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Abstract

Considerable recent advancements in elucidating the genetic architecture
of sleep traits and sleep disorders may provide insight into the relationship
between sleep and obesity. Despite the involvement of the circadian clock in
sleep and metabolism, few shared genes, including FTO, were implicated
in genome-wide association studies (GWASs) of sleep and obesity. Poly-
genic scores composed of signals from GWASs of sleep traits show largely
null associations with obesity, suggesting lead variants are unique to sleep.
Modest genome-wide genetic correlations are observed between many sleep
traits and obesity and are largest for snoring. Notably, U-shaped positive
genetic correlations with body mass index (BMI) exist for both short and
long sleep durations. Findings from Mendelian randomization suggest ro-
bust causal effects of insomnia on higher BMI and, conversely, of higher
BMI on snoring and daytime sleepiness. In addition, bidirectional effects be-
tween sleep duration and daytime napping with obesity may also exist. Lim-
ited gene-sleep interaction studies suggest that achieving favorable sleep, as
part of a healthy lifestyle, may attenuate genetic predisposition to obesity,
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but whether these improvements produce clinically meaningful reductions in obesity risk remains
unclear. Investigations of the genetic link between sleep and obesity for sleep disorders other than
insomnia and in populations of non-European ancestry are currently limited.
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OVERVIEW OF SLEEP

Sleep Is a Fundamental Pillar of Health

Sleep is a critical component of healthy development and overall well-being in humans (11, 55).
Healthy sleep is multidimensional and includes adequate duration, good quality, appropriate
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timing, and the absence of sleep disorders (19). Despite its large societal burden in terms of
morbidity and mortality (138), sleep remains an underrecognized determinant of health. Chronic
sleep insufficiency is a global concern in industrialized societies and affects 1 in 3 adult Americans
(74). Habitual short sleep duration has been associated with adverse health outcomes, including
obesity (14, 94, 101, 136), type 2 diabetes (13), cardiovascular disease (18), and all-cause mortality
(138). Sleep deprivation is also associated with daytime sleepiness, fatigue, depressed mood,
and overall poor daytime functioning (128). Common sleep disorders such as insomnia and
obstructive sleep apnea (OSA) are also associated with reduced quality of life and increased
morbidity and mortality (67, 81). Their prevalence, currently estimated between 10% and 20%
in the United States, is increasing owing to societal changes and, in the case of OSA, in parallel
with the increasing prevalence of obesity levels (59, 84, 98). The American Academy of Sleep
Medicine and the Sleep Research Society have summarized the evidence linking favorable sleep
and overall health to highlight sleep’s role as a fundamental pillar of health (5, 79).

What Is Sleep?

Sleep occupies almost one-third of our lives, yet its precise definition and role remain somewhat
ambiguous. Sleep has been defined (27, 90, 97) as (a) a reversible behavioral state of perceptual
disengagement and unresponsiveness to the environment; (b) the naturally recurring state of rest
during which consciousness of the world is suspended; (c) a reversible behavioral state of decreased
responsiveness and interaction with the environment; and (d) a readily reversible suspension of
sensorimotor interactions with the environment, usually associated with recumbence and immo-
bility. Definitions have been further expanded to include the main electrophysiological hallmarks
of human sleep, such as slow-wave sleep and paradoxical or rapid eye movement sleep, highlight-
ing that sleep is not simply a state of rest but also a period of heightened brain activity (106).
Indeed, there are times during sleep when the brain is more active than it is during wakefulness.

From an evolutionary perspective, all animal species exhibit sleep or sleep-like states, suggest-
ing its importance for survival (11, 55). The importance of sleep is evidenced by the following:
(a) It occurs in all multicellular animals, suggesting universal functionality; (b) during the sleep
state, an organism is unable to respond to external threats, suggesting a critical benefit to be gained
from sleeping; (c) there exists a homeostatic drive that regulates sleep in amanner similar to that for
other critical behaviors such as thirst; and (d) complete sleep deprivation leads to death. The exact
functions of sleep remain unknown (66). In humans, sleep has been implicated in the maintenance
of normal bodily functions, including central nervous system repair and clearance of neural waste
products through the glymphatic system; recovery from physical activities and growth and repair
of body tissues; learning and processing of memory; maintenance of attention and concentration;
and optimal immune performance.

Sleep Architecture Across the Life Span

Sleep architecture changes with age (95). Changes include a decrease in sleep efficiency, earlier
sleep timing, and decreased percentage of rapid eye movement and slow-wave sleep and a related
increase in the remaining nonrapid eye movement stages of sleep (95). There is no evidence of
significant changes to these measurements after the age of 60 (95). General sleep guidelines exist
and serve as key tools for education, surveillance, and guidance for intervention strategies. Sleep
recommendations in the United States were last issued in 2015 by the National Sleep Foundation
(47). Sleep duration recommendations included 12 to 15 h for infants, 9 to 11 h for school-aged
children, and 7 to 9 h for adults. However, the precise optimal amount of sleep may vary from
person to person.
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GENETICS OF SLEEP AND OBESITY

Between 2015 and 2020, major advances in large-scale biorepositories and genetic analyses, such
as genome-wide association studies (GWASs), have enabled the discovery of common genetic
variants that contribute to complex heritable traits and diseases related to sleep (summarized in
Table 1) and obesity.

Sleep Duration

Duration is the most commonly investigated sleep dimension among genetic studies of sleep. The
heritability of sleep duration ranges between 31% and 55% in twin- and family-based studies
(28, 37, 99). Prior to GWASs, candidate gene association studies focused on core clock genes
because of the central role of the circadian machinery in sleep regulation (111). Clock genes,
including CLOCK and ARNTL, are required for the coordinated regulation of circadian rhythms
(9). Candidate gene studies of adults, and a few of children, have identified some associations
between core clock genes, particularly CLOCK, RORA, and DEC2, and sleep duration, as well as
timing and quality, in diverse populations (3, 45, 87, 91, 105, 112).

Since 2007, successive waves of GWASs have been conducted for sleep duration, highlighting
its polygenic nature. The first GWAS was of 749 adults from the Sleep Heart Health Study (40).
Although the study did not identify signals for sleep duration, it implicated circadian-related genes,
including CSNK2A2 and PROK2, for sleep timing and daytime sleepiness (40). A GWAS includ-
ing over 4,000 adults from seven European cohorts identified a genetic variant for sleep duration
near ABCC9 encoding an adenosine triphosphate (ATP)-sensitive potassium channel (1). A larger
GWAS meta-analysis composed of 18 population-based cohorts totaling 47,180 adults identified
two loci for sleep duration, including PAX8, in which each copy of the minor allele was associ-
ated with 3.1-min-longer sleep duration (39). PAX8 was further implicated in sleep duration by
another GWAS from the UK Biobank (https://www.ukbiobank.ac.uk/) that included ∼150,000
adults (57). PAX8 is a widely expressed transcription factor that plays an essential role in thyroid
development (57). The largest GWAS of sleep duration to date is from the UK Biobank and en-
compasses 446,118 adults of European ancestry (23). In total, 78 genetic variants were identified
for self-reported sleep duration, accounting for 0.69% of the variance. Findings were partially
validated with accelerometer-derived objective measures of sleep duration and replicated in an
independent study from the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium (23). The largest effect size remained at the PAX8 locus, with an estimate
of 2.44 min per effect allele. Considering the nonlinear U-shaped relationship between sleep du-
ration and health outcomes, GWASs of short and long sleep durations have also been conducted
(23, 57), identifying 27 and 8 loci, respectively (23). The variants partly overlapped with contin-
uous sleep duration, suggesting some shared and distinct biological mechanisms (23, 30). Only
one GWAS of sleep duration in children has been conducted so far (n = 10,554), identifying one
variant located in an intronic region of ARAP1 (82).

