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Abstract

Evidence for the importance of zinc for all immune cells and for mounting
an efficient and balanced immune response to various environmental stres-
sors has been accumulating in recent years. This article describes the role of
zinc in fundamental biological processes and summarizes our current knowl-
edge of zinc’s effect on hematopoiesis, including differentiation into immune
cell subtypes. In addition, the important role of zinc during activation and
function of immune cells is detailed and associated with the specific immune
responses to bacteria, parasites, and viruses. The association of zinc with au-
toimmune reactions and cancers as diseases with increased or decreased im-
mune responses is also discussed. This article provides a broad overview of
the manifold roles that zinc, or its deficiency, plays in physiology and during
various diseases. Consequently, we discuss why zinc supplementation should
be considered, especially for people at risk of deficiency.
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1. INTRODUCTION

Zinc plays key structural and catalytic roles in more than 300 enzymes and transcription factors
(261). It impacts virtually all cells of the body and is indispensable for the development and
function of especially the immune system (81, 261). Chronic zinc deficiency results in a number
of symptoms, including growth retardation, thymic atrophy, and disturbed immune response,
resulting in higher susceptibility to infections as well as decreased wound healing and regenera-
tion from tissue injury. Most of those symptoms are explained by zinc’s impact on proliferation,
differentiation, apoptosis, gene transcription, and signaling, including the regulation of mitogenic
signaling pathways (19, 75, 123, 133, 197). Clear clinical symptoms are observed in severely
zinc-deficient humans and animals. However, mild zinc deficiency in the elderly and during
obesity was associated with disturbances in hematopoiesis; with low-grade but constantly elevated
inflammatory and oxidative stress markers; and consequently with an inefficient immune response
against bacterial, viral, and fungal infections. Such unphysiological responses are easily overcome
by zinc supplementation (116, 264).
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1.1. Zinc Homeostasis

After being absorbed in the gastrointestinal tract, zinc is transported to the tissues via the
bloodstream. Within cells, zinc is further redistributed between organelles (118). Intra- and ex-
tracellularly, zinc is largely bound to zinc binding proteins such as albumin or α2 macroglobulin
(in the serum) and metallothionein (MT) or calprotectin (in the cytoplasm). Since the effects of
altered intracellular zinc concentrations largely depend on the magnitude and the duration of
extracellular zinc supply, zinc homeostasis needs to be tightly regulated to prevent adverse effects.
So far, 24 zinc transporting proteins have been identified in humans. One subgroup of these
proteins includes 14 so-called Zrt-like and Irt-like proteins (Zips), also known as solute carrier
family 39 (SLC39) proteins, SLC39A1–14, that increase cytoplasmic zinc by importing zinc from
the extracellular space or from intracellular organelles [including the endoplasmic reticulum
(ER), the Golgi apparatus, and vesicles]. The other subgroup consists of 10 zinc transporters,
SLC30A1–10, that decrease cytosolic zinc levels (33, 118). Disturbance of even 1 of those 24
transport proteins may result in disease. In case of functional loss of Zip4, the most important
zinc importer in the intestine, severe zinc deficiency, known as acrodermatitis enteropathica,
occurs; this state can be lethal if not treated (118, 261). Some zinc transporting proteins transport
other metal ions. Zip14, for example, may transport zinc as well as iron, manganese, and perhaps
cadmium (18). Furthermore, transporters known to transport calcium were recently found to
conduct zinc and may be involved in the generation of a zinc wave (245). Export of zinc from the
cytoplasm via secretory vesicles was described as well (99).

Of the intracellular zinc binding proteins, MT-1 through MT-4 appear to be the most impor-
tant. MT-1 can bind up to seven zinc ions, which can be released and subsequently alter cellular
activity and metabolism. The expression of MT-1 is sensitive to intracellular zinc conditions (168,
169, 261). Zinc can be excreted from the body through both the pancreas and the small intestine.
The fecal excretion of zinc is sensitive to zinc status, while additional zinc is lost via urine, semen,
and sweat (59, 135).

Zinc is transferred to the tissues during the acute phase response (APR) and other inflamma-
tory reactions, resulting in transient serum hypozincemia, which normalizes during the resolution
of inflammation (156, 259).Whether the described transfer provides zinc to the tissues to prevent
apoptosis, to support their recovery from injury, or both is debated.Transient serum hypozincemia
may be a systemic danger signal that is essential for the activation of immune cells, but this possi-
bility remains to be proven (259, 261). Zinc deficiency can be genetically acquired or occurs due
to malnutrition, pregnancy, lactation, aging, or a vegetarian or vegan lifestyle (116, 242, 261, 264).
Furthermore, during various inflammatory, autoimmune, and cancerous diseases, zinc deficiency
was observed (81, 263). The World Health Organization (WHO) estimates that approximately
one-third of the world population is affected by zinc deficiency (270). Due to the lack of a reliable
biomarker to assess zinc status and to uncover mild zinc deficiencies, this percentage may be even
higher (98, 242).

1.2. Lack of a Valid Biomarker for an Individual’s Zinc Status

Our knowledge of themultiple roles that zinc plays in human health and disease has increased dur-
ing recent years.With new and more sensitive tools for analyzing a cell’s function and metabolism
as well as for measuring zinc concentrations in various fluids and intracellular zinc, the molecular
mechanisms underlying zinc’s effects are becoming clearer. Despite all those improvements and
developments, we are still not able to reliably assess the zinc status of an individual, since we still
lack a valid biomarker (162, 223). Current studies largely rely on measuring serum or plasma zinc
levels. A clear indication of zinc deficiency is a drop in serum levels to less than 642.5 μg/L (96).

www.annualreviews.org • Zinc’s Importance in Immune Responses 135



However, since serum zinc levels are affected by recent food intake as well as by the degree of
hydration/dehydration of an individual, those numbers only estimate current zinc status. More-
over, circadian variations of serum zinc levels were observed, and certain drugs and hormones
may also affect serum zinc levels. Another problem when determining zinc status is that serum
and plasma zinc levels require adjustment for inflammation (if present), since zinc is transferred
from serum to tissue during the APR (18, 151, 175). Thus, disturbances in zinc-dependent im-
munological processes may become apparent, even though serum zinc levels appear to be normal.
Early symptoms of especially mild deficiencies in zinc are quite general and can easily be attributed
to various diseases.Consequently, zinc deficiency is hard to diagnose and can be hidden.Currently,
zinc-specific questionnaires in combination with serum zinc levels appear to estimate an individ-
ual’s zinc status well (242). Height-to-age ratio was suggested as an additional parameter in the
assessment of the zinc status of growing infants and children younger than 5 years (122). Alter-
natively, assessing MT expression or free intracellular zinc levels of circulating leukocytes was
suggested (98, 101), but research is ongoing.

The recommended daily allowance for zinc is 11 mg for men and 8 mg for women (WHO)
(263). A summary of the zinc content of various foods and factors that alter zinc’s bioavailabil-
ity can be found elsewhere (165, 233). Zinc uptake is, for example, negatively affected by fiber
components, substances formed during (deep) frying, phytic acid, and polyphenols; polyphenols
are found in tea leaves and coffee beans (233). All these factors should be considered when one is
addressing zinc deficiency.

1.3. Zinc Supplementation in Humans and Cell Culture Experiments

As indicated above, the global prevalence of zinc deficiency is high. Thus, zinc supplementation
can generally be recommended, especially for individuals at risk of zinc deficiency. Mild zinc
deficiency is hard to diagnose. However, long-term daily zinc intake via supplements meeting
the recommended daily allowance (8–15 mg/day, depending on the country and organization)
and not exceeding 20 mg/day can be regarded as safe (89). In clinical supplementation studies,
the chosen doses are often higher but are usually used for a limited time, and in most cases in-
dividuals with mild to severe zinc deficiency are treated. The upper limits for daily intake are
25mg (European Food Safety Authority) and 40mg (WHO) (263).Thus, supplementing between
20 and 40 mg/day can be regarded as high dose supplementation. Some studies use zinc supple-
ments exceeding 40mg/day,which can be regarded as very high dose supplementation, also known
as pharmacological doses (225).High doses should be recommended only if clear symptoms of zinc
deficiency are observed (72).

Before starting clinical studies, the effects of zinc supplementation are regularly investigated
using cell cultures. In this regard, physiological conditions are difficult to define. Although we
know that the physiological concentration of zinc in plasma is between approximately 10 and
18 μM, modeling plasma conditions in cell cultures is complex, as recently discussed in detail
(90). In medium, zinc is, for example, largely buffered by fetal calf serum (FCS) since serum
contains various zinc binding factors such as albumin. Hence, the concentration of free, available
zinc is reduced. Moreover, the binding of zinc by protein depends on the zinc compound (190).
Empirical data suggest that, in mediumwith 10% FCS, the addition of 30μMzinc sulfate induced
effects similar to those observed when physiological concentrations of zinc were supplemented in
humans. Adding concentrations of up to 50 μM of zinc to cell cultures can be regarded as high,
and adding concentrations exceeding 50 μM are very high. The latter may result in the induction
of apoptosis or necrosis in the cultured cells (247). Thus, vitality tests are required to test the
effects of a certain zinc compound and concentration.
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1.4. Consequences of Excess Zinc Exposure

Although zinc is a nutritional supplement with little to no side effects, it is no exception from the
rule that “the dose makes the poison.” Intoxication with zinc is rare but has sometimes been re-
ported. Zinc uses for which concentrations above the recommended values were reported include
galvanization (to prevent metals from rusting), die casting, cosmetics, and dental adhesives (72).

To prevent high intake of zinc, for example, from metal fumes, legal limits have been defined.
The Occupational Safety and Health Administration enforces a limit of 1 mg/m3 of zinc chloride
fumes and 5 mg/m3 of zinc oxide fumes in workspace air over an 8-h workday. The National
Institute for Occupational Safety and Health limits zinc chloride in workspace air to 1 mg/m3 as
well, but over a 10-h workday (3). The upper recommended limit for zinc in drinking water is
5 mg/L, as recommended by the US Environmental Protection Agency (188).

Individuals exposed to high zinc concentrations, such as mine workers, show symptoms of the
gastrointestinal tract (such as nausea, vomiting, and stomach cramps) and pancreatic complica-
tions. Additionally, anemia, fatigue, decreased high-density lipoprotein cholesterol, neutropenia,
and impaired immune functions were reported, while carcinogenic effects of excessive intake are
not likely (39, 72, 195). However, chronic zinc toxicity is rarely achieved in vivo since excessive
zinc can be excreted (135).

Since zinc and copper share some transport mechanisms, zinc intoxications can result in copper
deficiency.High zinc doses are therefore actually used to treatWilson’s disease, a genetically based
disease in which patients suffer from elevated copper levels in blood and tissues (4).

