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Abstract

Neutron stars provide a window into the properties of dense nuclear matter.
Several recent observational and theoretical developments provide powerful
constraints on their structure and internal composition.Among these are the
first observed binary neutron star merger, GW170817, whose gravitational
radiation was accompanied by electromagnetic radiation from a short γ -ray
burst and an optical afterglow believed to be due to the radioactive decay
of newly minted heavy r-process nuclei. These observations give important
constraints on the radii of typical neutron stars and on the upper limit to
the neutron star maximummass and complement recent pulsar observations
that established a lower limit. Pulse-profile observations by theNeutron Star
Interior Composition Explorer (NICER) X-ray telescope provide an inde-
pendent, consistent measure of the neutron star radius. Theoretical many-
body studies of neutron matter reinforce these estimates of neutron star
radii. Studies using parameterized dense matter equations of state (EOSs)
reveal several EOS-independent relations connecting global neutron star
properties.
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1. INTRODUCTION

Neutron stars offer a unique window into the properties of dense matter. They are born in the
aftermath of gravitational-collapse supernovae at the ends of the lives of stars that were initially
more massive than about 5M� (1). Most stellar mass is lost in stellar winds during a star’s later
burning phases or expelled by the supernova shock created when the collapsing core reaches nu-
clear densities and nuclear interactions become strongly repulsive. Initially, a proto–neutron star
is lepton-rich with an electron fraction of about 0.35 and a νe fraction of about 0.05.Neutrinos are
briefly trapped because of the core’s high density and opacity, but they diffuse outward over several
seconds and leave behind the bulk of their degeneracy energies as heat. In turn, this heat is con-
verted into multiple generations of escaping neutrinos and antineutrinos of all flavors. About 99%
of the available neutron star binding energy, approximately 3 × 1053 erg, is radiated in neutrinos
with typical energies of 10 to 20 MeV (2). This scenario was nicely confirmed by the detection of
about 20 neutrinos over an approximately 10-s interval from SN 1987A by the Kamiokande (3)
and IMB (4) neutrino detectors on February 23, 1987.

A neutron star’s core efficiently cools, and within minutes thermal effects cease to be important
in determining its structure and, with the exception of superfluidity, its composition. The com-
position is fixed by weak-interaction (i.e., β) equilibrium, which dictates that the neutron, proton,
and electron chemical potentials satisfy μn − μp = μe.1 One can identify five important regions
in a neutron star: the atmosphere, envelope, crust, and outer and inner cores. The atmosphere,
a thin layer (thickness of a few centimeters) with a maximum density of about ρ � 1 g cm−3,
controls the shape of the observable X-ray spectrum of stars less than a few million years old. The
envelope is about 10–100 m thick and extends to ρ ∼ 1010–1011 g cm−3; it is important because its

1For simplicity, μn and μp are measured relative to the nucleon mass mB throughout this review.
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composition controls the heat flow into the atmosphere (5). Stars with heavy element envelopes
are about five times cooler than those dominated by light elements such as H,He,C, and O,which
have larger thermal conductivities. At greater densities within the neutron star crust, nuclei be-
come increasingly neutron-rich.For ρ � 4 × 1011 g cm−3,μn > 0, and some neutrons become un-
bound from nuclei (6). In the densest part of the crust, ρs/4 � ρs/2, where ρ s � 2.7 × 1014 g cm−3

(ns = 0.16 fm−3) is the nuclear saturation density, nuclei become strongly deformed and form
a pasta phase (7); the extent of this region varies with the nucleon–nucleon potential, but a
comparison of models indicates that on average 60% of the crust’s mass is pasta (8). A phase
transition to homogeneous nuclear matter occurs at the boundary with the outer core near ρ s/2,
where the proton fraction has decreased to about 0.02–0.04.

Because homogeneous nucleonic matter may persist to the star’s center, it is unknown whether
there is an actual boundary between the inner and outer cores. Generally, the proton fraction
increases with density in the star’s core, reversing the trend within the star’s crust. Various exotic
compositions have been predicted for the inner core: hyperons, condensed kaons, or pions in addi-
tion to nucleons, or deconfined quark matter in a pure phase or a mixed phase with hadrons. Based
on lattice quantum chromodynamics (QCD) calculations, it is expected that matter at very high
densities consists of asymptotically free quark matter, but since these calculations (9) are valid only
at densities larger than about 40ρ s, and the maximum density in a neutron star is less than about
10ρ s (10), it is not clear whether such a phase exists in neutron star interiors. The joint constraints
of causality and the observed minimum value of the neutron star maximum mass,Mmax � 2M�,
together with new constraints from observations and theory that suggest neutron star radii R <

13.5 km (Section 4), tightly constrain the parameters of quark models to narrow regions (11). The
high densities of matter surrounding the core quench observable effects of deconfinement except
possibly in a star’s thermal evolution or dynamical situations such as neutron star mergers, where
tidal resonances or fundamental oscillationmodes might bear signatures (12). At present, however,
no significant observational evidence favors the presence of exotic matter in the inner core.

Neutron star masses, radii, moments of inertia, binding energies, tidal deformabilities, and
oscillation frequencies are potentially measurable. Their calculation requires knowledge of only
the total energy density ε and pressure P as functions of baryon density nB. Laboratory nuclei
provide important details of the equation of state (EOS) up to ρ s, and heavy-ion collisions add
some constraints for densities up to about 5ρ s, but only for hot, nearly symmetric nuclear matter
(SNM). Neutron star matter, by contrast, is cold and extremely neutron-rich with proton frac-
tions of order a few percent near ρ s, so a considerable extrapolation from hot, symmetric matter
is required. Fortunately, experiments involving systems close to unitarity (13) and theoretical
calculations of pure neutron matter (PNM) may provide a substantial base on which to build
neutron star models, as discussed in Section 2.

Other aspects of neutron stars, most importantly their thermal evolution, probe compositional
details. The faster-than-expected real-time cooling (14) of the 330-year-old neutron star in the
Cassiopeia A supernova remnant hints at the onset of neutron superfluidity in the star’s core
(15, 16). At least 20 neutron stars have measured temperatures and known or estimated ages,
and these data enable comparison with neutron star thermal evolution calculations. The inferred
luminosity of the possible neutron star (17, 18) in the remnant of SN 1987A suggests that its
envelope consists largely of light nuclei rather than heavier elements of the iron peak that would
represent the lowest energy state at those densities. But the largest effect that composition has
on neutron star cooling is the presence or absence of nucleon direct Urca neutrino cooling (19,
20) in the star’s core, which requires a minimum proton fraction of 1/9. This process is about
106 times more efficient than the modified Urca process that otherwise dominates. Since the
proton fraction likely increases with density in the neutron star core, massive stars that exceed the
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proton fraction threshold cool rapidly—possibly below the level of detectability, depending on
details of superfluidity in the star’s core—within about a hundred years. The available evidence
suggests (5) that rapid cooling does not occur in most stars. Nevertheless, there are several known
core-collapse supernova remnants without detected neutron stars that could be examples of rapid
cooling, unless their neutron stars all collapsed into black holes because of fallback accretion.
This could be possible if they had relatively large masses.

Prior reviews (21, 22) have summarized several aspects of neutron stars that are not repeated
here. These include a detailed discussion of constraints established from causality and the largest
accurately measured pulsar mass, details of pulsar-timing mass measurements, and synopses of
mass and radius estimates fromX-ray observations of quiescent and isolated neutron stars as well as
from photospheric radius expansion bursts. References 21 and 22 also explore how measurements
of nuclear properties and nuclear collisions constrain the nuclear symmetry energy and its strong
role in determining the neutron star radius. There have been additional advances, including the
discovery of a few more massive pulsars near 2M� [those with mass uncertainties less than 0.2M�

include PSR J0348+0432 with 2.01 ± 0.04M� (23), PSR J2215+5135 with 2.23+0.17
−0.15M� (24), and

PSR J0740+6620 with 2.08 ± 0.07M� (25)] and the development of the cooling tail model, which
offers improvements in the modeling of quiescent X-ray sources (26, 27), but this review focuses
on other progress.

The main topics in this review include the following.
� Advances have been made in many-body theory relevant to the EOS of PNM (Section 2),

which is closely related to neutron star matter, and in measurements of the neutron skins of
neutron-rich nuclei. These advances offer new insights into the nuclear symmetry energy
and, therefore, into neutron star radii and tidal deformabilities.

� Novel parameterizations of the EOS of high-density matter have proved to be powerful
tools in inferring bounds for neutron star properties (Section 3). They have also revealed
new or have refined known semiuniversal (i.e., EOS-insensitive) relations connecting global
neutron star properties, such as masses, radii, moments of inertia, binding energies, and tidal
deformabilities.

� Gravitational wave (GW) observations of the binary neutron star (BNS) merger
GW170817 (28) provide new constraints on the radii of typical (1.4M�) stars via measure-
ments of their tidal deformabilities (Section 4). The nearly simultaneous electromagnetic
(EM) observations of an associated short γ -ray burst and kilonova also offer evidence of an
upper limit to Mmax � 2.3M� (29), which complements the lower limit of Mmax � 2M�
from the most massive accurately measured pulsars. In addition, observations of other BNS
and black hole–neutron star (BHNS) mergers have possible ramifications regarding our
knowledge of neutron star properties.

� X-ray pulse-profile measurements of the rapidly rotating pulsars PSR J0030+0451 (30, 31)
and PSR J0740+6620 (32, 33) with data acquired with the Neutron Star Interior Composi-
tion Explorer (NICER) space telescope have led to independent mass and radius estimates
(Section 5).

