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Abstract

Despite great advances in treatment, cancer remains a leading cause of death
worldwide. Diet can greatly impact health, while caloric restriction and fast-
ing have putative benefits for disease prevention and longevity. Strong epi-
demiological associations exist between obesity and cancer, whereas healthy
diets can reduce cancer risk. However, less is known about how diet might
impact cancer once it has been diagnosed and particularly how diet can im-
pact cancer treatment. In the present review, we discuss the links between
obesity, diet, and cancer. We explore potential mechanisms by which diet
can improve cancer outcomes, including through hormonal, metabolic, and
immune/inflammatory effects, and present the limited clinical research that
has been published in this arena. Though data are sparse, diet intervention
may reduce toxicity, improve chemotherapy efficacy, and lower the risk of
long-term complications in cancer patients. Thus, it is important that we
understand and expand the science of this important but complex adjunctive
cancer treatment strategy.
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INTRODUCTION
Let food be thy medicine and medicine be thy food.

—Hippocrates

Cancer treatment has improved tremendously over the past century.Childhood acute lymphoblas-
tic leukemia (ALL) has changed from a nearly uniformly fatal disease to one with an ∼90% cure
rate. The 5-year survival rate from all cancers has increased from 49% in 1975–1977 to 70% in
2010–2016 (149), and paradigm-shifting advances are greatly improving treatment outcomes of
many cancers, such as chronic myelogenous leukemia, metastatic melanoma, and HER2-positive
breast cancer. Despite these advances, cancer remains a most feared diagnosis, driving many to
seek out alternative treatments.

We have long known that diet plays an important role in our health. It stands to reason that
people would look to diet to provide a sliver of hope for cancer patients. Although the association
between obesity and cancer incidence and mortality is well established, the data linking specific
nutrients and food items to cancer are sparse. Even more elusive are studies examining how diet
can affect the treatment outcome of cancer once it has already been diagnosed.

In the present review, we examine the evidence from preclinical and clinical studies on how
diet can affect cancer outcome.Dietary restriction interventions target many of the hormones and
pathways affected by obesity; thus, understanding how obesity can worsen cancer treatment may
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yield clues as to how diet can help.We discuss the role of diet in cancer incidence and progression
but focus primarily on the state of the science evaluating treatment efficacy.

EPIDEMIOLOGY

Cancer Incidence

In 2003, Eugenia Calle and colleagues (24) published a landmark study confirming the strong
links between obesity and cancer mortality. In a prospective cohort of more than 900,000 men and
women in the United States, the authors found that obesity increased the risk of dying from can-
cer of the esophagus, colon, liver, gallbladder, pancreas, and kidney in addition to non-Hodgkin’s
lymphoma and multiple myeloma. They estimated that overweight and obesity were responsible
for ∼14% of cancer deaths in men and ∼20% of cancer deaths in women in the United States.
Many studies have confirmed these findings, in the United States and worldwide (136, 137). The
World Cancer Research Fund and American Institute of Cancer Research’s (WCRF/AICR) Con-
tinuous Update Project (181) most recently concluded that there was convincing evidence that
body fatness, variably defined by body mass index (BMI), waist circumference, or waist-to-hip ra-
tio, increases the risk of esophageal, pancreatic, liver, colorectal, postmenopausal breast, endome-
trial, and kidney cancer. They also concluded a probable increased risk of fatness contributing to
oropharyngeal, stomach, gallbladder, ovarian, and advanced prostate cancers.

Obesity is defined as a BMI ≥30 kg/m2 (≥95th percentile in youth), and overweight is defined
as a BMI ≥25 kg/m2 (≥85th percentile in youth). Although most epidemiological studies exam-
ining cancer incidence and mortality have focused on obesity using this anthropomorphic defini-
tion, others have examined its physiologic aspects. Metabolic syndrome describes the aggregation
of obesity, dyslipidemia, and insulin resistance, which tend to cluster in the obese, particularly
those with visceral obesity. In contrast, the term metabolically healthy obese (sometimes collo-
quially called fat fit) was coined to describe those who are physically obese but show none of the
metabolic sequelae. A prospective study of more than 20,000 participants showed that metabolic
health was the main contributor to cancer risk, and overweight and obesity per se did not increase
the risk of cancer mortality in metabolically healthy individuals (2). Surprisingly, in metaboli-
cally unhealthy individuals, overweight and obesity appeared to offer somewhat of a protective
effect.

Diabetes has also been associated with risk of cancer incidence and mortality, though hetero-
geneity can be found in the literature (28, 173). The vast majority of diabetes worldwide is type
2 diabetes, which is caused by a combination of insulin resistance and β-cell failure. Type 2 dia-
betes is strongly associated with obesity, which likely explains much of this correlation. However,
some studies that adjust for BMI report an independent association between diabetes and cancer
(8, 190).

Diet itself has been linked to cancer incidence, both in specific dietary components and overall
calories. Hursting et al. (68) showed that leukemia incidence worldwide was strongly correlated
with caloric intake. In a case-control study, caloric intake (from food frequency questionnaires)
more than 20% below that expected from metabolic rate and activity estimates reduced the risk
of breast cancer in premenopausal [odds ratio (OR) 0.36, P < 0.001], but not postmenopausal,
women (95). Levine and colleagues (93) found that high protein intake in people 50–65 years
old was associated with a fourfold increased risk of cancer mortality. Red meat intake itself may be
linked to breast cancer risk (182).However,meta-analyses have failed to identify a negative impact
of high-protein intake on prostate, ovarian, colorectal, or renal cell cancer (86, 92, 103, 126).