Other Sleep Traits

Diurnal preference, or chronotype, is the behavioral manifestation of the circadian clock and
is another heritable sleep trait, with heritability estimates of 12% to 42% based on twin and
family studies (69). Two studies leveraged interim data releases from the UK Biobank (up to
n = 128,266 participants of European ancestry) and responses to a question on morning or
evening preference and identified 16 (57) and 12 (69) loci. As expected, the GWASs implicated
known components of the circadian clock machinery, including PER2. Separately, in a cohort from
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Table 1 Summary of large-scale (n > 50,000) GWASs for sleep traits and sleep disorders

Trait
Phenotype
definition Cohort (n)

Number
of loci

SNP-based
heritability (%) Notable genes Reference

Self-reported sleep traits
Sleep duration Continuous hours of

24-h sleep
duration

UK Biobank (446,
118)

78 9.8 PAX8, FTO, FADS1,
FADS2, FOXP2,
KSR2

23

Short sleep duration Sleep duration <7 h
versus sleep
duration between 7
and 8 h

UK Biobank
(106,192 cases;
305,742 controls)

27 7.9 PAX8, SLC39A8,
FOXP2

23

Long sleep duration Sleep duration ≥9 h
versus sleep
duration between 7
and 8 h

UK Biobank (34,184
cases; 305,742
controls)

8 4.7 PAX8, FTO 23

Sleep duration
(children)

Hours of sleep per
day, including naps

EAGLE Consortium
(10,554)

1 14.0 ARAP1 82

Diurnal preference
(chronotype)

Morning or night
person

UK Biobank +
23andMe
(697,828)

351 13.7 ARNTL,HCRTR2,
PER1, PER2,
PER3,MADD

56

Daytime napping Frequency of naps
during the day

UK Biobank
(452,633)

123 11.9 KSR2,HCRTR2,
PATJ, BTBD9,
MTNR1B

19

Daytime sleepiness Frequency of
unintentional
dozing off or
falling asleep
during the day

UK Biobank
(452,071)

42 6.9 KSR2, PATJ,
HCRTR2,
SLC39A8, BTBD9

128

Ease of getting up Ease of getting up in
the morning

UK Biobank
(385,949)

62 7.1 HCRTR2, RGS16,
PER3, FTO

53

Snoring Complaints about
snoring

UK Biobank
(408,000)

42 9.9 DLEU7,MSRB3,
POC5, FTO

12

Objectively derived sleep measures
Sleep duration Nocturnal sleep

duration
UK Biobank

(85,502)
12 19 PAX8,MEIS1,

KCNH5,DBYD
58

Sleep duration
variability

Interdaily variability
in sleep duration

UK Biobank
(85,068)

0 2.8 NA 58

Number of sleep
episodes

Number of sleep
bouts during the
night sleep period

UK Biobank
(85,502)

21 22.3 APOE,GPR139,
BANK1

58

Daytime inactivity
duration

Total daily duration
outside the sleep
period

UK Biobank
(85,502)

2 14.8 KCNH5,
MPDZ/NFIB

58

Sleep midpoint Midpoint between
the start and the
end of the sleep
period

UK Biobank
(85,502)

1 10.1 CAB39 58

(Continued)
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Table 1 (Continued)

Trait
Phenotype
definition Cohort (n)

Number
of loci

SNP-based
heritability (%) Notable genes Reference

M10 timing Timing of the most
active 10 h;
measure of sleep
midpoint

UK Biobank
(85,723)

1 8.7 CPNE8, ALG10B 58

L5 timing Timing of the least
active 5 h; measure
of sleep midpoint

UK Biobank
(85,830)

6 11.7 MEIS1, BTBD9,
RGS16, ALG10B

58

Sleep efficiency Sleep duration
divided by the time
between the start
and the end of the
first and last
nocturnal
inactivity period,
respectively

UK Biobank
(85,502)

5 13 PAX8,MEIS1,
PDE11A

58

Sleep disorders
Insomnia Trouble falling asleep

at night or waking
up in the middle of
the night

UK Biobank +
23andMe
(1,331,010)

202 7.0 PAX8,MEIS1,
BTBD9

53

Restless legs
syndrome

Diagnosis of restless
legs syndrome

EU-RLS GENE,
INTERVAL,
23andMe (15,126
cases; 95,725
controls)

19 19.6 MEIS1, C1D,
BTBD9

109

For traits and disorders for which multiple GWASs were conducted, only the largest study to date is listed. Full GWAS summary statistics can be
downloaded from the Sleep Disorder Knowledge Portal (https://sleep.hugeamp.org/).
Abbreviations: GWAS, genome-wide association study; NA, not applicable; SNP, single nucleotide polymorphism.

23andMe (a personal genomic testing company) (n= 489,283), up to 15 variants, including 7 near
genes with well-established roles in circadian rhythms (49), were identified. Building on these
findings is the largest GWAS of morning preference to date, encompassing 697,828 UK Biobank
and 23andMe participants and identifying 351 genetic variants (56). Identified loci were enriched
for circadian clock regulatory genes, including PER1,CRY1, and ARNTL. The specificity of these
loci was validated by robust associations of the variants with accelerometer-derived measures of
sleep timing but not sleep duration or quality.

Daytime napping, another common and heritable behavior (∼65% from twin studies), is char-
acterized by short sleep episodes during the day (20). A GWAS including 452,633 UK Biobank
participants identified 123 loci, explaining 1.1% of the trait variance (20). The loci were consis-
tent in an independent data set from a 23andMe cohort and showed specific associations with
accelerometer-derived measures of daytime inactivity duration. Excessive daytime sleepiness is
a common symptom affecting 10–20% of the population primarily due to chronic insufficient
sleep and is associated with motor vehicle accidents and impaired social functioning (128). The
estimated heritability for daytime sleepiness ranges between 0.38% and 0.48%, and a GWAS
of 452,071 UK Biobank participants identified 42 loci (128). A polygenic score for daytime
sleepiness—a score that aggregates multiple genetic variants predictive of daytime sleepiness and
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thus provides a quantitative measure of genetic susceptibility—was associated with sleep disor-
ders, including restless legs syndrome (RLS) and insomnia, and other sleep traits, including sleep
duration, sleep timing, sleep efficiency, and daytime napping. Among 385,949 European adults
from the UK Biobank, a GWAS of ease of getting up in the morning identified 62 genomic loci
(53). There exist several shared loci, includingHCRTR2, for daytime napping, daytime sleepiness,
and ease of getting up (20, 53, 128). Snoring is the vibration of the upper airway structures that
creates noise during sleep, and is more prevalent in males (∼35–45%) than in females (15–28%)
(12). Approximately 18–28% of the variance in snoring may be accounted for by genetic factors
based on twin and family studies, and a GWAS has implicated 42 loci (12).

Subjective sleep quality, latency, efficiency, and disturbance, other dimensions of sleep, are also
heritable (28, 37, 99).Using the Pittsburgh Sleep Quality Index in a multi-ethnic discovery cohort
(n = 2,868), Khoury et al. (62) estimated the heritability of sleep quality to be 14.37% (34–37%
in twin studies) and identified two novel loci on chromosomes 2 and 7.

Objective Measures of Sleep

Although most large-scale genetic studies have relied on self-reported data, objectively estimated
sleep measures from accelerometers, actigraphy, and polysomnography have been analyzed. Ob-
jective methods for sleep assessment can robustly phenotype sleep dimensions that are more dif-
ficult to derive from surveys. The first GWAS of sleep to use wearable technology investigated 11
parameters derived from actigraphy in 956 adults from the LIFE Adult Study (116). This study
identified several novel variants near candidate genes, including UFL1 and CSNK2A1. Another
GWAS showed that ARNTL was associated with polysomnography-estimated sleep duration (64).
In the UK Biobank, ∼103,000 participants were fitted with wrist-worn accelerometers for up to
7 days and two parallel studies assessed the genetics of objectively derived estimates of sleep
(30, 58). In the first study, 47 signals were identified for 8 sleep parameters, including measures of
quality, timing, duration, and the number of nocturnal sleep episodes.Of the 47 signals, 36 variants
were not detected in previous GWASs of self-reported sleep traits (58). The second study identi-
fied 14 loci, of which 7, includingMAPKAP1 and AUTS2I, were novel for sleep duration (30).

