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Abstract

Applying dimensional analysis to the Higgs mass leads one to predict new
physics interactions that generate this mass at a scale of the order of 1 TeV.
The question of what these interactions could be is known as the gauge hi-
erarchy problem. Resolving this question has been a central aim of particle
physics for the past few decades. Traditional solutions introduce new par-
ticles with masses below 1 TeV, but that prediction is now challenged by
experiment. In this article, I review recent new approaches to the problem
that do not require new particles at the TeV mass scale. I first discuss the re-
laxation approach, whereby the Higgs mass is made dynamical and is small
at the absolute minimum of its potential. I then discuss the historical ap-
proach, whereby details about inflation and/or reheating after inflation cause
the Higgs mass to be smaller than otherwise expected. Finally, I discuss solu-
tions that use conditional probability, whereby conditioning on the fact that
the cosmological constant is small automatically leads one to select vacua
where the Higgs mass is also small.
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1. INTRODUCTION

One of the most important features of physics is dimensional analysis. Dimensional analysis allows
us to estimate the answer to many questions without detailed knowledge of the system at hand.
Almost always, the dimensionless numbers in front of any dimensional analysis estimate happen
to be O(1), validating its use. As long as one understands all of the relevant symmetries of the
problem and the question being asked makes sense, dimensional analysis provides the answer. In
this article, I review the application of dimensional analysis to the Higgs boson. The application
of dimensional analysis to various problems in particle physics has a long and storied history (see,
e.g., References 1-21).

The gauge hierarchy problem is the problem of estimating the distance or mass scale of the
physics responsible for setting the Higgs boson mass. In particular, why is the Higgs mass much
less than the other fundamental scale we observe in nature, the Planck length? At its heart, the
gauge hierarchy problem is a question about estimating the distance scale where our standard
description of the Higgs boson breaks down. As we will be using dimensional analysis to estimate
this distance scale, it is worth first reviewing some of the spectacular successes that can be achieved
with it. Almost universally, the first example of dimensional analysis that people learn is how to
estimate the time it takes for a ball that has been dropped to hit the floor. Because this depends
only on the distance to the floor, 4, and the strength of gravity, g, the simple dimensional analysis
estimate gives ¢ ~ ,/d/g. However, if all of the relevant physics has not been identified, an incorrect
result can be obtained. For example, if the coefficient of air resistance, b, is important then the time
would instead be estimated as ¢ ~ bd/(mg).

A classical physics example that is analogous to what we will do below in the quantum theory
is to use the multipole expansion to guess the size of an object. The multipole expansion involves
taking an arbitrary distribution of charges and performing a Taylor series on the potential in the
long-distance limit:

V=23 (4 Gurin@. L.

Lom

One can guess the size at which our roughly spherically charged cow is nonspherical. The first
term in the potential Q/7 gives the rough size of the typical charges involved in the system while
the second-order term, the dipole term, scales as p/7*. The variable p has dimensions of charge
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times distance, and the size of the system can be guessed to be

R~ p/Q. 2.

When performing classical experiments, we use estimates of this sort all the time to guess the size
of an object. Applying this estimate to molecules, protons, nuclei, and so forth always gives the
rough size of the object. Particle physicists formalize the statement that such dimensional analysis
estimates are accurate with the term naturalness.

Perhaps the most successful application of naturalness is anticipating the scale of quantum
mechanics a la Weisskopf (22, 23). The first step in this line of reasoning is obtaining the
classical electron radius. Consider the mass of the electron. Einstein’s most famous equation,
E = md®, shows that energy and mass are one and the same. Thus, any source of potential energy
associated with the electron should contribute to its mass. One source of potential energy is the
electromagnetic self-energy of the electron. At the classical level, this energy is infinite. Assuming
that at some distance R, one of the assumptions breaks down (e.g., 1/#? electric field, point-like
electron), dimensional analysis tells us that the self-energy has a potential energy V' ~ «/R,
which gives a contribution 87, ~ «/R to the mass of the electron (using particle physics units
where ) = o = ¢ = h = 1). In the extreme limit, the entirety of the electron mass is due to the
electromagnetic self-energy mz, ~ §m,, giving

Ry=—. 3.
mt‘
R, is also known as the classical radius of the electron. If the electron were modeled as a charged
ball, Rnin would be the smallest the radius of the electron could possibly be.

An important point is that the above argument does not specify what actually happens at the
scale Ry. Dimensional analysis simply informs the physicist when something will happen, not
what will happen at said location. While the classical assumption was that electrons would cease
to be point-like before the scale R, instead what we observed was that all of classical mechanics
broke down, and quantum mechanics emerged instead. This prediction bears out experimentally:
When R ~ 100R;, quantum mechanics kicks in and completely changes the computation. While
dimensional analysis cannot predict what will occur at R, it does correctly predict that one of the
assumptions will break down.

