxA and RcC are the channel radii. Assuming that the
use of plane waves is justified, a simple form for the transfer amplitudeMi(pxARxA) can be deduced
(45):

Mi(pxARxA ) =
[
(BxA i − 1) jli (ρ )− ρ

∂ jli (ρ )
∂ρ

]
ρ=pxA RxA

, 51.
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where jli (ρ ) is the spherical Bessel function, pxA =
√
2μxA(ExA + Bxs )/� [Bxs is the binding energy

of the a= (x+ s) system], and BxA i is an arbitrary boundary condition chosen, as in References 42,
44, and 46, to yield the observable resonance parameters. Finally,Di(ExA) is the standard R-matrix
denominator in the case of one-level, two-channel R-matrix formulas (36).

4. APPLICATION OF THE TROJAN HORSE METHOD
TO ASTROPHYSICAL REACTIONS

This section provides a brief overview of recent results for stable and unstable nuclei as well as
highlights of the involved astrophysical scenarios. Comparison with direct data is also presented
if available. In particular, we review the physics cases of 18F(p, α)15O, 7Be(n, α)4He, 19F(α, p)22Ne,
3He(n, p)3H, and 12C+12C fusion.

4.1. The 18F(p, α)15O Reaction in Classical Novae

Classical novae are among the most powerful explosive events in the Universe; the typical energy
released in an episode is of the order of 1037 J (approximately the Sun’s total energy output for
104 years). A classical nova originates in a binary system in which a white dwarf accretes material
from a less evolved twin star. Owing to degenerate conditions in the accretion disk, no expansion
follows compressional heating. When the temperature reaches about 7 × 107 K, degeneracy is
lifted and the layers can begin to expand, yet at this stage the temperature increases so quickly that
a thermonuclear runaway is triggered (47). Typical temperatures achieved in the runaway range
between 108 and 4 × 108 K depending on white dwarf mass; in the hot, proton-rich environment
of the accretedmaterial, the hot CNO cycle is ignited, leading to proton captures and the synthesis
of β+ unstable nuclei. Recent reviews on classical novae can be found in References 47–50.

Besides representing an important energy source, radioactive nuclides with lifetimes longer
than the typical expansion times determine a characteristic isotopic pattern that is very different
from the one attributed to CNO equilibrium cycling. Moreover, their production indicates the
opportunity to track down γ -ray emission, an additional diagnostic tool to shed light on the ex-
plosion mechanism and nucleosynthesis. Because of its half-life T1/2 ∼ 110 s, 18F supply would
not be significantly depleted until the external layers of the nova became transparent to γ radi-
ation (49). For this reason, it is expected that 18F would provide the largest contribution to the
≤511-keV γ -ray emission originated by the annihilation of positrons from 18F β+ decay, which
in turn is predicted to be the dominant contribution to the γ -ray spectrum.

While such considerations suggest the use of γ -ray lines from 18F to constrain novae models,
to date only upper limits to such lines can be set. These are converted into detectability distances,
defined as the novae maximum distance for which the 18F annihilation line could be detected.
So far, the SPI spectrometer on the space-borne γ -ray observatory INTEGRAL has managed to
establish the most accurate detectability distance of the 511-keV line,∼3 kpc (51, 52). Knowledge
of the cross sections of its production and destruction paths is then a pivotal ingredient for accurate
modeling of the outburst mechanism and nucleosynthesis.

4.1.1. The 18F(p, α)15O reaction: status of the measurements. The main 18F destruction
process is the 18F(p, α)15O reaction, which is ∼1,000 times more efficient than the 18F(p, γ )19Ne
reaction (50). Despite its importance, the former process is the most uncertain reaction among
those affecting the 18F supply, notwithstanding the theoretical and experimental studies carried
out to date. The experiments can be divided into direct and indirect ones. The direct studies
are challenging because the Coulomb barrier suppresses the cross section to vanishingly small
values; furthermore, the need for a radioactive beam (typically of an intensity of the order of 106

358 Tumino et al.



particles per second) makes the signal-to-noise ratio extremely unfavorable. Therefore, existing
studies have been unable to set stringent constraints on the trend of the astrophysical factor.Most
direct measurements focus on the 3/2+ resonance at about 700 keV in the center-of-mass system
(53–58). Few measurements have reached energies as low as 300 keV, where a 3/2− resonance has
been observed (59, 60).

Indirect methods, by contrast, have provided important additional constraints on the astro-
physical factor. Nuclear spectroscopy of 19Ne or of its 19F mirror nucleus has made it possible to
probe resonances at astrophysical energies. Two examples are the use of (d, p) reactions on 18F and
the use of 15N+α elastic scattering to explore the 19F excitation energies of astrophysical interest
(see 61 and 62, respectively).Examples of 19Ne spectroscopy include the investigation of proton in-
elastic scattering off 19Ne (63), the (d, n) transfer reaction to 18F (64), and the (p, d) neutron pickup
process off 20Ne (65, 66). These indirect studies suggest that low-energy S-wave resonances, and
in particular the 3/2+ levels above and below the proton threshold at a 19Ne excitation energy of
about 6.410 MeV, may play an important role in astrophysics.

4.1.2. Trojan Horse Method measurements of the 18F(p, α)15O cross section. The THM
is particularly suited to investigate reactions induced by unstable nuclei since the problem of the
signal-to-noise ratio is particularly severe. Indeed, in addition to the Coulomb barrier reducing
the cross section to low values, the beam intensities that are usually available can be as small as
106 particles per second, thus making the reaction yield vanishingly small at energies typical of
explosive environments such as classical novae—of the order of hundreds of keV. Another issue
is the availability of suitable beam energies for the investigation of astrophysical reactions at such
energies. Even if inverse kinematics has to be used in most cases, most radioactive ion beam facil-
ities worldwide can supply beam energies significantly larger than those needed for astrophysical
studies. Instead, they meet the requirements for applying the THMwhere the energy necessary to
break the TH nucleus and the intercluster motion also make it possible to cover the astrophysical
energy region with a single beam energy. This is an important feature of the THM in the case of
radioactive ion beam facilities since changing beam energies in small steps to study the excitation
function is often impractical.