2. THE IMPORTANCE OF NEUTRON MATTER

The PNMEOS is significant for two reasons. First, it establishes strong constraints on the nuclear
symmetry energy, and second, it closely approximates the neutron star EOS from densities of
about ns/2,where the heterogeneous crust containing nuclei makes the transition to homogeneous
nucleon matter, up to 2–3ns or even higher, where hyperons, a kaon or pion condensate, or quark
matter might appear. There are two ways to define the nuclear symmetry energy: It can be viewed
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as the difference S(nB) between the energies of PNM and SNM at a given density, or it can be
related to the lowest-order coefficient S2(nB) in a Taylor expansion of the energy in the neutron
excess 1 − 2x:

S(nB ) = EB(nB, 0) − EB(nB, 1/2), S2(nB ) = 1
8

∂2EB(nB, x)
∂x2

. 1.

Studies indicate that higher-order terms in the expansion are relatively small (contributing � 1–
2 MeV around ns) (34–36). We can take the symmetry energy to be S, so

EB(nB, x) � EB(nB, 1/2) + S(nB )(1 − 2x)2 � EB(nB, 0) − 4S(nB )x(1 − x). 2.

In a neutron star,matter is in β equilibrium since weak-interaction timescales are negligible except
in dynamical environments, so matter can be considered to be catalyzed in the lowest energy state.
The β-equilibrium proton fraction x is determined by

∂[E(nB, x) + E�]
∂x

= μp − μn = μe = μμ, 3.

where E� is the lepton energy per baryon.2 Throughout the bulk of the crust and core, electrons
are relativistic and degenerate. At ns, x� 0.04. The usual nuclear symmetry energy parameters SV
and L are related to PNM properties:

SV ≡ S2(ns ) � EPNM(ns ) + B, L ≡ 3ns
[
dS2(nB )
dnB

]
ns

� 3PPNM(ns )
ns

, 4.

where EPNM and PPNM are the PNM energy and pressure, respectively, and B � −EB(ns, 1/2) �
16 MeV is the bulk binding energy at saturation.

2.1. Chiral Effective Field Theory

During the past few years, there has been a revolution in the understanding of dense nuclear mat-
ter, whose constituents—neutrons and protons—have a complex substructure. Their interactions
have presented a challenge in nuclear theory for almost a century. The development of chiral
effective field theory (χEFT) (37, 38) now provides the only known framework that allows a sys-
tematic expansion of nuclear forces at low energies (39–42) based on the symmetries of QCD, the
fundamental theory of the strong interaction. In particular, χEFT allows one to derive systematic
estimates of uncertainties for thermodynamic quantities. As for any effective low-energy theory,
χEFT contains an intrinsic breakdown scale,
b ≈ 600 MeV, which is a characteristic momentum
scale associated with the interactions at short distances; when the relative momentum between
nucleons is small compared with it, χEFT aims to provide a model-independent, systematically
improvable description of nuclear interactions and observables. When approaching 
b with in-
creasing energy or density, the convergence of the effective expansion breaks down.

Recently, a novel framework for quantifying correlated effective field theory (EFT) truncation
errors has been developed (43–46) for zero-temperature matter with two- and three-nucleon in-
teractions up to next-to-next-to-next-to-leading order (N3LO). For details, readers are referred to
the companion article by Drischler et al. (47) in this volume. Progress has been such that reliable
calculations now exist up to about 2ns (Figure 1). EFT truncation errors dominate the theoreti-
cal uncertainty, which, in the pressure, is about ±25% at 2ns but only about 10% at ns. Statistical
analysis indicates that the EOS is strongly correlated; correlation lengths are comparable to the

2Muons are present if μe > mμc2 � 105.66 MeV.
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Figure 1

(a) PPNM and (b) EPNM from χEFT studies, with ±1σ uncertainties indicated by dark shading and ±2σ uncertainties indicated by light
shading. Corresponding quantities for a unitary gas are shown for comparison. The energies established from doubly magic nuclei (48)
at 0.1 fm−3 and from the electric dipole polarizability of 208Pb at 0.05 fm−3 (49) are indicated in panel b with data points with ±1σ
uncertainties. Abbreviations: χEFT, chiral effective field theory; N3LO, next-to-next-to-next-to-leading order; PNM, pure neutron
matter. Figure adapted from Reference 50.

Fermi wave number, about 1.3 fm, at ns. Practically speaking, if a specific parameterized contact
interaction predicts EPNM(nB) near the bottom of the uncertainty band, PPNM(nB) will also be near
the bottom of this band; moreover, the energy and pressure will be near the bottom of the band
at other densities as well. Without including these correlations, bounds on the symmetry energy,
tidal deformabilities, and other quantities derived from the EOS are overestimated.

Neutron star matter requires the energies of matter with finite proton concentrations. χEFT
results for matter with arbitrary proton fractions have been calculated (35, 36, 45), but they do not
saturate inside the empirical windows for SNM, ns ∼ 0.15–0.16 fm−3 and B∼ 15–17MeV. Satura-
tion in SNM emerges from a delicate cancellation sensitive to the short- and intermediate-range
three-body interactions at next-to-next-to-leading order (NNLO), in contrast to PNM at N3LO,
where these interactions are Pauli-blocked (51). Nevertheless, a strong correlation between PNM
and SNM is found.Reference 46 used the saturation point from χEFTSNMcalculations and then
determined SV and L using Equation 4 with the PNM results (PNM+SNM in Figure 2). Alter-
natively, since χEFT SNM does not saturate inside the empirical window, one can use B and ns
values from the empirical window together with the PNM results (PNM+MC in Figure 2). The
resulting correlations have different slopes (the latter resembles that inferred by Reference 52),
but both methods yield consistent SV and L values at the 1σ level.

Figure 2 also displays the empirical correlation established from nuclear masses (using
σ = 1 MeV for the arbitrary mass uncertainty defined in Reference 53). The observed corre-
lation is due to the competition between surface and volume symmetry energies, which implies
dSS/dSV ∼ <I4A2>/<I4A5/3> ∼ 6 (54), where the angled brackets indicate an average over heavy
nuclei with mass A and neutron excess IA = N − Z. The fact that SS and L are highly correlated
leads to an empirical SV-L correlation with a slope dL/dSV ∼ 13. The χEFT estimates of SV and
L agree with those inferred from nuclear masses, although their correlation slopes differ. These
slopes do not have to agree since they result from different physical considerations. A related find-
ing is that the ground-state energies of doubly magic nuclei are most highly correlated with the
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SV-L correlations from χEFT [red: PNM+SNM (46); blue: PNM+MC] and nuclear masses [gray (53)].
Darker regions show 68% confidence ellipses; lighter regions show 95% confidence ellipses. The dark yellow
and green curves represent the UGC from a Skyrme model and from an analytical model (Equation 10), re-
spectively (13). The circled numbers and vertical lines on the left-hand side indicate �r208np measurements (see
Table 1) with arbitrary x positions and using Equation 5 to provide the vertical scale relative to L, as follows:
(●1 ) coherent π0 γ production (57), (●2 ) pion scattering (58), (●3 ) antiproton annihilation (59, 60), (●4 ) elastic
proton scattering (61), (●5 ) dispersive optical model (62), (●6 ) neutron skin thicknesses of Sn isotopes (56), (●7 )
parity-violating electron scattering (PREX+PREX-II) (63).Abbreviations: χEFT, chiral effective theory;MC,
Monte Carlo; PNM, pure neutron matter; SNM, symmetric nuclear matter; UGC, Unitary Gas Conjecture.

symmetry energy at a density n1 = 0.1 fm−3 ∼ 2ns/3, yielding S(0.1 fm−3) = 25.5 ± 1.0MeV (48),
which is equivalent to EN(0.1 fm−3) = 11.4 ± 1.0 MeV and consistent with χEFT (Figure 1).

2.2. Neutron Skins, Dipole Polarizabilities, and the Giant Dipole Resonance

The L value can also be inferred from other experiments, including measurements of the neutron
skins of neutron-rich nuclei, the dipole polarizability, and the isovector giant dipole resonance.
It is often argued that L is linearly correlated with �r208np , the difference between the root mean
square radii of the neutron and proton distributions of 208Pb—as, for example, in the following
equation from Reference 55:

�r208np = 0.00147(L/MeV) + (0.101 ± 0.022) fm. 5.

However, there is an additional significant dependence on SV (56). Nevertheless, a strong linear
correlation (with no SV contamination) does exist with the symmetry energy slope L̃ ≡ 3n(dS/dn)
at a density corresponding to the mean density in the nuclear surface, n1 � 2ns/3 (48). The pre-
cise relation depends slightly on the functional dependence of the underlying nuclear interac-
tions used to calibrate it. Measured �r208np values (Table 1) are displayed with uncertainties in
Figure 2, where the approximate linear relation shown in Equation 5 is used to provide the ver-
tical scale. It is apparent that, at the present time, neutron skin measurements are not sufficiently
accurate to place tight constraints on the nuclear symmetry energy properties.
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Table 1 Neutron skin measurements of 208Pb with 1σ uncertainties

Experiment �rnp (fm) Reference
Coherent π0 γ production 0.15+0.03

−0.04 57
Pion scattering 0.16 ± 0.07 58
Antiproton annihilation 0.18 ± 0.06 59, 60
Elastic proton scattering 0.21 ± 0.06 61
Dispersive optical model 0.18+0.25

−0.12 62
Neutron skin thicknesses of Sn isotopes 0.175 ± 0.020 56
Parity-violating electron scattering

(PREX+PREX-II)
0.283 ± 0.071 63

The parity-violating electron scattering experiment PREX (64) is claimed (65) to have theo-
retical systematic uncertainties that are better understood than those of other methods. Including
the data from PREX-II—its recent second run (63), which reduced the original PREX uncer-
tainties by about half—yields L = 110 ± 36 MeV and a corresponding SV = 38 ± 5 MeV (66).
These values of SV and L are in apparent tension with results from neutron matter theory and
most other experimental inferences, but a more detailed analysis ( J.M. Lattimer, manuscript in
preparation) indicates that this analysis understates the uncertainties of L and SV such that they,
in fact, are consistent at the 68% confidence level with other expectations. Also of great interest is
the upcoming CREX measurement of the neutron skin of 48Ca,�r48np , by parity-violating electron
scattering (67), which is expected by the end of 2021. Ab initio calculations with NNLO forces
yield 0.12 fm < �r48np < 0.15 fm and suggest 47 MeV < L < 53 MeV (68).