The last example of dimensional analysis that I will review is estimating the energy scale where
the description of the charged pion must be modified. The pion is inherently quantum mechanical,
so the above computation must be modified. As above, if the pion were a point-like object, the
electromagnetic energy would be infinite. We thus assume that something happens at an energy
scale A and use dimensional analysis to estimate A. The correction to the mass of the pion coming
from Einstein is 8722 ~ ¢ A>. As above, this can be flipped on its head to give an estimate of the
energy scale where something new happens to be A> < 722 /¢?, which turns out to be within O(1)
of the mass of the p meson. As in the case of the electron, dimensional analysis has been used to
estimate the scale at which something happens. Like the multipole example, we have used two
terms in the multipole expansion of the pion, the charge and mass, to estimate something intrinsic
to the nature of the pion.

We are finally at the point where we can describe the gauge hierarchy problem. The question
is “At what length scale does our description of the Higgs field break down?” Experimentally, we
know that the Higgs field is charged under the electroweak and hypercharge gauge groups. It
also gives mass to the top quark and is thus coupled to it via a Yukawa coupling y,. All of these
interactions have been experimentally measured and lead to potential energies that via E = mzc?
contribute to the mass of the Higgs boson.

www.annualreviews.org o New Solutions to the Gauge Hierarchy Problem
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We can apply the previous arguments to the many different interactions of the Higgs boson to
obtain the potential energies resulting from these interactions. We thereby obtain the following
result:

AHiggs S ~ 102_3 GeV. 4.

)
max(g, g, y:)
The mystery of the gauge hierarchy problem is “What happens at this scale?”; if the answer is
nothing, then what did we do wrong when estimating this energy scale?

The question of what happens at Apjggs has two sides. The first is experimental, and the sec-
ond is theoretical. Experimentally, the LHC has looked for new particles. If the new particles are
colored, then their mass must be at the TeV scale (29-32). If the new particles are electroweak-
charged, then they could still have a mass of hundreds of GeV (33-35). Precision measurements
of Higgs boson higher multipole moments (i.e., higher-dimensional operators) indicate that the
Higgs boson’s size is at least smaller than 1/TeV (36, 37).

Combined, all of these experimental results suggest that it is likely, though not impossible, that
if something new happened in our description of the Higgs boson at an energy scale E < 10° GeV,
then we would have seen it. Meanwhile, any solution at an energy scale E > 10° GeV remains
untested. With reference to Equation 4, we see that we have explored O(50%) of the energy range
where our description of the Higgs boson is expected to break down. Further experimental input
would be needed to firmly establish the failure of dimensional analysis (see, e.g., Reference 38).

From these experimental results, one can see that it is in fact premature to call the gauge hier-
archy problem a “problem” as we have not fully explored the region of parameter space predicted
by dimensional analysis. While the issue is often phrased as a problem, one should keep in mind
that there is not a problem yet. Some resolutions might be excluded, but not all of them are.

The theoretical side of what happens at Ry, is an open and interesting question. There has
been much work on this subject, which has led to many exotic and exciting ideas. One of the
original ideas was technicolor (25, 26), which solved the problem by lacking a Higgs boson entirely.
Another foundational approach was compositeness, which is discussed in more detail below.

After these initial approaches, there was a surge of newer ideas, though at this point they are
considered traditional. Extra dimensions explored the possibility that the scale of quantum gravity
was much lower than the Planck scale. Extradimensional solutions usually fall in the category of
large extra dimension (39, 40) or warped 5D models (41, 42) (for a recent review of these models,
see Reference 43).

One of the other traditional solutions is supersymmetry (2). It is connected to the abovemen-
tioned ideas as supersymmetry is merely fermionic extra dimensions. On the opposite end lies
what is easily the most contentious traditional approach, anthropics (44-47). Anthropics postu-
lates that the existence of intelligent life is a strong selection criterion that warps what we consider
as a natural expectation.

The last of the traditional solutions centers around allowing for new particles at the predicted
scale but making them hard to observe. Originally, what was thought to be present at the scale
Riiggs was new colored scalars, as motivated by supersymmetry and compositeness. With ideas such
as extra dimensions and little Higgs (48-50), it was found that the new particles could be fermions
as well. Finally, neutral naturalness models such as twin Higgs (51-53) and folded supersymme-
try (54, 55) showed that these new particles did not need to have Standard Model gauge charges.

"While the focus here has been simply on dimensional analysis, many other approaches attempt to go even
further and predict the O(1) numbers in Equation 4. This is usually done with a hard cutoff, though many
different approaches and philosophies have been proposed (24-28).
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It is thus a valid possibility that the new particles are exactly where they have been predicted and
that only precision Higgs physics can reveal their existence (56, 57).