2. BIOLOGICAL FUNCTIONS OF ZINC

The immune system is the most highly proliferating cellular system of the human body, and es-
pecially for the adaptive immune response, directed proliferation and apoptosis are key features.
In this section, we briefly discuss zinc’s role in proliferation, apoptosis, and intracellular signaling,
which are central to regulation of the immune response.

2.1. Zinc Coordination Within Protein Structures

Approximately 10% of the entire proteome in eukaryotes belong to the zinc proteome (130). This
percentage is exceeded only by calcium and magnesium. Zinc binding motifs are found within
proteins as well as in intermolecular binding sites. Generally, 90% of the zinc proteome can be
classified into two major groups: enzymes and transcription factors. The widespread dependency
of proteins on zinc underlines zinc’s importance for cellular functions (261). The function of pro-
teins depends on their structure as well as their state of charge, and zinc can affect both factors,
even at very low concentrations. Four types of zinc binding sites can be distinguished: structural,
catalytic/cocatalytic, regulatory, and protein interface sites (16) (Figure 1a). While the first three
types were identified in the 1990s, the last variant was discovered in the early 2000s (15). The
binding sites differ in their amino acid ligands. Most frequently, zinc is bound to histidine (His),
glutamate (Glu), aspartate (Asp), and cysteine (Cys) (17).

Structural sites (Figure 1a,i) consist of four amino acids, with Cys being the most frequent one
(147).However, combinations of Cys withHis,Glu, or Asp are possible. In this type of binding site,
zinc is required to maintain the structure of the protein as well as quaternary structures of protein
complexes. In zinc finger proteins, such as DNA/RNA binding proteins, zinc is required for the
interaction of amino acids with nucleotides. Within the polypeptide sequence, zinc coordinates
to a combination of Cys thiol and His imidazole residues, resulting in the classical zinc finger
structure composed of an α-helix and an antiparallel β-sheet with a stoichiometry of one zinc
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Functions of zinc in protein structure, redox balance, and the cell cycle. (a) Zinc binding motifs differ with regard to their function.
(i) In structural sites, zinc is bound to four AA ligands. These AAs are mostly cysteine, glutamate, aspartate, and histidine. (ii) In
catalytic sites, zinc binds to three AA ligands and either a water molecule (H2O) or (not shown) a hydroxyl ion (OH−). During catalysis,
the substrate binds to zinc and is converted to a product. Depending on the enzyme, H2O/OH− is released or stays attached to zinc.
(iii) In regulatory sites, zinc is reversibly bound to two AA ligands and impacts protein structure. (b) Zinc regulates the redox balance of
cells. The major pathways of oxidative stress are regulated by zinc (indicated by red blunted arrows). Zinc inhibits the formation of
ROS and blocks the NF-κB signaling pathway on different levels. Furthermore, zinc can induce MT expression via MTF-1, and MT
can neutralize ROS. (c) Zinc’s impacts on the cell cycle. Two checkpoints, namely the progression from G1 to S phase and the transition
from S to G2 phase, depend on zinc. The effects of zinc on the different steps of the cell cycle are shown with green arrows (where zinc
is required) and a red blunted arrow (where zinc inhibits function). For the various cyclins, the impact of zinc deficiency on cyclin
expression is indicated by small red arrows, and the impact of zinc supplementation is depicted with small green arrows. For panels b
and c, black arrows indicate zinc-independent enhancing effects, and black blunted arrows denote zinc-independent inhibitory effects.
Abbreviations: A20, tumor necrosis factor alpha–induced protein 3; AA, amino acid; G1/G2 phase, gap 1/2 phase; IKK, IκB kinase; M,
mitosis; MT, metallothionein; MTF-1, metal-responsive transcription factor 1; NF-κB, nuclear factor kappa light-chain enhancer of
activated B cells; NIK, NF-κB-inducing kinase; oxLDL, oxidized low-density glycoprotein; PPARα, peroxisome proliferator–activated
receptor α; ROS, reactive oxygen species; S phase, synthesis phase.
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ion per protein. This zinc finger structure can bind to DNA and RNA targets and is found in,
for example, transcription factors (138). Recently, other zinc domains have been described on the
basis of the stoichiometry of zinc-to-protein binding: the so-called LIM domain (two zinc ions per
protein), the zinc hook (one zinc ion per two proteins), and the zinc clasp (one zinc ion per three
proteins) (131). Collectively, zinc is an indispensable part of protein structures and is essential
for protein-protein or protein–amino acid interactions. Thus, zinc is involved in the regulation
of fundamental cellular processes and is indispensable for the development and functions of all
immune cells.

2.2. Zinc as a Cofactor in Enzymatic Functions

Many of the more than 300 enzymes that require zinc for their catalytic actions are involved in
metabolic processes such as protein and nucleic acid synthesis as well as lipid and carbohydrate
metabolism (130). Zinc’s properties explain its presence at catalytic sites: As a Lewis acid (i.e., an
electron-pair acceptor) and due to having amphoteric character, zinc can participate in enzymatic
redox reactions, even though it is redox stable and therefore a reliable partner. Interestingly, zinc
is the only metal found to be a cofactor of enzymes from all six enzyme classes: oxidoreductases,
transferases, hydrolases, lyases, isomerases, and ligases (249). The function of all zinc enzymes
is based on the binding of zinc, and even in cases of zinc deficiency, most protein-bound zinc
is retained in the catalytic site. If intracellular zinc levels would fall below a certain threshold,
zinc could be removed from its structural protein binding sites or catalytic sites. However, the cell
would already be programmed for apoptosis in those highly zinc-deficient conditions.

Three-dimensional modeling of proteins has helped to identify a high, still-increasing num-
ber of zinc-containing enzymes. The structure of zinc-containing catalytic sites consists of three
amino acids and either a water molecule or a hydroxyl molecule (OH−) (Figure 1a,ii) (147). H2O
or OH− is always a ligand of zinc and can participate in the catalytic reaction. The zinc-bound
water can be ionized or polarized and can thus function as a nucleophile or an acid/base (16). Ad-
ditionally, the rapid ligand exchange potential of zinc facilitates high turnover numbers, as seen
for zinc alcohol dehydrogenases (114).

Cocatalytic sites, in contrast, are often found in enzymes with more than one binding site for
zinc or transition metals. The cocatalytic sites most frequently contain Asp and His. Moreover, a
water molecule can be involved in the interaction of both sites. Since catalytic and cocatalytic sites
are often found at opposing ends of the protein, their zinc-dependent interaction is also important
for the three-dimensional structure of the enzyme (248).

In addition to having a role in catalytic function and stabilization of the three-dimensional
structures of proteins, zinc can also act in a regulatory manner (132). In this case, binding of zinc
induces structural changes that modulate the function of a protein (Figure 1a,iii). These confor-
mational changes are based on the protein’s physicochemical properties and structure, on the pro-
tein’s affinity for zinc, on the stoichiometry of the interaction between the protein and zinc, and on
the amino acids involved. In contrast to structural and catalytic sites, which generally have a high
affinity for zinc, regulatory sites show a lower affinity for zinc to allow for its reversible binding
(57).This low affinity for zinc enables responses to fluctuations in intracellular zinc concentration,
i.e., zinc flux after activating signals. Some enzymes, for example, protein tyrosine phosphatases
(PTPs), can be inhibited by transient fluctuations of intracellular free zinc, even in the picomolar
range (266). More examples, especially of zinc’s role in key enzymatic reactions regarding im-
mune cells, can be found below, underlining that zinc is indispensable for an effective immune
reaction.
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2.3. Zinc’s Role as a Proantioxidant

Zinc’s proantioxidative character has long been known. It is involved in both the production and
neutralization of reactive oxygen species (ROS) (127).

Under physiological conditions, ROS are produced during cellular respiration or to elimi-
nate phagocytosed pathogens and are neutralized without harming cells. Inflammation and other
stressors can increase ROS production or decrease antioxidative processes. Excessive intracel-
lular ROS levels, also known as oxidative stress, can result in tissue damage. Although zinc is
redox inert, it acts as a proantioxidant and affects cellular redox balance on several levels (127)
(Figure 1b).Consequently, zinc deficiency is often associated with increased oxidative stress,while
zinc supplementation is correlated with reduced ROS production. However, chelation of zinc in
human neutrophil cultures had no impact on ROS production (93), indicating that the effects of
zinc on redox metabolism seem to be complex. Zinc activates antioxidant molecules and proteins,
such as glutathione and copper/zinc superoxide dismutase, and reduces the activity of oxidant-
promoting enzymes, such as inducible nitric acid synthase (127). Furthermore, zinc can inhibit
the superoxide-producing enzyme NADPH (nicotinamide adenine dinucleotide phosphate) oxi-
dase (199). This action was first described for neutrophil cytoplasts that were cultured in vitro in
medium supplemented with 1 mM zinc (97). Zinc also protects free sulfhydryl groups in proteins
from oxidation and is, as stated above, also required for the structural integrity of proteins, includ-
ing those involved in redox balance (127). Indirect mechanisms of zinc’s antioxidative function in-
clude the induction of MTs, which can act as radical-scavenging proteins (28). The expression of
MTs is induced by metal-responsive transcription factor 1 (MTF-1), which is sensitive to intracel-
lular free zinc concentrations (11).During zinc deficiency,MT expression is decreased, resulting in
limited elimination of free radicals. In addition, zinc bound to the sulfur clusters of MTs can be re-
leased by oxidation, suggesting that alterations in redox balance can feed back on zinc homeostasis.

Taken together, these findings show that zinc is central for intracellular redox balance. In zinc
deficiency, several antioxidative mechanisms are lost, resulting in excessive intracellular ROS lev-
els, which are associated with damage to all kinds of cells, including immune cells.

2.4. Zinc’s Effects on Cell Cycle and Cell Death

Zinc’s important role in cell growth and proliferation is widely accepted. The cell cycle in eu-
karyotic cells is characterized by a series of coordinated phases: gap (G)1 phase, DNA replication
or synthesis (S) phase, G2 phase, and mitosis (M) phase, each characterized by the expression of
phase-specific cyclins (26) (Figure 1c). Each phase entry is tightly regulated to ensure completion
of one phase before the next one is initiated.

In rats fed a zinc-deficient diet for 5 days, DNA synthesis was reduced in the liver, kidney, and
spleen relative to rats fed a zinc-adequate diet for this time frame (265).Furthermore, cells cultured
in zinc-deficient medium revealed defects in DNA synthesis, explained by the requirement of zinc
for thymidine incorporation.Moreover, increasedDNAdamagewas observed in the cultured cells,
although such damage was not associated with zinc deficiency–induced arrest in the cell cycle
(48). Furthermore, within G1 phase before the start of S phase, zinc-dependent gene expression is
required for successful progression to S phase, as determined in cells cultured in zinc-deficient and
zinc-reconstituted medium (49, 160). Zinc is also important during S phase and is indispensable
for progression to G2 and M phases (47) (Figure 1c). In contrast, another study suggested that
zinc may be required only until a certain point during G1 phase and for the transition from M
phase back to G1 phase (269). A different study showed that both zinc deficiency and zinc excess
cause arrest at the G2/M checkpoint (47). Thus, zinc may not directly affect DNA synthesis in
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S phase. Instead, zinc-dependent expression of p53, and consequently upregulation of p21 and
p21-mediated inhibition of Cdc2/cyclin B, may play a role; this possibility was investigated in
zinc-supplemented human bronchial epithelial cells (269). p53 is a central regulator of the cell
cycle and apoptosis. Interestingly, zinc does not affect the expression of p53, but both the stability
and the activity of p53 decreased in cells treated with a zinc chelator (176).