The American Cancer Society and the WCRF/AICR have published dietary guidelines to
prevent cancer (81, 181). Both sets of guidelines promote maintaining a healthy weight, being
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physically active, consuming fruits and vegetables, and limiting red meat and alcohol consump-
tion. The WCRF/AICR guidelines further recommend decreasing intake of energy-dense foods
and salt and support breastfeeding. A recent meta-analysis including 10 large prospective cohorts
showed that high adherence to either of these dietary guidelines was associated with a lower
risk of cancer overall and specifically a lower risk of breast, colorectal, and endometrial cancer,
compared with subjects with the lowest adherence (81). As avoiding obesity is an inherent part of
these guidelines, these studies do not clearly determine whether diet per se can modulate the risk
of developing cancer.

Although obesity increases the incidence of many cancers, emerging evidence shows that
weight loss can modulate this risk. Self-reported weight loss in postmenopausal women enrolled
in the Women’s Health Initiative was associated with an ∼29% decreased risk of endometrial
cancer (97). Bariatric surgery has been associated with a reduction in cancer incidence: A recent
meta-analysis confirmed that bariatric surgery reduced the risk of cancer in morbidly obese peo-
ple, although the authors also cautioned regarding the significant heterogeneity existing between
studies (26).

Cancer Outcome

Most of the association between obesity and cancer mortality is based on the higher risk of being
diagnosed with cancer. Evidence has also been found that obese patients, once diagnosed with
cancer, have a poorer outcome than nonobese patients. Poorer outcome and increased mortality
have been observed in obese patients following diagnosis of breast (31), colon (160), prostate (4),
pancreatic (189), ovarian (186), and hematologic (124) cancers. Although many reports support
this conclusion, a recent systematic review concluded that few studies were designed to examine
this relationship and so warned caution in interpreting these results (128). Interestingly, obesity
is associated with an improved outcome in patients with metastatic melanoma treated with tar-
geted therapy or immunotherapy (109); no significant effect was observed in patients treated with
chemotherapy. Thus, obesity generally increases one’s risk of both developing cancer and not sur-
viving after diagnosis for most, but not all, cancers.

POTENTIAL MECHANISMS LINKING OBESITY
TO CANCER OUTCOME

Obesity is not a simple phenotype but is associated with a number of physical, genetic, physiologi-
cal, socioeconomic, and behavioral variables,many of which could contribute to these associations
with cancer. Animal models provide evidence that the observed associations between obesity and
cancer in humans are likely based in biology and are not exclusively behavioral, environmental, or
genetic. Obesity increases the rate of cancer development and growth in most preclinical models
of genetic cancer predisposition (57, 66, 191), carcinogen exposure (66, 157, 195), and cancer im-
plantation (42, 184, 192). However, fewer studies have looked at how obesity can impair cancer
treatment in preclinical models (12, 49, 71). Uncovering the biologic mechanisms linking obesity
to cancer may provide some clues for reversing these links.

Pharmacokinetics

One clear dilemma that oncologists face when treating obese patients is how much chemotherapy
to use.Obesity can affect both the volume of distribution and the clearance of chemotherapies, yet
few studies evaluate pharmacokinetics (PK) of drugs in obese subjects. We have recently shown
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that adipocytes metabolize and inactivate the chemotherapy drug daunorubicin (153),which could
especially impair treatment in patients with excess adipose tissue. The dosing of some drugs, such
as vincristine, is arbitrarily capped,which could disproportionately affect obese patients.Clinicians
may be reticent to prescribe large doses of chemotherapies by actual body weight, particularly in
obese patients who may already be at higher risk of toxicities. Despite the paucity of data, the
American Society of Clinical Oncology developed guidelines stating that chemotherapy should
be dosed in obese adult patients on the basis of actual weight (59).

Inflammation

Inflammation has long been known as a driver of cancer incidence and, indeed, is considered a
hallmark of cancer (63). Obesity itself is a state of subclinical inflammation. Though the mecha-
nisms driving this state are not fully understood, they are likely driven in part by adipose tissue
inflammation. A number of immune cells, including macrophages, B and T lymphocytes, natural
killer (NK) cells, and natural killer T (NKT) cells, normally infiltrate adipose tissue. As obesity de-
velops, these immune cells accumulate and take on proinflammatory states.Macrophages increase
expression of tumor necrosis factor α (TNFα) and other proinflammatory cytokines (sometimes
simplistically referred to as an M1 state). They tend to accumulate around necrotic adipocytes,
sometimes forming a crown-like structure. T lymphocyte numbers increase, particularly CD8+

T cells, along with B cells, mast cells, and NKT cells (6). The interaction between these immune
cells and the obese adipocytes contributes to local and systemic increases in a number of proin-
flammatory cytokines, including TNFα, interleukin 6 (IL-6), IL-1β, and plasminogen activator
inhibitor-1 (13). At the same time, levels of the anti-inflammatory signal adiponectin are lower in
the obese. Together, this inflammatory milieu could contribute to increased carcinogenesis and/or
impaired anticancer immunity.

In addition to systemic signals, local adipose tissue inflammation may promote the incidence
of some cancers as well as contribute to their aggressiveness and treatment resistance. Adipose
tissue macrophages and crown-like structures in breast adipose tissue have been linked to breast
cancer (114). Expansion of breast and colon cancer into adjacent adipose tissue is associated with
local adipose tissue inflammation (83, 197) and potentially a poorer outcome (83). Whether this
is a response to the tumor expansion or a precursor to it is not clear, but interactions between
the inflamed adipose tissue and tumor cells clearly can promote further infiltration and treatment
resistance.

Hormones

Estrogens have long been known to increase cancer risk, particularly that of estrogen-sensitive
tissues, such as breast and endometrium. Adipose tissue is a major source of estrogen, which it
converts from circulating androgens via high expression of the aromatase enzyme; thus, obesity is
associated with increased circulating estrogen concentrations. Interestingly, obesity is associated
with a lower risk of premenopausal breast cancer and a higher risk of postmenopausal breast can-
cer.This finding could potentially be explained by the fact that estrogen levels after menopause are
more significantly elevated in obese individuals than before menopause, when ovarian secretion
dominates systemic levels.