In the case of the 18F(p, α)15O reaction, we used deuterons to transfer protons and induce
the reaction of astrophysical relevance. Two experiments were performed, one at CNS-RIKEN
( Japan) (67) and one at the Texas A&M Cyclotron Institute (United States) (68). The two runs
provided results in good agreement with each other. As discussed at length in Reference 69, the
two independent astrophysical factors were averaged to yield the recommended THM S(E) (blue
circles in Figure 3). More details can be found in the original publications (67, 68).

Given the use of radioactive ion beams, the beam spot size and the beam energy range affect
the resolution on the deduced 18F+p relative energy spectrum. Calculations show that the energy
spread reaches 53 keV (standard deviation). Therefore, to deduce the trend of the astrophysi-
cal factor devoid of energy resolution effects, we performed an R-matrix analysis of the THM
S-factor.

The procedure is discussed in detail in Reference 69; here, we summarize the main results. In
Figure 3 the best fit curve, including the effects of energy resolution, is shown as a dark gray line.
It is obtained under the (++)(++) assumption for the interference pattern, adopting the notation
used in figure 3 of Reference 65, in which pairs in parentheses refer to the relative interference
signs between 1/2+ resonances (the first pair) and 3/2+ resonances (the second one), as listed
in Table 1. Also, in this calculation it is assumed that a 7-keV resonance due to the 19Ne state at
6.417MeV gives a negligible contribution while introducing the contribution of a 7/2+ resonance
due to the 19Ne state at 6.537 MeV that was observed in References 67 and 68. The resonances
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Figure 3

Trojan Horse Method (THM) astrophysical factor (blue circles) from the weighted average of the results of
References 67 and 68. Also shown is the R-matrix fit to the experimental data including the effect of the
energy resolution (dark gray line), equal to 53 keV (standard deviation), or devoid of energy smearing effects
(red line). The uncertainties on the R-matrix function (expressed as one standard deviation) due to the
experimental error on the THM astrophysical factor are correspondingly shown as gray and red bands.
Figure adapted with permission from Reference 69; copyright 2017 The American Astronomical Society.

included in the present R-matrix analysis of THM data are shown in Table 1. The gray band in
Figure 3 marks the uncertainty range that stems from the fitting of the experimental data. The
corresponding trend free of energy resolution effects is shown as a red band in Figure 3 (the
middle red line is the best fit curve, while the light red band highlights the uncertainty range).

Table 1 Resonance parameters from an R-matrix analysis of Trojan Horse Method data

Eres (keV) Ex (keV) Jπ �p (keV) �α (keV)

−124 6,286 1/2+ 83.5 fm−1/2a 11.6

29 6,440 1/2− 3.8 × 10−19 220

49 6,460 3/2+ 2.3 × 10−13 0.9

126 6,537 7/2+ 7.1 × 10−8 1.5

291 6,702 5/2+ 2.4 × 10−5 1.2

334 6,745 3/2− 2.2 × 10−3 5.2

665 7,075 3/2+ 15.2 23.8

1,461 7,872 1/2+ 55 347

The table shows the resonance energies, the 19Ne corresponding states, their spin parities, and the proton and alpha partial
widths �p and �α (65, 69). More details can be found in References 65 and 69 and references therein. For a visualization of
these data, see Figure 3 (red line).
aSince this is a subthreshold state, the asymptotic normalization coefficient is given in the place of �p.
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While the THMdata tend to rule out a significant contribution of the 19Ne state at 6.417MeV,
in agreement with the lack of observation of the corresponding mirror state in the 15N+α elastic
scattering cross section (70), the R-matrix analysis confirms the need to introduce the 6.537-MeV
state reported in References 67 and 68.

4.1.3. Consequences for classical novae investigation. From the R-matrix astrophysical fac-
tor free of energy resolution effects (red line in Figure 3), we calculated the 18F(p, α)15O reaction
rate. At temperatures of interest for novae nucleosynthesis (0.1 ≤ T9 ≤ 0.5), the THM rate is
about a factor of 2 larger than the JINA REACLIB one (71), as obtained in Reference 65. To
check the astrophysical consequences, we used the Shiva code (50, 72), where the THM reaction
rate was introduced (69). Specifically, we ran the code for 1.25M� ONe white dwarfs, accreting
H-rich material from the companion star at a rate of 2 × 10−10M� year−1. When adopting the
THM 18F(p, α)15O reaction rate and the one from JINA REACLIB, we found no change in the
dynamical properties but did observe differences in the chemical composition of the ejecta. In
particular, a reduction of the 18F yield by a factor of about 2 was obtained in the THM case. In
turn, this reduction would decrease the detectability distance of the 511-keV annihilation line by
γ -ray satellites by a factor of about

√
2, thus helping to explain the missing observation of such a

γ -ray line.