Zinc also impacts the expression of cyclins, suggesting that both DNA replication and tran-
scriptional regulation of cell cycle proteins depend on zinc (47, 194). Zinc chelation reversibly
inhibited the cell cycle–induced upregulation of cyclins B, D3, and E in vitro. In the case of cy-
clin B, zinc reconstitution even increased mRNA expression relative to controls. However, high
zinc concentrations (≥400 μM) were used to resupplement the zinc-deficient cells (47). Similarly,
a more recent study revealed that zinc chelation reduced cyclin D2 and cyclin E mRNA expres-
sion in the murine T cell line CTLL-2 (194). Consequently, zinc chelation significantly decreased
interleukin (IL)-2-driven cell cycle entry into S and G2/M phases. However, stimulation of the
CTLL-2 cells with zinc (20 μM) and pyrithione (10 μM) did not affect cyclin D2 or cyclin E
mRNA expression or cell proliferation. Thus, zinc is required for IL-2 receptor–induced signal-
ing but does not replace IL-2 as a key stimulus of T cell proliferation (194). Furthermore, zinc
deficiency augmented the cyclin D1–dependent proliferation of tumor cells, overexpressing cyclin
D1. The role of zinc in cyclin D1 expression in nontumor cells remains to be investigated (71).

A long-term blockade of the cell cycle and subsequent apoptosis when zinc is limited make
up only one of several mechanistic explanations for the association of zinc deficiency with cell
death. In addition to this indirect effect, zinc directly impacts cell death, including apoptosis, py-
roptosis, autophagy, and presumably necrosis. Apoptosis—or programmed cell death, which is
required during organ development and tissue homeostasis—is characterized by DNA fragmen-
tation, chromatin condensation, apoptotic body formation, and caspase cascade activation. Zinc
can have antiapoptotic or proapoptotic effects (77). Furthermore, intracellular zinc homeostasis
is altered during apoptosis (71). Excellent detailed reviews can be found elsewhere (e.g., 76). A
causal link between apoptosis and zinc deficiency was discovered in tissues of zinc-deficient ro-
dents (64). Furthermore, caspase-3, which cleaves the cell cycle regulator p21, is activated in cell
cultures treated with a zinc chelator. Subsequently, p21 accumulates and causes a dramatic increase
in CDK2 expression, resulting in premature entry into S phase and thus apoptosis (44, 66). In con-
trast, zinc directly inhibits the catalytic activity of caspase-3 and procaspase-3 (6). The activity of
other caspases, including caspase-6 and caspase-9, is also affected by changes in zinc homeostasis
(108, 234). All of the apoptotic caspases, except caspase-7, are inhibited by zinc binding at avail-
able zinc concentrations of 1–10 nM (65). However, zinc can suppress apoptotic endonucleases
(63, 243). Since zinc is antiapoptotic even at concentrations that have no impact on apoptotic
endonucleases, additional mechanisms probably exist. Interestingly, zinc deficiency had the most
profound impact on proliferating cells in tissues with high turnover, suggesting that dividing cells
are especially prone to zinc deficiency–induced apoptosis. This scenario shows once more the im-
portance of zinc for the immune response since the interplay of the cell cycle and apoptosis are
vital for the generation of sufficient numbers of immune cells and the depletion of self-reactive
immune cells, respectively.

Necrosis is characterized by swelling of the cell and its organelles, followed by plasma mem-
brane rupture and the release of cytoplasmic content. While the impact of zinc on apoptosis is
well characterized, the involvement of zinc in necrosis is less studied. Some studies found that
cells in zinc-deficient medium underwent necrotic cell death (134, 170). However, it remains to
be clarified whether zinc has antinecrotic properties or whether the observed effects were due to
a failure to induce apoptosis (213).
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Autophagy, also known as autophagic cell death (ACD), is accompanied by large-scale au-
tophagic vacuolization of the cytoplasm. The impact of zinc on ACD was discovered in cells
of the central nervous system. When intracellular zinc in astrocytes was reduced by chelation,
autophagy and cell death were suppressed (145). In line with this finding, zinc supplementation
promoted autophagy in cell culture, which was shown for various cell types (155, 158). However,
in some cells severe zinc deficiency seems to activate ACD, presumably by a mechanism that in-
volves Krüppel-like factor 4 (152, 154). Other mechanisms that may generally play a role in the
zinc-mediated regulation of ACD seem to involve the ERK1/2 (extracellular signal–regulated ki-
nase 1/2)-mTOR (mechanistic target of rapamycin) pathway (109, 159).

Furthermore, MTs play an important role in the zinc-mediated regulation of ACD: Loss of
MT-3 suppresses autophagy in glioma cells (146). The interaction of MTs with transcription fac-
tors (for example, the interaction of MT-2A with the transcription factor homeobox containing 1)
can promote autophagy (163). Lack of the zinc transporter Zip13 inhibits autophagy via a mecha-
nism that involves increased DNA methyltransferase activity (144), and loss of Zip1 function was
associated with inhibition of hyperglycemia-induced ACD (50). Lastly, the concentration of labile
zinc increases during ACD, and this increase is blocked when autophagy is inhibited (145). Thus,
whether the rise in intracellular free zinc is a cause or consequence of ACD should be investi-
gated. It has also not been clarified to what extent nutritional zinc impacts ACD in vivo. In mice
fed a low-zinc (1-ppm) diet for 28 days, ethanol-induced ACD was inhibited, while zinc supple-
mentation (150-ppm diet) increased ACD (157). In studies in yellow catfish, zinc supplementation
(146.65-ppm diet) augmented ACD, and MTF-1 was involved in this process (257). In light of an
immune response, autophagy suppresses inflammation through degradation of the inflammasome.

Pyroptosis occurs during inflammatory responses. The regulatory mechanisms of pyropto-
sis share some similarities with the apoptosome and involve zinc-suppressed caspase-3. Thus, an
impact of zinc on pyroptosis seems likely. Adenosine triphosphate (ATP) induces the inflamma-
some and subsequent pyroptosis (276). ATP is released by bacteria and host cells and activates
AMP-activated protein kinase, IL-1β production, and the release of active caspase-1. In murine
macrophages, zinc chelation reduced ATP-induced IL-1β release and blocked caspase-1 activation
(41). In a cell-free model, zinc chelation had no direct effect on caspase-1 activation. Intracellu-
larly, zinc chelation is likely to indirectly act on the inflammasome via blocking of the ATP-channel
pannexin-1 and to thus prevent pyroptosis (41). Since pyroptosis is a part of the antimicrobial im-
mune response to allow rapid pathogen clearance by removing intracellular replication niches,
this is another example of the role of zinc in the immune response.

2.5. Zinc’s Importance in Metabolism

The regulation of cellular metabolism is a central event during immune cell activation. There are
many hints for a role of zinc in metabolism. For example, disturbances of zinc homeostasis have
been linked with metabolic diseases such as diabetes mellitus (111). This disease is characterized
by increased urine volume, which may increase the loss of zinc. A meta-analysis of several studies
revealed that zinc supplementation (ranging from 15 to 660 mg/day in varying formulations) bal-
anced glycemic control in models of both type 1 and type 2 diabetes, indicating a role of zinc in
glucose metabolism (111, 112). For example, zinc was discovered to be part of the insulin complex
(227). Furthermore, insulin-responsive aminopeptidase, an enzyme that is required for the main-
tenance of the glucose transporter GLUT4 and thus for insulin-mediated glucose uptake from
the blood, is zinc dependent (120). Zinc has insulino-mimetic effects, directly impacts signaling
pathways, and thus also modulates the insulin receptor (INSR) signaling pathway (1, 221). Since
this pathway is involved in the activation of T cells (70), zinc likely modulates their metabolic
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activation. Zinc inhibits PTP1B (29), the enzyme that regulates the phosphorylation of the INSR.
This inhibition leads to increased phosphorylation of the INSR and in turn to increased signaling
that causes upregulation of glucose transporters (111). This result suggests that zinc is involved in
insulin-mediated glucose uptake and in the decrease of blood sugar levels and may have benefi-
cial effects in diabetes patients. Additionally, due to having anti-inflammatory capacities, zinc has
an ameliorating impact on the autoimmune response toward pancreatic cells in type 1 diabetes
mellitus (T1DM) (see Section 6).

Furthermore, zinc is involved in other metabolic pathways like carbohydrate and lipid
metabolism. The link between zinc and lipid metabolism was discovered in the 1980s. A strong
negative association between (a) dietary zinc intake and (b) heart disease, hypertension, and hyper-
triglyceridemia has been described. In humans, zinc supplementation impacts serum cholesterol
levels: Both total cholesterol and LDL cholesterol were significantly decreased in various zinc sup-
plementation studies, which included type 2 diabetes patients, obese individuals, and healthy sub-
jects. The most significant effects were observed in diabetic and obese individuals (208). Murine
models of atherosclerosis showed that zinc deficiency impacts fatty acid metabolism and increases
plasma cholesterol levels as well as total fatty acid concentration (211, 232). Mechanistically, fatty
acid translocase expression in the aorta was upregulated in zinc-deficient mice, whereas lipopro-
tein lipase was found to be increased only in zinc-adequate mice, and both effects were linked to
PPARγ (peroxisome proliferator–activated receptor γ) activity (211).

Zinc also impacts glycation as well as glycosylation, the most common posttranslational mod-
ification of proteins. During glycation, advanced glycation end products (AGEs) are produced;
AGEs impact every cell type and are thought to be involved in aging and some chronic diseases,
including diabetes (179, 237). Endogenous AGEs are formed during normal metabolism, but ex-
cess levels promote oxidative stress, inflammation, and apoptosis. Zinc shows antiglycation prop-
erties in vitro (supplementation with 125, 250, and 500 μM zinc) as well as in rats supplemented
with 100 mg/kg per day via gavage (219, 244). Furthermore, zinc supplementation of cell cultures
with 1, 10, or 100 μM zinc chloride downregulated the RAGE (receptor for AGE) channel that is
involved in AGE-induced oxidative stress. Zinc may thereby limit cellular damage in vitro (279).
Zinc also regulates glycosylation: In fungi, zinc deprivation led to the downregulation of glyco-
sylation as well as of ER proteins that are involved in this process (54). In mice, zinc deprivation
modifiedO-glycosylation and sialylation of secretedmucins in the gut (166).Goblet cells produced
significantly higher amounts of short O-glycans relative to zinc-adequate controls, due to zinc’s
effects on the initial glycosyltransferases that are responsible for O-glycan biosynthesis (166).