Obesity is strongly associated with insulin resistance, which leads to compensatory hyperinsu-
linemia. Insulin resistance primarily impacts the glucoregulatory effects of insulin, whereas its
growth-promoting effects on protein synthesis and cell proliferation are relatively spared and
therefore enhanced in the hyperinsulinemic state. Insulin receptor signaling involves several
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pathways implicated in cancer, including phosphoinositide 3-kinase/protein kinase B (PI3K/
AKT), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcrip-
tion (STAT), and extracellular signal-regulated kinase (ERK). Activation of these pathways can
increase proliferation, prevent apoptosis, and often be associated with chemotherapy resistance.
In addition, insulin inhibits the synthesis of sex hormone–binding globulin, leading to an increased
proportion of free, active estrogen in circulation. Insulin also increases the production of insulin-
like growth factor 1 (IGF-1). Thus, insulin likely contributes to increased cancer incidence and
poorer prognosis in obese individuals through a number of direct and indirect mechanisms.

IGF-1 is considered a major link between obesity and cancer. As its name implies, IGF-1 has
similar effects on cells as insulin, stimulating PI3K/AKT and MAPK pathways. Although total
IGF-1 concentrations can be low or normal in obese patients, the free, active form of the hormone
is generally elevated. IGF-1 has been shown to increase proliferation rates and cause chemother-
apy resistance in a number of cancers (62, 94). People with Laron syndrome have extremely low
IGF-1 levels and are protected from cancer (88), as are animal models of low IGF-1 (131, 135).

Leptin is secreted by adipocytes in proportion to obesity and whole-body adiposity (32). De-
spite this strong correlation with obesity, epidemiological studies have not found consistent links
between leptin and cancer incidence (61, 187). The leptin receptor signals through Jak/Stat and
indirectly increases PI3K, mammalian target of rapamycin (mTOR), and AKT signaling, all of
which could contribute to cancer cell progression. However, the data addressing this issue are
mixed. Leptin receptor expression has been associated with improved outcome in leukemia (82,
96). However, leptin signaling, particularly through the Notch pathway, may be important for
cancer stem cells, and blocking this pathway appears to improve outcome in in vivo models of
pancreatic (64) and breast (177) cancer.

Adiponectin circulates at very high concentrations in blood, in inverse proportion to adiposity,
and has overall positive effects on metabolism and inflammation. Adiponectin signals through
the AMPK pathway, which can promote apoptosis in cancer cells (90), decrease angiogenesis, and
limit tumor growth in animal models (see 33). Thus, the lower circulating adiponectin level seen
in obesity likely plays a permissive role in tumorigenesis and cancer treatment resistance.

Metabolic Fuels

Obesity is simplistically a disorder of increased nutrient availability and thus is associated with a
surfeit of stored and circulating fuels. As the metabolic syndrome develops into frank diabetes,
systemic levels of glucose, triglycerides, and some amino acids increase. The three branched
chain amino acids (BCAA), valine, leucine, and isoleucine, play an integral role in obesity and the
metabolic syndrome. As cancer cells have increased metabolic demands and altered metabolism,
increased availability of some of these fuels possibly contributes to the risk and outcome of cancer
in obesity.

Microbiome

Over the past two decades, we have become more aware of how the microbiome affects nearly all
aspects of our health. In particular, our microbiome can have large effects on our immunity and
metabolome, both locally and systemically.Microbiota in the gut can produce butyrate, which has
beneficial effects to reduce inflammation, as well as secondary bile acids,which can be carcinogenic
(122); the balance of these types of beneficial and detrimental pathways can contribute to cancer
risk.Obesity is associated with predictable changes in the intestinal microbiome, namely increased
representation by Firmicutes and lower prevalence of Bacteroides, though this oversimplification
does not do justice to the vast and complex literature on this topic (see 106 for a recent review).
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Some evidence has been found that these microbiome changes are causal or at least reinforcing
for the development or persistence of the obese state. With respect to cancer, evidence links the
obesity-associated microbiome and colorectal (122) and liver (188) cancers, though the data are
not yet conclusive (58). The microbiome likely represents an important link between obesity and
cancer, but the complexity of both obesity and the microbiome makes teasing apart these effects
difficult.

Covariates

In addition to these mechanistic links, a host of covariates undoubtedly contribute to the observed
associations between obesity and cancer. It is not unreasonable to hypothesize that there may be
genetic polymorphisms that can predispose to both obesity and cancer. Although few specific
polymorphisms can explain a significant portion of obesity, FTO gene polymorphisms are fairly
common, and the ∼16% of people who are homozygous for the risk allele have a 1.67 OR of adult
obesity (54). Recently, FTO polymorphisms have been linked to increased cancer risk, particularly
leukemias and glioblastomas (38). A number of other genetic polymorphisms likely contribute to
obesity and may also directly or indirectly increase the risk of cancer.

Given the higher prevalence of obesity in people of lower socioeconomic status (SES) and eth-
nic and racialminorities, considering the influence of these factors on cancer incidence andmortal-
ity is important. Lower SES plays a clear role in contributing to cancer mortality, such that poverty
has been called a carcinogen (179). Lower SES can contribute to increased cancer risk and worse
cancer outcome in a number of ways, including less access to preventive medicine and screening,
increased risk behaviors, later presentation of disease, and barriers to optimal treatment (179).

Race and ethnicity can also predispose to both obesity and cancer incidence/poor outcome,
some of which is mediated by lower SES.Hispanics in the United States are at a much higher risk
of obesity and type 2 diabetes. Overall, Hispanics tend to have a lower incidence of most cancers
compared with non-Hispanic whites.However, stomach, gallbladder, liver, and cervical cancers are
striking exceptions, with much higher incidence in Hispanics (110). The incidence of childhood
ALL has been increasing over the past decade, which has been attributed to an increased preva-
lence in older Hispanic children (9). This association is compounded by the fact that Hispanic
children have a worse survival from hematologic malignancies (77).Themechanisms behind these
associations are as yet unknown but could be mediated in part by dietary differences, predilection
for obesity and insulin resistance, genetic polymorphisms, SES, or other cultural behavioral dif-
ferences. Because the Hispanic ethnicity encompasses a wide range of people who appear to have
differing susceptibilities to obesity, diabetes, and cancer, studies to tease apart these associations
should consider and account for this variability.