4.2. The 7Be(n, α)4He Reaction in the Standard Big Bang Nucleosynthesis
Scenario

Big bang nucleosynthesis (BBN) occurred during the time span when our Universe was able to
produce nuclei: just after the baryogenesis, most probably between 1 and 20 min after the big
bang, while temperature was falling frommore than 109 K to 108 K. BBN has been widely studied
for decades because of its importance to the understanding of the whole big bang model; together
with the Galactic recession and the cosmic microwave background, BBN is one of the theory’s
three evidentiary mainstays. In particular, it makes it possible to probe the Universe at its earliest
stages, and thus it is a valuable tool with which to constrain the physical evolution of the big bang.
Information on the physical condition in the primordial era can be obtained by studying the pri-
mordial abundances of 2H, 3He, 4He, and 7Li (for a recent review, see 73 and references therein).
To investigate the light element abundances and their origin and evolution, several processes must
be taken into consideration besides the big bang: production by cosmic rays, stellar depletion, and
nucleosynthesis. In general, understanding of the light element abundances in stars is also limited
by the incomplete knowledge of many astrophysical processes (convection, microscopic diffusion,
and the possible presence of additional mixing mechanisms). Moreover, light element destruction
strongly depends on the adopted physical inputs and in particular on the nuclear reaction rates.
An issue that has received particular attention is the discrepancy between the predicted and ob-
served abundances of 7Li in the Sun as well as in open clusters and halo or disk stars, although
the complete picture regarding lithium burning in stars also includes the role of the less abun-
dant 6Li isotope (18, 74). It is important to stress that for all the other primordial isotopes (except
7Li), predicted and observed abundances (in the appropriate astrophysical site) do match within
uncertainties.

Despite all the efforts devoted to reduce the uncertainties, inmost cases directlymeasured cross
sections show inadequate accuracy in the energy range of interest for BBN because of intrinsic
limitations, such as the presence of the Coulomb barrier for charged particle–induced reactions,
or the need for neutron beams that span the energy region of astrophysical relevance. Recently,
indirect measurements have been performed to overcome these difficulties, using the THM in

www.annualreviews.org • The Trojan Horse Method 361



particular. This approach has been applied to some of the most influential reactions of the stan-
dard BBN network, such as 2H(d, p)3H (75–77), 2H(d, n)3He (75, 76), 3He(d, p)4He (78), and
7Li(p, α)4He (79, 80), and then extended to 7Be(n, α)4He and 3He(n, p)3H. These studies open up
new applications of the THM to neutron-induced reactions on radioactive ion beams, thus sub-
stantially widening the use of the THM to almost all reactions that are of astrophysical interest.

4.2.1. Status of the measurements. The cross section measurements of the cosmologically
relevant 7Be(n, α)4He reaction have been reported in different studies based on direct and indirect
approaches (81–85). Even if neutron-induced reactions are not hindered by the Coulomb barrier,
the reduced availability of high-luminosity and high-resolution beams at neutron facilities, as well
as the need for a significant amount of radioactive 7Be samples for irradiation, makes the use of
indirect approaches very competitive—especially the THM. Indeed, the possibility to transfer a
neutron off a deuteron makes it possible to carry out such studies at most radioactive ion beam
facilities with no need to prepare and handle substantial amounts of radioactive species.

In Reference 84, the 7Be(n, α)4He cross section was deduced by applying the charge-symmetry
hypothesis (CSH) to existing 7Li(p,α)4He THMdata.The validity of such an approach was exper-
imentally proved via the agreement between the direct 7Be(n, α)4He cross section measurements
of Reference 83 and those of Reference 81 based on the CSH using an old set of 7Li(p, α)4He
data. For the purposes of the THM, we started from the 7Li(p, α)4He cross section data of Refer-
ences 86 and 87 based on deuteron and 3He breakup THM experiments. In addition, because we
were interested in using the experimental data of use to the 7Be(n, α)4He investigation, we consid-
ered only some of the available data. In particular, because of the mass difference in the two 7Li+p
and 7Be+n entrance channels, a difference of 1.644 MeV was present between the center-of-mass
energies covered in the two cases. For this reason, only the 7Li(p, α)4He THM cross section data,
σ pα , covering a center-of-mass energy ELi+p > 1.644 MeV, were taken into account. The THM
data were converted to the σ nα of the 7Be(n, α)4He channel via the following relation:

σnα ·
ELi+p − 1.644

Pnl=1(ELi+p − 1.644)
= σpα ·

ELi+p
Pp
l=1(ELi+p)

, 52.

where Pnl=1 and Pp
l=1 represent the penetrability for the neutron channel and the proton chan-

nel, respectively (84). The result shows fair agreement with the data from References 81 and 83
and has the advantage of producing a cross section measurement right in the BBN energy re-
gion. The good agreement once again shows the validity of our assumption, as was previously
done in Reference 81. Then, the THM reaction rate was used as input in the evolutionary code
described in Reference 80 to derive the primordial 2H, 3, 4He, and 7Li abundances. Besides the
above-mentioned agreement for deuterons and helium isotopes, a marked disagreement appears
for lithium, and thus the “Li problem” remains open in cosmology.

4.2.2. Trojan Horse Method measurements. The THM experiment to determine the
7Be(n, α)4He cross section is discussed in Reference 85. The 2H(7Be,αα)p three-body reaction
was measured at the EXOTIC facility (88) of INFN–Laboratori Nazionali di Legnaro using a
20.4-MeV 7Be beam impinging on a CD2 target with a thickness of 400 µg cm−2. In the QF
2H(7Be,αα)p process, the deuteron was used as a TH nucleus because of its relatively low binding
energy (∼2.2 MeV) and the dominance of the S-wave in the pn intercluster motion (89). In the
2H+7Be interaction, the deuteron undergoes its breakup into a neutron (participant) and proton
(spectator). The EXOTIC facility is devoted to the in-flight production of light weakly bound ra-
dioactive ion beams, and unstable 7Be beams have been produced previously (see, e.g., 90). For the

362 Tumino et al.



experiment described in Reference 85, 7Li ions (150–200 pnA) were delivered by the LNL-XTU
Tandem accelerator onto a H2 gas target to induce the 7Li(p, n)7Be reaction (Q = −1.64 MeV).
The gas target consisted of a 5-cm-long gas cell doubly walled with 2.2-µm-thick Havar foils,
and it was filled with 1 bar H2 gas at cryogenic temperatures (90 K), corresponding to a target
thickness of about 1.35 mg cm−2. The 7Be secondary beam was separated from the 7Li scattered
beam and from other contaminants by means of a 30°-bending magnet, a Wien filter, slit settings,
and collimation systems located at suitable positions along the beam line (90). At the end of the
beam line, an intensity of 5 × 105 to 8 × 105 pps, a purity of about 99%, a beam spot of about 9
mm (FWHM), and an energy spread of about 1 MeV (FWHM) were measured.