Taken together, these findings show that zinc impacts different levels of cellular metabolism,
altering the response to systemic metabolites as well as their levels and modifications.

2.6. Role of Zinc in Intracellular Signaling

Extracellular changes in zinc homeostasis are observed during, for example, the APR, oxidative
stress, neuronal activation, and mast cell degranulation, affecting zinc levels in serum, the synaptic
cleft, the brain, and other tissues. Even the smallest changes in free zinc levels may induce
changes in the activity of immune cells. Those extracellular alterations in zinc homeostasis may
be detected by a recently discovered zinc-sensing receptor (ZnR), classified as G protein–coupled
receptor 39 (99, 184). ZnR ligation activates inositol triphosphate 3 signaling and calcium release,
and this activation subsequently results in phosphorylation of signaling molecules in the ERK
and AKT pathways.

In addition to alterations in extracellular zinc, changes in intracellular free zinc were ob-
served after activation of various cell types.Here, one can distinguish zinc signals according to the
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duration of the increase or decrease in intracellular free zinc: Alterations may last for only seconds
to minutes (termed zinc flux or, in some models, zinc sparks) or for minutes to hours (termed zinc
wave) (168). Finally, significant and constant changes in extracellular zinc may result in alterations
of the expression and activity of zinc transporters and in subsequent changes in intracellular zinc.
Alterations in intracellular zinc levels, which are stable for hours to days, are termed homeostatic
zinc signals (91, 92, 168, 174, 261).The immune-related effects of zinc signals have been described
in detail (91, 92, 174), and examples can be found in Figures 2 and 3 and Section 3.
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Figure 2 (Figure appears on preceding page)

Zinc-modulated processes in preventing infectious diseases. Zinc modulates mechanisms of pathogen clearance for the different types
of immune cells, their development, and the barrier functions of skin and epithelial cells. Green arrows illustrate mechanisms that are
modulated by zinc supplementation, and red arrows indicate altered functions and frequencies in zinc deficiency. (a) Zinc regulates the
barrier function of skin and epithelial cells as well as the function of cells residing at this barrier, such as mast cells and dendritic cells.
(b) Zinc modulates different subsets of immune cells in the bloodstream. Neutrophils, the most abundant type of immune cells and the
first cells to be recruited to infections, increase in function and frequency during zinc deficiency.Monocytes and NK cells are more active
during zinc deficiency. Cells of the adaptive immune system include B cells, which provide protective antibodies; CTLs, which can kill
infected target cells; and Th cells. Th cells can be subdivided into Th17 cells, which are involved in the killing of extracellular pathogens;
Th1 cells, which fight intracellular infections; Th2 cells, which are important for the elimination of parasites; and Tregs, which are
required for tolerance and tissue homeostasis. Zinc regulates adaptive immune cells, as indicated for each cell type. (c) The development
of immune cells depends on zinc as well. The two primary immunological organs, thymus and bone marrow, require zinc for
their function. (i) In the thymus, zinc is required for the production of functional thymulin and is involved in the response of T cells to
IL-1 and IL-2. The signaling pathways of these cytokines are depicted in Figure 3. (ii) In the bone marrow, cell maturation shifts during
zinc deficiency, favoring the myeloid lineage. Increased apoptosis is observed in lymphoid progenitors, whereas myeloid cell
differentiation is augmented (see Figure 3). Zinc also modulates the development of B cells in the bone marrow: Key signaling
events are inhibited (red blunted arrows) or enhanced (green arrow) by zinc. Abbreviations: AG, antigen; BCR, B cell receptor;
CTL, cytotoxic T lymphocyte; ERK, extracellular signal–regulated kinase; IL-(R), interleukin (receptor); NK cell, natural killer cell;
PDK, phosphoinositide-dependent kinase 1; PI3K, phosphoinositide 3-kinase; PLC, phospholipase C; PMN, polymorphonuclear
neutrophil; PTEN, phosphatase and tensin homolog; STAT, signal transducer and activator of transcription; Th cell, T helper cell;
Treg, regulatory T cell.

The total cellular zinc concentration is in the range of hundreds of micromolar. However, the
free zinc ion concentration, available for intracellular signaling, is in the picomolar range. Zinc
transients are predominantly explained by the quick and reversible release of zinc from proteins,
especially MTs, or intracellular organelles, including vesicles with high zinc content (termed zin-
cosomes), and strongly impact intracellular signaling (168).

The zinc ions that are released during a zinc wave or zinc flux are also termed zinc transients.
The transients were observed quickly after activation of mast cells by FcεRI, lipopolysaccharide
(LPS), or IL-33 and after ligation of the T cell receptor (TCR) and B cell receptor (BCR), which is
discussed in more detail below. Interestingly, calcium signals can also be upstream of a zinc signal.
The interaction of calcium and zinc signals is attracting increasing attention (148, 193).

Zinc was suggested as the main player regarding the phosphatase/kinase balance. Zinc inhibits
the activity of human PTPs, which are key enzymes in the regulation of phosphorylation and
are thus central to the control of cellular signaling and metabolism, in a picomolar to nanomolar
range (174, 266). In general, phosphatase activity exceeds kinase activity in a cell. Thus, the
reversible inhibition of phosphatases by zinc ions may be the key to permitting or preserving
phosphorylation of signaling molecules (92). In addition to being activated by changes in phos-
phorylation, signaling molecules can be activated by caspases, another group of enzymes that are
sensitive to alterations in zinc homeostasis. The association between zinc, caspase activation, and
apoptosis is well described (65). The association between zinc and nonapoptotic roles of caspases,
including proliferation, tumor suppression, differentiation, neuronal development, and aging,
needs to be further explored (231, 278).

Phosphodiesterases (PDEs) require a catalytic zinc ion for their activity (52). They are largely
involved in controlling cAMP and cGMP signaling. However, the inhibition of PDEs by zinc has
also been described (32, 251), which is still a matter of discussion, since the median inhibition
concentration (IC50) found is in the micromolar range (174).Most analyses were performed with
cell lysates and purified enzymes in buffer, which may overestimate the IC50 for zinc. Thus, the
inhibition of PDEs in cells should be further investigated (52, 251).
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Figure 3 (Figure appears on preceding page)

Consequences of transient zinc deficiency for lymphocytes and neutrophils. During inflammation, transient serum hypozincemia
occurs ( 1©), which impacts the expression of cytokines and growth factors and their signaling pathways in lymphocytes (a) as well as
promyeloid cells (b,c). (a) In lymphocytes, zinc modulates the signaling pathways of the key cytokines IL-1 and IL-2. (b,c) Preexisting
zinc deficiency augments a decrease in serum zinc, while smaller changes are expected in a zinc-adequate or a zinc-supplemented
individual. In turn, epithelial cells are activated and secrete GM-CSF and G-CSF. Zinc deficiency is associated with increased G-CSF
and GM-CSF expression (b), which is attenuated by zinc supplementation ( 2©). High intracellular zinc levels are associated with
increased membrane fluidity in promyeloid cells ( 3©). Increased intracellular zinc levels result in decreased surface levels of the
GM-CSFR in promyeloid cells and mature neutrophils ( 4©). Ligation of the GM-CSFR transiently decreases free intracellular zinc in
promyeloid precursors and primary neutrophils ( 5©). Under zinc-supplemented conditions, no changes in intracellular zinc are
observed after GM-CSFR ligation (c). Ligation of G-CSFR and GM-CSFR activates several intracellular signaling pathways. High zinc
conditions attenuate the phosphorylation (P) of STAT5 (tyrosine 694), cRaf (serine 338), and STAT3 (tyrosine 705) ( 6©).
G-CSF-induced phosphorylation of STAT3 at serine 727 ( 7©) is augmented by zinc supplementation. GM-CSF and G-CSF increase
proliferation and survival of myeloid cells ( 8©). Attenuation of G-CSF and GM-CSF-induced signaling in high zinc conditions may
explain the less pronounced increase in the NLR relative to preexisting zinc deficiency. (d) As a result, the NLR increases during zinc
deficiency. An elevated NLR is observed in a plethora of diseases, including infections, autoimmunity, and cancer. Abbreviations: A20,
tumor necrosis factor alpha–induced protein 3; COPD, chronic obstructive pulmonary disease; ERK, extracellular signal–regulated
kinase; G(M)-CSF, granulocyte(-macrophage) colony–stimulating factor; G(M)-CSFR, G(M)-CSF receptor; IGF-1, insulin-like
growth factor 1; IKK, IκB kinase; IL, interleukin; IL-R, interleukin receptor; IRAK, receptor-associated kinase 1; JAK, Janus kinase;
MEK, mitogen-activated protein kinase kinase; MKP, mitogen-activated protein kinase phosphatase; NF-κB, nuclear factor kappa
light-chain enhancer of activated B cells; NIK, NF-κB-inducing kinase; NLR, neutrophil-to-lymphocyte ratio; PDK,
phosphoinositide-dependent kinase; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; STAT, signal
transducer and activator of transcription; TRAF, tumor necrosis factor receptor–associated factor.

Alterations in the activity of zinc-dependent proteins such as transcription factors (e.g., MTF-
1) represent anothermechanism for how zinc participates in intracellular signaling.Zinc transients
can be directly sensed by MTF-1, which subsequently induces gene transcription (87).

In addition to the above-described temporary zinc transients (flux and wave), the long-lasting
homeostatic changes in intracellular zinc were associated with changes in signaling, although in
a broader context. Zinc-dependent, epigenetically active enzymes play a dominant role in this
regard, as summarized in detail (40, 196, 258, 268). One well-studied example is the group of hi-
stone deacetylases (HDACs). Deacetylation of histone and nonhistone proteins—including tran-
scription factors such as Foxp3, by zinc-dependent and non-zinc-dependent, but zinc-regulated,
HDACs—affects chromatin structure and thus promoter accessibility or transcription factor sta-
bility, respectively (128, 196, 217, 260).

2.7. Zinc in the Regulation of Ion Channels

The intracellular concentration and fluctuation of metal ions are involved in numerous intracel-
lular signaling pathways. Divalent ions such as calcium and magnesium act as second messengers,
whereas monovalent ions like sodium or potassium mostly regulate membrane potential.

Zinc affects the conformation of ion channels by directly binding to His, Cys, Asp, or Glu
residues. Consequently, ion flow is either activated or inhibited (104). Ion channels are subtyped
into voltage-gated, ligand-gated, second messenger–gated, or mechanosensitive channels (187).
Potassium ion channels are one such example of zinc-modulated ion channels. Some potassium
channels are prone to conformational changes caused by binding to extracellular zinc, while other
potassium channels, namely the potassium transporter transient receptor potential channel A1
(TRPA1) (10) and large-conductance voltage–activated and calcium-activated Slo1 K+ (BK) chan-
nel (104), are activated by increasing intracellular zinc levels (105).