Blacks males in the United States are at a higher risk of developing cancer and have a higher
cancer mortality rate than non-Hispanic whites (156). Black women have a lower risk of breast
cancer incidence, but when diagnosed, they are more likely to have more aggressive forms and
worse outcomes (117). Although much of this discrepancy appears to be from presentation at a
more advanced stage of disease, disparate access to quality health care, and higher health burden
from other illnesses, even after adjusting for these factors, there appears to be a modest cancer-
specific survival difference (7). More work is needed to tease out the cultural, genetic, and SES
differences to identify potential mechanisms behind these associations.

Finally, a number of behaviors could contribute to the relationships between obesity and cancer.
Obese individuals may be more likely to be heavy drinkers (147), consume more red meat (142),
live near large roadways exposing them to air pollution (107), and eat less fiber (161) and foods
containing antioxidants (67).Obese patients appear to be less likely to be screened for some cancers
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(11, 150), for a variety of reasons including physicians’ discomfort in performing screening exams
(52). This could result in obese patients presenting with cancer at a later stage.

Specific Cancers

In addition to the systemic and overarching influences described above, obesity has specific effects
on many organs that can predispose them to cancer development and/or limit cancer treatment.
Lipid accumulation in the liver, or nonalcoholic fatty liver disease (NAFLD), is common in obe-
sity, particularly in the Hispanic population. NAFLD can progress to steatohepatitis (NASH), as
an increasing degree of liver inflammation develops. The increased risk of NAFLD and NASH
likely explains the strong association between obesity and hepatocellular carcinoma (HCC): Obese
men were ∼4.5 times more likely to die from liver cancer than controls (24). Given the higher
prevalence of both obesity and obesity-related liver disease in Hispanics, that Hispanic ethnicity
is associated with an increased risk of developing HCC is not surprising.

Esophageal carcinoma is known to be related to chronic gastroesophageal reflux. Reflux of the
acidic stomach contents can cause irritation and inflammation in the inferior esophagus, eventually
leading tometaplasia and premalignant changes, termedBarrett’s esophagus.Obese individuals are
at a higher risk of suffering from reflux (OR 1.73), Barrett’s esophagus (OR 1.24), and esophageal
adenocarcinoma (OR 2.45) (see 139). These associations are likely primarily due to increased
abdominal pressure, though confounding effects of specific dietary components have not been
ruled out.

Obese individuals are approximately twice as likely to die from pancreatic cancer compared
with lean individuals (24). Because mortality from pancreatic cancer is so high, this association is
undoubtedly driven by increased incidence, though BMI at diagnosis also predicts survival (189).
Obesity is a strong risk factor for pancreatitis,mediated in part by increased prevalence of diabetes,
gallstones, and hypertriglyceridemia (78), and pancreatitis is itself a major risk factor for pancreatic
cancer. However, chronic pancreatitis accounts for only a small percentage of pancreatic cancer
patients (45), and so obesity must have additional effects independent of pancreatitis.

Cancer Metabolism

To understand how diet can affect cancer treatment and prognosis, first understanding some of
the unique aspects of cancer metabolism is important. In 1925, OttoWarburg (178) observed that
cancerous tumors take upmore glucose than other tissues andmetabolize it without relying on ox-
idative phosphorylation, termed theWarburg effect. Although aerobic glycolysis does not provide
as much ATP as oxidative phosphorylation, it is believed to better support cancer cell metabolism
for a number of reasons. First, tumors can grow rapidly, sometimes outpacing their blood supply,
leading to a relatively hypoxic environment. Second, the metabolic machinery needed to perform
glycolysis is much less extensive than oxidative phosphorylation, being independent of mitochon-
dria. Third, carbon atoms from glucose can be used to synthesize amino acids, nucleic acids, and
other metabolic intermediates in a process of anapleurosis.

Our understanding of theWarburg effect has significantly evolved over the last century.Many
cancer cells have been shown to have high respiratory rates, arguing against their reliance on
aerobic metabolism (183). The Lisanti group (129) demonstrated that cancer cells induce stromal
cells in their microenvironment to shift to anaerobic metabolism, inducing them to release lactate
and pyruvate, which are used by the cancer cells for oxidative metabolism. This reverse Warburg
effect could result in overall increased glucose uptake and aerobic metabolism in a tumor, mostly
due to the stromal cells.
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In addition to increased glucose utilization, cancer cells often exhibit a dependence on free
fatty acids (FFA). FFA provide the acyl chains of phospholipids, the primary component of cell
and organelle lipid bilayer membranes. As a dividing cell duplicates its plasma membranes with
every division, a large investment in FFA is required for a cancer cell to proliferate. FFA synthesis
is energetically expensive, utilizing 14 NADPH and 7 ATP to synthesize 1 molecule of palmitate.
Increased de novo FFA synthesis and exogenous FFA uptake have both been associated with cancer
aggressiveness and survival (84, 118, 123, 146). Conversely, FFA can provide a large amount of
energy and are often abundant in tumor microenvironments, particularly those in proximity to
adipocytes. Thus, cancer cells in adipocyte-rich environments have been shown to rely heavily on
FFA oxidation (119, 166).

Adipocytes can also be a source of amino acids. We have shown that adipocyte release of glu-
tamine and asparagine can particularly interfere with ALL treatment with l-asparaginase (49).
Glutamine is also extremely important for other cancer cells, where it contributes to the synthesis
of nucleotides, amino acids, and tricarboxylic acid (TCA) cycle intermediates (194). Cancer cells
use BCAA for protein synthesis and energy metabolism and often overexpress branched chain
aminotransferase enzymes needed for BCAA metabolism (5). Thus, cancer cells exhibit unique
metabolic needs that may be met in obese, adipose-rich environments.