The two emerging α particles were detected at the QF angle pairs—that is, the angle pairs at
which the spectator maintains the same momentum it had inside the deuteron before its breakup.
The kinematic quantities of the undetected proton were reconstructed via momentum and energy
conservation laws (8).

The 2H(7Be,αα)p channel selection was accomplished by reconstructing the experimental Q
value spectrum once the α particles had been selected through the standard �E-E technique.
The experimental peak is centered at ∼16.76 MeV, in agreement with the theoretical one of
16.765 MeV, with a FWHM of about 2 MeV.

The trend of the momentum distribution for the pn intercluster motion inside deuterons was
used to select the QF reaction mechanism.The agreement shown in Reference 85 unambiguously
marked the presence of theQF reactionmechanism and therefore allowed us to proceed further in
the extraction of the 7Be(n, α)4He binary cross section. Thus, the two-body reaction cross section
was properly evaluated, taking into account HOES effects as well as the normalization to available
direct data from References 81–83.

The HOES differential cross section was extracted and converted to the OES cross section in-
cluding the centrifugal barrier effects based on the l = 1 orbital angular momentum, which arises
from the broad P-wave 7Be+n resonances at 8Be excitation energies around 20 MeV (85). The
results of this THM investigation are shown in Figure 4 with the corresponding statistical uncer-
tainties.The THMdata span a broad energy region (i.e., from∼30 keV up to∼2MeV), providing
a cross section in the region of interest for BBN. The THM data nicely overlap with the direct
data from Reference 83 and, at lower energies, with the data derived via the CSH in Reference 81.
Additionally, the THM results agree with the data derived in Reference 84.Figure 4 also shows an
evaluation of the total S-wave component for the observed reaction as derived in Reference 82 and
the ENDF/B-VII.1 evaluation from Reference 91. Even if the uncertainties affecting the experi-
mental data are quite large, in some energy regions, such as close to the 1- and 3-MeV resonances,
the ENDF/B-VII.1 calculation deviates from the experimental data present in the literature, while
its overall trend qualitatively agrees with them. The derived reaction rate shows good agreement
with that of Reference 81 with improved uncertainties at BBN energies. Although the primordial
7Li abundance evaluated via the code used in Reference 80 remains far from the observed one,
the THM investigation provides a reduced uncertainty on the corresponding reaction rate.

4.3. The 19F(α, p)22Ne Reaction and Fluorine Destruction in Evolved Stars

The 19F(α, p)22Ne reaction has an important astrophysical role in helping us understand the de-
struction of 19F in multiple astrophysical contexts. In fact, the pathways in which 19F is produced
are quite clear, while there is much uncertainty regarding its destruction. A suggested path in
asymptotic giant branch (AGB) stars is the 19F(α, p)22Ne reaction (92, 93), whose importance crit-
ically depends on the environment. In an He-rich environment, such as the convective envelope
near the He shell, this reaction constitutes the main channel for 19F burning in such contexts. It is
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The 7Be(n, α)4He cross section measurements as reported in Reference 85, including results from
References 81 (gray circles), 83 (red circles), 84 (purple and green squares), and 85 (blue squares). The dashed black
line indicates the total S-wave component for the observed reaction as derived in Reference 82; the solid
black line indicates the ENDF/B-VII.1 evaluation from Reference 91. Figure adapted with permission from
Reference 85; copyright 2019 The American Astronomical Society.

therefore important to know the reaction rate for 19F(α, p)22Ne even though it is not measured in
the energy range of astrophysical interest. In fact, direct measurements of the cross section at the
Gamow energy region for a stellar temperature of T= 8× 108 K should be performed at energies
in the center-of-mass reference frame between 0.4 and 0.8 MeV, while the lowest available energy
for such a measurement is at 1.1 MeV (94), corresponding to ∼660 keV in the center of mass.

The proposed R-matrix fit accounts for the observed resonances, and extrapolation of the cross
section was performed to deduce the low-energy behavior. Nevertheless, the reduced widths γ α
of the involved resonances were merely estimated, and a more precise determination would be
necessary. Thus, an experimental measurement is needed, possibly in the Gamow energy range,
to better understand 19F burning in an AGB environment proceeding through this reaction. Such
a measurement has been provided by the THM.

The reaction was studied using a 6Li nucleus as a TH nucleus, and kinematic conditions were
selected in which the 6Li(19F,p22Ne)2H reaction proceeds mainly via QF breakup (95). We would
like to highlight that in this case, the spectator was a charged particle—a deuteron in particular.
Nevertheless, previous validity tests clearly demonstrated that the THM obeys the pole invari-
ance; that is, the cross section of the binary reaction is independent of the spectator that is used.
In particular, it was proved in different experimental runs that the method is perfectly coherent
independent of the spectator cluster, even in the case of neutral versus charged spectators (87, 96)
(for a recent review of the topic, see 10).