Calcium channels are involved in signaling pathways, regulating a variety of intracellular
processes, including motility, transcription, and apoptosis, and thus strongly impact immune cell
functions. Zinc replaces calcium in mitochondrial calcium transporters and in calcium channels
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located in excitable membranes. Moreover, calcium channels are also permeable for zinc (8).
However, for L-type calcium channels, zinc can be transported only when calcium levels are low,
since the affinity of the receptor for zinc is low (31). Besides being transported through calcium
channels, zinc can also modulate the activity of calcium channels. Zinc can suppress voltage-
dependent calcium channels by binding to the α1 pore region. Store-operated calcium channels,
which play a central role in calcium entry in activated lymphocytes following antigen-receptor
stimulation, can also be regulated by zinc binding because zinc acts as a competitive inhibitor
for calcium transport. In this case, zinc can bind to a Cys residue and thus block calcium flux
(83). The important role of ion channels in signal transduction in various immune cells, espe-
cially T and B cells, explains how zinc indirectly affects intracellular signaling and the immune
response.

3. ZINC IN HEMATOPOIESIS

Bones are important reservoirs of zinc containing approximately 30% of total body zinc, which
can be adjusted in cases of mild zinc excess or deficiency (204). However, impaired skeletal
development, bone growth, and fracture healing; low bone mineral density; and disturbed bone
marrowmetabolism were found in humans and rodents during zinc deficiency (167, 178, 204, 218,
239). Low serum zinc levels revealed predictive value regarding altered bone mineral density in
humans, and dietary-induced zinc deficiency caused a reduction in bone density in rats (178, 239).
In line with these findings, zinc supplementation increased bone health, as monitored by improved
bone mineral density and the prevention of bone loss, which was described for diabetic rats sup-
plemented with 0.25 mg/kg daily by oral gavage (9, 107, 204). Among the underlying mechanisms,
zinc’s importance in the activation of alkaline phosphatase, as well as its impact on intracellular
signaling, transcription factor binding, and thus collagen synthesis was suggested (43, 229). With
regard to collagen, zinc’s importance in protein stability may play a role as well (12, 229).

In light of the importance of zinc for bone health (9), alterations in hematopoiesis, which pri-
marily takes place in the bone marrow, can be expected during changes in zinc homeostasis, espe-
cially when zinc is limited (Figure 2). In fact, various research groups found serum zinc deficiency
in anemic patients (46, 197, 204). A very recent study on chronic kidney disease–related anemia
found that bone and serum zinc can be redistributed to the human bone marrow to support ery-
throcyte development. Those newly produced erythrocytes were high in zinc while serum zinc
levels were lower in anemic patients than in nonanemic control patients (46, 218). Those data are
in line with the hypotheses that zinc homeostasis is well balanced and that zinc transporters and
zinc binding proteins efficiently transfer zinc to tissues and cells requiring zinc (107).

However, the possible causality between zinc deficiency and anemia is not entirely clear. Zinc
supplementation (34 mg/day for 3 weeks) attenuated anemia symptoms in patients with initially
low serum zinc levels (<80 mg/dl), who suffered from chronic renal failure (80). Whether only
anemic patients with lower serum zinc and kidney disease benefit from zinc supplementation re-
mains to be investigated in future clinical studies.Deeper insight into the fundamental interactions
between zinc and iron (202, 247)—especially with regard to erythrocyte development, mainte-
nance, and recycling—might form the basis to better understand zinc’s role in the etiology of
anemia and the use of zinc in its therapy.

Regarding leukocytes, there are several studies describing altered development during zinc
deficiency, implying that zinc may be a major player during physiological hematopoiesis (74, 103,
124). Early and recent studies in zinc-deficient rodents suggest that the development of myeloid
cells is prioritized at the cost of lymphoid cells, resulting in an increased neutrophil-to-lymphocyte
ratio (NLR) (124, 180). An increase in the NLR was observed during the APR in humans, during
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which zinc is transiently transferred to the tissues, causing serum hypozincemia. Although
needing to be experimentally proven, a direct link between zinc homeostasis and hematopoiesis is
likely. Thus, an increase in the NLR may also be expected in chronically zinc-deficient humans.
Monitoring zinc status during differentiation of myeloid precursors into mature monocytes or
granulocytes may be a first step toward testing this hypothesis. Subsequent investigations of the
impact of zinc homeostasis on maturation of myeloid cells combined with retrospective studies
on patients with disturbed NLR would be a fundamental prerequisite before clinical studies could
be planned.

Neutrophils are highly reactive cells that are equipped with their complete antimicrobial
weaponry when they leave the bone marrow. In addition to antimicrobial peptides such as
lysozyme, they can form ROS and reactive nitrogen species (RNS) and inflammatory mediators
such as calprotectin (94, 262). Elevated numbers of those cells, which are associated with chronic
serum zinc deficiency (74), increase the risk for overshooting immune responses (56).

3.1. T and B Cell Development

The major explanations for the decrease in T cell numbers observed during zinc deficiency are
thymic atrophy, low thymulin production and activity, decreased IL-2 levels, altered IL-2-induced
signaling, and thus an increase in lymphocyte apoptosis paralleling decreased proliferation (61, 75,
117). Thus, all the fundamental roles of zinc described in Section 2 seem to play a role during the
regulation of thymic development and the maturation of thymus-derived cells. However, not all
lymphocyte subtypes and developmental stages are affected in the same magnitude, as detailed in
Figure 2.

The highest loss is observed in immature CD4/CD8 double-positive T cells that are the pre-
cursors of mature T cells. They are prone to apoptosis due to generally low expression of anti-
apoptotic Bcl-2 (B cell lymphoma 2), which is augmented during zinc deficiency, as well as due
to the activation of caspases (103, 169). Pre–T cell development is also strongly affected during
zinc deficiency; here, the lower production and zinc-dependent activity of thymulin are largely
involved (182). Metalloenzymes such as thymulin often require zinc binding and a subsequent
conformational change to maintain full activity (58). Furthermore, data from a recent study sug-
gest that PP2A (protein phosphatase 2A)-mediated increase in expression of the transcription
factor cAMP-responsive element modulator α (CREMα) is responsible for deacetylation of the
IL-2 promoter and for the subsequently reduced IL-2 expression and secretion observed dur-
ing zinc deficiency (128). This study underscores that cellular functions such as IL-2 expression
can be affected by alterations in zinc homeostasis on multiple levels. In this example, zinc af-
fected gene expression (of CREMα) and enzymatic activity (of HDAC1). Fortunately, most of the
above-described lymphopoiesis-related symptoms can be reversed when zinc is supplemented and
adequate serum zinc levels are reestablished (116, 182, 261).

The impaired B cell development observed during zinc deficiency, which especially affects
pro– and pre–B cells, is also largely explained by increased apoptosis (180). B cells are critically
dependent on the expression of Zip7 and Zip10. The latter is expressed on the surface of
B cells, and its deletion leads to splenic atrophy and to a reduction in B cell numbers (123, 180).
Although mature B cells are generally more resistant to zinc deficiency, their survival requires
tonic signals from their antigen receptor, the BCR. BCR signaling and subsequent proliferation,
activation, and antibody production seem to depend on Zip10 as well (102). Zip7-deficient mice
showed lower intracellular free zinc levels, an increase in phosphatase activity, and thus decreased
phosphorylation of signaling molecules downstream of the pre-BCR and BCRs (13). Strikingly,
Zip7 mutations in humans occurred with absent B cells, agammaglobulinemia, and early-onset
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infections (13). Furthermore, Zip7 is upregulated during B cell activation, and intracellular zinc
levels are increased, which may be important for their proliferation (189).

Both T and B cells are required for an efficient and pathogen-specific adaptive immune re-
sponse and for the formation of an immunological memory. Low levels of either or both cell types
may increase susceptibility to infectious diseases, to the development of cancer, and to the failure
of vaccination andmay be a prerequisite to autoimmune diseases (AIDs) due to a lack of regulatory
cells (210, 263, 264).

3.2. Natural Killer Cell Development and Function

While natural killer (NK) cell numbers remained stable, zinc deficiency was associated with im-
paired functions both in vitro and in zinc-deficient human patients (7, 183). In contrast, zinc sup-
plementation of initially zinc-deprived subjects (12 mg/day via supplement in humans; 2,500 ppm
of zinc oxide for 14 days via diet in pigs) increasedNK cell activity in vivo (126, 183). Similarly, zinc
supplementation significantly elevated the activity and the percentage of NK cells within cultured
leukocytes in vitro (177). In addition, zinc seems to be especially important for the differentiation
of CD34+ progenitor cells via GATA3 and, in line with the findings above, induced higher lev-
els of cytotoxic activity and a higher number of perforin-producing and of CD94-bearing CD56+

cells relative to unsupplemented CD34+ cultures (185). Inefficient killing activity of NK cells may
result in recurrent viral infections and cancer.

NK cell activation is inhibited by the detection of major histocompatibility complex (MHC)-I
molecules on the surfaces of other cells via killer inhibitory receptors (KIRs). Since zinc is
required for the multimerization of KIR domains and interaction with MHC-I, KIR-induced
signaling is disturbed during zinc deficiency (207, 246). This missing MHC-I binding may also
result in unspecific killing, which remains to be investigated in detail. In contrast, zinc supple-
mentation enhances interferon (IFN)γ secretion by phytohemagglutinin-activated peripheral
blood mononuclear cells (PBMCs) in vitro, which is attributed to NK cells and may support the
activation of other immune cells, thus supporting the antiviral response (177). Finally, zinc also
directly increases the killing activity of both a NK cell line and primary human NK cells. Rapid
zinc influx after zinc deficiency boosts NK cell cytotoxicity in vitro and may support an efficient
antiviral and anticancer response (214).

3.3. Myelopoiesis

In severely zinc-deficient rodents, myelopoiesis seems to be conserved. Relative to zinc-adequate
mice and rats, higher numbers of polymorphonuclear neutrophils (PMNs), monocytes, and their
products were found in zinc-deficient animals (74, 75, 220), suggesting that the limited amounts
of zinc are devoted to sustaining primarily the innate immune response. Similarly, data regarding
the in vitro differentiation of promyeloid HL-60 cells into monocytes revealed a decrease in free
intracellular zinc during maturation as well as increased differentiation into monocytes in zinc-
deficient cultures (62). These findings are in line with the augmented increase in myelopoiesis
and the resulting higher NLR paralleling acute serum hypozincemia during the APR (156, 259).
A transient increase in the NLR during the early phase of an infection may be beneficial since
high numbers of macrophages and PMNs may efficiently clear the infection. However, if elevated
numbers of highly reactive PMNs persist, detrimental effects can be expected, as summarized in
Section 6.