WEIGHT CHANGES DURING CANCER TREATMENT

During the development of cancer, and over the course of its treatment, the body can exhibit
dramatic changes in weight and composition. Many cancers are associated with cachexia, which
encompasses weight loss disproportionately and affects lean body mass. Cachexia is generally at-
tributed to inflammatory cytokines associated with cancer burden, such as TNFα, IL-6, and IL-1α;
however, anorexia can be exacerbated by pain, depression, and nausea associated with the diagnosis
of cancer and its treatments. Weight loss associated with cachexia is generally considered a poor
prognostic sign. Cancer cachexia could be a marker of a more aggressive or advanced cancer or
of a more toxic response to treatment. Alternatively (or additionally), the unhealthy weight loss
associated with cachexia could somehow impair cancer treatment outcome.

Conversely, significant weight gain can occur over the course of some cancers. Cancers that are
treated with high doses of glucocorticoids, particularly hematologic cancers, are associated with
an increase in adiposity due to the adipogenic effects of these agents.We showed that BMI was not
an accurate measure of obesity in adolescents during treatment for high-risk ALL: Over the first
month of treatment, subjects gained ∼1.5 kg of body fat and lost ∼6 kg of lean mass, resulting
in a substantially higher body fat percentage (125). Thus, weight and BMI were not helpful in
distinguishing these changes in body fat, such that even those who lost weight generally developed
sarcopenic obesity. This risk for excess adiposity and obesity persists throughout treatment for
ALL; indeed, childhood cancer survivors are at more than a fourfold risk of metabolic syndromes
(51), including obesity, hypertension, dyslipidemia, and insulin resistance (121).

The bone marrow environment also undergoes drastic changes during chemotherapy treat-
ment. Most chemotherapeutic agents are toxic to hematopoietic cells, leading to a drastic re-
duction in marrow space filled by hematopoietic cells. Much of this space becomes occupied by
adipocytes through unclear mechanisms. Steroid treatments used in some cancers exacerbate this,
and the bone marrow in the iliac crest and long bones can be transformed predominantly into fat
tissue. These fat cells may play a role in supporting hematologic and other cancers that reside in
or metastasize to the marrow.
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DIET INTERVENTIONS

Given the associations between obesity and poor cancer outcomes, the observation that cancer
cells are excessive users of metabolic fuels, such as glucose, amino acids, and fats, and the strong
desire of patients, families, and practitioners to offer further hope, it is not surprising that dietary
intervention has been a popular topic of discussion in the cancer treatment world. If proven ben-
eficial to therapeutic efficacy, dietary interventions could lead to improved outcomes with little
or no additional toxicity. Indeed, some data show that diet interventions could potentially reduce
chemotherapy side effects. Unfortunately, the vast majority of the discourse has been based on
opinion and anecdotal evidence, and a paucity of scientifically validated diet interventions can be
offered to cancer patients. We summarize below the preclinical and clinical evidence related to
the most common diet interventions proposed for cancer patients.

Fasting

Fasting has been touted for its health benefits for decades. Epidemiological studies show improved
life span and reduced incidence of cancer and cardiovascular disease in people who practice in-
termittent fasting for religious or personal reasons. Fasting has been tested in several preclinical
models of cancer initiation/progression, with mixed results. Generally, studies have used intermit-
tent fasting, which describes one or more fasting sessions that last for 24 or more hours. A meta-
analysis evaluating the literature between 1994 and 2014 identified eight preclinical studies of
intermittent fasting and cancer, five of which identified a benefit of intermittent fasting and three
of which did not (99). Studies that have looked at the impact of fasting on the growth of implanted
cancer cells in mice have found beneficial effects in some models (15, 23, 91, 96, 104, 145, 164)
but not in others (21, 36, 85, 91, 96, 134, 168), and some studies have found beneficial effects on
one cancer but not another (91, 96), indicating that fasting could potentially have cancer-specific
effects. Approximately two-thirds of these cancer models using immunocompetent mice identi-
fied beneficial effects of fasting (9 out of 14), whereas only one-half using immunocompromised
models concluded a positive effect (4 out of 8). This variability might imply that the beneficial ef-
fects of fasting on cancer progression/treatment efficacy require an intact immune system. Indeed,
fasting has been shown to prevent and reduce autoimmunity (29). One study showed that fasting
reduced the accumulation of tumor-associated macrophages (TAMs), consistent with an immune
system–mediated benefit (164). A few studies have examined the effects of fasting on spontaneous
tumor onset/progression of cancer in either genetic or carcinogenic models of cancer, with most
identifying a beneficial effect of fasting on tumor incidence (14, 48, 140, 170).

Whether fasting can improve cancer treatment outcome has also been tested in several pre-
clinical studies (Table 1). Most studies found synergistic effects of fasting on anticancer therapy,
including radiation and chemotherapies, though there were several exceptions to this. In addition
to cancer progression and treatment efficacy, fasting may play a role in the reduction of treat-
ment toxicities. Fasting has been shown to protect mice from toxicity induced by etoposide (134),
irinotecan (75), doxorubicin (20), and abdominal radiation (36).