The experiment was performed at the Ruđer Bošković Institute (Croatia) using a 6-MeV 6Li
beam. The α cluster behaved as a participant to the binary process, while p acted as a spectator to
the QF reaction. As discussed above, the beam energy was chosen to measure the 19F(α, p)22Ne
cross section in the energy region of interest for astrophysics. A complete description of the ex-
perimental procedure as well of the data analysis performed is reported in References 12 and 95.
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Table 2 Energies of the 23Na states investigated in the 19F(α, p)22Ne reaction

ER (MeV) ECM (MeV) Jπ γα (MeV1/2) γp (MeV1/2) γp′ (MeV1/2)

10.477 0.01 3/2+ 0.001 0.124 0.342

10.616 0.149 5/2+ 0.005 0.087 0.327

10.823 0.356 3/2+ 0.007 0.131 0.417

10.907 0.44 5/2+ 0.001 0.054 0.350

10.972 0.505 5/2+ 0.009 0.044 0.184

10.994 0.527 3/2+ 0.005 0.011 0.079

11.038 0.571 3/2+ 0.003 0.049 0.179

11.109 0.642 5/2+ 0.012 0.016 0.096

11.273 0.806 3/2+ 0.003∗ 0.045 0.279

11.280 0.812 3/2+ 0.003∗ 0.127 0.320

11.303 0.836 3/2+ 0.003∗ 0.105 0.148

The measured centroid is reported in the first column; also shown are the Jπ of the levels and the reduced widths arising
from the R-matrix fit discussed in Reference 95. Values marked with asterisks are from Reference 94.

In this case, the formalism discussed in Section 3.2.3 was adopted—in particular, Equation 50 to
deduce the reduced γ widths from the THM cross section. After selecting the QF mechanism
according to the THM prescriptions, angular distributions as well as excitation function were
extracted and analyzed through the modified R-matrix approach and then compared, after nor-
malization, with direct data from Reference 94. Many resonant levels were studied (see Table 2).
A nice agreement between indirect and direct data showed up in the overlap energy region above
the Coulomb barrier, and the reaction rate was thus calculated.

In Figure 5 this reaction rate, as reported in Reference 95, is shown together with its uncer-
tainties arising from experimental data and compared with the rate based on direct data (94). In
the astrophysical temperature range 0.2 ≤ T9 ≤ 0.5, a clear enhancement of the reaction rate is
evident up to a factor of five. The astrophysical impact of such a measurement is discussed in
Reference 12.

4.4. The 3He(n, p)3H Reaction in the Standard Big Bang Nucleosynthesis
Scenario

TheTHMhas proved decisive inmeasuring several neutron-induced reaction cross sections, some
of which are of astrophysical relevance (97–101). One reaction that has been extensively studied
recently is the 3He(n, p)3H process. This process is important in BBN and has an impact on the
primordial 3He and 7Li abundances (see 80 and references therein).Consequently, its reaction rate
can be related to the primordial lithium problem, thus helping us find a possible nuclear solution
to it. At temperatures corresponding to BBN, the reaction rate is linked to the cross section in
the energy range 0.03 MeV ≤ ECM ≤ 0.3 MeV. The first studies of this reaction were performed
in the range 0.1 MeV ≤ ECM ≤ 30 MeV using a neutron beam (102). Errors were around 30%.
Other measurements, which were more focused at lower energies, were conducted in Reference
103 (direct measurement in the range 0.1 ≤ ECM ≤ 1 MeV), Reference 104 (inverse measurement
with larger uncertainties), and Reference 105 (direct measurement in the range 0.3MeV≤ ECM ≤
1.1 MeV). The most recent data in a wide energy range can be found in Reference 106. Reaction
rates were then calculated for astrophysical applications in References 107 and 108, which show
a similar trend at the relevant temperatures, while the reaction rate calculated in Reference 109
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(a) Trojan Horse Method (THM) reaction rate for the 19F(α, p)22Ne reaction (black line) compared with the
one calculated in Reference 94 based on direct data (red line). (b) Ratio between the THM and calculated (94)
rate. The green area is defined by the uncertainties in the THM data. Figure adapted with permission from
Reference 95; copyright 2017 The American Astronomical Society.

is sensitively higher. In the energy range of interest, the existing data are therefore sparse; most
of these data were measured more than 50 years ago after facing tough experimental challenges,
which resulted several times in errors as high as 30% (see Figure 6).

To extract the total reaction cross section, the 2H(3He,pt)H process was investigated in QF
kinematics to retrieve information on the 3He(n, p)3H reaction in the Gamow energy range. In
this case, the TH nucleus d breaks up into its constituents, n (participant) and p (spectator). The
experiment was performed using a 3He beam delivered at a total kinetic energy of 9 MeV by the
FN Tandem accelerator at the Nuclear Physics Laboratory, University of Notre Dame (United
States).

Data analysis was performed according to the prescriptions of the THM and is exhaustively
discussed in Reference 110. After the selection of the QF process that was performed by means of
a detailed study of the spectator momentum distribution, the binary cross section was extracted
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Total bare nucleus cross section for the 3He(n, p)3H reaction deduced via the Trojan Horse Method (black
circles) after normalization to the available direct data from References 103 (blue squares), 104 (yellow crosses),
and 106 (red stars). Data from References 102 (red triangles) and 105 (green stars) are also shown. The
displayed error bars account for statistics and normalization. Figure adapted from Reference 110 with kind
permission of The European Physical Journal (EPJ).

in the energy range 0.03 ≤ ECM ≤ 0.3 MeV. This cross section is shown in Figure 6 along with
the different data sets available in the literature for comparison. The cross section, as required by
theTHM,was normalized to the direct data fromReferences 103, 104, and 106 in the energy range
0.2 ≤ ECM ≤ 0.35 MeV. A remarkable agreement shows up in the whole energy range, with small
deviation (around 10%) in the energy region important for astrophysics. Statistical errors as well as
normalization errors were fully taken into account, yielding an average 10% relative error for the
cross section extracted via the THM. Regarding the error on the quantities contributing to ECM,
we apply the error propagation with an uncertainty on the experimentally measured energies for
protons and tritons,Ep and Et, of 0.8% and an error on the respective angles of�θ p ≈�θ t ≈ 0.15°.