Zinc may be involved in fine-tuning of polarization into macrophage subtypes. Zinc defi-
ciency supported polarization into proinflammatory, M1-like macrophages in a murine colitis
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model (100). Knocking down Zip7 expression and thus zinc uptake in human myeloid THP-1
cells favored the generation of M2-like cells, which have a rather anti-inflammatory phenotype
and are typically involved in tissue remodeling and repair. The Zip7 knockdown additionally de-
creased the ability of THP-1 cells to express IL-1β and tumor necrosis factor (TNF)α as well as
phagocytosis (272). Furthermore, in vitro zinc supplementation (5 μM zinc, 0.5 μM pyrithione)
of Zip7 knockout cells inhibited activation-induced polarization into M2-like cells, whereas zinc
did not affect differentiation into M1-like cells under the same conditions (272). In another study,
zinc (50 μM) decreased in vitro M2-like polarization of THP-1 cells, while differentiation into
proinflammatory M1-like macrophages remained unaltered (60). Assuming that zinc deficiency
augments the polarization of M1-like macrophages into a proinflammatory phenotype, the high
number of inflammatory cells may result in an overshooting inflammatory response. Major prod-
ucts of macrophages are IL-6, TNFα, and IL-1β, and thus chronically zinc-deficient individuals
are at risk of chronic inflammatory processes, as observed in AIDs, or cytokine storm and subse-
quent tissue damage if they get infected (264).

Unfortunately, little is known about the role of zinc in the regulation of differentiation-related
genes important during myelopoiesis, such as transcription factors. Thus, direct effects are diffi-
cult to estimate but are likely due to the strong impacts of zinc on signaling, transcription factor
activity, epigenetics, protein stability, and thus gene expression (92, 258). However, recent data
suggest that zinc can alter growth factor–induced signaling not only in lymphocytes (117) but
also in myeloid cells: In vitro studies in promyeloid cell lines revealed that zinc supplementation
(100 or 20 μM zinc, 10 μM pyrithione) decreases granulocyte-macrophage colony–stimulating
factor (GM-CSF)-induced MAPK signaling and G-CSF-induced signal transducer and activator
of transcription (STAT)3 activation (14, 262). Our own unpublished data for mature human gran-
ulocytes, in contrast, reveal an increase in GM-CSF receptor expression and subsequent MAPK
signaling after zinc supplementation (50 μM zinc, 1 μM pyrithione) and contrasting data for
promyeloid cells, suggesting that effects on precursors and mature cells may differ (M. van der
Laan, A. Büttgenbach, L. Rink & I.Wessels). As G-CSF and GM-CSF effects depend on the de-
velopmental stage of myeloid cells, inducing either differentiation in precursors or activation and
chemotaxis in mature granulocytes, zinc’s effects may also differ with differentiation status (73).
Interestingly, the zinc status of precursors and mature myeloid cells may differ and decrease with
maturation, supporting this assumption (62). Furthermore, the addition of zinc (2–100 μM) pro-
motes long-term self-renewal of murine embryonic stem cells in culture and inhibits expression
of differentiation markers (106, 181).

Increased granulopoiesis and monopoiesis may also be explained by altered expression of
myeloid growth factors. In this regard, zinc supplementation of mice (30 mg/kg, 3 days) after
spinal cord injury increased G-CSF release of microglia and macrophages, while in vitro incuba-
tion of human PBMCs with zinc-loaded γ-globulin decreased the release of G-CSF andGM-CSF
relative to incubation with untreated γ-globulin (45, 149), providing no clear answer but suggest-
ing that zinc’s effect on growth factor expression probably depends on the cell type and stimulus.

Consequently, multiple questions regarding the role of zinc in myelopoiesis remain to be an-
swered, and in vivo studies in acute but also chronically zinc-deficient human subjects are war-
ranted to find the missing pieces of the puzzle.

3.4. Differentiation of Dendritic Cells and Mast Cells

In addition to having a role in monopoiesis and granulopoiesis, zinc is important in dendritic cell
(DC) development. In this context, maturation induced by LPS resulted in decreased intracellular
free zinc levels, as described below (181). Also, A20 (TNFα-induced protein 3) can inhibit DC
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maturation (55), supporting a role of altered zinc homeostasis during DC differentiation, as zinc
activates A20 expression, thus suppressing gene expression (55).AsDCmaturation is a prerequisite
for antigen presentation and thus activation of adaptive immune cells, disturbed DC maturation
may consequently disturb the adaptive immune response against pathogens. More studies on the
effects of zinc deficiency are required in this regard.

Data revealing elevated differentiation of mast cells within the bone marrow and other tissues
in zinc-deficient rats date back to the late 1970s and early 1980s and are very limited (27, 235). In
addition to showing increased cell numbers, mast cells of zinc-deficient rats were bigger in size
and contained proportionally increased numbers of mitochondria and specific granules, which
may partly explain the epithelial hyperplasia found in the mucosa of the rat’s cheek during zinc
deficiency (235).

4. ZINC IN INFECTIOUS DISEASES

Zinc’s antimicrobial properties begin with preventing pathogens from entering the human body,
as adequate zinc is well known to protect the integrity of tissue barriers and to support the regen-
eration of damaged tissues as well as wound healing (133). This property was shown for organs
such as the intestine, liver, and lungs in humans and mice and has also been suggested for the
blood-brain barrier (19, 24, 165, 262). As underlying mechanisms, induction of the expression of
tight junction proteins such as occludins, claudins, and zonula occludens by zinc via effects on gene
expression is discussed.Moreover, the inhibition of apoptosis in vascular and tissue cells and their
increased proliferation may play a role (65, 165, 215). However, zinc deficiency is characterized
by increased barrier permeability, for example, a leaky gut (165, 215). Here, not only are impor-
tant trace elements and minerals lost from the body, resulting in a vicious circle of aggravated
nutritional deficiencies, but also pathogens can more easily enter the body.

As discussed above, an increased NLR is regularly observed in humans and animals with zinc
deficiency, which can be rebalanced with zinc supplementation. A mildly increased NLR is a
well-accepted marker of inflammation and oxidative stress; a strongly elevated NLR is a risk
factor for severe disease progression, complications, and mortality (113, 253, 256), as explained
below. Reducing the NLR may therefore positively influence disease progression, as illustrated in
Figure 3 (113). In patients with preexisting zinc deficiency, an augmented inflammation-induced
NLR and thus a risk of disease complications are likely.

One might expect that supporting the development and function of innate immune cells might
be beneficial during the antimicrobial response. However, preexisting zinc deficiency is often as-
sociated with an overshooting and prolonged inflammatory response and elevated oxidative stress
(129, 198, 267). Moreover, preexisting zinc deficiency augments the recruitment of highly reac-
tive innate immune cells to infected tissues, as observed in acute respiratory distress syndrome and
sepsis (36, 129, 262). Here, cell numbers and disease severity were inversely correlated with serum
zinc status (101, 259). Among others, high serum levels of TNFα, IL-1β, IL-6, IL-17, G-CSF, IL-
1RA, C reactive protein, and calprotectin were correlated with zinc deficiency in mice and during
in vitro experiments using human cells (22, 23, 25, 150, 260).

Themechanisms underlying the zinc deficiency–induced increased expression of inflammatory
genes—namely zinc’s importance during intracellular signaling and its effects on the epigenome,
on balancing redox metabolism, and on posttranslational modifications—are discussed elsewhere
(22, 127, 258). The observation that cell polarization is skewed to M1-like cells, T helper (Th)2
cells, and Th17 cells during zinc deficiency adds evidence for the overshooting inflammatory
response and explains high levels of IL-6 and IL-17 (140). There are many uncovered mech-
anisms, and thus we refrain from going into detail here (79). As a result of hyperinflammation
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and overproduction of ROS and RNS, host tissue such as the lungs and intestine is damaged,
facilitating entry of additional pathogens and increasing the risk for secondary infections.

The detrimental consequences of a high NLR and thus elevated amounts of PMN products
such as ROS, RNS, and matrix-degrading peptides that may cause tissue destruction, combined
with the lack of T and B cells and thus weak specific pathogen clearance by individuals with a
preexisting zinc deficiency, are obvious.

Although the anti-inflammatory effects of zinc supplementation are described in numer-
ous studies, surprisingly little research has focused on zinc’s role during expression of anti-
inflammatory mediators, which are important for the resolution of the inflammatory response
as well as for preventing hyperinflammation and tissue damage. Existing data, however, show
that serum zinc levels normalize in parallel with the decrease in the proinflammatory response
at the end of the APR, when expression of anti-inflammatory factors is starting (259). Thus, zinc
deficiency may suppress the anti-inflammatory response, and inducing the compensatory anti-
inflammatory reaction, for example, by zinc supplementation at later stages of the APR,may coun-
terbalance the prolonged inflammatory reaction induced by longer-lasting serum hypozincemia.
This hypothesis is supported by findings of decreased secretion of IL-8 and IL-1RA in cultures of
LPS-stimulated primary human neutrophils in which zinc was chelated before activation (94). In
contrast, polarization of Th2 cells and their ability to express IL-4 and IL-10 appeared to be un-
altered in zinc deficiency (198). Thus, this question remains to be addressed by further research.
The effects of zinc on gene expression via altering intracellular signaling and transcription are
well investigated, but only for inflammatory and antimicrobial genes. Whether there is a general
difference in the regulation of pro- versus anti-inflammatory genes is a fundamental question that
needs to be investigated.

4.1. Extracellular Bacterial and Fungal Infections

Phagocytes, including predominantly macrophages and neutrophils, are major players during
the response against extracellular pathogens. In vitro investigations of human granulocytes
revealed that the acute chelation of zinc as an in vitro model for zinc deficiency results in lower
formation of neutrophil intracellular traps (NETs), chemotaxis, phagocytosis, and degranulation,
indicating reduced antimicrobial activity (93, 94). However, release of zinc binding calprotectin
by myeloid cells, which can inhibit the growth of pathogens such as Staphylococcus aureus by
depriving it of zinc, increased when zinc was chelated in vitro (150). Furthermore, the pri-
oritization of myelopoiesis over lymphopoiesis and the increased recruitment of neutrophils
to infected tissues during zinc deficiency observed in vivo indicate that the in vivo setting is
more complex and difficult to model in vitro (124, 129). In mice, preexisting zinc deficiency
caused overactivation of myeloid cells, a hyperinflammatory response, subsequent tissue dam-
age, and increased mortality from sepsis (129). In line with this finding, activation-induced
NET formation and neutrophil-specific products, oxidative stress, inflammatory cytokine
levels, and tissue damage decreased with zinc supplementation before inflammation was in-
duced (22, 25, 259, 262). Here, zinc supplementation schemes ranged between 24 h and weeks
prior to induction of infection. Zinc supplementation was achieved by giving an oral dose of
45 mg of zinc daily (in humans), by feeding a high-zinc diet (100–180 ppm in mice), or by
injecting 15 μg/kg of elemental zinc (in mice). Regarding macrophages, research on murine
macrophage cultures in vitro revealed that zinc chelation increases the production of nitric oxide,
which is a marker of proinflammatory M1-like macrophages (38). Upregulated expression of
inflammatory cytokines and ROS in zinc-deficient monocytes is also regularly observed. The
underlying mechanisms, which largely involve the effects of zinc deficiency on Toll-like receptor
(TLR)-induced signaling, are well described (38, 252). Furthermore, LPS stimulation leads
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to upregulation of Zip8 expression, which is accompanied by an increase in intracellular zinc,
underscoring the importance of zinc for macrophage functions (153).