Few clinical studies have tested fasting on therapeutic outcome. A case series by Safdie et al.
(144) demonstrated that complete fasting, starting 36–140 hours before and continuing through
8–56 hours after chemotherapy, is feasible in adult patients with solid tumors. These were com-
plete fasts,with the exception of water and sometimes vitamins, andwere associated with subjective
reduction in chemotherapy side effects and no clear evidence of impaired chemotherapy efficacy.
Short-term fasting was tested in a randomized study of 13 patients receiving neoadjuvant treat-
ment for breast cancer. Fasting for 24 hours before and after chemotherapy was well-tolerated
in the 7 patients randomized to fast, and subjects exhibited higher red cell and white cell counts
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Table 1 Preclinical studies examining the role of fasting on cancer outcome

Cancer
(cell line) Animal model Route Fasting scheme

Effect of
fasting alone

Effect of fasting
with treatment Reference

Immunocompetent
Breast (67NR
and 4T1)

14-week-old
BALB/c

Orthotopic ADF Slowed
tumor
growth

Synergy with
irradiation

145

Breast (4T1) 12-week-old
BALB/c
female

SQ Two 48- to
60-hour
fasting cycles

Slowed
tumor
growth

Synergy with
cyclophosphamide

91

Breast (4T1) 12-week-old
BALB/c
female

IV One 48-hour fast NA Synergy with
cyclophosphamide
to prolong survival

91

Colorectal
(CT26)

6-week-old
female
BALB/c

SQ Two 48-hour
fasting cycles

Slowed
tumor
growth

Synergy with
oxaliplatin

15

Melanoma
(B16)

12-week-old
C57BL/6 male
and female

SQ Two 48- to
60-hour
fasting cycles

Slowed
tumor
growth

Synergy with
doxorubicin

91

Melanoma
(B16)

12-week-old
C57BL/6 male
and female

IV One 48-hour fast No sustained
benefit

Synergy with
doxorubicin to
prolong survival

91

Neuroblastoma
(NXS2)

6- to 7-week-old
female A/J

IV One 48-hour fast No benefit Less treatment
toxicity of one high
dose of etoposide,
but more rapid
tumor progression

134

Neuroblastoma
(NXS2)

6-week-old
female A/J

IV Two 48-hour
fasting cycles

NA Synergy with
doxorubicin to
prolong survival

91

Neuroblastoma
(Neuro 2A)

6-week-old
female A/J

IV One 48-hour fast NA Synergy with
doxorubicin and
cisplatin cocktail to
prolong survival

91

Pancreatic
(KPC)

9-week-old male
and female
C57BL/6J

Orthotopic One 24-hour fast No benefit Synergy with
irradiation

36

Immunocompromised
Breast (MDA-
MB-231)

5- to 7-week-old
nude mice

SQ Four 48-hour
fasting cycles

No sustained
benefit

No apparent synergy
with doxorubicin

91

Breast (H3122) 6- to 8-week-old
athymic
BALB/c mice

SQ Three 48-hour
fasting cycles

Slowed
tumor
growth

Synergy with
crizotinib (tyrosine
kinase inhibitor)

23

Colorectal
(HCT116)

6- to 8-week-old
athymic
BALB/c mice

SQ Three 48-hour
fasting cycles

Slowed
tumor
growth

Synergy with
regorafenib
(tyrosine kinase
inhibitor)

23

Glioma (GL26) 7-week-old nude
mice

SQ One 48- to
60-hour
fasting cycle

Slowed
tumor
growth

Synergy with
doxorubicin

91

Ovarian
(OVCAR3)

5- to 7-week-old
nude mice

SQ Two 48-hour
fasting cycles

No sustained
benefit

No apparent synergy
with doxorubicin

91

Abbreviations: ADF, alternate day feeding; IV, intravenous; NA, not assessed; SQ, subcutaneous.
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after chemotherapy compared with the nonfasted groups (35). Further confirming the feasibility
of fasting in cancer patients, Dorff et al. (43) prescribed escalating doses of fasting in consecu-
tive subgroups, increasing from 24 hours before treatment to 48 hours before and 24 hours after
treatment. Twenty subjects with a variety of cancers being treated with platinum-based therapies
were enrolled. Of these, 13 were considered compliant with the intervention, consuming <200
kcal/day. Fasting-related symptoms were generally mild, and no grade 3 or 4 fasting-related toxi-
cities were reported. In another study, 34 patients being treated for breast or ovarian cancer were
randomized in a crossover design to receive short-term fasting during the first or second half of
their planned chemotherapies, versus an ad libitum (AL) diet during the other half. Fasting lasted
60 hours total (36 hours before and 24 hours after chemotherapy) and showed some efficacy in
improving quality of life and reducing fatigue, though effect on chemotherapy efficacy was not
evaluated (10).

Calorie Restriction

Although periods of complete fasting are likely to induce the most drastic metabolic shifts,
this might not be feasible or acceptable to all patients, and so alternative approaches have been
explored. Caloric restriction may provide some of the same benefits as fasting through similar
mechanisms. Caloric restriction can also be imposed for longer periods of time, thus conceivably
providing more sustained benefits. Many preclinical studies have evaluated the effects of caloric
restriction on cancer initiation and progression, again with a high degree of variability between
cancer models, diet interventions, and outcomes evaluated. A majority of studies limit calories by
reduction of carbohydrates, though some include protein limitation or proportional limitation
of all nutrients. When diet is imposed as a chronic condition, animals are generally provided
60–85% of what an AL control would consume. Intermittent strategies involve more severe
caloric restriction, generally 50–67% of AL for 1- to 3-week discrete periods. These restriction
periods alternate with periods of either full AL consumption or consumption matched to an AL
group (to prevent compensatory overeating during nonfasting periods). Thus, it can be difficult
to compare studies that use different calorie restriction regimens.

Despite the variability in regimens, convincing evidence has been found that calorie restriction
can delay cancer in spontaneous and carcinogenesis models (14, 17–19, 25, 30, 39, 41, 44, 47, 50,
56, 60, 69, 70, 72, 73, 87, 89, 101, 102, 111–113, 132, 141, 154, 163, 165, 169, 171, 176, 185) as well
as in transplants in syngeneic (22, 37, 46, 65, 120, 130, 151, 152, 175) and xenograft models (55,
74, 89, 100). Only a minority of studies found no effect or a negative effect of caloric restriction
(16, 20, 76, 85, 108, 127, 167, 172). A handful of studies have tested whether calorie restriction can
improve treatment efficacy (Table 2). Our group showed that switching mice from a high-fat to a
low-fat diet improved the treatment efficacy of vincristine against syngeneic B-cell ALL; however,
we observed no synergy with dexamethasone or l-asparaginase (174).