Further analysis is in progress to extend the measurement to higher energies through the use of
additional data sets. This will allow calculation of the reaction rate in an extended energy interval
and evaluation of the astrophysical impact of this measurement.

4.5. The 12C+12C Fusion at Astrophysical Energies

The 12C+12C fusion is a crucial process in different scenarios with carbon-rich environments. In
particular, it determines the late evolution and the nucleosynthesis of intermediate-mass and mas-
sive stars (≥8M�) (111); it influences the lower mass limit for carbon ignition, which separates
the progenitors of white dwarfs, novae, and type Ia supernovae from those of core-collapse su-
pernovae, neutron stars, and stellar-mass black holes. It is considered the ignition reaction of type
Ia supernovae and superbursts, in particular if resonances are found to contribute in the Gamow
peak (112). Moreover, it influences the weak component of the s-process, which produces the ele-
ments between Fe and Sr. Quiescent carbon burning takes place from 0.8 to 1.2 GK, a range that
corresponds to center-of-mass sub-Coulomb energies from 1 to 3 MeV where the cross section
of this process falls rapidly below the nanobarn range. This fact explains why the cross section has
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never been measured below a center-of-mass energy of 2 MeV. The compound nucleus 24Mg is
formed at an excitation energy above the 12C+12C decay threshold. Alpha particles, protons, and
neutrons are the dominant evaporation channels and lead, respectively, to 20Ne, 23Na, and 23Mg,
which can also be produced in excited bound states. Below 2.5 MeV, there is not enough energy
to feed 23Mg even in its ground state, and the α and p channels are the only relevant ones.

4.5.1. The Trojan Horse Method 14N+12C experiment. The 12C+12C fusion cross sec-
tion at astrophysical energies was determined from the measurement of the 12C(12C,α)20Ne and
12C(12C,p)23Na reactions via the THM applied to the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2H
three-body processes in QF kinematics with 2H from the 14N spectator to the 12C+12C reactions
(14). The experiment was performed at the INFN–Laboratori Nazionali del Sud in Catania, Italy.
A 14N beam accelerated at 30 MeV by the SMP Tandem was delivered onto a 100-µg cm−2 C
target. The ejectile of the two-body reactions (either α or p) was detected in coincidence with the
spectator d particle by means of silicon telescopes at either side of the beam directions covering
angular regions optimized for the QF kinematics of the breakup process of interest. Additional
experimental details can be found in Reference 14.

The occurrence and dominance of the QF mechanism in all cases were indicated by the agree-
ment within 5% between the shape of the experimental momentum distribution (in the range
30–80 MeV/c) and that obtained from the Woods-Saxon 12C+d bound state potential with stan-
dard geometric parameters r0 = 1.25 fm, a = 0.65 fm, and V0 = 54.428 MeV, adjusted to give
the experimental 12C+d binding energy in 14N. Agreement with the theoretical shape of the mo-
mentum distribution calculated in the framework of the DWBA was recently demonstrated in the
experimental range of 30 to 80 MeV/c. This important result will be presented in a forthcoming
paper (A.Tumino et al., manuscript in preparation). It provides further validation that in the phase
space region populated in the experiment, it is possible to apply the PWIA to extract the cross sec-
tion for the binary system. The PWIA is convenient because of the simple link to the three-body
cross section—a link that is ensured in the modified R-matrix approach by the presence in the
total PWIA amplitudes of the same matrix elements as in the OES binary reaction cross section
(see Equation 50).

After completion of data analysis (14), the two-body cross section of astrophysical relevance
was extracted for four channels: 20Ne+α0, 20Ne+α1, 23Na+p0, and 23Na+p1. A modified one-
level many-channel R-matrix analysis was carried out including the 24Mg states reported in Ref-
erence 14.According to the results of Reference 113 at ECM ≤ 3MeV, andmonitoring the decrease
of the penetration factors for the relevant states, the fraction of the total fusion yield from α and p
channels other than α0, 1 and p0, 1 was neglected in the modified R-matrix analysis with estimated
errors at ECM < 2 MeV lower than 1% and 2% for the α and p channels, respectively. The res-
onance structure observed in the excitation functions is consistent with 24Mg resonance energies
reported in the literature.

The THM reduced widths thus entered a standard R-matrix code, and the S-factors for the
four reaction channels were determined. The results are shown in Figure 7 in terms of the total
modified S-factor, S(E)∗ (114).