Another observable shedding light on the symmetry parameters is the electric dipole polariz-
ability, αD: the ratio of the induced nuclear dipole moment to an applied electric field. The liquid
droplet model predicts a nearly linear correlation between αDSV and �rnp, which has been con-
firmed using different nuclear interactions in the case of 208Pb (69):

SV α208
D e2 = [301 ± 32 + (1,922 ± 73)�r208np /fm] MeV fm3

. 6.

The experimental value is α208
D e2 = 19.6 ± 0.6 fm3 (70). Individual �r208np measurements thus yield

ranges for SV. For example, for PREX-II, one finds SV � 43.1 ± 7.4 MeV, which is consistent with
the estimate of Reference 66 but not with other nuclear physics expectations. A relation similar to
Equation 6 exists for Sn120, for which both αD and�r120np have beenmeasured, yielding SV � 34.5±
6.7 MeV, which is consistent with χEFT and nuclear mass inferences. However, in both cases the
uncertainties are too large to contribute significant constraints. Reference 49 found that the dipole
polarizability of 208Pb is most highly correlated with the symmetry energy at the density n2 = 0.05
fm−3 ∼ ns/3, and determined S(n2) = 16.5 ± 1.0 MeV, which is equivalent to EN(n2) � 7.8 ± 1.2
MeV, consistent with χEFT (Figure 1).

In a similar fashion, the central energy of the giant dipole resonance is most strongly correlated
with the symmetry energy at the density n1 (71). For 208Pb, it is thereby estimated that S(n1) =
24.1 ± 0.8 MeV, which is equivalent to EN(n1) � 9.9 ± 1.0 MeV and consistent with the estimate
from Reference 48 and χEFT (Figure 1).

2.3. The Unitary Gas

PNM bears an interesting resemblance to the unitary gas (72), a theoretical system of fermions
that undergo pairwise s-wave interactions with an infinite scattering length as (|askF|−1 → 0) and
a vanishing effective range reff (reffkF → 0), where the Fermi momentum is kF = (3π2nB)1/3. Since

440 Lattimer



the average particle separation is the only length scale of the system, the energy of the unitary gas
EUG becomes proportional to the Fermi energy:

EUG = 3�2k2F
10mN

ξ0 � 12.6
(
nB
ns

)2/3

≡ EUG,0

(
nB
ns

)2/3

, 7.

where the Bertsch parameter ξ 0 � 0.37 is experimentally measured (73, 74).
For PNM, |askF|−1 = 0.03(nB/ns)1/3 and reffkF = 4.53(nB/ns)1/3. Thus, the neutron–neutron

interaction in the s-wave channel is strongly attractive. Also, the interparticle spacing is much
larger than the effective range of the interaction. The system is then fully described by kF and as.
Systems with similar values of askF will experience the same physics. PNM at very low densities,
for instance, nB ∼ 0.01ns, where only s-wave contributions are important, is close to the unitary
limit (75).However, at large densities, factors such as effective range effects, interactions in higher-
order partial waves, and tensor contributions can become important. Nevertheless, forces with
negative scattering lengths at very low densities, or nonzero effective ranges, have higher energies
than the unitary gas (76), and this trend continues at higher densities, even if s-wave effective range
effects are no longer negligible. In addition, PNM three-body forces, which must be repulsive to
fit energy levels of light nuclei in ab initio calculations, more than compensate for small, possibly
attractive p- and d-wave interactions, adding at least a few MeV to neutron energies at ns.

The Unitary Gas Conjecture (UGC) (13) states that EPNM > EUG at all densities relevant for
neutron stars. The unitary gas energy and pressure (PUG = 2nBEUG/3) are shown in Figure 1;
χEFT PNM clearly obeys the UGC. Under the assumption that quadratic interpolation in neu-
tron excess between PNM and SNM is accurate, the UGC constrains the symmetry parameters.
EPNM can be expanded around ns by

EPNM(u) = SV − B+ L
3
(u− 1) + KN

18
(u− 1)2 + QN

162
(u− 1)3 · · · , 8.

where u = nB/ns, KN is the PNM incompressibility, and QN is the PNM skewness. Supposing
EPNM = EUG at some density ut = nBt/ns, to guarantee EPNM ≥ EUG at both lower and higher
densities, one demands both (dEPNM/du)ut = (dEUG/du)ut and (d2EPNM/du2)ut ≥ (d2EUG/du2)ut .
Evaluating these conditions, and ignoring skewness contributions, gives

EUG,0u2/3t ≤ SV − B+ L
3
(ut − 1) + KN

18
(ut − 1)2,

2EUG,0u2/3t =Lut + KN
3
ut (ut − 1), KN ≥ −2EUG,0u2/3t . 9.

In terms of the parametric variable ut, these equations define bounds for SV,L, and KN obeying the
UGC.The first equation shows that, irrespective of the value ofKN, the smallest value of SV occurs
for ut = 1 and is SV ,min = B+ EUG,0 � 28.6 MeV. For this value, L = 2EUG,0 = 25.2 MeV and
KN ≥ −25.2MeV.For all other values of ut,SV increases, but L increases when ut < 1 and decreases
when ut > 1. The allowed region in SV-L space, which is shown in Figure 2 using a Skyrme-type
nuclear interaction in place of Equation 8, encompasses both χEFT and nuclear mass (53) results.
The bound in the SV-L plane depends only moderately on KN as well as on the assumed density
dependence of EPNM. An analytical estimate is enabled by setting KN = 3L, which is consistent
with nuclear systematics (13), and eliminating ut from the first two equations of Equation 9,

SV = B+ L
6

[
1 + 2

(
2EUG,0

L

)3/2
]
, 10.
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which is also shown in Figure 2. The SV-L bound is robust because ut varies over a relatively small
range (0.4 < ut < 1.2 in Figure 2). It should be noted that the UGC does not guarantee PPNM >

PUG at all densities (Figure 1).

2.4. Implications for Neutron Star Structure

The most conservative bounds on radii are set jointly by causality and an assumedMmax (21). The
absolute minimum is set from the maximally compact EOS (77), which has the causal EOS P =
ε − εm for ε ≥ εm, and P= 0 otherwise.Having a single parameter, εm, the Tolman-Oppenheimer-
Volkoff structure solutions scale with it or with the assumed Mmax (Figure 3a), where Mmax =
4.1(εs/εm)1/2M� with εs = ε(ns) � 150 MeV fm−3. These solutions each represent the minimum
possible radius Rmin(M) for that value ofMmax.

This EOS is not a good approximation for a hadronic star that contains a crust and therefore
has P > 0 for densities ε < εm. Ironically, a hadronic EOS (i.e., crust + χEFT) matched to the
causal EOS P = ε − εm + Pm above the matching density εm = ε(nm) produces anM-R curve with
the largest possible radiiRmax and the largest possible value ofMmax.Figure 3a showsRmax(M) with
±1σ and ±2σ χEFT uncertainties assuming nm = 2ns, which is about the largest value consistent
with reasonable and quantifiable uncertainties.
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(a) Bounds onM-R trajectories. Dashed lines show minimum radii Rmin based on causality and two assumed values ofMmax (2M�,
2.6M�). Minimum and maximum Rmax radii for neutron stars with a crust are determined with the χEFT EOS for nm ≤ 2ns and causal
EOSs for nm > 2ns and are indicated by colored bands showing ±1σ and ±2σ χEFT uncertainties (see Section 2.4 for computational
details). The blue and red bands show Rmin forMmax = 2M� and 2.6M�, respectively, and the gray bands show Rmax trajectories.
(b) Contours ofMmax along Rmax trajectories as functions of the matching density nm and c2s , assuming the EOS P = (cs/c)2(ε − εm) +
Pm for ε > εm. Dashed–dotted lines show the GW170817 constraint 
̄1.186 = 720 with ±1σχEFT uncertainties. Light blue shading
indicates the disallowed region for the central χEFT EOS, and the dotted line indicates the upper 1σ bound if, instead, 
̄1.186 = 600.
Abbreviations: χEFT, chiral effective field theory; EOS, equation of state; N3LO, next-to-next-to-next-to-leading order. Figure
adapted from Reference 50.
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Realistic minimum radii, by contrast, are obtained by introducing an energy density disconti-
nuity �ε at εm. Above the density εm + �ε, the EOS is again taken to be causal, P = ε − εm −
�ε + Pm. Increasing �ε reducesMmax and increases Rmin(M), with �ε = 0 corresponding to Rmax

trajectories (see Figure 3a). Further progress in reducing neutron matter EOS uncertainties, and
extending results to higher densities, if possible, would further restrict the permittedM-R space.

The effects of varying nm and of reducing the stiffness of the EOS above εm are considered
in Reference 50. The latter change in the EOS is implemented by reducing the sound speed cs
above the density εm + �ε: P = (cs/c)2(ε − εm − �ε) + Pm. This results in increases in Rmin and
decreases in Rmax. Figure 3b summarizes the changes for Mmax, which decreases uniformly with
increasing nm or decreasing sound speed cs. Neutron star masses above 2.6M� are seen to require
c2s > 0.35c2 (i.e., the EOS must violate the conformal limit) if nm = ns, but c2s > 0.7c2 is required
if nm = 2ns. ImposingMmax > 2.1M� and tidal constraints from GW170817 requires nm > 1.5ns
and c2s > 0.35c2. Alternatively, ifMmax > 2.5M�, both nm > 1.7ns and c2s > 0.6c2 are needed.