Carbohydrate Restriction/Ketogenic Diet

Using a ketogenic diet as an alternative to fasting and caloric restriction has generated great inter-
est. A ketogenic diet could be better tolerated in some patients, and it has a long safety record as a
treatment for epilepsy. A recent meta-analysis identified 12 studies that tested unrestricted keto-
genic diet against standard diet in murine cancer models and concluded an overall growth delay
with the ketogenic diet (80). A few studies have evaluated a ketogenic diet during anticancer treat-
ment, reporting synergy in most cases with irradiation, metformin, and chemotherapy (Table 3).

A recent systematic review identified six articles describing clinical intervention with a keto-
genic diet in pediatric or adult patients with glioma, together including 39 subjects, along with 12
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Table 2 Preclinical studies examining the role of caloric restriction on cancer outcome

Cancer
(cell line) Animal model Route Diet scheme

Effect of diet
alone

Effect of diet with
treatment Reference(s)

B-ALL
(8093)

C57BL/6J Retro-orbital Switch from
60% to
10% fat diet

No benefit Improved efficacy of
vincristine, but no
effect on
dexamethasone or
l-asparaginase

174

Breast
(4T1)

8- to 14-week-old
BALB/c

Orthotopic 70% of AL Slowed tumor
growth

Synergy with
irradiation,
cisplatin, and
docetaxol

145, 158, 159

Breast
(4T1)

12- to 15-week-old
BALB/c mice

SQ 50% of AL NA No synergy with
cisplatin

20

Abbreviations: AL, ad libitum; NA, not assessed; SQ, subcutaneous.

ongoing trials (105). Although none of the published studies were randomized controlled trials,
the results showed that a ketogenic diet could be well-tolerated with few adverse effects and may
confer some benefit to overall and progression-free survival; however, the case-series studies were
designed without comparisons with control groups, which preclude more definitive conclusions.

Other Diet Interventions

A number of diets that do not fit into the above categories may provide beneficial effects on cancer
risk and outcome. Strict adherence to a Mediterranean diet has been associated with reduced all-
cause cancer mortality as well as mortality from breast, colorectal, head and neck, gastric, prostate,
liver, respiratory, and pancreatic cancers (148).Olive oil, a major component of theMediterranean
diet, contains high concentrations of monounsaturated fatty acids, antioxidants, and other poten-
tially beneficial components. People in the highest category of olive oil consumption exhibited a
lower odds of overall cancer as well as breast and gastrointestinal cancers (133). Protein restriction
can reduce the growth of human xenograft breast and prostate cancer (53), though low animal pro-
tein intake was not associated with cancer mortality in prospective cohorts (162). A meta-analysis
including 96 cohort and cross-sectional studies concluded that vegetarian and vegan diets reduced
the incidence of cancer by ∼8% and ∼15%, respectively (40). Further, higher intake of vegetable
versus animal fats after diagnosis of prostate cancer was associated with an improved survival (138).
In a meta-analysis, increased soy intake was associated with a decreased risk of breast mortality
and recurrence (155).Numerous studies have evaluated specific dietary components for anticancer
effects in vitro and preclinical models (for example, 48, 111).However, to our knowledge, no stud-
ies have examined whether any of these diets or dietary components can improve chemotherapy
treatment outcomes.

MECHANISMS

The above diets induce a host of metabolic effects, many of which can be beneficial for a patient
during cancer treatment.With caloric restriction and fasting, systemic levels of glucose and some
lipids and amino acids decrease, limiting the available fuel for cancer cells to grow and divide.Keto-
genic diets could exert additional anticancer effects through toxicity of ketones themselves. Indeed,
ketogenic diet efficacy may be reversed in tumors that express high levels of ketone-metabolizing
enzymes (193).
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Table 3 Preclinical trials of ketogenic diets on cancer outcome

Cancer
(cell line)

Animal
models Route Diet scheme

Effect of diet
alone

Effect of diet
with treatment Reference(s)

Breast (4T1) BALB/C SQ 70% of AL of
diet containing
2% CHO and
93.4% fat
calories

Reduced tumor
growth

Enhanced
antitumor
effect of
metformin

196

Glioma (GL261
cells)

Male albino
C57BL/6

Orthotopic AL 3% CHO
and 72% fat
calories

Prolonged
survival

Synergy with
irradiation

1, 98

Glioma (GL261) Female albino
C57BL/6

Orthotopic AL 3% CHO
and 72% fat
calories

Prolonged
survival

Synergistic with
whole brain
irradiation

1, 180

Lung
(NCI-H292
and A549 cells)

Female
athymic-nu/
nu mice

SQ AL 1.6% CHO
and 90% fat
calories

No effect of KD
alone on
tumor volume
or survival

Enhanced tumor
response and
survival with
irradiation
and/or
carboplatin

3

Medulloblastoma
(cells from
above mice)

NOD/SCID SQ AL 6:1, 3.2%
CHO and
75.1% fat paste

No effect on
tumor growth

No effect on
SMO inhibitor
GDC-0449
antitumor
activity

34

Neuroblastoma
[SK-N-BE(2)
and SH-SY5Y
cells]

Female
CD1-nu

SQ AL or 2/3 AL
KD with 8%
CHO and 78%
fat calories

CR KD slowed
tumor growth
and prolonged
survival of
both tumors;
AL KD only
slowed tumor
growth and
prolonged
survival for
SK-N-BE(2)
tumors

Both diets
slowed growth
of KH-SY5Y
tumors but not
SK-N-BE(2)
tumors during
cyclophos-
phamide
treatment

115, 116

Abbreviations: AL, ad libitum; CHO, carbohydrates; CR, caloric restriction; KD, ketogenic diet; SMO, smoothened gene, a component of the sonic
hedgehog pathway; SQ, subcutaneous.