Sleep Disorders

Insomnia occurs in 10–20%of the population and is characterized by persistent difficulty initiating
or maintaining sleep and consequent daytime dysfunction (67). Family studies have estimated that
insomnia heritability ranges between 22% and 25% (67). An initial genetic analysis of insomnia
complaints in the UKBiobank (n= 113,006) identified 3 loci, includingMEIS1, a locus previously
implicated in RLS (43).The largestUKBiobankGWASof insomnia includes 453,379 participants
and identified 57 loci for self-reported insomnia symptoms, which were validated using physician-
diagnosed insomnia in independent cohorts (67). Polygenic scores of the 57 loci were associated
with accelerometer-derived measures of lower sleep quality and shorter sleep duration and greater
day-to-day variability in sleep duration (67). The largest GWAS of insomnia complaints so far
includes 1,331,010 adults and identified 202 risk loci, explaining 2.6% of the phenotypic variance
(53).The lead signal was for BTBD9, another locus implicated in RLS.Despite crude phenotyping
based on self-report, 163 risk loci were specific to insomnia and only 39 risk loci were associated
with other sleep traits (53). In addition, a multitrait GWAS of sleep disturbance that encompassed
insomnia symptoms, sleep duration, and daytime sleepiness from the UK Biobank (n = 112,586)
identified 9 loci, including PAX8,MEIS1,HCRTR2, and INADL (68).

The genetic basis of other primary sleep disorders, including OSA, RLS, and narcolepsy, is
less studied. OSA is a heritable and common sleep disorder affecting up to 34% of men and
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17% of women and is characterized by recurrent upper airway obstruction during sleep (10, 104).
OSA often leads to fragmented sleep and recurrent episodes of chronic intermittent hypoxia. A
GWAS including 12,558 Hispanic American adults investigated OSA-associated traits, including
the apnea–hypopnea index, a biomarker of OSA that estimates the number of episodes of breath-
ing obstruction per hour of sleep, and identified two loci,GPR83 andC6ORF183/CCDC162P (10).
Notably, a correlation of up to 0.78 between the genetics of OSA and snoring is observed, provid-
ing further insight into the genetic architecture of OSA (12). Larger genetic studies of OSA are
ongoing (89). RLS is a neurological disorder involving involuntary and regularly occurring limb
movements that disrupt sleep and delay onset of sleep (109). Prevalence of RLS varies widely
across populations, and heritability estimates range from 50% to 60% based on family and twin
studies. A large GWAS included 15,126 cases and 95,725 controls of European ancestry and iden-
tified 19 loci, including MEIS1, with odds ratio estimates of 1.82 to 2.16 (109).MEIS1 has also
been implicated in insomnia and in objective estimates of sleep quality. Other RLS loci, such as
C1D and BTBD9, have also been implicated in sleep timing. Narcolepsy is characterized by ex-
cessive daytime sleepiness and cataplexy with onset as early as adolescence. GWASs of patients
with narcolepsy have implicated TCR (42), a T cell receptor α locus, and CPT1B (88), an enzyme
involved in long-chain fatty acid β-oxidation in muscle mitochondria.

Obesity

Obesity and body weight are heritable traits partly determined by a highly polygenic genetic archi-
tecture and partly influenced by lifestyle and environment (7). Approximately 40–70% of variation
in body mass index (BMI) is attributed to genetic differences (32). Various genes have been asso-
ciated with monogenic, syndromic, and polygenic forms of obesity (6). Genes identified in early
candidate gene association studies included LEPR, which encodes a receptor for the hormone
leptin that regulates energy balance and body weight, and PPARG. The first identified obesity-
susceptibility locus from GWASs was in the first intron of the fat-mass- and obesity-associated
FTO gene (33). This locus has the largest effect on BMI and is associated with a higher BMI of
∼0.39 kg/m2 and an approximate 1.20-fold-higher risk of obesity per effect allele (78). The clus-
ter of correlated variants in this locus regulates the expression of two upstream genes, IRX3 and
IRX5, both of which influence adipocyte browning and food intake (86). Larger GWASs have im-
plicated additional common variants in genes includingMC4R that also have established roles in
fat mass, weight, and obesity risk (77, 121, 133). In 2015, a large GWAS by the Genetic Investiga-
tion of Anthropometric Traits (GIANT) consortium using data from 339,224 adults identified 97
BMI-associated variants, accounting for 2.7% of BMI variation (75). These variants are involved
in diverse biological pathways, including fatty acid storage, glucose metabolism, and satiety (75).
A genome-wide polygenic score integrating all 2.1 million common variants from the GWAS
by GIANT was associated with an over-fourfold-higher risk of obesity and a higher risk of car-
diometabolic disease and mortality (60). Larger GWASs of BMI and other adiposity traits by the
GIANT consortium remain ongoing and have thus far identified over 900 BMI-related genetic
variants (137).

THE RELATIONSHIP BETWEEN SLEEP AND OBESITY

Epidemiological Evidence of the Link Between Sleep and Obesity

Many cross-sectional and longitudinal epidemiologic studies, both of children and adults
(14, 94, 101, 136) and across different ancestries and geographical environments (29, 108),
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suggest that short and long sleep durations are risk factors for obesity and consequently many
other cardiometabolic diseases. The epidemiological evidence indicates that the association
between sleep duration and obesity is more robust in children than in adults and that the effect
size decreases with age. Other studies have shown no significant associations between sleep
and anthropometric measures (118). In addition, few studies have investigated sleep dimen-
sions other than duration and examined the impact of obesity on sleep (rather than sleep on
obesity).

Leveraging data on the genetic architecture of sleep and obesity from recent GWASs may
delineate the relationship between sleep traits and sleep disorders and adiposity while limiting
both bias and confounding from traditional epidemiological studies. The application of novel
post-GWAS approaches may also provide insight into distinct gene overlaps, overall genetic cor-
relations, and, through Mendelian randomization, bidirectional causal effects.

Tissue Enrichment of Sleep- and Obesity-Implicated Genes

The coexpression of genes for both sleep and obesity in the same brain regions suggests their
potential genetic overlap. Tissue enrichment analyses of gene expression from various GWASs
of sleep have implicated the cerebellum, frontal cortex, and hypothalamus (20, 23, 58, 67). These
regions are also of emerging importance in adiposity. Indeed, processes related to appetite, ho-
meostasis, reward, and motivation are key to BMI regulation and are controlled by the central
nervous system (75, 117).

Genomic Loci Implicated in Both Sleep Traits and Obesity

Considering the dual role of the biological clock in regulating sleep and body weight, as well as
metabolic mediators such as leptin and ghrelin (110), it is expected that there exist some shared
genetic links between sleep and obesity. These genetic overlaps were previously investigated in
candidate gene association studies. Transcription factors encoded by CLOCK and other circadian
genes play key roles in regulating sleep and various metabolic pathways across multiple tissues
(122). Animal studies have shown that clockmutant mice have increased body weight, strengthen-
ing the potential direct connection between sleep and weight (122). In candidate gene studies of
humans, several common CLOCK variants, most commonly rs1801260, have shown some associ-
ations with BMI, ghrelin, weight loss success, and other adiposity-related traits (3, 35, 115, 125).
The association of the circadian clock with various pathologies, including obesity, may involve
its effect on sleep duration. In addition,NR1D1 was also associated with both sleep duration and
BMI in adolescent boys (91). Candidate gene association studies of OSA in a Chinese Han cohort
also implicated variants in LEPR (71).