Figure 4 shows limiting radii for 1.4M� and 2.0M� stars as functions ofMmax and nm, assuming
cs = c. Smaller values of cs reduce Rmax. Note the importance of nm: If nm � 2ns andMmax > 2M�,
then R1.4 < 12.8 km. Larger radii would mean the EOS is significantly different from the χEFT
EOS for densities between ns and 2ns. The difference R2.0 − R1.4 is especially interesting consider-
ing the upcoming agenda of NICER to measure the radii of massive pulsars. Although generally
negative, a positive difference requires nm � 2.5ns and c2s > 0.45c2, which could be a signature of
a phase transition. As discussed in Section 5,NICERmeasurements of PSR J0740+6620, coupled
with those of PSR J0030+0451, imply R2.0 − R1.4 ∼ 0.2 ± 2.0 km, which is inconclusive.

3. PARAMETERIZATIONS OF HIGH-DENSITY MATTER

Parameterized ε-P functionals are useful tools for probing the uncertain high-density EOS. They
have led to useful insights from observations regarding both structural parameters and the under-
lying EOS. Generally, these parameterizations are subject to constraints: matching to the crust
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EOS around 0.5ns, causality, thermodynamic stability, satisfaction of the minimum Mmax from
pulsar measurements, and upper and lower bounds suggested by neutron matter calculations in
the region of approximately 0.5–2ns. A four-parameter phenomenological model (78) is able to ac-
curately reproduce a variety of theoretical dense matter EOSs with an average root mean square
residual of order 1%. Coupled to a representative crust EOS, the M(R) relations and Mmax val-
ues could also be reproduced with an average accuracy of better than 2%. These encouraging
results have suggested that a viable and efficient inversion technique is the generation of M-R
curves that effectively saturate the ε-P orM-R ranges allowed by causality and an assumedMmax;
from this library, one selects the parameter sets that minimize the differences from theM-R pre-
dictions (including uncertainties) from observational data. The optimization is often performed
with standard Bayesian techniques. Subsequently, P(ε) and its uncertainty can be computed.

3.1. Parameterization Models and Constraints

Parameterization schemes normally describe the total pressure–energy density relation for either
PNM or β-equilibrium neutron star matter and therefore contain no compositional information.
The most frequently used scheme involves piecewise polytropes, in which densities above about
n0 = 0.5ns are divided into three or more intervals ni−1 < n < ni for i � 1 − N, with the assumed
EOS P = Kinγi within each interval. Continuity of P and ε at the interval boundaries ni and εi

determines Ki. Within each interval, the energy density is

ε = εi−1
n
ni−1

+ Pni−1 − Pi−1n
ni−1(γi − 1)

. 11.

In this model, the boundary densities ni as well as the adiabatic indices γ i are parameters, but
the approach used most often is a three-interval, four-parameter (including n0) one with fixed
boundaries n1 = 1.85ns, n2 = 2n1, and n3 = 4n1 (78).

A second frequently used approach consists of Taylor expansions of EPNM around ns, either in
powers of u = nB/ns or u1/3:

EPNM(n) =
N∑
i=o

aiui or EPNM(n) =
N∑
i=2

aiui/3. 12.

In the former approach, the N parameters ai determine

Sv = B+
N∑
i=0

ai,
L
3

=
N∑
i=1

iai,
KN
9

=
N∑
i=2

i!ai
(i− 2)!

,
QN

27
=

N∑
i=3

i!ai
(i− 3)!

, etc. 13.

In the latter scheme, which resembles a nonrelativistic Skyrme energy density functional, the ki-
netic energy fixes a2 = 3�(3π2ns)2/3/(10m), and the other N − 2 parameters determine

L =
N∑
i=2

iai, KN =
N∑
i=2

i(i− 3)ai, QN =
N∑
i=2

i(i− 3)(i− 6)ai, etc. 14.

A third commonly used approach is the spectral decomposition method (79), which is an ex-
pansion of the adiabatic index, usually to order N = 3:

�(x) = d lnP
d ln n

= exp
N∑
i=0

γixi, P > P0, 15.

where x = ln (P/P0) and P0 is the pressure at the core–crust interface. The baryon density nB is
determined from the pressure by

nB(x) = n0 exp
∫ x

0

dx′

�(x′ )
, 16.
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where n0 is the core–crust interface density. From dε = (ε + P) d ln nB, one obtains

ε(x) = nB

[
ε0

n0
+ P0

∫ x

0

ex′dx′

nB(x′ )�(x′ )

]
. 17.

Other approaches are based on constant sound speed or chemical potential segments (80, 81)
or on specific physical models, such as relativistic field models (82) with σ , ω, and ρ mesons or
quarkyonic models (83, 83a). In contrast to other approaches, constant sound speed segments and
quarkyonic models allow for local spikes in sound speed that are motivated by the combination of
largeMmax and relatively small R1.4.

3.2. Sensitivity Ranges

Parameterized EOSs can probe the sensitivity of R and Mmax to the EOS in different density
regimes. Reference 84 showed that the pressure of matter in the vicinity of ns to 2ns is highly
correlated with R1.4. But the degree of correlation at other densities was not investigated, and the
study was limited to a small number of EOSs. Parameterized EOSs can quantify this correlation
and extend it to other density ranges and quantities of interest.

One method is to compute the covariance of A= P(nB) and B= R1.4, R2.0, orMmax, with means
Ā and B̄ and standard deviations σA and σ B:

CA,B =
∑
i, j

(Ai − Ā)(Bj − B̄)
σAσB

. 18.

The subscript j ranges over all realizations of B for a given EOS parameterization, and i ranges
over all values of P(nB) for which nB < nc, the central density of the relevant configuration.
Figure 5 shows these correlations for six typical EOS parameterizations (T. Zhao and J.M.
Lattimer, manuscript in preparation). Figure 5 also quantifies the extent to which nc and the
width of its distribution increase with the stellar mass. Notably, the nc distribution peaks around
30% higher density than for the correlations that involve radii or Mmax, and the widths of the nc
distributions rapidly increase with the stellar mass. Within any given parameterization scheme,
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Figure 5

The covariance between the pressure of six different parameterized equations of state at baryon density nB with (a) the neutron star
maximum mass and the radii of (b) 1.4M� and (c) 2.0M� stars. In each panel, the distribution of central densities for the specified
configurations of all the parameterizations is indicated by the blue shading. Figure adapted from Reference 50.
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the EOS at a high density is naturally correlated with the EOS at lower densities, so the relatively
slow decrease of the covariance at high densities is an artifact of the method.

The correlation between the EOS and R1.4 is strongest between ns and 3.0ns, confirming expec-
tations, and the correlation between the EOS and R2.0 is strongest at about 40% higher densities.
Significantly, these results are relatively insensitive to the parameterization scheme. The standard
deviations of bothCP,R1.4 andCP,R2.0 for the six parameterizations are small: σ R < 0.2 for all densi-
ties and σ R < 0.05 near the covariance peaks. This fact demonstrates that knowledge of the EOS
near ns–2ns (i.e., from χEFT) greatly constrains R1.4 and, to a slightly lesser degree, R2.0. The
situation is different for Mmax, where the EOS between 2ns and 6ns plays a dominant role and is
more uncertain: σMmax < 0.25 at all densities and σMmax < 0.1 near the covariance peak. Thus, the
Mmax results are more model-dependent and depend on densities likely above the validity range
for χEFT.

3.3. Semiuniversal Relations

Besides the mass and radius, other measurable global properties of neutron stars include binding
energies, moments of inertia, tidal deformabilities, and fundamental oscillation mode frequencies.
The binding energy BE = NmB −M is the difference between the rest mass N and the gravita-
tional massM, where

N = 4π
∫ R

0
nBr2

(
1 − 2GM

rc2

)−1/2

dr, M = 4π
∫ R

0

ε

c2
r2dr, 19.

and represents the fractional gravitational mass lost during gravitational collapse of a star from a
large radius to R. The equivalent amount of energy could be measured from the neutrinos emit-
ted from a gravitational-collapse supernova, which account for 99% of the newly formed neutron
star’s binding energy. Estimates obtained from the neutrinos detected from SN 1987A suggested
a release of about (3 ± 1.5) × 1053 erg (85). The moment of inertia could be observed in rare
cases in which spin–orbit coupling in a BNS system is detected (86, 87); it is hoped that I even-
tually will be measured to within 10% uncertainty for the pulsar PSR J0737-3039A. The tidal
deformability λ, which is the ratio between the induced dipole moment of a star and an external
tidal field, can be extracted from GW signals observed from BNS or BHNS mergers (88, 89). It is
usually expressed in terms of the Love number k2 as λ = 2k2R5/(3G). The fundamental oscillation
(f-mode) frequency ω0 is measurable from postmerger high-frequency gravitational radiation and
is expected to scale with the mean density as

√
ρ̄ (90). It is convenient to use these quantities in

the dimensionless forms BE/M, Ī = c4I/(G2M3), 
 = 2k2β−5/3, and �̄0 = GMω0/c, where β =
GM/(Rc2) is the stellar compactness.

In the Newtonian limit, BE/M, Ī, 
, and �̄0 exhibit universal scalings irrespective of the as-
sumed EOS. For a uniformly dense sphere in the Newtonian limit, one has

BE/M = 3β/5, Ī = 2β−2/5, 
 = β−5/2, �̄0 =
√
4/5β3/2. 20.