In this article, I focus more on the newer approaches to the electroweak hierarchy problem.
The new approaches I discuss have all been inspired by the following line of thought. As de-
scribed above, using dimensional analysis to successfully estimate the length scale of a problem is
a common practice. There is absolutely nothing special about its application to the Higgs boson.
It is an experimental fact that common problems usually feature common solutions. As such, it
is natural to expect that whatever solves the electroweak hierarchy problem should be a common
solution that we have observed before. As such, the new approaches discussed in this article take
observed common solutions to previous examples of hierarchy problems and apply them to the
Higgs boson.

If the solution to what happens at Ryjjge is 2 common solution that has also solved previous
hierarchy problems, then we need to enumerate previous solutions to naturalness problems. At
the classical level, there are several examples of previous solutions, but two stand out as the most
commonly observed ones.

Classically, perhaps the most common resolution to hierarchy problems is compositeness—
namely, despite the oft-used spherical cow approximation, in detail a cow is not a simple object
but is made of nontrivial components. This is the resolution whenever the multipole expansion
is used, and this long-distance approximation is constantly used even in other systems, such as
effective field theories. Finite size is the constant resolution to these erstwhile “problems.” The
problem and solution are so common that they often are not even phrased as a problem and
resolution but simply as facts of life.

Compositeness is such a clear and obvious resolution to the gauge hierarchy problem that it
has been proposed before, and solutions along these lines are called composite Higgs models (58,
59). These solutions are well explored in other reviews (60, 61) and discussions and, as such, are
not discussed further here despite their clear attractiveness.

In classical examples, the only other solution that is anywhere near as common as composite-
ness is relaxation. Like compositeness, it is often so obvious that the problem and solution are not
considered as such. As an example of the interplay between relaxation and naturalness, consider
carbon dioxide (13). Dimensional analysis predicts that the dipole moment of CO, should be
p ~ gd ~ 1078 e.cm, where g is the typical charge of the oxygen/carbon and 4 is the size of
the molecule. Unfortunately, we have measured the dipole moment of CO, to be exactly zero,
indicating quite a large failure of dimensional analysis. This occurs because the angle between
the two C=0 bonds can change, and the molecule relaxes to a linear equilibrium configuration
O=C=0. In this equilibrium configuration, the electric dipole moment is exactly zero. This
elegant solution is a relaxation solution and is so natural that the CO, dipole problem is never
even called a problem.

Relaxation approaches to the Higgs mass are so new that there is currently only a single re-
laxation model that solves the Higgs mass problem (62). This model is still new enough that it is
not clear conceptually how to generalize this example into a class of models. Solutions of this type
are ubiquitous classically, but their application to the electroweak hierarchy problem has been so
recent that the solution is not even fully understood yet.

The next class of solutions being explored is historical solutions. These are solutions where
context and history matter. If a theorist wanders into an experimental laboratory, the theorist
will likely be extremely confused as there will be a large abundance of fine-tuned 3D theories
being probed. For example, the magnetic field might be at just the critical point such that the
Landau-Ginzburg scalar is nearly massless. However, considering the graduate student present
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controlling the magnetic field and the fact that the lab studies phase transitions, the theorist will
no longer be confused.

Historical solutions to the electroweak hierarchy problem use our history to solve the problem.
There are two general classes of models of this sort. Both use our known history (63), which
involves inflation followed by the Universe reheating and reaching thermal equilibrium sometime
before big bang nucleosynthesis. One class is based on the reheating process after inflation; this
article discusses the example of NNaturalness (64). In these models, the reheating process results
in the Universe being populated only by Higgs bosons that are abnormally light.

The second class of historical solutions is known colloquially as the relaxion (65).2 In these
models, the early Universe dynamics of the moduli controlling the mass of the Higgs boson leads
to the moduli spending a large amount of time at the minimum where the Higgs boson mass is
small. If we exist during this long period of time before the moduli tunnels to another vacuum,
then it explains why the Higgs mass is so small.

The last class of solutions is based on conditional probabilities. Our observable Universe con-
tains many features. It is entirely possible that questions about the Higgs boson could be correlated
with other unknowns. There exist many approaches along these lines. The oldest and most famous
is anthropics, where the answer to a question depends on our existence. For example, the Universe
is mostly empty. The answer to the question of why we exist in an atypical location in the Uni-
verse where matter exists likely has to do with the fact that the empty vacuum is not intelligent.
However, the requirements for intelligent life are subtle and uncertain.

More recently, people have attempted to tie the electroweak hierarchy problem to the cos-
mological constant problem (47, 66, 67): the question of why the cosmological constant is 10'2°
times smaller than dimensional analysis predicts. These new approaches work by correlating the
cosmological constant with the Higgs mass. Only when the Higgs mass is near its observed value
is the cosmological constant small, and thus while a small Higgs mass may seem surprising, it is
not surprising once one realizes that we are in a universe with a small cosmological constant.