Building on findings from candidate gene studies, results from GWASs further implicated dis-
tinct genomic loci in both sleep and obesity. Among the GWAS signals for obesity,FTOmost con-
sistently shows associations with sleep traits such as sleep duration, morning preference, ease of
getting up, and snoring (see Figure 1). Several other obesity loci were also identified in GWASs of
sleep, as indicated in Figure 2, and include SLC39A8,HCRTR2, and PATJ.ARAP1, which encodes
a protein associated with the Golgi apparatus and apoptosis, was implicated in both sleep and obe-
sity in a GWAS of children (85). Other sleep variants implicated in key obesity-related metabolic
pathways include FADS1 and FADS2, which play a role in unsaturated fatty acid metabolism (23);
PNOC, which is implicated in feeding behavior (44) and lipid metabolism (20); and the metabolic
gene GCKR (128). However, most lead GWAS signals for sleep traits are not obesity related (see
Figure 3).
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Figure 1

Obesity-associated FTO genetic variant associations with sleep traits from GWASs. Effect estimates for
FTO-rs9939609 on sleep outcomes were retrieved from summary statistics published in the primary
manuscript or from the Sleep Disorder Knowledge Portal (https://sleep.hugeamp.org/). Vertical dashed
red line denotes genome-wide significance (P = 5 × 10−8). Abbreviations: adj, adjusted; BMI, body mass
index; GWAS, genome-wide association study.

Lead GWAS Signals for Sleep and Obesity

Studies have investigated associations between polygenic scores composed of GWAS signals for
sleep traits and adiposity outcomes, and vice versa, to determine overall pleiotropy in GWAS
signals for sleep and obesity. In an analysis of 119,859 adults of European ancestry from the UK
Biobank, an obesity polygenic score composed of 97 BMI variants was not associated with sleep
duration, daytime napping, or diurnal preference (16). In agreement, other investigations found
no associations between a polygenic score for obesity and diurnal preference (69) or associations
between a polygenic score for diurnal preference and waist circumference (126) and BMI (49, 69).
In another study including 112,586 adults from the UK Biobank, a polygenic score for obesity
composed of 95 BMI single nucleotide polymorphisms (SNPs) was associated with higher daytime
sleepiness but not with insomnia symptoms (68). In children, no associations were evident between
a polygenic score for BMI composed of six leptin-related loci and other common SNPs in obesity
genes, including FTO, TMEM18, and NRXN3, and sleep duration (34, 102). Null associations in
most studies of healthy children and adults suggest that sleep and obesity GWAS variants are
largely distinct.

On the contrary, studies of patient cohorts indicate that polygenic scores for sleep traits may
be associated with clinically determined obesity. In a disease-enriched electronic health record
clinical biobank, polygenic scores for sleep duration and daytime napping were associated with
obesity. Specifically, a polygenic score for sleep duration was associated with 9.7% lower odds for
obesity (24), and a polygenic score for daytime napping was associated with higher odds for obesity,
whereby the top decile of the score was associated with 38% higher odds of obesity compared with
the lowest decile (20).

Furthermore, sensitivity analyses of GWASs of sleep accounting for BMI suggest that sleep
variants are largely independent of adiposity. With a few exceptions, including FTO, GWASs of
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Genes from GWASs of sleep traits that are also implicated in BMI, highlighting genomic loci shared
between sleep and obesity. Genomic loci were retrieved from published GWASs of sleep traits and sleep
disorders (as listed in Table 1) and BMI (from the GIANT consortium meta-analysis of GWASs of BMI in
∼700,000 individuals of European ancestry). Abbreviations: BMI, body mass index; GIANT, Genetic
Investigation of Anthropometric Traits; GWAS, genome-wide association study.

self-reported variables, including sleep duration, diurnal preference, daytime napping, daytime
sleepiness, snoring, insomnia, and accelerometer-based sleep measures, have found largely con-
sistent effect estimates for sleep variants after adjusting for BMI (12, 20, 23, 49, 67, 82, 128) (see
Figure 4). Statistical models further accounting for BMI × BMI or whole-body fat mass resulted
in similar findings (12, 20). In addition, although obesity is a significant risk factor for snoring,
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Figure 3

Association of lead sleep signals across several sleep traits with BMI, suggesting largely null associations
between lead sleep signals and BMI. Lead sleep signals were determined from published GWASs of sleep
traits and sleep disorders (as listed in Table 1). BMI effect estimates were retrieved from published summary
statistics by the GIANT consortium in a meta-analysis of GWASs of BMI in ∼700,000 individuals of
European ancestry. Vertical dashed red line denotes genome-wide significance (P = 5 × 10−8).
Abbreviations: BMI, body mass index; GIANT, Genetic Investigation of Anthropometric Traits; GWAS,
genome-wide association study.
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Genetic effect estimates of lead sleep signals associations with sleep traits without and with BMI adjustment,
suggesting that most GWAS sleep signals are largely independent of BMI. Presented variants were identified
in GWASs of four sleep traits (daytime napping, insomnia symptoms, sleep duration, and daytime
sleepiness). Sleep traits were selected on the basis of published data and effect estimates were retrieved from
published GWASs of sleep traits (as listed in Table 1). Abbreviations: BMI, body mass index; GWAS,
genome-wide association study.
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large genetic correlations (rg > 0.90) were evident in GWAS models with and without BMI ad-
justments, supporting the notion that the genetic architecture of snoring is not explained by BMI
(12). Accounting for BMI in GWASs may unravel additional obesity-independent sleep-related
loci, as has been demonstrated for daytime sleepiness, for which five additional loci were identified
only after accounting for BMI (128).Overall, findings from sensitivity analyses of GWASs of sleep
suggest minimal influence of BMI on GWAS signals identified for sleep traits.

Sleep-Obesity Cross-Trait Genome-Wide Genetic Correlations

Genetic overlaps between traits can also be inferred from genome-wide genetic correlation anal-
yses (140). Genetic correlations provide the advantage of systematically examining cross-trait re-
lationships that may be underexamined or not well defined in epidemiological studies and within
individual cohorts (58). Findings from genetic correlations are often similar to results from phe-
notypic correlations (114).

All sleep traits and sleep disorders, except for sleep timing variables (e.g., diurnal preference),
show some evidence of genome-wide correlations with BMI (e.g., P < 0.05) (see Figure 5).
The largest correlations with BMI were observed for snoring (rg = 0.35) and daytime sleepiness
(rg = 0.17). Negative correlations were observed for accelerometer-derived sleep efficiency
(rg = −0.16) and accelerometer-derived sleep duration (rg = −0.09). Notably, U-shaped positive
correlations with BMI, as well as with waist circumference and waist-to-hip ratio (23), were
observed for both short (rg = 0.12) and long (rg = 0.08) sleep durations. No correlations were
observed between BMI and self-reported diurnal preference or accelerometer-derived measures
of sleep timing, including sleep midpoint, M10 timing, and L5 timing (56). In addition, corre-
lations between daytime napping and daytime sleepiness and BMI were no longer significant
after adjusting for BMI in GWAS models (20, 128). Whereas sleep-BMI correlations in adults
were largely modest, no correlations were evident in children (20, 67, 82, 85). In addition, earlier
findings from smaller GWASs from the UK Biobank were consistent with findings from larger
studies (57, 68), with the exception of previously detected positive correlations between morning
preference and higher BMI (57, 69) that are no longer supported in larger analyses (56).

Genetic correlations of sleep with other adiposity traits, including body fat, waist-to-hip ratio,
and obesity class, were consistent with correlations with BMI. Of all the sleep traits, snoring had
the largest positive correlations with other adiposity traits, including class 2 obesity (rg = 0.38),
class 1 obesity (rg = 0.36), and overweight (rg = 0.35). Accelerometer-derived sleep efficiency had
the largest negative correlations with other adiposity traits, including body fat (rg = −0.21), class
3 obesity (rg = −0.20), and class 1 obesity (rg = −0.18).

Overall, the genetic correlations between sleep and adiposity traits suggest that common ge-
netic vulnerabilities may influence both phenotypes. As polygenic scores do not implicate lead
GWAS signals for both sleep and obesity, genetic correlations may instead be attributed to exten-
sive pleiotropy in SNPs weakly associated with both traits (31). Consistent with these observations
are earlier bivariate genetic analyses of twin pairs indicating little evidence of shared genetics be-
tween sleep duration and BMI (130). Therefore, the moderate genetic correlations detected be-
tween sleep and obesity may be mediated by shared environmental factors rather than by genetic
effects (85).