It is somewhat more realistic for a neutron star to have the density profile ρ(r) = ρc[1 − (r/R)2],
where ρc is the central density. This is nearly equivalent, in the Newtonian limit, to an n = 2
polytrope; one finds the following:

BE/M = 5β/7, Ī = 2β−2/7, 
 = 2β−5/9, �̄0 � 2.46β3/2. 21.

The fact that the expressions for the two cases have the same functional dependence on β but with
moderately different coefficients suggests that these quantities obey semiuniversal relations that
are relatively insensitive to the underlying EOS. Correlations among structural quantities persist
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in general relativity and can be tightened if additional constraints, such as causality and aminimum
Mmax, are imposed. Parameterized EOSs provide convenient tools to quantify and, more impor-
tantly, bound these relations. Therefore, observations regarding one or more structural properties
can inform other structural observables and the underlying EOS with quantifiable uncertainties.
Because these structural properties are strongly dependent upon R, their covariances resemble
those of CP,RM (Figure 5).

Figure 6a shows a semiuniversal relation involving BE obtained from parameterized EOSs
subject to constraints including stability, causality, the validity of χEFT PNM up to 2ns, and
Mmax ≥ 2.0M�. Results are bounded by the following (T. Zhao and J.M. Lattimer, manuscript in
preparation):

BE/M � aBM + bBM2 = (0.0602 ± 0.0016)M + (0.0180 ± 0.0065)M2, 22.

where M on the right-hand sides is in solar units. Figure 6b compares a semiuniversal rela-
tion involving I obtained from parameterized piecewise polytrope EOSs (92) with those of
References 93 and 94.Note thatM> 1M� requires β � 0.1, so the divergences at lower β values
are inconsequential. It is worth replotting the Ī-β correlation as shown in Figure 7a so that it
becomes evident that Īβ3/2 � 0.087 ± 0.005 is bounded to within about ±6%, revealing that
neutron stars approximately obey I ∝ (MR)3/2. It is, however, even more remarkable that Ī and 


have an extremely tight correlation, known as the I-Love relation (95), which is accurate to better
than 0.5% in the region of interest (Figure 7b). A similarly tight correlation between Ī and the
quadrupole moment has already proved useful in reducing the parameter space in pulse-profile
modeling (Section 5).

The definition of the tidal deformability suggests 
 ∝ β−5. However, the Love number k2 is
roughly proportional to β−1 (96) for β � 0.1 (M � 1M�); for smaller β, k2 increases rapidly with
β. Therefore, it is not surprising that 
β6 � 0.009 ± 0.002 is constant to within 20% (Figure 8a).
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The lower limit of the bound increases withMmax; forMmax � 2.3M�, 
β6 � 0.0095 ± 0.0015.
This semiuniversal behavior can be used to render EOS-insensitive interpretations of GW signals.

There are semiuniversal correlations between the fundamental oscillation frequency �̄0 andM
and R (90, 97, 98). An even tighter correlation existing between �̄0 and Ī (99) could supplement
inferences from the tidal deformability. The dominant frequency fpeak observed in simulations of
the post-BNS merger GW spectrum (97) is probably equivalent to 2πω0, and it shows a strong
correlation with R1.6 (Figure 8b).

4. OBSERVATIONS OF COMPACT STAR MERGERS

One of the most exciting recent developments is the GW detection of BNS and possibly BHNS
mergers. GW170817 (28), the first BNS merger detected, is especially important because of its
multimessenger nature: It was accompanied by a short γ -ray burst (100, 101) and a kilonova (see,
e.g., 102). The short time delay between the merger and the γ -ray burst, about 1.7 s, implied
the collapse of the merger remnant into a black hole on a smaller timescale. The kilonova was
caused by the radioactive decay of expanding material ejected during and after the merger; it
was first detected 14 h after the merger, but this delay was due to logistics. This EM radiation
had the signature (103, 104) long anticipated to accompany the r-process nucleosynthesis that is
thought to occur in both BHNS and BNSmergers (105). Kilonovae have not yet been observed to
accompany other mergers, likely because of their much greater distances. For an extensive review
of the dynamics of neutron star mergers, readers are referred to Reference 12.

The GW signal from a merger contains information concerning the masses of the components
as well as their sizes. In general relativity, radiation reaction generates GWs that radiate orbital
energy, resulting in inspiral of the components. During inspiral, the GWs are expected to have a
sinusoidal behavior: Both the frequency f (equal to twice the orbital frequency) and amplitude h
increase with time up to the merger, producing a so-called chirp signal (Figure 9). The evolution
of h, f, and f’s time derivative ḟ constrains the system’s chirp mass M and distance D:

M = (m1m2)3/5

(m1 +m2)1/5
= c3

G

(
5 ḟ
96 f

)3/5 (
1

π f

)8/5

, D = 5c
48π2

ḟ
h f 3

. 23.

The expression for D ignores a degeneracy with the orbit’s inclination relative to the observer,
but detection with multiple instruments and/or an EM determination of a precise sky location
can partially break this degeneracy. The mass ratio q = m2/m1 cannot be determined nearly as

MergerContact

Binary neutron star signal

Postmerger Collapse
to black hole

Figure 9

Illustration of the gravitational wave signal expected from a binary neutron star merger (red curve) compared
with a binary black hole merger (gray curve) with the same chirp mass M. Tidal deformation accelerates
infall and causes an advance in the binary neutron star gravitational wave phase. The epochs corresponding
to contact, merger, postmerger, and collapse to a black hole are indicated by arrows and images along the
bottom. Figure provided by T. Dietrich.
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accurately as M; its lower limit may be more effectively realized using prior assumptions about
the minimum and maximum neutron star masses.

In binary black hole (BBH) mergers, the components are essentially point particles from the
gravitational point of view. For a merger that involves neutron stars, finite-size effects have to
be considered. Tidal deformations are the largest finite-size effects, and they cause a more rapid
orbital decay. The lowest-order instantaneous change to the GW phase is (106)

δ� = −117
256

(1 + q)4

q2

(
π f GM

c3

)5/3


̃, 24.

where 
̃ is the binary deformability, a mass average of 
1 and 
2,


̃ = 16
13

(1 + 12q)
1 + (12 + q)q4
2

(1 + q)5
. 25.

Radii in the relevant mass range 1.1M� < M < 1.6M� for BNS mergers have relatively small
variations from a mean value R̄ for a given EOS. Reference 107 found, using piecewise polytropes,
that in the absence of a significant phase transition, |R̄− R| < 0.5 km with a standard deviation
σ R � 0.1 km. Since 
 = aβ−6, with a= 0.009 ± 0.002 from Figure 8, assuming a fixed R(M ) � R̄
implies 
1 � q6
2. It therefore follows that


̃M � 16a
13

(
R̄c2

GM

)6
q8/5(12 − 11q+ 12q2)

(1 + q)26/5
= (0.0040 ± 0.0006)

(
R̄c2

GM

)6

, 26.

where
M and 
̄M denote that
 and 
̄ aremeasured for a particularM orM, respectively.Causal
parameterized EOSs with q > 0.6 and Mmax > 2M� provided the bounds in Equation 26 (107).
The q dependence in Equation 26 is very weak: 
̃M(q = 0.7)/
̃M(q = 1.0) = 1.029. It naturally
follows that


M � 26/5 (M/M )6 
̃M, 27.

which is useful, for example, if one wants to estimate the deformability of a 1.4M� star from
a measurement of 
̃M. The q dependence of Equation 24 is nearly as weak as for 
̃: δ�(q =
0.7)/δ�(q = 1) = 1.10. Partially, this weak dependence is due to the fact that both ∂
̃M/∂q and
�δ�/�q vanish in the limit q → 1. It further follows that

R̄ � (11.3 ± 0.3)
M
M�

(

̃M
800

)1/6

km. 28.

Because of radius correlations, the uncertainty is only half that expected from the uncertainty in
a. Since M is likely to be well measured, 
̃M carries significant radius information.

4.1. GW170817

The observation of GW170817 opened a new window onto neutron stars. The final stages of
the inspiral illustrated in Figure 9 could not be observed because of a loss of detector sensitivity
at frequencies beyond about 500 Hz. But GW170817’s chirp mass M = (1.186 ± 0.001)M� was
accurately measured because the duration τ of the event and the number N of observed orbits
were large:

τ = 5
256

(
c3

GM
)5/3 ( 1

π fd

)8/3

� 317 s, N = 16
5
fdτ � 1.01 × 104, 29.

where fd = 20 Hz was the initial (lowest) observed frequency with a usable signal. For equal-mass
components, tidal disruption occurs before contact when the separation r reaches the Roche limit
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rR � 2.63R inNewtonian gravity.General relativity alters this estimate minutely: rR � 2.72R (108).
Therefore, tidal disruption happens at the frequency fR:

fR � c
π

(
GM26/5

r3Rc2

)1/2

= 1.03 kHz. 30.

Postmerger oscillations have GW frequencies of order 3 kHz (Figure 8b), so it is doubly impera-
tive that future detectors have an improved high-frequency response; the Neutron Star Extreme
Matter Observatory (NEMO) (109) is one such design. The initially measured GW170817 dis-
tance had an uncertainty of order 25%, but using the EM information concerning sky location
reduced that by more than a factor of two.

The fortuitous discovery of an associated short γ -ray burst and kilonova in the galaxy NGC
4993 added enormously to GW170817’s significance. Both were observed within the GW sky
location uncertainty window, and NGC 4993 matches the GW distance. The appearance of a
kilonova not only seems to confirm that most of the r-process elements (which account for about
half of all heavy nuclei) are synthesized in mergers that involve neutron stars but also provides
theoretical support for an upper limit toMmax ∼ 2.2–2.3M� (Section 4.2).