An important part of any new theory is the experimental signatures associated with it. The
new solutions discussed here all have new experimental signatures. Traditionally, solutions to the
electroweak hierarchy problem involve new particles at high energies that require high-energy
colliders to observe. The experimental signatures of these new approaches involve precision Higgs
physics, fifth-force experiments, astrophysical probes, and cosmological observables such as Neg
and modified structure formation. This wide variety of probes indicates that tests of naturalness
are far more varied than previously appreciated.

Aside from the solutions mentioned above, there are many other more speculative proposals.
Some of these involve ultraviolet (UV)/infrared (IR) mixing where UV symmetries can reach into
the IR (68-71). Others use quantum gravity-based conjectures, such as the weak gravity conjec-
ture (72-74). Finally, some other approaches embrace the measure problem of quantum gravity
and postulate specific measures (75-78). Unfortunately, space is limited, and these other models
therefore are not discussed in this review.

Section 2 discusses the relaxation solution. Section 3 discusses historically based solutions.
Conditional probability—based solutions are discussed in Section 4. Section 5 concludes.

2. RELAXATION SOLUTIONS

Relaxation solutions are the solution to many would-be dimensional analysis problems. The ap-
proach of any relaxation solution is simple. Let the small quantity of interest become dynamically

2 Contrary to what the name suggests, these are historical solutions as opposed to relaxation solutions.
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variable, and either hope or arrange that at the absolute minimum of the system, the small number
is explained.

Thus, any relaxation solution to the Higgs mass problem adds an additional field, ¢, whose
main purpose is to change the measured value of the Higgs mass, M7,(¢). The second part of any
relaxation solution is to check whether when ¢ is at its absolute minimum, the value of Mj; is
approximately zero. We may now check whether the Standard Model has this property. At tree
level, the potential for the Higgs boson is

A
V =M;,HH' + Z(HH*)2 + M} A%, 5.

where the first two terms are responsible for spontaneous symmetry and the last term comes from
the zero-point energy of the Higgs boson, with ¢ being a constant whose exact value depends
on the UV completion. After integrating out the Higgs boson, we find that the vacuum energy’s
dependence on M is

4
V(My) = —%@)(—Mlg) + cME A% 6.
A

Only if the total Higgs mass is negative will the Higgs boson induce a nonzero tree-level potential
for M?. We see that there are two main issues with promoting M7, — M%(¢). The first issue is
that the cM? A? term is UV sensitive and tends toward [M3,| — A2, which is not the small value
that one hopes for. The second issue is that the sign of §/ = — @@(—M 2) is opposite what we
would have hoped. Even if the first issue is resolved, a Higgs mass of zero is a maximum rather
than a minimum. Finally, one would like to go beyond tree-level results and hopefully still solve

the problem once loop-level corrections are taken into account.

2.1. A Model

Solving the two problems ubiquitous to relaxation solutions is difficult but not impossible. I now
present the one model that evades these issues (62). As mentioned above, any relaxation solution
starts by postulating a new periodic field ¢ with period f,, whose role will be to change the mass of
the Higgs boson. For reasons that will be clear later, our example will contain four separate Higgs
bosons: Hy, H, H;, and Hjy.

As with most solutions to the electroweak hierarchy problem, symmetries play an important
role. Here, we will introduce a Z4 symmetry. The choice of a Z4 symmetry is not unique, and the
following discussion can easily be extended to any Zx symmetry for any N > 2. Under this discrete
symmetry, the relevant fields transform as

Hi— Hyy and — — — 4+ —. 7.

The four Higgs bosons are cyclically permuted while the angular field ¢ moves a quarter of the
way through its period.

The last relevant symmetry is a shift symmetry on ¢, ¢/f — ¢/f4 + «. This shift symmetry
is explicitly broken by a dimension two spurion «?. Under this shift symmetry, ¢ and the spurion
transform as

2 2 —i
— = —+4+a and «k° — ke . 8.

fo o S

Because of this symmetry, any nonderivative interaction of the field ¢ involves the combination

¢ ¢
¢

k2 fs or k2 cos(}% + 6) with some phase 6.
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We now write the most general Lagrangian consistent with the symmetries. The potential of
this Lagrangian is

V = My, ())H H] + Mjy, ($)HH) + My, (9)HH] + My, (9)HiH] 9.

0 (0 H]) + (D) + (B D) + (HLH)'),

2 — A2 2 ¢ | kn
My, (¢) = My + «° cos (ﬁ + 7)
For simplicity, we have neglected cross quartics between the various Higgs bosons, but they do
not change anything qualitatively and merely make the algebra more difficult.
Already we notice that one of the two problems with relaxation solutions has been solved. The
UV-sensitive part of the Lagrangian is

SV = cMpy (9)A” + My, (9)A* + cMyy () A + cMj;, ($)A* = const. 10.