Causal Links Between Sleep and Obesity Through Mendelian Randomization

Mendelian randomization (MR) analysis provides a robust and cost-efficient approach to demon-
strate temporal relationships and causal pathways between sleep and obesity through genetics (26).
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Cross-trait genetic correlations (rg) between sleep traits and adiposity traits based on genome-wide genetic
data. Most sleep traits (self-report and accelerometer) and sleep disorders, except for sleep timing variables
(e.g., morning preference), show modest evidence of genome-wide correlations with BMI and other
adiposity traits. Correlations with BMI are shown in the forest map; remaining correlations with other
adiposity traits are shown in the heatmap. Red indicates positive genetic correlation and blue indicates
negative genetic correlation in the heatmap. Genetic correlations are limited to data presented in published
genome-wide association studies of sleep traits and sleep disorders (as listed in Table 1). Entries for which
data are missing are left blank. Abbreviation: BMI, body mass index.

MR exploits the fact that genes are randomly assigned from parents to offspring, which are un-
likely to be affected by confounding factors, and that genotypes are fixed at zygote formation and
cannot be changed (26).

Overall, there is some evidence fromMR of causal effects of sleep traits and sleep disorders on
BMI and other adiposity outcomes (Figure 6;Table 2). There exists a causal link between genetic
liability for insomnia and higher BMI and waist-to-hip ratio and between genetic liability for more
frequent daytime napping and higher waist circumference (20). There is some evidence based on
accelerometer data (30, 58), but not self-report (23), that longer sleep duration may cause higher
BMI in adults. In children, MR results suggest potential effects of longer sleep duration on lower
childhood BMI (129). For snoring, two-sample, generalized summary-data-based MR supports a
potential bidirectional causal relationship with BMI, whereby genetic liability for snoring exerts a
causal effect on increased BMI and genetic liability for higher BMI, as well as higher whole-body
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Exposure N SNPs Beta (95% CI) P value

P value

53 0.0393 (–0.055, 0.134) 0.42

38 0.053 (0.0020, 0.10) 0.04

Sleep efficiency (accelerometer) 3 0.13 (–0.11, 0.37) 0.41

Number of sleep episodes (accelerometer) 5 0.19 (0.07, 0.31) 0.04

L5 timing (accelerometer) 3 0.12 (–0.15, 0.38) 0.48

Daytime napping 73 0.211 (0.022, 0.40) 0.03

Morning preference (chronotype) 256 –0.012 (–0.053, 0.030) 0.59

Snoring 10 3.357 (–0.172, 6.885) 0.06

Daytime sleepiness 23 0.199 (–0.332, 0.731) 0.46

Daytime sleepiness (BMI adj.) 27 0.198 (–0.261, 0.656) 0.40

Insomnia 87 0.36 (0.262, 0.458) 1.25 × 10–12

Outcome N SNPs Beta (95% CI)

Sleep duration NR 0.014 (–0.042, 0.071) 0.63

Short sleep duration NR –0.15 (–0.29, –0.009) 0.04

Long sleep duration NR 0.043 (–0.1256, 0.212) 0.62

Sleep duration (accelerometer) 73 –0.09 (–0.15, –0.02) 0.008

Sleep duration variation (accelerometer) 76 0.06 (0.01, 0.1) 0.012

Sleep efficiency (accelerometer) 76 –0.02 (–0.08, 0.04) 0.47

Number of sleep episodes (accelerometer) 70 –0.04 (–0.1, 0.01) 0.15

Sleep midpoint (accelerometer) 76 –0.02 (–0.08, 0.03) 0.38

Diurnal inactivity duration (accelerometer) 74 0.01 (–0.04, 0.07) 0.68

L5 timing (accelerometer) 76 –0.01 (–0.07, 0.05) 0.76

M10 timing (accelerometer) 74 –0.07 (–0.13, –0.02) 0.006

Morning preference (chronotype) 76 0.060 (0.002, 0.118) 0.046

Morning preference (exc. FTO) 75 0.017 (–0.04, 0.07) 0.56

Daytime napping 90 0.027 (0.001, 0.052) 0.04

Daytime sleepiness NR 0.018 (0.008, 0.028) 4.00 × 10–4

Snoring (males) 150 0.010 (0.007, 0.013) 5.27 × 10–10

Snoring (females) 122 0.013 (0.009, 0.017) 7.67 × 10–13

Insomnia 76 0.01 (–0.0096, 0.0296) 0.42
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Figure 6

Bidirectional causal relationships between sleep traits and sleep disorders and BMI using Mendelian randomization. Mendelian
randomization effect estimates are from inverse-variance-weighted models, estimates for insomnia and snoring are from generalized
summary-statistics-based Mendelian randomization analysis, and estimates for accelerometer-derived sleep duration are from the
maximum-likelihood method. Beta is the estimated directional effect of the exposure trait on the outcome trait per unit of exposure (if
continuous) or log odds ratio for case/control traits. Positive beta indicates positive causal effects.N SNPs is the number of single
nucleotide polymorphisms used as an instrumental variable. BMI effect estimates are derived from the meta-analysis by the GIANT
consortium. Data presented are from published genome-wide association studies of sleep traits and sleep disorders (as listed in
Table 1). Abbreviations: BMI, body mass index; CI, confidence interval; GIANT, Genetic Investigation of Anthropometric Traits; NR,
not reported.
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Table 2 Bidirectional causal relationship of sleep traits and sleep disorders with adiposity traits using Mendelian
randomizationa

Exposure Outcome N SNPs Beta (95% CI) P value Reference

Sleep on adiposity

Daytime napping Waist circumference 73 0.282 (0.11, 0.453) 0.001 19

Daytime napping Waist-to-hip ratio (adjusted for
BMI)

75 0.185 (0.038, 0.331) 0.01 19

Insomnia Waist-to-hip ratio 94 0.29 (0.1724, 0.4076) 1.58 × 10−7 53

L5 timing, accelerometer Body fat % 3 −0.24 (−0.59, 0.12) 0.32 58

L5 timing, accelerometer Waist-to-hip ratio (adjusted for
BMI)

3 −0.07 (−0.25, 0.11) 0.53 58

Number of sleep episodes,
accelerometer

Body fat % 5 0.2 (−0.02, 0.42) 0.15 58

Number of sleep episodes,
accelerometer

Waist-to-hip ratio (adjusted for
BMI)

5 0.1 (−0.03, 0.24) 0.21 58

Sleep duration Obesity (clinically determined) NR 0.995 (0.987, 1.003) 0.242 24

Sleep duration, accelerometer Body fat % 38 0.071 (−0.003, 0.145) 0.058 30

Sleep duration, accelerometer Waist-to-hip ratio 38 −0.007 (−0.0776, 0.0636) 0.836 30

Sleep efficiency, accelerometer Body fat % 3 0.1 (−0.26, 0.46) 0.64 58

Snoring (females) Whole-body fat % 10 3.395841 (−2.637, 9.42) 0.27 12

Adiposity on sleep

Waist circumference Daytime napping 46 0.03 (−0.007, 0.067) 0.11 19

Waist-to-hip ratio Insomnia 34 −0.03 (−0.0496, −0.0104) 7.16 × 10−3 53

Waist-to-hip ratio (adjusted for
BMI)

Daytime napping 46 0.03 (0.007, 0.052) 0.01 19

Waist-to-hip ratio (adjusted for
BMI)

L5 timing 53 −0.02 (−0.07, 0.04) 0.55 58

Waist-to-hip ratio (adjusted for
BMI)

M10 timing 53 −0.04 (−0.09, 0.01) 0.17 58

Waist-to-hip ratio (adjusted for
BMI)

Sleep duration 53 −0.14 (-0.19, −0.08) 5.03 × 10−6 58

Waist-to-hip ratio (adjusted for
BMI)

Sleep duration variation 53 0.07 (0.02, 0.12) 0.01 58

Waist-to-hip ratio (adjusted for
BMI)

Sleep midpoint 53 0.01 (−0.04, 0.06) 0.80 58

Waist-to-hip ratio (adjusted for
BMI)

Sleep efficiency 50 −0.12 (−0.18, −0.06) 2.73 × 10−4 58

Waist-to-hip ratio (adjusted for
BMI)