The LIGO/Virgo Collaboration (LVC) initially reported an upper 90% confidence limit3


̃1.186 � 800 (28). Because 
̃ has a nearly 100% relative uncertainty, most studies of EOS con-
straints have focused not on its mean value but on its 90% upper confidence bound. Using the
lower bound for a and q ∼ 1 in Equation 26, it follows that R̄ � 13.4 km, similar to the estimate
of 13.5 km found in Reference 28.

There are 13 fitting parameters in the sixth-order post-Newtonian TaylorF2 (110, 111) wave-
form model that LVC used; finite-size effects first appear at fifth order. Extrinsic parameters in-
clude two for the sky location and one each for distance, inclination, the coalescence time and
phase, and the signal’s polarization; intrinsic parameters include two each for the component
masses, spins, and tidal deformabilities. Reference 112, alternatively, fixed the sky location and
distance from EM observations and also implemented the correlation 
2 = q6
1 justified in
Section 3.3. Ignoring the existence of a 
-m correlation is tantamount to assuming that the neu-
tron stars possibly obey different EOSs, which should not be the case unless a strong phase transi-
tion exists in the interval between their central densities.This interval is small since the most likely
value of q is approximately 0.9–0.95. The consequent overall reduction to nine fitting parameters
reduced the upper confidence limit to 
̃ and identified a nonzero lower bound (Figure 10). Subse-
quent analyses (113, 114) incorporating EOS correlations confirmed these results. Reference 113
also demonstrated that the choice of waveformmodel leads to insignificant systematic uncertainty.

Figure 10 shows the GW170817 probability distribution function (PDF) for 
̃ and q from
Reference 112 with their marginalized one-dimensional distributions. The mean value of 
̃ is
about 235, and its upper 90% confidence bound is about 645—near the bound of 720 given by
Reference 113. The Bayesian analysis assumed uniform priors for m2 and m1 > m2 in the range
M�–2M� and a uniform prior for

√

1
2 in the range 1–3,000. This analysis did not take into

account any nuclear physics priors. However, if one uses parameterized EOSs (107), the UGC
imposes a lower limit 
̃1.186 > 200 if Mmax ∼ 2M�, which appears to remove nearly 40% of the
probability weight at lower 
̃ values. The inferred 
̃ upper limits would increase if this conjecture
were implemented as a prior.

3Reference 28 defined this limit to mean that 10% of the probability lies above the upper limit, but when
there is a lower limit, it actually corresponds to a contour enclosing 80% of the total weight. Subsequently,
this convention is not used in this review.
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Probability distribution function for 
̃1.186 and q for GW170817, assuming a uniform prior in
√


1
2.
Contour lines enclose 68.27%, 90%, 95.45%, and 99.73% of the total weight. The white dashed line
indicates the minimum 
̃ consistent with the Unitary Gas Conjecture. The subplot at the top shows the
marginalized probability distribution function for q, and the subplot on the right shows the marginalized
probability distribution function for 
̃. In each subplot, the bold dashed lines indicate the mean and the light
dashed lines enclose the same percentage weights as in the main figure. Data from Reference 112.

Using these PDFs together with the relation shown in Equation 28 allows distributions inM-R
space to be drawn. Figure 11a shows results found when assuming a uniform prior in masses and
deformabilities, as was assumed in Reference 28 and Figure 10. The 90% confidence bound is
9.3 km < R̄ < 13.1 km with a mean of 10.9 km. Alternatively, one could assume a uniform radius
prior, which, because of the approximate relation 
 ∝ R6, is effectively a uniform distribution
in ln (
1
2) and might be preferred because of the large dynamic range of 
1
2. This prior
increases weights of smaller values of 
̃M, and therefore R, which, as displayed in Figure 11b,
implies the 90% confidence bound 9.1 km< R̄ < 12.2 kmwith a mean of 10.4 km.This ambiguity
in the prior represents a systematic uncertainty of nearly a full kilometer in the upper confidence
bound—consistent with the analysis of Reference 114,which used a 
̃ prior based on a set of EOSs
giving a uniform distribution in R1.4. The moderate signal-to-noise ratio for GW170817 makes
assumptions concerning the EOS or the prior 
 distributions to remain moderately important.

It is anticipated that the moment of inertia of the more massive member of the double pulsar
PSR J0737-3039 will soon be measured (87). Since the 1.338M� mass of PSR J0737-3039A and
the component masses of GW170817 are nearly the same, the GW170817 
-M PDFs can be
combined with the universal I-Love relation (95) shown in Figure 7 to predict 
1.338 = 267+624

−195
and Ī1.338 = 57.9+19.8

−15.2 if a uniform prior in
√


1
2 is assumed and 
1.338 = 234+236
−156 and Ī1.338 =

56.1+10.9
−12.8 if a uniform prior in ln (
1
2) is assumed. Comparison with the actual measurement

of Ī for PSR J0737-3039A will provide an important consistency check for these independent
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Probability distribution functions forM and R for GW170817, assuming uniform priors in
√


1
2 (a) and R (b). Contour lines enclose
68.27%, 90%, 95.45%, and 99.73% of the total weight. The subplots at the top show the marginalized R probability distribution
function; in each subplot, the bold dashed lines show the mean and the light dashed lines enclose the same weights as in the main figure.
Data from Reference 112.

observations. A significant discrepancy could indicate the existence of a phase transition above the
central density of a 1.36M� star.

4.2. Multimessenger Inferences for the Maximum Mass

Bright kilonovae require the formation of a significant postmerger disk.Whether this or an alter-
nate immediate collapse into a black hole occurs depends on Mmax, the binary mass ratio q, and
the neutron star compactness β. From the results of multiple numerical simulations that varied
these parameters, Reference 115 concluded that immediate collapse ensues if

MT � Mmax

(
2.38 − 3.606

GMmax

R1.6c2

)
. 31.

The minimum radius R1.6 of a 1.6M� star needed for disk formation turns out to be insensitive to
assumptions concerning both q and Mmax for a given value of M. For GW170817, assuming an
Mmax > 2M� gives R1.6 > 10.3 (10.7) km if q = 1 (0.7), which is almost the same as the 10.35-km
minimum radius implied by the UGC lower limit of 
̃1.186 � 200 (Figure 10). This minimum
radius virtually guaranteed the formation of a disk and kilonova for GW170817. By contrast, Ref-
erence 116 estimated a lower limit 
̃1.186 � 400 in order to satisfy both EM and GW constraints
for GW170817. Reference 117 argued that the lower limit should be smaller: 
̃ � 250, corre-
sponding to R̄ ≥ 10.7 km, which agrees with the above limits.

Model simulations have long suggested that BNS mergers should lead to dynamical mass ejec-
tion irrespective of whether a black hole is ultimately formed. Additional mass ejection seems to
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occur from the coalesced, rapidly rotating massive neutron star and its centrifugally supported
disk. Immediate collapse to a black hole on a millisecond timescale following the merger might
preclude the large amount of ejected mass, � 0.05M�, inferred by the luminosity and duration
of the kilonova connected with GW170817. However, a short delay before collapse of no more
than a second is suggested by the appearance of a short γ -ray burst, which is thought to require
the environment of disk accretion onto a black hole.

According to simulations, the initial angular momentum of the coalesced remnant of a bi-
nary with initial gravitational mass MT = Mq−3/5(1 + q)6/5, chiefly coming from the orbital
angular momentum, is J = (4.041MT − 4.658M�)GM�/c (115). Therefore, its Kerr param-
eter a/MT = cJ/(GM2

T ) � 0.86 for MT = 2.73M�. However, the mass-shedding (Keplerian)
limiting spin frequency is fK � 0.094

√
GM/R3 Hz for a uniformly rotating star, which limits

a/M ≤ 0.70 (118). Thus, the remnant is initially differentially rotating, with massive winds driv-
ing mass and angular momentum into a disk (119). If MT is not too large, the remnant will have
sufficient centrifugal and magnetic support to forestall collapse at least until it regularizes into
uniform rotation, which might take a few hundred milliseconds. A uniformly rotating star, with
f < fK, could survive for minutes to years because its angular momentum loss is relatively slow.
Such prolonged survival would have been unlikely for GW170817 because, in addition to pre-
venting the formation of a kilonova and a γ -ray burst, a long-lived stable remnant would generate
a huge spin-down luminosity that would dramatically heat the expanding ejecta (29), a feature that
is not evident in the kilonova light curve. The maximum mass of a differentially rotating star is
Md ∼ 1.5Mmax, which follows from Equation 31 usingMmax = (2.0–2.2)M� and R1.6 � 12 km. For
comparison, the maximum mass that can be supported by uniform rotation isMu = ξMmax, where
1.16 < ξ < 1.20 depends on the EOS (120).

During the merger, baryon mass, not gravitational mass, is conserved because of binding en-
ergies. The semiuniversal relation shown in Equation 22 can be used to relate MT to the total
baryon mass (MBT) of the coalesced, differentially rotating remnant:

MBT = MT + aB(1 + q2)/(1 + q)2M2
T + bBM3

T (1 + q3)/(1 + q)3 − �M, 32.

where �M ∼ 0.05M� is the ejected mass. Simulations indicate that the factor ξ also applies to
baryon masses. Therefore, the EM and GW observations can be reconciled if the total baryon
massMBT obeys

ξMBmax < MBT < MBd , 33.

where MBmax = Mmax + aBM2
max + bBM3

max is the maximum baryon mass of nonrotating neutron
stars. In this way, the remnant survives as a short-lived hypermassive star until losing enough
angular momentum to trigger collapse; it never becomes a long-lived supermassive star. For
q > 0.7, ξ > 1.16, and �M > 0, multimessenger observations of GW170817 therefore suggest
Mmax � 2.23M�, which is compatible with other estimates (29, 121–124). This estimate implies
a gap of perhaps 0.1–0.2M� between the upper and the existing lower bounds toMmax.