Importantly, this piece of the Lagrangian is independent of ¢. As a result, this part of the
Lagrangian does not play a role in determining the minimum of ¢.

We are interested in minimizing the potential with respect to all five fields. To simplify things,
we first integrate out the four Higgs bosons at tree level. After integrating out the Higgs bosons,
we obtain the potential

4

LOEEDY @@(—Miﬁw». 11.
This tree-level potential has several surprising features and is represented by the solid red lines
in Figure 1a,b. If all four Higgs masses squared are negative, M}, < 0, then the potential is ¢
independent. It is only when one of the Higgs masses squared becomes positive that the potential
becomes ¢ dependent. Unlike the first term of Equation 6, a Higgs mass of zero is now a minimum
rather than a maximum.

e i pros . . . . . . . .
A of > "> "> b 0010
g 0008} 7 0008
S oo06f S 0006
> >
® ®
s 0.004 -M,.2,1<0 M,3,<0 M,.2,1<0 M,5,<0 s 0.004
-] -]
s e
& o002} 8 0002
N s
0.000 0.000 s 7
M, =0 Mi,=0 Mi,=0 Mp, =0 Mp,=0
_0.002 1 1 1 1 1 1 _0.002 1 1 1 1 1 1 1 1
1 2 3 4 5 6 16 18 20 22 24 26 28 30
oIf oIf
Figure 1

The potental for the field controlling the Higgs mass. (#) The solid red line is the tree-level potential. The potential is flat as long as all
of the Higgs bosons have negative masses squared, and it goes up whenever one of the masses squared becomes positive. The edges of
the flat region indicate when one of the four Higgs masses passes through zero. () A magnified view of the potential. The solid red line
is the tree-level potential, and the dashed blue line includes additional corrections, such as the one-loop potential of the Standard
Model. The degenerate minimum is broken, and the minimum is near the point where one of the Higgs masses is small.

30 Hook



At tree level, there is an infinite number of minima with a Higgs mass of zero still being special.
As shown in Figure 1, a Higgs mass of zero is at the edge of the degenerate minimum. All that is
needed is another contribution to the potential of ¢ that very slightly breaks the degeneracy and
creates a minimum right near the edge where the potential ceases to be flat. As shown in Figure 1,
the smaller this additional contribution is, the smaller the Higgs mass will be. If we can arbitrarily
suppress these additional contributions, the Higgs mass will be arbitrarily small compared with
the UV cutoff.

There are two additional contributions to the potential of ¢. The first is a higher-dimensional
term of the form

PR
8V = A cos(4¢). 12.

This term is highly suppressed as k < A. As we take N > 4, this term becomes exponentially
suppressed and quickly becomes completely irrelevant.

The other way that the degeneracy breaks is that our assumption that the Higgs potential is
given by Equation 5 is correct only at tree level. While not clear from the analysis so far, any
polynomial corrections to Equation 5 will not remove the flatness of (¢) when all of the Higgs
masses are negative.” Polynomial corrections, such as the quadratic or logarithmic divergence
induced by a loop of top quarks, pose no challenge to the mechanism.

The leading nonpolynomial correction to the Higgs potential comes from the one-loop
Coleman—Weinberg potential resulting from a loop of top quarks, which also removes the de-
generacy in a manner shown in Figure 1. Because this model does not exponentially suppress the
nonanalytic pieces of the one-loop Coleman—Weinberg potential of the Higgs boson, this model
can at best make the Higgs mass My about 10 times lighter than it otherwise would be. While this
is a significant gain experimentally, it is not the parametric realization of the approach one would
hope for.

As there is only a single relaxation solution to the electroweak hierarchy problem, much still
needs to be done to explore this approach. The model described in this section is only partially
satisfactory. Although it explains why the Higgs mass is small, the light Higgs mass is small
and positive rather than the observed small and negative. While there are more complicated
approaches that solve this particular problem, it remains an open question whether there is a
simple and elegant solution. Aside from this example, it would be intriguing if there were other

solutions of this type.

2.2. Experimental Implications of Relaxation Models

The experimental implications of relaxation models are tied to the new particle that every solution
of this type requires. The scalar ¢ necessarily changes the Higgs mass and thus necessarily mixes
with the Higgs boson. A scalar that mixes with the Higgs boson is present in many different
theories, and thus its experimental consequences are well known.

At extremely low masses, the new scalar is macroscopic in distance and would be probed
by fifth-force experiments. Mixing with the Higgs boson results in a force that violates the
equivalence principle. The MICROSCOPE experiment is the current best experiment probing
EP-violating fifth forces at long distance (79). At low masses, fifth-force experiments fall behind
stellar constraints. Excess cooling of red giants and supernovae places tight constraints until the

3More precisely, corrections to the flatness of /{(¢) are exponentially suppressed in the large N limit.
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mass of ¢ is below ~10 MeV (80). Finally, at masses above ~10 MeV, collider constraints dominate.
These can take the form of rare meson decays or exotic decays of the Higgs boson (81, 82).