Number of sleep episodes 52 0.02 (−0.04, 0.07) 0.60 58

Waist-to-hip ratio (adjusted for
BMI)

Diurnal inactivity 53 −0.01 (−0.07, 0.06) 0.83 58

Whole-body fat (females) Snoring (males) 140 0.0054 (0.0039, 0.007) 1.28 × 10−11 12

Whole-body fat (males) Snoring (females) 109 0.0054 (0.0035, 0.0074) 2.90 × 10−8 12

aMendelian randomization effect estimates are from inverse-variance-weighted models, estimates for insomnia and snoring are from generalized
summary-statistics-based Mendelian randomization analysis, and estimates for accelerometer-derived sleep duration are from the maximum-likelihood
method. Data included are from published genome-wide association studies of sleep (as listed in Table 1). Adiposity trait effect estimates are derived from
the meta-analysis by the GIANT consortium. Beta is the estimated directional effect of the exposure trait on the outcome trait per unit of exposure (if
continuous) or log odds ratio for case/control traits. Positive beta indicates positive causal effects.N SNPs is the number of SNPs used as an instrumental
variable.
Abbreviations: BMI, body mass index; CI, confidence interval; GIANT, Genetic Investigation of Anthropometric Traits; GSMR, generalized summary
Mendelian randomization; NR, not reported; SNP, single nucleotide polymorphism.
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fat mass, exerts a causal effect on snoring (12). However, only the relationships between BMI and
whole-body fat mass causing snoring retained significance after accounting for multiple testing.
Last, there is no evidence fromMR on causal effects of diurnal preference (56, 57, 69) and daytime
sleepiness (128) on BMI.

Conversely, there is also some evidence from MR of potential causal effects of adiposity traits
on sleep architecture. In addition to snoring (12), genetic liability for higher BMI was causally
associated with increased daytime sleepiness (128), and genetic liability for higher waist-to-hip
ratio (adjusted for BMI) was nominally associated with increased frequency of daytime napping
(20). In addition, genetic liability for higher waist-to-hip ratio (adjusted for BMI) was causally
associated with shorter sleep duration and lower sleep efficiency estimated from accelerometer
data (58).

As findings from genetic correlations are often used to prioritize subsequent MR analyses, not
all combinations of causal links between sleep traits and obesity have been tested so far. Findings
fromMR should be interpreted cautiously, as instruments for sleep traits often explain only <1%
of variance in sleep phenotypes. Also, despite sensitivity analyses, there is always the possibility of
various MR violations, including horizontal pleiotropy (26).

Sleep Disorders and Obesity

Except for insomnia, genetic evidence for the link between sleep disorders and obesity is limited
because there are few large-scale genetic studies of sleep disorders. As described above, there
is evidence of positive genetic correlations and causal effects of insomnia on adiposity. Family-
and twin-based studies provide some insight into the genetic link between OSA and insomnia and
obesity.Obesity is a well-recognized risk factor for OSA (59). For every 10 kg of weight gain,OSA
incidence is estimated to increase sixfold (59). In support of this relationship are findings from
linkage analyses of European Americans adults from the Cleveland Family Study implicating loci
at 6q23-25 and 10q24-25 in both apnea–hypopnea index and BMI (70). The two loci identified for
OSA-related traits in GWASs retained significance after BMI adjustment, suggesting that their
influence on OSA risk is independent of obesity (10). Other genes are also expected to be shared
between OSA and obesity. Indeed, all BMI-increasing alleles are partly considered potential risk
factors for OSA (100). So far, no genetic evidence supports the link between RLS or narcolepsy
and obesity.

GENE-SLEEP INTERACTION STUDIES OF OBESITY

The Role of Gene–Environment Interactions in Precision Medicine

Susceptibility to chronic diseases, including obesity, is often determined by the interplay between
genetic and environmental risk factors (41). Emerging evidence from gene–environment inter-
actions suggests that genetic predispositions to heritable chronic diseases are not entirely deter-
ministic of disease onset and instead may be modified, either attenuated or accentuated, by envi-
ronmental exposure (41). For example, adhering to a favorable lifestyle may attenuate genetic risk
conferred by variants robustly associated with heart disease (61). Gene–environment interactions
also contribute to varying biological responses to environmental exposures based on genetics (8).

Strong indication of the presence of gene–environment interactions for obesity comes from
the observation that the magnitude of the association between genetic risk for obesity and obesity
is stronger in more recent years, in the presence of a more obesogenic environment, than in earlier
years (127). Considering metabolic alterations driven by sleep restriction (15), it is possible that
unfavorable sleep may increase genetic influences on obesity, and conversely, it is also possible
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Simulated associations between genetic risk for obesity and BMI outcome in individuals with unfavorable
sleep (red bars) and individuals with favorable sleep (blue bars) in the presence of gene–environment
interactions (e.g., obesity genetics × sleep behavior). The interaction indicates that favorable sleep may
suppress genetic influences of obesity on BMI, whereas unfavorable sleep may exacerbate genetic influences
of obesity on BMI. Favorable sleep may encompass measures of sleep quantity, quality, and timing.
Abbreviation: BMI, body mass index.

that favorable sleep may suppress genetic influences on obesity (see Figure 7). Disentangling the
precise interplay between genetic risk for obesity and sleep parameters may then be leveraged to
emphasize the critical role of sleep, particularly among the most genetically vulnerable (41).

Studies of Gene-Sleep Interaction in Adults

Initial investigations of gene-sleep interactions focused primarily on individual core clock genes
and other circadian-related loci implicated in both sleep and obesity (119). For example, in a large
meta-analysis by the CHARGE consortium, nominal evidence of gene-sleep interaction between
MTNR1B-rs1387153 and sleep duration was observed for BMI (22). The interaction suggested
that, only in the presence of the diabetes-associated T allele, short (<7 h) and long (≥9 h) sleep
durations were associated with a higher BMI of 0.25 kg/m2 and 0.60 kg/m2, respectively, compared
with normal sleep duration. In a study of obese adults, a significant interaction between CLOCK-
rs1801260 and chronotype was identified for body weight, indicating that, among carriers of the
C allele (an allele associated with less robust circadian rhythms), having an evening preference was
associated with higher body weight compared with having a morning preference (107).

Gene–environment interaction studies have also considered interactions of sleep with poly-
genic scores for obesity. In an analysis of 119,859 adults of European ancestry from the UK
Biobank, self-reported sleep traits, including short sleep duration (<7 h), long sleep duration
(>9 h), daytime napping, and evening chronotype, accentuated the effect of the polygenic score
for obesity [composed of 93 SNPs identified from GWASs of BMI (75)] on BMI and waist cir-
cumference (16). Specifically, among individuals in the highest quartile for the polygenic score
for obesity, being a short sleeper was associated with a higher BMI of 0.6 kg/m2 and being a long
sleeper was associated with a higher BMI of 1.1 kg/m2 compared with BMI values of those with
normal sleep duration. In contrast, in the lowest genetic quartile, short and long sleep durations
were associated with a higher BMI of only ∼0.2 kg/m2 compared with normal sleep duration.
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Building on these investigations is a systematic, hypothesis-free gene–environment interaction
study examining a polygenic score for obesity composed of 94 BMI-associated variants and 131
lifestyle factors, examined separately, in 362,496 adults of European ancestry from theUKBiobank
(103). In total, 15 lifestyle traits interacted with the polygenic score for BMI. Of the examined
sleep traits, only daytime napping, but not sleep duration, getting up in the morning, chronotype,
or daytime dozing, was implicated. For daytime napping, stronger genetic effects of BMI were
evident in the group that reported taking a nap during the day compared with the group that did
not take a nap.Furthermore, among the 94 BMI-associated variants that were examined separately,
FLJ30838-rs1016287 interacted with daytime napping. Reproducibility of these effects of gene-
sleep interactions on BMI from the UK Biobank in independent cohorts and validation using
objective assessments of sleep are necessary to confirm these findings.