DCs, the most important antigen-presenting cells, initiate the T cell response. DCs react to
LPS stimulation via TLR-4 with downregulation of Zip6 and upregulation of zinc exporters, lead-
ing to a decrease in intracellular zinc concentration accompanied by increased maturation of DCs.
This reduction of intracellular zinc is important for key functions of DCs such as surface expres-
sion of MHC-II (125) and thus activation of adaptive immune cells, including T cells.

Zinc deficiency strongly impacts polarization of Th cells (140, 172, 198). Generally, polariza-
tion into Th1 cells is impaired during zinc deficiency, while Th2 cell products like IL-4, IL-6,
and IL-10 remain unaffected, leading to an imbalance in the Th1/Th2 ratio toward Th2 cells and
to unbalanced cell-mediated immune responses (198). In the context of extracellular pathogens,
polarization toward Th17 cells is most important. In PBMCs that were cultured in zinc-deficient
medium, the balance between Treg and Th17 cells was shifted toward Th17 cells (140). When
zinc (50 μM) was added to mixed lymphoid cultures, Treg cell polarization was induced (172).
An increased polarization toward Treg cells was also observed when pigs, subjected to weaning
stress, were fed a high zinc (2,500-ppm) diet (126). Short-term zinc deficiency as a regular event
during the APR thus helps to activate Th17 cells and to mount a proper immune response. How-
ever, chronic zinc deficiency disturbs immune balance and can be associated with autoimmunity,
as discussed in Section 6 (263).

Cytokine stimulation of Th cells induces transient upregulation of MT expression. As
MT-deficient T cells generally produce less proinflammatory cytokines but show an increase in
anti-inflammatory cytokine secretion, a decisive role of zinc during activation of pro- versus anti-
inflammatory genes can be assumed (212). Multiple stimulants transiently increase intracellular
zinc levels, presumably as part of the signaling process, as found largely in cell culture experiments
(51, 92, 117, 173). When zinc influx was reduced in T cells via siRNA-mediated knockdown
or knockout of Zip6, T cell activation was blunted and cytokine production impaired (51).
Moreover, T cell activation via the TCR decreased EVER expression, which was paralleled by the
accumulation of intracellular free zinc. As EVER proteins are positive regulators of ZnT1, which
sequesters zinc in organelles, an association between both events is likely (142). High intracellular
zinc concentrations directly impact the TCR signaling pathway (see Section 6). Here, zinc binds
to Lck and interferes with Zap70 phosphorylation as one of the underlyingmechanisms. Increased
intracellular zinc concentrations were achieved by adding zinc to cell cultures (103, 275).

As for T cells, activation of B cells results in increased intracellular zinc levels (189), which
may involve zinc transport via Zip10 (102). Interestingly, zinc deficiency augments IL-6-induced
signaling in a B cell line in vitro, as monitored via increased STAT3 phosphorylation and higher
proliferation (86). However, due to the reduced numbers of B and T cells during zinc deficiency,
zinc’s relevance in vivo, especially regarding the overall adaptive immune response against extra-
cellular pathogens, needs to be addressed.

4.2. Intracellular Pathogens

Tuberculosis, lepromatous leprosy, and leishmaniasis are examples of diseases caused by intracel-
lular pathogens. Th1 cells, whose function is impaired during zinc deficiency, play an important
role during the response against intracellular pathogens (198). Th1 cells induce ROS production
in phagocytes to kill intracellular pathogens. Zinc-dependent antioxidant enzymes neutralize
ROS, preventing damage to the phagocyte, as described above (95). When zinc-deficient indi-
viduals were supplemented with zinc, ROS production also decreased (21). Zinc supplementation
(45 mg/day for 12 months) of elderly subjects with initially decreased serum zinc restored
adequate serum zinc levels and decreased oxidative stress markers (201). In zinc-adequate
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individuals, additional supplementation with 45 mg elemental zinc daily for 8 weeks significantly
increased serum zinc and significantly lowered the in vivo generation of oxidation by-products
(200). Hence, zinc deprivation may lead to an accumulation of ROS. Consequently, damage of
activated phagocytes by ROS as well as ROS-associated tissue injury, which is reversible by zinc
supplementation, can be expected in zinc-deficient individuals.

Macrophages can kill organisms such as Histoplasma capsulatum by reducing zinc con-
tent in the phagosome and starving the pathogen (238). Alternatively, macrophages can kill
intracellular microbes by intoxication with excess amounts of zinc and copper, as shown forMy-
cobacterium tuberculosis (35). Whether those macrophage functions are altered in zinc-deficient or
zinc-(re)supplemented individuals remains to be explored.

4.3. Extracellular Parasites

Several studies have addressed the link between zinc status and parasite infection. As discussed
above, zinc-adequate conditions are essential for preserving tissue barriers (Figure 2) and thus
important for preventing parasites from entering through the intestine (228). Moreover, a
study found that plasma zinc concentrations were negatively correlated with the numbers of
the helminth Trichuris trichiura in Jamaican children (42). However, this study did not address
whether reduced zinc levels were the cause or the consequence, and zinc supplementation had
no impact on the effects of conventional therapy, as monitored by the reinfection rate (84). In
rodents fed a zinc-deficient diet, the nematodes Trichinella spiralis (rats) and Strongyloides ratti
(rats) and the helminth Heligmosomoides polygyrus (mice) displayed higher burdens and better
survival of the parasites (69, 84).

Th2 cells are central players during the response to parasites. IL-4, secreted by activated
Th2 cells, activates B cells to produce IgE. IL-4-induced signaling and subsequent STAT6 phos-
phorylation are disturbed in T cells cultured in zinc-deficient medium, offering one explanation
for the inefficient antiparasite response (86). The disturbance of IL-4-induced signaling may re-
sult in an impaired switch to IgE in zinc-deficient patients. IgE-mediated stimulation of mast cells
is a central mechanism in the antiparasite response. The requirement of zinc for FcεRI-induced
degranulation and cytokine expression bymast cells was extrapolated from the disturbance of both
of these developments in models of zinc deficiency (115).Moreover, human mast cells release zinc
via ZnT1 following FcεRI aggregation, which may be another antiparasite mechanism (186).

In this regard, zinc’s role during Th2-mediated allergic responses should be mentioned. The
pathogenesis of allergic diseases such as atopic dermatitis, asthma, allergic rhinitis, and allergic
conjunctivitis implies a type 1 hypersensitivity response that is mediated by allergen-specific IgE
bound to mast cells. A study carried out in humans suffering from allergies revealed a significant
association of total and allergen-specific IgE levels with low serum zinc levels (230). In this study,
serum hypozincemia was defined as <120 μg/dl, which is, compared to other studies, in a normal
to higher range (230). Although the cause and consequence are not clear here, these data suggest
that zinc supplementation of patients with allergies and low serum zinc levels may be beneficial
during treatment of allergic immune responses. This possibility is supported by the results of
some supplementation studies, in which, for example, eczema severity in cases of atopic dermatitis
was reduced when patients were zinc supplemented (12 mg/day) for 8 weeks (121). Most of the
dermatitis patients were zinc deficient when supplementation was started but zinc adequate after
8 weeks of oral treatment, as monitored by measuring hair zinc (121). In children suffering from
asthma, zinc supplementation (50 mg/day for 8 weeks) caused significant clinical improvement
(82). In all subjects, low initial serum zinc concentrations were found, and zinc concentrations
were significantly increased in the zinc-supplemented group reaching adequate levels.
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Zinc-dependent modulation of viral infections. Zinc ameliorates the progression of viral infections on different levels, including both
the inactivation of free virus and viral replication. The inhibitory effects of zinc on the different steps of viral replication are denoted by
red blunted arrows. The green boxes give information on the virus type for which these effects were observed. Abbreviations: ACE,
angiotensin-converting enzyme; DdDp, DNA-dependent DNA polymerase; ICAM-1, intercellular adhesion molecule 1; RdRp,
RNA-dependent RNA polymerase; RT, reverse transcriptase; SARS, severe acute respiratory syndrome.

Thus, zinc appears to be an important modulator of Th2-mediated immune responses elicited
by parasitic infections and allergies. Such findings, together with increased mast cell numbers and
a higher number of mitochondria and specific granules in mast cells found in zinc-deficient rats
(235), suggest an association of zinc deficiency with the development of allergies.

4.4. Antiviral Immune Response and Vaccination

Zinc’s antiviral capacity has been described for various steps throughout the life cycle of a virus, as
shown in Figure 4. The importance of zinc becomes extensively clear during zinc deficiency, in
which susceptibility to viral infections and severe disease progression is significantly increased, as
recently discussed in relation to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(250, 264). Moreover, zinc deficiency is common in patients chronically infected with human
papilloma virus (HPV), HIV, and hepatitis C virus (HCV) (210).