3. HISTORICAL SOLUTIONS

Another class of new solutions being explored is historical solutions. Historical solutions are those
in which the history of how we got to where we are is important. An atypical situation can easily
be explained if one knows the history. Two main classes of historical solutions have been explored
so far.

The first historical approach uses a long period of metastability of the vacuum with a small
Higgs mass. Plausible initial conditions lead to a long period of time where the Universe is in the
vacuum with a very small Higgs mass. These approaches are typically called relaxion models.

The second historical approach uses reheating. After inflation, the Universe was left cold
and empty. To resemble the observed Universe today, it needs to have undergone a period
called reheating in which it was heated up to a hot thermal bath. If this process was somehow
weighted toward producing light particles, then it would not be surprising for the Higgs boson
we see to be lighter than otherwise expected. The first in this class of models was one called
NNaturalness.

3.1. Relaxion

The relaxion historical approach to the electroweak hierarchy problem proceeds by using
metastable vacua (65). Plausible initial conditions combined with frictional effects lead the Uni-
verse to spend a long amount of time in the minimum with a small Higgs mass. As long as we
happen to live in this period of time, then the small Higgs mass is explained.

The relaxion Lagrangian includes a scalar ¢ that controls the Higgs mass. This scalar ¢ has a
shift symmetry that is broken by the spurion «. As such, any nonderivative interaction involving ¢
must be proportional to . A second shift-symmetry-breaking spurion is the QCD 6 angle, which
implies that ¢ couples to the GG operator. The Lagrangian of interest is

LD M} +rp)HH + %(HH*)Z +rpA: + @ — 9) GG. 13.

Here, M7 ~ A? is the large natural value of the Higgs mass as opposed to 7z, its small observed
value. As promised, as the vacuum expectation value (VEV) of ¢ changes, the Higgs mass changes.
The last term is of particular importance. When QCD confines, this generates a potential for ¢
that scales parametrically as

8V(¢) ")’u|H|A23CD Ccos <? — 9) 14.

This potential is highly suppressed when the VEV of the Higgs boson is zero, |H| = 0, and in-
creases as the VEV of the Higgs boson increases past the confinement scale of QCD, Aqcp. As is
well known, the axion potential coming from QCD is suppressed by the small Yukawa coupling
of the up quark, y,.

The potential of ¢ is shown in Figure 2. All of the dynamics of ¢ occur during inflation.
Initially, M3, () is positive and ¢ rolls down the potential. Because of Hubble friction, ¢ is slow
rolling down the potential with a speed ¢ ~ « A?/H. Eventually, ¢ stops in the first minimum that
it encounters. This first minimum occurs when the linear term k¢ A? balances against the growing
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V (arbitrary units)

Figure 2

The potential for the relaxion particle. Parameters are chosen such that the first potential on the left has the
observed value of the Higgs boson mass.

oscillations given in Equation 14:
A3
LD 15.

f

Aslong as k, f, and A are chosen appropriately, then the minimum at which ¢ stops has the Higgs

Kk A* ~ y,(H)

mass at the observed small value. Once ¢ has stopped at the correct minimum, it can escape only
by tunneling. This process takes an exponentially large amount of time, and so it is plausible that
inflation ended and reheating took place before tunneling had occurred, which would explain why
the Higgs mass is so small.

Since the original model, there has been a vast plethora of refinements on the idea of the
relaxion. The original model described above predicts a large 6 angle that is excluded by data.
Models have been proposed to solve some of the issues with the previous model. Some use a new
friction mechanism, some remove inflation, some introduce multiple relaxion scalars, and others
use supersymmetry. Many other options have been explored (83-92).

The experimental implications of the relaxion model are very similar to those discussed in
Section 2.2. The reason is not particularly surprising. In both cases, there is a scalar ¢ that controls
the mass of the Higgs boson. As a result, in both cases, it mixes with the Higgs boson. All of the
experimental implications come from this mixing effect. As such, it is clear that the experimental
implications of the historical and the relaxation approaches have significant overlap. In the context
of the relaxion, much of the work has focused on cases in which the relaxion is dark matter or a
subset of it (93-95).