A primary hypothesis on how fasting, and potentially caloric restriction, works is termed differ-
ential stress (134).Upon fasting, levels of many anabolic hormones drop, including insulin, IGF-1,
and leptin. Combined with reduced metabolic fuel availability, these changes reduce anabolic sig-
naling in noncancerous cells, leading to increased mTOR and decreased AKT. These signals slow
cell growth and proliferation and can induce autophagy, all of which would tend to make healthy
cells less susceptible to chemotherapies—particularly those that target dividing cells. Conversely,
one of the hallmarks of cancer cells is growth and proliferation independent of local and systemic
signals; thus, fasting may not alter proliferation rates of these cells, which would therefore retain
susceptibility to chemotherapy. In addition, the decrease in availability of fuels, including glucose,
lipids, and amino acids, can have additional detrimental effects on cancer cells, which may not
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exhibit the same metabolic flexibility of host cells. Thus, rapid proliferation in the face of fuel
deprivation may induce oxidative stress, increasing the likelihood of DNA replication errors and
catastrophic mitotic events. Together, these effects should widen the therapeutic window between
host and cancer cells and allow a more targeted killing of cancer by chemotherapy.

Hormonal changes induced by diet interventions can have additional effects as well. Some
cancer cells are sensitive to growth-promoting hormones such as insulin and IGF-1 and may
become more sensitive to chemotherapy once these signals are reduced by dietary intervention.
This effect was demonstrated byDunn et al. (47), who showed that replacement of IGF-1 reversed
the survival benefit observed during dietary restriction.Alternatively, caloric restriction and fasting
cause adiponectin levels to rise, which could theoretically promote apoptosis in cancer cells.Other
hormonal effects might be more complicated. Lu et al. (96) elegantly showed that leukemia cells in
obese mice were resistant to leptin but, upon fasting,would increase expression of leptin receptors,
leading to leukemia cell differentiation and improved mouse survival.

Dietary interventions likely have multiple effects on the host environment that can impact can-
cer progression and sensitivity to treatment. An energy-restricted diet can reduce inflammatory
monocyte populations in overweight and obese adults within 16 weeks (79). A ketogenic diet was
shown to enhance antitumor immunity, increasing tumor infiltration by CD4+ T cells, but with-
out increasing T-regulatory cell number (98). Importantly, the beneficial effects of the diet were
reversed with CD8+ T cell depletion. Diet interventions have major effects on the microbiome,
which can in turn alter inflammation, the systemic metabolome, and even potentially chemother-
apy metabolism (143). Dietary restriction can reduce vascularization, potentially limiting tumor
oxygen and nutrient access (169). These and other beneficial effects of diet intervention could
potentially provide additive benefits to cancer treatment.

WHICH IS THE BEST DIET?

Althoughmuch can be learned about obesity, diet, and cancer outcomes from preclinical studies, it
is important to keep in mind that mice are not humans. The most common mouse model of obe-
sity, the diet-induced obese C57BL/6 mouse, becomes obese on a diet consisting of 45% or 60%
of calories from fat. This is in contradistinction to humans, whose obesity is thought to be more
related to excess carbohydrates. Few studies have tested multiple diets in a head-to-head fashion,
and even in those, the winning diet may be better simply due to specifics of the models chosen.
For example, caloric restriction at 60% of AL showed a better survival benefit in p53 heterozygous
mice than fasting one day per week (14). But what if they had tested fasting two days per week,
or every other day? A 60-hour fast was more effective than 50% caloric restriction in protecting
mice from doxorubicin toxicity (20), but what if it was less effective in synergizing with its anti-
cancer activity? Or with the activity of a different chemotherapy? Making fair diet comparisons in
these types of studies is difficult if not impossible, because matching caloric intake does not neces-
sarily match tolerability. Further, diets may act differently in different cancer models, varying by
cancer type, stage, mutations, species, treatment regimen, etc. A recent meta-analysis compared
the efficacy of chronic versus intermittent caloric restriction and found that intermittent calorie
restriction was more effective in reducing the incidence of cancer in genetically engineered mod-
els, whereas chronic calorie restriction was better for carcinogen models (27). Translating these
results into clinical recommendations is difficult.

A systematic review and meta-analysis including many of the above studies compared the effi-
cacy of caloric restriction, ketogenic diet, and intermittent fasting on cancer initiation,progression,
and metastasis (99); the authors concluded that caloric restriction and ketogenic diet were highly
effective, whereas the data on intermittent fasting were not yet conclusive. Given the paucity of
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data examining dietary intervention during cancer treatment, particularly in patients, more work
will need to be done to test which interventions have the best efficacy against specific cancers.

CONCLUSIONS

Our diet clearly has a major impact on our cancer risk. The preclinical literature strongly supports
the potential of diet intervention to improve cancer treatment outcomes. However, determining
which dietary strategy is best is not possible at this point, and diet efficacies will likely vary based
on patient, cancer types, and treatment regimen. Clinicians who care for overweight and obese
patients know that sometimes the best diet is the one that the patient is willing and able to adhere
to, and so a degree of personalization may be needed when instituting these strategies in the clinic.
Unfortunately, this approach requires flexibility, ancillary support staff, and an understanding that
a lifestyle intervention may have efficacy on par with cytotoxic agents.

Although translating these findings from mice to patients is not straightforward, it is impera-
tive that we continue to explore this avenue. Diet intervention has the potential to improve can-
cer outcome without introducing additional toxicities and long-term complications. Indeed, most
evidence indicates that diet intervention reduces toxicity and thereby facilitates more effective
chemotherapy. Integrating this shift in paradigm into oncology will require more clinical trials
and time.
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