4.3. Further Detections and Expectations

There are 17 BNS systems in our Galaxy with measured MT (21, 125), of which 10 have or-
bital decay times less than the Hubble time tH and, if Galactic BNS systems are characteristic of
the extra-Galactic distribution, would represent the population relevant for potentially observable
mergers. The distribution of these 10 BNS systems has a meanMT = 2.69 ± 0.12M�. Kernel den-
sity estimation yields a non-Gaussian distribution with a meanMT = 2.66+0.18

−0.11M� (Figure 12a).
For comparison, GW170817 seems typical; assuming q = 1, it hasMT = 2.73M�. The condition
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Figure 12

(a) Probability distributions for Galactic BNS systems. The gold band indicates the inferredMT for GW170817. The black curve
shows a fitted Gaussian, and the red curve shows the fit from KDE. Vertical dotted lines show the respective meanMT and ±1 standard
deviations. (b) The dotted curves show the fraction of time that a metastable remnant is expected to form in a BNS merger as a function
ofMmax. The solid curves show the chances that the remnant will be hypermassive. The differences between the dashed and solid
curves show the chances that the remnant will be supramassive, resulting in extra heating of the ejecta. Abbreviations: BNS, binary
neutron star; G, Gaussian; KDE, kernel density estimation.

MBT < MBd is virtually guaranteed for all BNS mergers, sinceMmax > 2M� impliesMT > 3.2M�.
This condition is roughly equivalent to Equation 31, as noted previously. Immediate remnant col-
lapse to a black hole should never occur. It is possible to estimate what fraction of BNS mergers
might produce stable neutron stars (MBT < MBmax), supramassive neutron stars (MBmax < MBT <

ξMBmax), or hypermassive neutron stars (MBT > ξMBmax), such as seemingly applies toGW170817.
Figure 12b shows the criticalMT(Mmax) relation established fromMBT = MBmax (dotted lines)

andMBT = ξMBmax (solid lines) for the observed Galactic BNS distribution having orbital decay
times less than tH. IfMmax < 2.2M�, then nearly all BNS mergers form metastable neutron stars
with MBT > MMax, and at least 40% form hypermassive remnants that quickly collapse to black
holes. The remainder may form supramassive magnetars that contribute greatly to heating of the
kilonova ejecta.The kilonova associated with GRB200522A (126) may be an example; it was about
10 times more luminous than GW170817 and too bright to be explained solely by radioactive
decay from r-process nuclei.

The observed decay time distribution of the 10 Galactic BNS systems with decay times less
than the Hubble time is interesting: 10% would have τ decay < 47 Myr, 20% would have τ decay <

77Myr, and 50%would have τ decay < 250Myr.The large fractions of systems with relatively short
decay times (if this distribution is universal) and the relatively low upper limit to Mmax deduced
from GW170817 both support the hypothesis that mergers are a substantial source of r-process
nucleosynthesis (105).

Further evidence for Mmax � 3M� comes from the discovery of a dark companion of mass
3.04 ± 0.06M� to the red giant V723 Mon (127, 128), and a likely black hole of mass 3.3+2.8

−0.7M�
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is orbiting the red giant 2MASS J05215658+4359220 (135). However, it should be noted that a
similar previous discovery of a low-mass dark companion was suggested to be due to a low-mass
stellar binary (129). Perhaps the best evidence forMmax < 3M� comes from GW detections.

There were 39 mergers identified in the first half of the O3 LVC run (April–October 2019)
that were above the signal-to-noise threshold (false alarm rate >2 per year), including 36 BBH
systems (130).The remaining three events,GW190425 (M = 1.44 ± 0.02M�) (131),GW190426
(M = 2.41+0.08

−0.18M�) (130), and GW190814 (M = 6.09 ± 0.06M�) (132), potentially contain neu-
tron stars.GW190425 has estimatedmasses that depend on the spin prior assumptions. In the case
of a low-spin prior, which is favored for BNS systems,m1 = 1.73+0.14

−0.13M� and m2 = 1.57+0.12
−0.11M�,

meaning that both stars have larger masses than are seen in the Galactic BNS distribution.
In fact, MT is several standard deviations higher than the mean of the Galactic BNS distribu-
tion. With a high spin prior, which is more appropriate for BHNS systems, it is found that
m1 = 2.06+0.46

−0.45M� and m2 = 1.40+0.28
−0.28M�, which could be compatible with a typical neutron star

paired with a black hole slightly above the upper limit to Mmax deduced from GW170817. For
comparison, Reference 133 (see also Reference 134) assumed priors compatible with a BNS sys-
tem to find m1 = 1.85+0.27

−0.19M� and m2 = 1.47+0.16
−0.08M� and, for priors compatible with a BHNS

system, m1 = 2.19+0.21
−0.17M� and m2 = 1.26+0.10

−0.08M�. The black hole would have a very small mass,
below the traditional mass gap of 3 to 5M�. However, the binary V723 Mon has recently been
shown to contain a black hole of mass 2.95 ± 0.17M� (127, 128). Furthermore, supernova simula-
tions give no reason why a black hole could not form betweenMmax and 5M�.No EM counterpart
was detected in GW190425, but the estimated 160-Mpc distance and the 10,000-square-degree
sky uncertainty could have prevented a kilonova detection. And if it was a BNS merger, its total
mass MT > 3.26M� would likely exceed Md, prompting an immediate postmerger collapse to a
black hole. In either case, inferred tidal deformabilities (131) are noninformative, predicting R1.4 <

17.5 km in the BNS case and R1.4 < 15.7 km in the BHNS case.
The case of GW190814 is also compelling. Its masses are estimated as m1 = 23.2+1.1

−1.0M� and
m2 = 2.59+0.08

−0.09M�. While it is possible that this is a BHNS system,m2 would significantly exceed
the upper limit toMmax deduced from GW170817. No EM counterpart was detected, but the ex-
treme mass ratio makes the likelihood of mass ejection and a kilonova very small, and its estimated
240-Mpc distance would make afterglow detection difficult. It appears more likely that this is an
extreme-mass-ratio (q ∼ 0.11) BBH merger, again with a low-mass black hole in the mass gap. If
this system could be proved to contain a neutron star, the implications would be profound (50,
136–143), as indicated in Section 2.4.

GW190426 (130) is a low-signal-to-noise BHNS candidate announced in GCN Circu-
lars (144); these reports include estimates of its relative probability of being in the LVC classes of
BNS (both stars <3M�; 25%), gap (at least one star between 3 and 5M�; 15%), BHNS (one star
<3M� and one star >5M�; 60%), and BBH (both stars >5M�; 0%), and also an estimated 72%
probability that disruption led to the formation of a disk that survived for at least a few tenths
of a second. The system’s chirp mass, although well measured at detection, was not released for
18 months because of LVC policy. Nevertheless, from the available probability information, and
assuming that q was very uncertain, Reference 145 accurately predicted M ∼ 2.4M� with the
most likely configuration consisting of a 1.3–1.5M� neutron star and an ∼6M� black hole. Even-
tually, LVC (130) confirmed these estimates, findingm1 = 5.7+4.0

−2.3M� andm2 = 1.5+0.8
−0.5M� to 90%

confidence. Immediate release of M for future sources would preclude the need for speculation,
involve wider participation among theorists, and attract more observational resources to aid in the
search for EM counterparts.

Further upgrades and observations will result in many more neutron star merger detections.
Combined with multimessenger observations, improved constraints on radii andMmax seem likely.
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If it is confirmed that the Galactic BNS distribution also applies to extra-Galactic sources, the
narrow range of observed M will ease the combining of results and thereby reduce uncertainties
in 
̃M; however, if the two distributions prove to be distinct, a wider range of neutron star
masses will be probed. The additional capabilities of next-generation GW detectors may also
allow the measurement of dynamical tides, the tidal disruption phase, and postmerger oscillations
that could probe internal structure, including possible identification of a quark–hadron phase
transition (12, 146).

5. PULSE-PROFILE MODELING

Pulse-profile modeling probes general relativistic effects on thermal emission from hot regions
(spots) on the stellar surface of rapidly rotating neutron stars (147). These models include lo-
cal radiation beaming due to the bulk motion of material on the rotationally deformed surface
and the subsequent ray propagation through the exterior space-time. Ray propagation includes
gravitational light bending and redshift and rotational effects like frame dragging, a finite-mass
quadrupole moment (due to stellar oblateness), and higher-order mass and current multipole mo-
ments. The magnetic polar caps of millisecond pulsars, thought to be heated by currents in the
pulsar magnetosphere, produce thermal emission in the soft X-ray band (148). As the star spins,
the X-ray emission is perceived to be periodically modulated, which allows the construction of
X-ray counts in each detector energy channel’s rotational phase (pulse profile). The relativistic
ray tracing that maps the surface emission into the pulse profile detected by a distant observer
has been well studied (149–159). A surface emission model that consists of a thin atmosphere to-
gether with an assumed temperature distribution (i.e., the number, shapes, sizes, and temperatures
of hot spots) can then be used to compute a light curve. Bayesian inference is used to couple light-
curve models to statistical sampling software to derive posterior PDFs for mass and equatorial
radius directly from pulse-profile data (160–162). Although the redshift is expected to be the best-
determined quantity, oscillation amplitudes vary with X-ray energies in a way that probes another
function ofM and R orthogonal to redshift.

The NICER telescope was attached to the International Space Station in 2017 with a pri-
mary mission to measure neutron star masses and radii to 5% accuracy through phase-resolved
spectroscopy (163). Under initial consideration are PSR J0437-4715 [1.44 ± 0.07M� (164)], PSR
J1614-2230 [1.908 ± 0.016M� (165)], PSR J0740+6620 [2.08±0.07M� (25)], and PSRs J1231-
1411, J2124-3358, and J0030+0451, whose masses are not previously measured. So far, results
have been published for PSR J0030+0451 and PSR J0740+6620.