3.2. NNaturalness

The idea behind NNaturalness is that decays can result in the Universe being populated by very
light particles (64). There is a simple example of this mechanism at work. Consider N scalars
with random interactions and random masses. If the Universe were populated by some number
abundance of these scalars, then as time moved on, these scalars would start to decay. They would
continue decaying until all that remained was the lightest scalar. This scalar could be lighter than
all of the rest by accident. For example, if the scalar masses were chosen randomly, then it would
be ~1/+/N lighter than its brothers and sisters. The Universe being full of this abnormally light
scalar would not be a surprise as all of the heavier scalars have decayed.
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NNaturalness takes this idea of decaying scalars and applies it to the Higgs boson. The one fact
that makes applying these ideas to the Higgs boson more complicated is that the Standard Model
has particles whose masses are not set by the Higgs boson, such as the massless photon. If the
existence of massless particles were common, then many sectors would contain massless particles.
As a result, the generalization of the above argument to the observed Universe would result in a
very large Neg ~ N and would be excluded. N is the effective number of fermions in the thermal
bath at late time (Neg ~ 3 is the Standard Model prediction). Extra light species affect the Hubble
expansion and are heavily constrained.

To obtain a model that is not already excluded, NNaturalness uses a new particle called the
reheaton, ®, whose decays reheat the Universe from an empty bath of nothing to the bath of Stan-
dard Model particles we see today. The reheaton will kinematically prefer to decay into the sector
with the lightest Higgs boson and thereby result in a universe that is predominantly populated by
a sector whose Higgs boson is abnormally light.

The matter content of NNaturalness is as follows. Consider N copies of the Standard Model.
In principle, these do not need to be copies but simply N objects of which the Standard Model is
typical, but copies were considered to render the theory calculable. These N copies will couple to
some other sector so that the Higgs mass is different in each sector. The final ingredient to the
model is the reheaton ®.

The only new interaction needed in NNaturalness is the coupling of the reheaton ® to the N
different sectors. We accomplish this by including the most relevant coupling of a scalar ® to the
N sectors:

LDk OHH]. 16.

With both the matter content and interactions of the theory, we can now flesh out the thermal
history of the Universe. Initially, the Universe is populated by the reheaton ®. After a time on the
order of the lifetime of ®, ® will have decayed and populated the various N sectors. As long as
the sector with most of the energy has abnormally light Higgs bosons, the electroweak hierarchy
problem will have been resolved. As such, we may now study the branching ratios of ® into the
various sectors.

To highlight the mechanism, consider the case where 72 < 72, so that ® is lighter than the
Higgs boson. The decay of ® proceeds via off-shell Higgs bosons into photons, 4, or fermions,
/8

2,07
K“mg,

Fo(® — 4Y) ~ —5 mfi >0 17.
"y
i, s
Fe(® — 24) ~ m my >0 18.
2
To(® — 20) ~ —2 2 <0 1.
My

As can be seen, @ preferentially decays into the sector with the lightest Higgs boson and into
sectors with a negative Higgs mass squared. The ® particle simply prefers to decay via the least
off-shell Higgs boson possible. As such, the largest decay width is into the sector with the lightest
Higgs boson. Thus, this model predicts a universe whose energy density is dominated by the sector
with the lightest Higgs boson.
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The experimental implications for NNaturalness are that there should be some energy density
in the other sectors. If this energy density is in heavy particles, they would manifest themselves as
dark-matter-like particles. If this energy density is in light particles, they would manifest them-
selves as Neg. As discussed above, the simplest idea of decaying to a light Higgs boson is excluded
by the N, measurement of Planck. Even in the successful implementation of the model, Ny is
nonzero. The model itself predicts that

1> Ny > 1071 20.

What is most striking about this prediction is that it is only logarithmically dependent on
the number of copies N for N < 10* with smaller N giving logarithmically smaller N.¢. For
N > 10% the predictions for N are essentially N independent. As a result, N4 measurements
constitute an extremely robust test of NNaturalness models. As such, this particular implementa-
tion of NNaturalness will be testable and excludable in upcoming cosmic microwave background
experiments (96-98). As all historical solutions of this type rely on preferential production of light
particles, N, constraints are likely to be the strongest test for all models of this type.

4. CONDITIONAL PROBABILITY-BASED SOLUTIONS

The final set of solutions discussed here is conditional probability—based solutions (66, 67,99-101).
While it may be puzzling to observe a small Higgs mass, in certain models it is not surpris-
ing to find one after imposing other criteria such as the smallness of the cosmological constant
problem. The most famous of the conditional probability-based approaches is anthropics. The
idea behind anthropics is that while the probability of some observed fact may be very small,
P(obs) < 1, the probability given the existence of intelligent life to ask the question may be quite
large, P(life|obs) ~ 1. This is a famous (and old) approach. As the focus of this review is on newer
solutions to the problem, anthropics will not be discussed further.

More recently, people have built models in which the smallness of the cosmological constant is
connected to the smallness of the Higgs mass. In these models, as long as one requires that we are
in a vacuum with a small cosmological constant, the Higgs mass is small as well. In this manner,
the problem of a small Higgs mass has been tied to the smallness of the cosmological constant.
Whichever solution resolves the cosmological constant problem* would also solve the issue of the
small Higgs mass.