The ECM range between 2.5 and 2.63 MeV of the 20Ne+α1 channel was chosen for normal-
ization to direct data because in this range the available data (115–118) are the most accurate of
those overlapping with THM data. The resulting normalization error is 5%. Existing direct data
below ECM = 4 MeV are also shown in Figure 7. Except for the data from References 115, 122,
and 123, their low-energy limit is fixed by background due to hydrogen contamination in the tar-
gets. Disregarding these cases, agreement between THM and direct data is apparent within the
experimental errors except for the direct low-energy limit around 2.14 MeV, where THM data
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Trojan Horse Method total S∗-factor (black line). The gray band represents the region spanned by R-matrix calculations with lower and
upper values of the resonance parameters. Available direct data in the ECM range below 4 MeV are indicated by red circles (115), purple
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squares (121), black squares (122), and solid dark blue squares (123).

do not confirm the claim of a strong resonance; rather, they indicate a nearby one at 2.095 MeV
that is about one order of magnitude less intense in the 20Ne+α1 channel and of similar inten-
sity in the 23Na+p1 channel. The present result is in agreement with spectroscopy studies (124,
125) with a deep at 2.14 MeV and no particularly strong α state around 2.1 MeV. Further agree-
ment is found with data down to ECM = 2.15 MeV from Reference 126 for the 12C(12C,p0, 1)23N
reactions. Our result is also consistent within experimental errors with the total S(E)∗ from re-
cent results (121–123), though the upper limit for the proton channel from Reference 123 below
ECM = 3 MeV is significantly lower than the other results. A theoretical reanalysis of THM data
(127) that applied a theory based on the DWBA resulted in much lower S(E)∗ values by up to
four orders of magnitude. However, the convergence of the calculations involving a transfer to
an unbound system is not obvious, and a careful examination shows that, on top of other things,
the numeric stability of the proposed theory is not guaranteed. Thus, the results are very sensitive
to details of the model space, and the calculated trend of the THM S(E)∗ is questionable. Recent
theoretical calculations within the framework of a time-dependent Hartree-Fock-based classical
model using the Feynman path integral method (128) have included some of the low-energy res-
onances in the ECM region of the THM data, leading to S(E)∗ values in agreement with what
was shown in the THM experiment (14). This work highlights the important role of resonances
in shaping the trend of S(E)∗, an aspect neglected in previous attempts (109, 114, 129–132) to
extrapolate S(E)∗ at astrophysical energies.
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4.5.2. Consequences for astrophysics. Figure 8 shows the THM reaction rate at the relevant
temperatures divided by the reference rate from Reference 109. Below 2 GK, it increases from
a factor of 1.18 at 1.2 GK to a factor of more than 25 at 0.5 GK. As for the hydrostatic carbon
burning regime (0.6–1.2 GK), the rate increase lowers the temperatures and densities at which
12C ignites in massive stars. According to the stellar modeling reported in Reference 134, for core
carbon burning of a 25M� star, the ignition temperature and density would undergo a decrease
down to 10% and 30%, respectively. The increase at 0.5 GK, which is mainly due to the resonant
structure around ECM = 1.5 MeV,meets the fiducial value conjectured in Reference 112 to reduce
down to a factor of two the theoretical superburst ignition depths in accreting neutron stars for
a realistic range of crust thermal conductivity and core Urca neutrino emissivity. This change is
compatible with the superburst ignition depths inferred from observations. Thus, carbon burning
can trigger superbursts. Recently, the impact of the new carbon fusion cross sections on type Ia
supernovae was investigated in Reference 135. Their progenitors are yet to be fully understood.
One popular scenario is the double-degenerate (DD) scenario,which attributes type Ia supernovae
to white dwarf binary mergers. The resonance contribution results in a decrease of the carbon
burning ignition temperature. Thus, accretion-induced collapse occurs more easily and increases
the birth rate of Galactic neutron stars with the contribution of the DD scenario to the type Ia
supernovae rate becoming even smaller. Effects of the THM reaction rate on the upper bound
for the masses of the progenitors of CO white dwarfs (Mup) and the lower bound for the masses
of the progenitors of normal type II supernovae (M∗) have been analyzed in Reference 136. In
particular,Mup is reduced from 8 to 7.5M�, whileM∗ approaches 10M�.
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5. CONCLUSIONS

The THM is a well-established tool to help overcome unwelcome physics phenomena, such as
Coulomb/centrifugal suppression and electron screening effects, in the study of astrophysically
relevant reactions. In this review,we have presented its theoretical formulation in a comprehensive
and instructive way, describing its historical developments and adaptation to experimental needs.
Recent applications have been discussed, which open up future prospects for experiments using
the THM with heavier stable nuclei as well as with radioactive ion beams. In particular, the use of
heavier TH nuclei, such as 13C, 14N, 20Ne, 23Na, and 26Mg, will enable assessment of important
reactions that play a role in late evolutionary stages of massive stars in terms of energy generation
and production of heavy elements. As an example, the last two mentioned nuclei can transfer
22Ne to investigate the 22Ne(α, n)25Mg reaction, the main neutron source in the so-called weak s-
process (137, 138). Reliability tests of such systems as future TH nuclei are underway to design the
next generation of experiments. The THM will also play a major role in the determination of the
reaction rates using deuterons as sources of virtual neutrons to study neutron-induced reactions
on short-lived radioactive ions. As more rare isotope beams become available around the world,
nuclear reactions—for instance, those involved in the r-process (139)—will be studied via the
THM. In short, the THM is an incredibly versatile tool that is paving new paths to clarify the
nuclear physics that shapes the Universe.

SUMMARY POINTS

1. The Trojan Horse Method (THM) offers a unique probe with which to determine the
cross section of a two-body reaction at astrophysical energies by measuring a suitable
transfer reaction with three bodies in the final state in quasi-free (QF) kinematics and at
energies above the Coulomb barrier. Successful application of this method requires the
selection of suitable Trojan Horse (TH) nuclei that have a prominent cluster structure
to transfer (e.g., nucleons, deuterons,α particles). The method can be applied to charged
particle reactions, either resonant or nonresonant, as well as to neutron-induced reac-
tions, involving both stable and radioactive ion beams.