Lifestyle factors, including sleep traits themselves, are highly correlated, and it is possible that
interactions with one factor might not be specific to the tested trait but rather to a marker of an
overall obesogenic lifestyle (123). In recognizing that environmental risk factors are highly corre-
lated, Young et al. (139) used joint modeling to examine simultaneously the interactions between
the obesity-associated FTO variant and lifestyle factors (e.g., sleep duration, alcohol consumption,
smoking status). The observed interaction with sleep duration suggested a 0.13% greater effect
of the obesity variant with each standard deviation from the mean sleep duration per FTO risk
allele. No interaction was evident with sleep duration modeled continuously. The enhanced effect
of FTO on BMI as a result of deviating from mean sleep duration is likely not confounded by
other correlated lifestyle traits, such as smoking or TV watching, because of the joint modeling
approach.

Gene–environment interaction studies examining sleep parameters besides duration, such as
chronotype and insomnia, and cardiometabolic outcomes other than obesity, such as glucose levels,
remain few and largely null (21, 25, 48, 96, 120).

Studies of Gene-Sleep Interaction in Children

The effects of gene-sleep interaction on obesity in children have been examined to devise strate-
gies to target obesity in early life. In a cohort of Chinese children, a polygenic score composed of
six leptin-related loci showed interaction with sleep duration, whereby the score was associated
with a higher BMI of 0.72 kg/m2 in participants reporting ≤7 h of sleep per night compared with
other durations (34). Similarly, a polygenic score composed of common obesity variants in FTO,
TMEM18, andNRXN3 had a greater negative association with body weight among short sleepers
(102). Specifically, in genetically susceptible children, a self-reported 2-h-shorter sleep per night
was associated with a BMI higher than 1 standard deviation and an 8-cm-higher waist circum-
ference. In another cohort of children in New Zealand, among 30 tested circadian-related genes,
nominal interactions with actigraphic sleep duration were evident between CLOCK-rs4864548,
PEMT-rs936108, andGHRELIN-rs696217 and BMI (65). In adolescents, no interactions between
self-reported sleep duration and FTO-rs9939609 for obesity were observed (54).

Uncovering Missing Heritability of Obesity with Gene-Sleep
Interaction Studies

Studying gene–environment interactions can also unravel missing heritability of obesity that is
not currently explained by common variants from GWASs (80). The influence of sleep on BMI
heritability is suggested in a classical study of twins in the United States. In a cohort of 1,088 adult
twin pairs, the heritability of BMI was more than twice as large when sleep duration was <7 h
(h2 = 70%) compared with when sleep duration was ≥9 h (h2 = 32%) (131). This observation
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suggests that the proportion of variance in BMI explained by genetics may be modified by
sleep duration and that accounting for sleep duration may reveal novel genetic contributors to
BMI. Genome-wide interaction analysis accounting for the effect of sleep on obesity has not yet
been conducted; however, a comparable study of blood lipid outcomes (93) suggests promising
results. The genome-wide gene–sleep duration interaction study by the CHARGE consortium
tested whether short and long sleep durations modify the effects of genetic loci associations on
blood lipids (93). By systematically accounting for potential gene-sleep interactions, researchers
identified 49 loci previously unreported in relation to lipid traits, including 3 BMI loci, FHIT,
MAGI2, and KLH3, and 3 sleep-related loci,MAGI2, TMEM132B, and EPHB1.

Current Limitations of and Future Considerations for Gene-Sleep
Interaction Studies

There are some important limitations regarding published gene-sleep interaction studies.Genetic
interactions with sleep have focused primarily on obesity- and circadian-related genes, but inter-
actions for other variants and at the epigenetic level may also exist (15). In addition, whereas poly-
genic scores for obesity explain large variance in BMI compared with individual genetic variants,
aggregating variants into a score assumes that the interaction effect of the BMI-increasing alleles
is consistently in the same direction, which may not be the case (103). Thus, it is prudent to also
test variants separately in sensitivity analyses. Sleep duration remains the most commonly tested
sleep parameter in gene-sleep interaction studies, but findings for duration must be cautiously in-
terpreted, as they may be related to another correlated sleep trait or to a proxy of an overall obe-
sogenic environment (123). In addition to inadequate sleep, an obesogenic environment is further
characterized by poor nutrition, sedentary behavior, and smoking. Examining these behaviors in
aggregate is possible with a composite environmental score, as has been previously conducted (61).
Large biobanks, such as the UK Biobank, provide access to individual-level data, which enables
multiple environmental exposures to be considered (139). The joint and standardized assessment
of lifestyle and genetics in hundreds of thousands of participants from these biobanks also limits
heterogeneity that may occur when aggregating data from smaller heterogeneous studies. Due
to the cross-sectional nature of most gene–environment interaction studies, causality cannot be
inferred and change in obesity in response to modified sleep behavior cannot be implied (76).
Replicable evidence for gene–environment interactions, as has been shown for physical activity
and sugar-sweetened beverages, remains missing for sleep (46). Thus, continued evaluation of
population-based biobanks and other data sources, including electronic health records as well as
randomized clinical trials, is necessary.

Nonetheless, the importance of studying gene–environment interactions is well recognized
(46). Gene–environment interactions exist for obesity, and identifying them can potentially im-
prove risk assessment for obesity and opportunities for personalized health interventions. There
exists ample evidence from studies of children and adults that suggests the particular importance
of achieving favorable sleep in individuals genetically predisposed to obesity. Whether targeting
sleep alone in personalized medicine will yield a sizeable and clinically meaningful improvement
in weight remains unknown.More importantly, sleep should instead be considered in assessments
of obesogenic behaviors in gene–environment interactions. Moreover, because genetics have a
lifelong cumulative effect, public health strategies that promote a healthy lifestyle, including fa-
vorable sleep, should be pursued irrespective of age and presence of comorbidity (17). Assessment
of interactions in children and adolescents is also pertinent to determine whether inadequate sleep
in early life may have a long-term adverse impact on genetically susceptible individuals (34). In
addition, continued evaluation of gene–environment interactions may further define mechanistic
pathways linking sleep to obesity (50).
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FUTURE DIRECTIONS

A series of important methodological and conceptual considerations, some of which are also rel-
evant for nongenetic sleep studies (36), should be taken into account to further our knowledge of
the precise link between sleep and obesity through genetics.

Multidimensional Sleep Phenotyping

Despite the multidimensional nature of sleep, self-reported habitual sleep duration remains the
most commonly surveyed and investigated sleep variable in genetic studies—in both GWASs and
gene–environment interaction analyses. Sleep duration can easily be obtained through a single-
question survey and is relatively easy to harmonize and standardize across large cohorts. Consid-
ering alternative assessments such as bed and wake times allows further investigation of important
yet often unexamined sleep variables such as timing and weekly variability (19). As with most self-
reported data, responses to questions about sleep are susceptible to reporting and recall biases and
prone to imprecision due to rounding (e.g., 8 h instead of 8.2 h) (51, 52). Therefore, consideration
of objective measures of sleep such as actigraphy or polysomnography is necessary to limit bias
and capture multiple sleep dimensions, including quality.

Wearable technology, including research-grade accelerometers and actigraphy, continues to
be a viable option for precise and long-term sleep phenotyping (58). As self-report measures only
moderately correlate with objective sleep measures (132), objectively derived sleep measures may
exhibit unique links to adiposity (23). Accelerometer data are available from only one-fifth of the
UKBiobank likely due to increased participant burden. Accelerometer-derived sleep measures are
also subject to various inaccuracies. For example, sleep duration may be overestimated in patients
with insomnia with extended sedentary time in bed (19). Although polysomnography continues
to be regarded as the gold standard for quantifying sleep, it remains impractical to conduct on a
large scale, particularly for robust GWASs.

In addition, sleep phenotyping is often limited to a single assessment. Repeated measures are
necessary to determine the duration of exposure and stability of sleep over time, especially in
relation to obesity trajectory. Thus, future work using a composite, multidimensional sleep score
via self-report or objective measures of sleep may reconcile discrepancies in findings regarding
the link between sleep and obesity.