5.1. PSR J0030+0451

Two NICER teams (30, 31) estimated the joint M and equatorial radius R of the millisecond
pulsar PSR J0030+0451 using X-ray Timing Instrument (XTI) photon event data curated in
Reference 147. Both teams assumed fully ionized nonmagnetic hydrogen atmospheres and a
specific parameterization of the uncertainty in the NICER XTI instrument response. The results
are conditional upon the analysis models. Reference 30 assumed two disjoint surface hot regions
that could be both nonantipodal and nonidentical, each with some local comoving effective
temperature field. The restriction to two disjoint hot regions was motivated by the presence of
two distinct pulses in the observed pulse profile. Various shapes for the hot regions, including
circles, rings (with the centers both concentric and offset), and crescents, filled with material of
a single local comoving temperature, were considered. The favored configuration consists of a
small hot spot with an angular extent of only a few degrees and a more extended hot crescent, both
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Figure 13

Probability distribution functions inM-R space for (a) PSR J0030+0451 alone and (b) PSR J0030+0451 combined with GW170817. In
panel a, the filled contours are from Riley et al. (30), and the red-dotted curves indicate enclosed weights of 68.27%, 90%, 95.45%, and
99.73%. The corresponding blue contours are from Miller et al. (31). In panel b, the solid contours show the same enclosed weights.
The subplots at the top show the marginalized R probability densities; bold dashed lines indicate 50%, and light dashed lines indicate
the bounds of the same enclosed weights as used for the contour lines. Abbreviations: GW, gravitational wave; NICER, Neutron Star
Interior Composition Explorer.

in the same rotational hemisphere. Reference 31 considered models with three and four different
uniform-temperature circular hot spots and models with two and three different uniform-
temperature oval hot spots, but no evidence was found for different temperatures within a spot
or for more than three spots. The spots were allowed to overlap, to have multiple temperatures,
and to take a variety of different complex shapes. Models with three different, nonoverlapping,
uniform oval spots gave the best fits, although models with two spots were almost as good.

PDFs in M-R space, marginalized over other fitting parameters, are shown in Figure 13a.
The inferred radius, marginalized over M, is 12.72+1.14

−1.19 km in Reference 30 and 13.02+1.24
−1.06 km

in Reference 31, but the most accurately determined quantity is the compactness β = GM/(Rc2),
which is 0.156+0.010

−0.008 in Reference 30 and 0.163+0.008
−0.009 in Reference 31. From the mean measured

differences, one infers a systematic modeling uncertainty in R of approximately 0.3 km (2.3%),
which is much smaller than the individual uncertainties, and a 0.007 (4.4%) systematic modeling
uncertainty in β, which is slightly smaller than the uncertainties in eitherM or R. On average, the
radius values are about 2 km larger than those inferred from GW170817, yet they comfortably
overlap to better than 1σ .

The 1σ mass ranges inferred for the components ofGW170817 and PSR J0030+0451 are both
approximately 1.1–1.6M�. In this mass interval, R(M) is approximately constant for a given EOS
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unless a strong phase transition occurs in that mass interval, corresponding to a density range
of 2 to 3.5ns. Therefore, it seems reasonable to combine the data from these two independent
observations by multiplying their PDFs. Before doing so, however, one can attempt to include the
identified systematic modeling uncertainties of the NICER and the GW analyses. For NICER,
one can add the PDFs obtained by the two teams (30, 31), and for GW170817, one can add the
PDFs obtained by assuming uniform

√

1
2 and uniform R priors. The mean radius becomes

R = 11.85+0.94
−0.75 km (Figure 13b). The mean mass is 1.27M�, which is about 0.1 km less than for

either observation and driven by the large NICER correlation betweenM and R.

5.2. PSR J0740+6620

NICER also recently released results for radius measurements of the massive pulsar PSR
J0740+6620: The Amsterdam team (33) obtained R = 12.39+1.30

−0.98 km, giving �R � −0.3+1.2
−1.5 km,

while the Maryland team (32) obtained R = 13.71+2.42
−1.49 km, giving �R = R2.0 − R1.4 � 0.7+2.9

−1.6 km.
The average value is �R = 0.2+2.2

−1.7 km.
The inference from Bayesian analysis utilizing parameterized EOSs, constrained by theories

of neutron matter, observations of pulsar masses, GWs from mergers, and NICER objects PSR
J0030+0451 and PSR J0740+6620, is that �R � −0.5+0.8

−1.0 km (166) or �R = 0.0+0.5
−0.5 (32). Both

results are averaged over EOS models. These results support the interpretation that �R ∼ 0,
which favors moderate stiffening and disfavors dramatic softening of the EOS at nB � 2ns. Stiff-
ening could result from a first-order phase transition to a phase with sound speed cs � c/

√
2 or a

crossover transition to a phase such as quarkyonic matter (83a). Softening would result if a 2M�

star was a hybrid star with an extensive quark core.

SUMMARY POINTS

1. Advances in many-body theory permit calculations of pure neutron matter (PNM) with
quantifiable uncertainties up to nearly twice the nuclear saturation density. These cal-
culations are consistent with the Unitary Gas Conjecture and constraints from nuclear
masses, neutron skin thicknesses, nuclear dipole polarizabilities, and the binary neutron
star (BNS) merger GW170817. If we assume that the PNM equation of state (EOS) is
valid up to 2ns, causality constrains R1.4 to the interval of 9 to 13 km if Mmax � 2M�

(or 11–13 km forMmax � 2.6M�). If the PNM EOS is valid and smoothly extrapolated
(without a strong phase transition) to 3ns, then R1.4 � 12 km.

2. PNM and GW170817 radius constraints require that the sound speed above the density
1.5–1.8ns exceed c/

√
3 forMmax � 2M� or 0.8c forMmax � 2.6M�.

3. Parameterized models of the high-density neutron star EOS are powerful tools in in-
ferring bounds for neutron star properties. Semiuniversal relations that relate the stellar
binding energy,moment of inertia, tidal polarizability, and fundamental mode oscillation
frequency to each other and to M and R have been refined using parameterized EOSs
subject to causality andMmax constraints.

4. GW170817 observations, coupled with electromagnetic observations of the accompa-
nying short γ -ray burst and kilonova, strongly supportMmax � 2.2–2.3M�.

5. Evidence strongly suggests a stiffening of the EOS in the range 2–4ns. One possibility is
the appearance of deconfined quarks with or without a phase transition.
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6. Neutron Star Interior Composition Explorer (NICER) pulse-profile constraints of the
rapidly rotating pulsars PSR J0030+0451 and PSR J0740+6620 are consistent with
expectations from neutron matter theory, nuclear experiments, other observations of
quiescent low-mass X-ray binaries, and photospheric radius expansion bursts as well as
GW170817. Since the masses of the components of GW170817 and PSR J0030+0451
are nearly the same, their combination leads to improved radius estimates for 1.4M�

stars. A slight tension exists between their mean radii, but their differences are within
their 1σ uncertainties.

FUTURE ISSUES

1. Further advances in many-body theory for PNM, such as chiral effective field theory
studies, may reduce the uncertainties in the dense matter EOS in the important range
of 1 to 2ns and, more speculatively, may better constrain the EOS at higher densities.

2. New studies of �rnp in neutron-rich nuclei, both in 208Pb and other nuclei such as 48Ca,
will further constrain the symmetry energy density dependence and the parameters Sv

andL. In addition, the theoretical estimate for�r48np depends strongly on 3N forces,which
can be accessed from both ab initio (few-body) and energy density functional methods.

3. The O3 LIGO/Virgo run yielded as many as three events that may have contained
neutron stars, even though none of them may have been a BNS merger. In any case,
these events suggest the existence of order 2.5M� compact objects, either very low-mass
black holes or very high-mass neutron stars. Either possibility holds important ramifica-
tions for Mmax, stellar evolution, and nucleosynthesis. Additional events will determine
whether the extra-Galactic and Galactic distributions of BNS mergers are similar.

4. If the Galactic distribution of BNS masses proves to be typical, the expected mass range
of future BNS merger events will be so small that it will be possible to usefully combine
observations to enhance the tidal deformability constraints. Moreover, the expectation
would be that most BNS mergers are accompanied by short γ -ray bursts, kilonovae,
r-process nucleosynthesis, and possibly magnetar heating, leading to additional multi-
messenger events and constraints for those systems close enough to permit observation.

5. It is imperative that future gravitational wave observatories have greater sensitivity at
1- to 3-kHz frequencies than at present. Not only would this enable more precise tidal
deformability measurements, but it would also permit the observation of dynamical tidal
resonances during the inspiral phase, the tidal disruption phase, and postmerger oscilla-
tion frequencies. Semiuniversal relations can connect such observables with each other
and with other neutron star structural properties and could reveal the existence of strong
phase transitions.

6. The anticipated measurement of the moment of inertia for PSR J0737-3039A would
provide a critical independent determination of the neutron star radius and tidal de-
formability (via the I-Love universal relation) for a precisely known mass, with impor-
tant implications for the dense matter EOS. Additional neutron star mass measurements
will refine our understanding of the BNS mass distribution and the lower limit ofMmax.
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7. Additional NICER observations of massive neutron stars near 2M� will probe the neu-
tron star radius in a different domain than previously, increasing our knowledge of the
EOS beyond 2ns.New generations of X-ray space telescopes, such as the enhanced X-ray
Timing and Polarimetry (eXTP) mission (167) and the Advanced Telescope for High
Energy Astrophysics (ATHENA) (168), will significantly reduce observational uncer-
tainties from the pulse-profile method for rapidly rotating stars and from observations
of quiescent and bursting sources.
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