2. Nuclear reaction theory has progressed to improve our confidence regarding a precise
relation between two- and three-body cross sections. It has helped clarify the factoriza-
tion of the cross sections of two- and three-body reactions. This factorization is linked
to the unraveling of the two vertices shown in Figure 1. The theory exploits the fact
that the reactions are dominated by peripheral processes where only the asymptotic part
of the bound state wave functions is relevant. The peripherality and QF scattering con-
straints determine the selection of the kinematics in the experiments.

3. Two examples of reactions involving unstable nuclei have been reported: 18F(p,α)15O and
7Be(n, α)4He. Both reactions are involved in explosive scenarios—the former in the case
of classical novae thermonuclear runaways and the latter in standard big bang nucleo-
synthesis. Two key elements for nucleosynthesis are destroyed, 18F and 7Be, the latter of
which is especially important as a progenitor of 7Li.The 18F isotope could be responsible
for a 511-keV annihilation line following β+ decay, which is presently not observed by
satellite-borne instruments.THMmeasurement suggests a stronger burning rate, which
helps to explain the lack of observations. A 7Be(n, α)4He THM study aimed to shed light
on the well-known discrepancy between primordial lithium abundance measurements

www.annualreviews.org • The Trojan Horse Method 371



and model predictions. It represents the first test study for future investigations of re-
actions involving neutrons and unstable nuclei, whose measurement is possible only by
indirect means.

4. The 3He(n, p)3H reaction is also related to the primordial lithium problem. The THM
equivalent measurement shows, within the experimental errors, a satisfying agreement
between direct and inverse reaction data from previous experiments, making it possible
to access the low astrophysical energies and to carry out neutron-induced reactions at
any laboratory as a much cheaper alternative to expensive neutron facilities.

5. The 19F(α, p)22Ne reaction is the main fluorine destruction channel in He-rich envi-
ronments, such as the convective envelope near the He shell in asymptotic giant branch
(AGB) stars. The 19F isotope is especially important since its abundance may be used to
constrain the physical conditions inside AGB stars and, therefore, to shed light on the
s-process. This knowledge is essential since r-process yields are based on those of the s-
process, creating a link with the growing field of multimessenger astronomy. The THM
measurement of the 19F(α, p)22Ne astrophysical factor extends to astrophysical energies,
leading to a reaction rate increased by as much as a factor of four with respect to the
previously published values that relied on extrapolations.

6. The 12C+12C fusion is crucial in any scenario in carbon-rich environments. It deter-
mines, for instance, the late evolution and nucleosynthesis of stars with masses ≥8M�,
influences the mass limit for carbon ignition, and constrains type Ia supernovae and su-
perburst models. In a THM measurement, 14N was used to transfer a 12C nucleus, and
the 12C(12C,α0, 1)20Ne and 12C(12C,p0, 1)23Na cross sections were deduced at astrophysi-
cal energies.They exhibit several resonances that are responsible for a very large increase
in the reaction rate at relevant temperatures. Implications regarding massive stars, su-
perburst ignition, and type Ia supernovae are under scrutiny.

FUTURE ISSUES

1. A proper theoretical description of reactions is the basis for the application of the
THM.Although it has advanced significantly, there is still ample room for improvement.
Present formulations cannot coherently account for distortion and coupled-channel ef-
fects. These complications harm the desired connection between the cross sections of
the THM 2→ 3 reactions and the 2→ 2 reactions of astrophysical interest. These un-
certainties could affect the energy dependence of the cross sections extracted from the
experiments. In particular, the accuracy of the factorization of the reaction cross sec-
tion has to be checked in comparison to that of more elaborate approaches that consider
the three-body nature of the final states and fully take into account the final-state in-
teractions between nuclei. As a consequence, experiment and data analysis have to be
performed in a very careful and selective way, imposing strict kinematic conditions and
using only a fraction of the available data to meet the specific requirements of the factor-
ization of the reaction cross section while still obtaining sufficient statistics. A consistent
description of reactions and nuclear structure (e.g., using more microscopic approaches)
is also necessary. Further advancements in theory are presently being evaluated that aim
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to incorporate in a coherent way distorted waves in a process described as a transfer to
the continuum.

2. TH experiments require beam energies typical of small-scale accelerators, such as
Tandems. The development of nuclear astrophysics and in particular the need for indi-
rect methods have ushered in a new era for such accelerators that were about to fall into
disuse, as already happened in several parts of the world. The nuclear needs for astro-
physics have in many occasions shown the lack of solid spectroscopic studies for several
nuclei. The revival of this low-energy physics is an important task that is supported in
all nuclear physics long-range plans.

3. Angular resolution is a key feature in the application of the THM. Reactions populating
medium-heavy compound systems show a rich pattern of closely spaced resonances that
have to be detected and measured individually. New high-granularity detection systems,
with low thresholds and allowing for particle identification, are presently under develop-
ment to increase the accuracy of the method. A theoretical description of these systems
that employs statistical approaches (e.g., Hauser-Feshbach theory) cannot be applied to
calculate their reaction cross sections because the basic hypotheses are not fulfilled.

4. Intercluster motion represents a key ingredient when selecting a given TH nucleus. To
date, only nuclei with a dominant S-wave intercluster motion have been chosen for TH
application (e.g., 2H, 3He, 6Li, 9Be, 14N). To extend the range of applicability of the
method, P-wave intercluster motion configurations need to be selected, and focused
studies are expected in the near future.

5. Advanced burning stages in stars call for the investigation of reactions that involve heavy
nuclei. Therefore, it is desirable to test alternative TH nuclei to transfer the correspond-
ing systems. An example is the 16O+16O fusion reaction. Such studies must be carried
out in parallel from the experimental and theoretical points of view because these sys-
tems may be deformed in their ground state, for instance, making it necessary to apply
customized nuclear models.
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