Unraveling Subtypes of Sleep Architecture and Heterogeneity
in Sleep Disorders

Novel clustering analyses have indicated mechanistic subtypes and biological heterogeneity con-
tributing to sleep phenotypes. For example, clustering of the 42 loci identified for daytime sleepi-
ness revealed two subtypes for daytime sleepiness: one for sleep propensity and the other for sleep
fragmentation (128). It is possible that these subtypes may have distinct clinical phenotypes and
vary in their association with obesity. Indeed, for daytime napping, only two of the three identified
genetic clusters (disrupted sleep and early sleep timing but not sleep propensity) were associated
with higher adiposity (20). Heterogeneity is also detected in common diseases such as type 2 dia-
betes (124). Thus, examining genetic heterogeneity for sleep disorders such as OSA may indicate
subtype-specific associations with obesity.

Acute versus Chronic Effects of Sleep on Obesity

The described genetic link between sleep and obesity from GWASs is largely related to chronic
and long-term changes in sleep, such as long-term preference for daytime napping. These chronic
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effects may not apply to acute changes in sleep. Indeed, human experimental studies have shown
that short-term alterations in sleep, such as 5 nights of sleep restriction and deprivation, incur
changes in appetite hormones and food consumption, which may subsequently alter weight regu-
lation (63). Acute changes in sleep also contribute to changes in epigenetics and expression profiles
of circadian clock genes (113) and other metabolic pathways (134) across multiple tissues (15).The
genetics of metabolite signatures of sleep restriction—small molecules that fluctuate with acute
changes in sleep patterns—may be leveraged to provide insight into how acute changes in sleep
may affect adiposity in the short term (73).

Advancing Toward Precision Medicine

Precisionmedicine aims to prevent, treat, andmanage diseases, including obesity, through targeted
therapies by recognizing fundamental differences among individuals (3). The premise of precision
medicine is that there is no one-size-fits-all for sleep needs and that sleep recommendations cannot
be applied broadly to the entire population.

With the exception of a handful of recent studies (48, 92), most genetic studies of sleep have
been conducted primarily on older adults of European ancestry. Large-scale genome-wide efforts
in diverse populations are necessary to advance genetic discoveries and reduce health disparities
(135). First, sleep architecture and sleep needs vary across populations, races, and ethnicities, and
therefore genetic contribution may vary accordingly (19). For example, the average sleep duration
in the Taiwan Biobank, a cohort of Chinese adults, of 6.6 h is almost 0.5 h longer than the aver-
age sleep duration in cohorts of European ancestry, such as in the UK Biobank (23, 48). Second,
minority populations are disproportionately burdened by sleep disturbance and obesity, and thus
a Eurocentric approach to genetics research may exacerbate health inequality (83). Last, effect
sizes of sleep- and adiposity-related loci may be ancestry specific due to varying genetic frequen-
cies and differences in linkage. Emphasizing diverse ancestries may contribute to key insights into
heterogeneous, ancestry-specific sleep-obesity links.

Sleep patterns, needs, and recommendations change with age and health status; thus, the re-
lationship between sleep and obesity may evolve over the life course. Whereas both FTO and a
polygenic score for obesity derived from a GWAS of adults conferred higher risk for obesity in
childhood (33, 60),most sleep variants fromGWASs appear to be age specific. Indeed, data suggest
distinct genetic architectures for sleep in children and adults, as evidenced by null correlations in
the genetics of sleep duration between children and adults and by the smaller effect estimates of
sleep duration variants from an adult GWAS in children and adolescents (23, 82). Most genetic
findings for sleep are from analyses of participants from the UK Biobank, a population biased
toward participants of higher socioeconomic status and with lower BMI. Alternative data sources,
including electronic health record clinical biobanks, should be considered in order to further in-
vestigate the role of sleep in adiposity in patient populations (19).Reexamining the relationship be-
tween sleep and obesity across the life course may elucidate age- and health-specific variants (72).

Diversifying efforts in terms of ancestry and age, which is crucial to delineate personalized
approaches to obesity prevention and treatment, may be possible with the All of Us Research Pro-
gram (https://allofus.nih.gov/about) (3). The large and long-term initiative from the National
Institutes of Health is a historic effort to collect and study data from one million or more people
living in the United States. The program began enrollment in 2018 and is expected to last at least
10 years. Such a study design will allow a more definitive understanding of sleep loci across diverse
populations.

The link between sleep and obesity may also be sex specific. Sex effects are likely because
of marked sex differences in (a) sleep traits and sleep disorders, including snoring and OSA;
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(b) adipocyte gene expression profiles and fat distribution driven partly by sex hormones; and
(c) dimorphism in expression of clock genes (38). Some GWASs have systematically investigated
the effects of biological sex on sleep and obesity genetics. In summary, 2 loci for both snoring
(12) and daytime sleepiness (128), 1 locus for daytime napping (20), and 13 loci for insomnia (67)
showed differential associations between men and women.Genetic correlations between men and
women for insomnia symptoms ranged from 0.81 to 0.92, further supporting the hypothesis that
associations between insomnia symptoms and adiposity differ between sexes. On the contrary,
little evidence for sexual dimorphism in sleep duration and BMI was observed (75). Genetic cor-
relation between men and women for sleep duration was 0.99 (30, 53, 67). Also, X-chromosomal
analyses have not been systematically considered in GWASs. Continued evaluation of sex-specific
genetic predictors of sleep is necessary to determine distinct genetic predictors of sleep for men
and women (129).

Other considerations are necessary to advance toward precision medicine. Refining the genetic
determinants of sleep and obesity through recent advances in genomics, including whole-genome
sequencing, consideration of rare and structural variation, and functional analyses is imperative
to clarify causal variants, particularly those from findings mapped to large genomic regions with
many genes. Continued evaluation of the genetic interplay governing both sleep and metabolism
can also unravel molecular targets that can effectively regulate both sleep and metabolism (4).
Thus, the incorporation of multi-omics measures, including metabolomics, will be of great value
to further establish the relationship between sleep and obesity.

CONCLUSIONS

Epidemiological studies suggest associations between sleep and obesity; however, they are often
limited in scope and may be prone to various biases and confounding. Recent advancements in
elucidating the genetic architecture of sleep traits and sleep disorders and obesity further our
knowledge regarding their relationships. All sleep traits and sleep disorders are heritable, and
their distinct genetic underpinnings have been unraveled in recent large-scale GWASs, primarily
from studies of adults of European ancestry from the UK Biobank.

Despite the considerable involvement of the circadian clock in sleep and metabolism, few
shared genes, including FTO, were implicated in GWASs of sleep and obesity. Furthermore, poly-
genic scores composed of signals from GWASs of sleep traits show null associations with obesity.
Overall, signals for sleep are distinct and independent of BMI. The modest genome-wide genetic
correlations between sleep and obesity may be attributed to extensive pleiotropy in SNPs weakly
associated with both traits rather than to GWAS signals. Findings fromMR suggest robust causal
effects of insomnia on higher BMI and conversely of higher BMI on snoring and daytime sleepi-
ness. In addition, bidirectional effects between sleep duration and daytime napping with obesity
may also exist.Genetic evidence suggests that the association of sleep with obesity may be stronger
in children and in adult clinical populations, and further studies are warranted. Thorough inves-
tigations of the genetic link between sleep disorders and obesity are limited by the number of
identified loci and public availability of summary statistics for OSA, RLS, and narcolepsy. Gene-
sleep interaction studies suggest that achieving favorable sleep, as part of a healthy lifestyle, may
attenuate genetic predisposition to obesity.Whether favorable sleep will yield clinically meaning-
ful improvements in BMI among those at high genetic risk for obesity remains to be elucidated in
longitudinal studies. Furthermore, interaction analyses suggest that accounting for sleep in future
BMI genetic analyses, and vice versa, may unravel novel loci and explain missing heritability. Ge-
netic studies of sleep are disproportionately conducted on adults of European ancestry, and future
studies must consider other ancestries, sex-specific analyses, and age groups across the life span. In
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addition, future genetic studies should consider objectively derived multidimensional sleep phe-
notyping, incorporation of sleep quality measures, and genetic estimates of acute alterations in
sleep.
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