4.1. More Vacua When mz;, ~ 100 GeV

In this section, I discuss the simplest of the conditional probability—based solutions proposed in
Reference 67. This approach uses a model in which there are more vacua with different cosmo-
logical constants when the Higgs VEV is around 100 GeV. Because there are more vacua when
my, ~ 100 GeV, the vacua where the cosmological constant is small are much more likely to have
my, ~ 100 GeV.

A simple toy model that exhibits this property is as follows. Consider a scalar ¢ with a Z,
symmetry acting on it coupled to a two-Higgs doublet model with doublets H, and H,. Under
this symmetry, ¢ — —¢ and H,H; — —H,H,. The most general Lagrangian coupling these two

*Anthropics is the most commonly proposed explanation for why the cosmological constant is small. However,
in this approach one does not need to commit to any particular solution to the cosmological constant problem,
though certain solutions, such as relaxation solutions, cannot be used.
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sectors together has
L 2o 4
LD 3 1,0° — A¢” + kpH,H,. 21.

If (H,H;) = 0 then there are two degenerate vacua. These two vacua have the same value for the
cosmological constant. As a result, if the theory is at a minimum, there is only a single value of
the cosmological constant. If (H,H;) 2> m?/ (v/xk), then there exists only a single minimum, and
again there is only a single value of the cosmological constant. Only if 7 /(v/Ak) > (H,Hy) = 0
are there multiple vacua with different cosmological constants.

We can now use the building block of the above paragraph to construct a full model. If we take
N scalars ¢, all with similar masses and quartic couplings and all coupled to H,H, as indicated in
Equation 21, then we arrive at the following conclusion. If (H,H,;) = 0 or (H,H;) > m*/ (VrK),
then all minima have the same cosmological constant. The value of this constant would be a ran-
dom natural value, 10" times larger than the observed value. If 7* /(v/Ak) > (H,H;) > 0, then
there are 2V vacua, all with different cosmological constants. As long as 2V > 10'%°, one of these
vacua will accidentally have the correct observed value and a small Higgs mass at the same time.

In the context of this landscape of vacua, once one conditions on having the correct value of the
cosmological constant, the Higgs mass is expected to be small.’ The reason is simply that most of
the vacua that have different cosmological constants all have a small Higgs mass as indicated above.
In this manner, the small Higgs mass is no longer a surprise once one accepts a small cosmological
constant.

4.2. Experimental Implications of Conditional Probability Models

The experimental implications of conditional probability models are quite varied, and there is no
single unique feature. In the model described in the above subsection, there are many light scalars,
all of which are coupled to the Higgs boson, giving phenomenology similar to that described by
relaxation and historical solutions. Additionally, it requires a two-Higgs doublet model that may
be discovered at a collider. Other models, such as the one described in Reference 66, have other
fine-tuned light scalars that may be dark matter and may be observed as oscillations of fundamental
constants (93).

5. CONCLUSION

In this review, I have covered some of the newer approaches to the electroweak hierarchy problem.
As discussed in Section 1, the electroweak hierarchy problem refers to the apparent failure of
dimensional analysis as applied to the Higgs boson. Roughly half of the expected parameter space
where something new should occur has already been explored, but the other half has yet to be
explored and requires further experimental input, likely of the more traditional collider variety. If
future collider experiments at higher energy continued to exclude the new particles required in
"TeV-scale models, this would firmly establish the failure of dimensional analysis as applied to the
Higgs boson.

As dimensional analysis is one of the more experimentally tested and important aspects of
physics, its failure would be a complete disaster. The most common reason behind the failure of
dimensional analysis is an incomplete understanding of the problem at hand. As such, physicists

5More precisely, (H,H,) will be small and nonzero. A further model is needed to ensure that both VEVs are
individually small and nonzero.
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have been exploring alternative approaches to the problem to test what might have been over-
looked. The new approaches covered in this review have been characterized by taking previous
solutions to hierarchy problems and finding versions of these mechanisms that apply to the Higgs
boson. These new approaches, while conceptually simple, have had a resounding impact on the
experimental side.

These new approaches almost all have been tested in a manner very different from the older
and more famous solutions to the problem. In many cases, there is a new light scalar coupled to the
Higgs boson. This scalar could be tested through a wide range of precision measurements, from
rare decays of the Higgs boson and mesons to small-scale experiments measuring fifth forces.
Alternatively, some of these theories can be tested by cosmological measurements such as Ng.

It is therefore clear that the electroweak hierarchy problem remains an area of active research.
New experiments are needed to firmly establish the presence of a problem as well as to test the
variety of alternative explanations. New theories are constantly emerging, and it is entirely possible
that the most plausible and compelling theory of the Higgs mass is yet to come.
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