Direct antiviral effects of zinc were reported for respiratory syncytial virus, HIV, coronaviri-
dae, picornaviridae (rhinovirus, coxsackievirus, cardio virus A, foot and mouth disease virus),HPV,
equine arteritis virus (EAV), varicella-zoster virus, metapneumovirus, herpes simplex virus (HSV1
and HSV2), and HCV (110, 137, 210, 241). Zinc supplementation was studied by adding zinc
extracellularly to cultures of virus-infected cells or in clinical zinc supplementation studies. As
effective doses of zinc alone or in combination with an ionophore significantly vary between
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studies and depending on the virus, we refer to a recent review by Read et al. (210), which pro-
vides a detailed overview of the various studies and treatment regimens, and we describe only
some examples here. Regarding the underlying mechanisms, zinc destabilizes the viral envelope,
prevents fusion of the virus with the host membrane, lowers the function of the viral polymerase,
inhibits the translation and subsequent processing of viral proteins, and impairs the release of viral
particles (210, 241). When zinc was used together with an ionophore such as hinokitiol (HK)
(which transports various metals) or pyrithione (zinc specific), low zinc doses (2 μM) effectively
attenuated RNA synthesis via inhibition of the viral RNA-dependent RNA polymerase. This at-
tenuation was observed in cases of SARS-CoV-2, EAV, poliovirus, influenza, and various picor-
naviridae (110, 136, 241). Similarly, zinc inhibited DNA-dependent DNA polymerase of HSV
and reverse transcriptase of HIV (68, 88). However, unphysiologically high zinc concentrations
(200 μM) were used here, and the vitality of the infected cells was not assessed (88). Moreover,
the cleavage of large viral polypeptides into smaller peptides, which is necessary for the forma-
tion of the various viral proteins and thus new viral particles, was significantly inhibited by zinc
(100 μM), as observed for various picornaviridae in vitro (136). In line with this finding, treatment
with HK (45–125 μM) or pyrithione (5–10 μM) decreased the activity of rhinoviral 2A protease
and subsequent cleavage of eIF4GI (eukaryotic translation initiation factor 4γ1), which is essen-
tial for initiation of translation as well as the proper processing of viral polyproteins (137). The
zinc ionophores did not affect the vitality of the infected cells (137). In another study focusing
on HSV, pyrithione treatment (10 μM) and thus increased intracellular zinc suppressed the ex-
pression of glycoprotein D and infected cell polypeptide 4. The involvement of those proteins
in transcriptional activation of other viral genes explains the strong impact of zinc on viral repli-
cation. Virus-induced alterations in the ubiquitin-proteasome system result in decreased expres-
sion of host genes, including expression of antiviral mediators, and thus viral replication, capsid
translocation, viral gene expression, replication, and immune evasion are promoted.Various tested
concentrations of zinc inhibited hijacking of the cellular ubiquitin-proteasome system (20, 205).
A third antiviral effect of pyrithione (10 μM), found in HSV-infected cells, was a reduction of
virus-induced IκB-α degradation, which resulted in lower activation of NF-κB (205). 26S protea-
some activity was not affected, but promyelocytic leukemia protein (PML) in the nucleus showed
enhanced stability when pyrithione was added to cells (205). Investigations on coxsackievirus B3
revealed that zinc may hamper the processing of viral polyprotein via interfering with the viral
protease 3CDpro. PDTC1 (pyrrolidine dithiocarbamate 1) was used to transport zinc into the cell
(141). Interestingly, HPV has developed a mechanism to alter zinc homeostasis of its host cells. It
can interact with ZnT1 in complex with EVER-2, blocking the export of zinc from organelles, in-
creasing nuclear zinc, and subsequently activating AP1,which is essential during expression of viral
genes (143). Influenza, HCV, measles virus, and coxsackie virus upregulated MT expression. The
consequence of MT upregulation and the resulting benefits for the virus are controversial (210).

As discussed above, alteration of the immune response during zinc deficiency is largely
involved in increased susceptibility to severe viral infections. Here, the decreased production of
antiviral IFNα and the lack of virus-specific antibodies in particular can be detrimental, while zinc
supplementation (70–200 μM, nontoxic) can reestablish IFNα levels and augment its activity (30).
IFN primarily induces JAK ( Janus kinase)-STAT signaling cascades, which are affected by altered
zinc, and zinc in physiological concentrations inhibits a variety of pro- and antiviral phosphatases,
which awaits further analyses, especially regarding the net effects in vivo. Also, TLR-induced sig-
naling, which is required for activating innate immune cells during viral infections, was disturbed
when zinc was depleted in cell culture experiments (38). Moreover, altered zinc homeostasis due
to, for example, alcohol abuse can disturb the activity of alveolar macrophages; such disturbance
is associated with elevated susceptibility to respiratory syncytial virus and with an increased
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risk for subsequent pneumonia. Zinc supplementation using various treatment regimens and
zinc concentrations, in contrast, was beneficial regarding the prevention and treatment of viral
infections, including viral warts (summarized in References 81 and 210). Interestingly, early
research dating back to the 1970s suggests that the impact of zinc on viral replication may be
independent of the onset of supplementation; this hypothesis was investigated by adding 100 μm
of zinc to cell cultures, probably exceeding the physiological concentration that can be achieved
in human serum in vivo (136).More details on the underlying mechanisms have been discussed in
detail (81). As the current SARS-CoV-2 pandemic has made apparent, efficient viral clearance has
enormous economic potential and underscores the need for new antiviral substances to support
global health. However, the above-described effects of zinc are often derived from experiments,
in which intracellular zinc of the virus-infected cell was strongly elevated, for example, using zinc
ionophores, and have frequently been investigated in vitro. More research is necessary to ideally
increase zinc in infected cells without intoxicating the cells. Moreover, future investigations
should be limited to physiological zinc concentrations that can be reached in human serum. Al-
ternatively, indirect ways to increase intracellular zinc could be investigated. One approach would
be increasing IFN levels, as MT expression is increased by IFNs, and zinc influx may subsequently
occur (78). Altogether, zinc’s antiviral effects seem to be specific for the different known viruses.

Due to the strong effects of zinc deficiency on immune cell functions, including those of B cells,
various studies investigated whether a preexisting zinc deficiency would affect the efficiency of vac-
cination. Studies using zinc-deficient mice indicate a lower response to vaccination with pneumo-
coccal surface proteins and lower pathogen clearance during subsequent infection with Streptococ-
cus pneumoniae, as well as a lower response to vaccination against hepatitis B (236, 277). Although
these findings implicate zinc supplementation, at least of zinc-deficient individuals, in increas-
ing the vaccination-induced production of antibodies, the outcomes of supplementation studies
have varied considerably. Since various outcomes were recently discussed in great detail (164), we
describe only a few examples here. Zinc treatment (20 mg/day for 42 days) of zinc-deficient chil-
dren (6–9 months old) before giving two cholera vaccine shots improved vaccination efficiency
(5). Although zinc supplementation increased the number of children (2–5 years old) responding
to vaccination, zinc reduced the amount of vaccination-induced antibodies, which is in line with
results from aNorwegian research group, who applied much higher zinc doses (135 mg/day) (119,
203). However, supplementation was started only 2 days before the first vaccination, and subjects
were between 20 and 29 years old (119, 203). Nevertheless, studies generally show that early zinc
supplementation may be beneficial regarding vaccination relative to the application of zinc to-
gether with the vaccine, which had no or negative effects, suggesting that further research may
uncover ways to use zinc for boosting the immune response to vaccination (37). Unfortunately,
no currently registered trials on this topic are found, although data are available, suggesting that
zinc-deficient individuals may have a lower vaccination response due to impaired immune func-
tions, especially affecting adaptive immune cells (165); this area should be investigated in more
detail.

4.5. Zinc in the Therapy of Infectious Diseases

There are many studies investigating possible benefits of zinc regarding inflammatory diseases,
and excellent articles are available summarizing the results from recent supplementation studies,
including the various treatment strategies tested (22, 81, 222, 264). The optimal concentration
and duration of zinc supplementation vary depending on the disease and on the estimated zinc
status. However, it is important to indicate that, according to our current knowledge, preventive
zinc supplementation, especially of zinc-deficient individuals, is favorable, as preventive zinc
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supplementation decreases disease severity, progression, and mortality. In contrast, nontreated
preexisting zinc deficiency can be regarded as a risk factor of detrimental disease outcomes.
Zinc supplementation during the acute phase of an inflammatory disease may be detrimental
as well, although fewer studies have addressed this point (129, 139, 262). The effects of zinc
supplementation during the recovery phase need to be investigated in the future.

In general, zinc supplementation of groups at risk for either zinc deficiency or infections is
highly recommended. The latter includes medical personnel and individuals who are exposed
to elevated pathogen loads. Patients with scheduled major surgery might also benefit from
zinc supplementation during the period before the intervention (2). An example in which zinc
supplementation has already been successfully applied in line with WHO recommendations is
the prevention of diarrhea and pneumonia in children, especially in developing countries; this
intervention has resulted in significantly decreased mortality (274).

5. ZINC IN LEUKEMIA AND CANCER

Globally, cancer is the second-leading cause of death; it accounts for approximately one in six
deaths (271).Disturbed hematopoiesis,which occurs during oncogenesis, is associated with altered
zinc homeostasis: Low serum zinc and increased intracellular zinc in cancer cells were observed.
The altered expression of numerous zinc transporters and subsequent changes in intracellular sig-
naling were linked to leukemia progression and are currently investigated as targets for therapeutic
intervention, as illustrated in Figure 5 and discussed in detail elsewhere (191, 254). Both excessive
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Figure 5

Zinc-mediated alterations of cell survival during cellular transformation. During leukemia, elevated
intracellular free zinc concentrations are regularly observed due to altered expression of the Zips (zinc
importers) and ZnTs (zinc exporters). In acute promyelocytic leukemia, this elevated intracellular zinc
concentration may stabilize the oncofusion protein PML-RARα by inhibiting its caspase-3-mediated protein
degradation. Furthermore, zinc can inhibit proteasomal protein degradation. The signaling pathway of GFR
is also regulated by zinc because it inhibits the function of phosphatases, thus increasing cell proliferation.
Abbreviations: GFR, growth factor receptor; PML, promyelocytic leukemia protein; RARα, retinoic acid
receptor alpha; Zip, Zrt- and Irt-like protein; ZnT, zinc transporter.
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zinc and insufficient zinc result in misfolding of the p53 tumor suppressor and in subsequent loss
of its functions (85, 161). Whether reestablishing zinc homeostasis restores or intensifies parts of
the functions of p53 needs to be tested for each cancer type, as discussed in detail elsewhere (34,
191, 254).

Recently, Ollig et al. (189) systematically investigated whether immortalization of B cells re-
sulted in alterations in free intracellular zinc concentration. Epstein-Barr virus transformation
was used for immortalization and caused the generation of lymphoblastoid cells. In those cells,
overexpression of Zip7, its activation by phosphorylation, and an increase in intracellular free zinc
levels were detected (189, 240). Another important observation is that key players during initiation
and development of various types of leukemia are zinc binding enzymes and zinc finger proteins,
whose function may be affected by changes in zinc homeostasis (206).

Degeneration of cancer cells often involves mutations and chromosome rearrangements that
cause the formation of fusion proteins and nonphysiological protein complexes. Zinc’s importance
in complex formation and protein complex stability may play a role here, as underscored by the
finding that zinc deficiency results in destabilization of the PML–retinoid acid receptor alpha
(RARα) fusion protein in a human PML cell line (278). Caspase-3 is one of the suggested mecha-
nisms underlying the destabilization of the oncofusion protein during zinc deficiency (170). Our
own recent data for tumor cell lines suggest that PML-RARα is not the only oncofusion protein
destabilized when cells are deprived by zinc (R.Goerg, L.Rink & I.Wessels); this possibility needs
further investigation and verification for leukemia patients in vivo.

6. ZINC IN AUTOIMMUNE DISEASES

The prevalence of AIDs, in which host cells and tissues are attacked specifically by their own im-
mune cells, is estimated to be approximately 3.2–9.4% (53, 255). Although the incidence of AIDs is
probably lower than the incidences of obesity, cardiac diseases, and cancers, a considerable number
of patients are affected by AIDs, and as therapeutic options are limited and expensive, the search
for new approaches is ongoing. Well-known examples of AIDs and affected tissues or molecules
include T1DM (pancreas), Crohn’s disease (CD) (intestine), rheumatoid arthritis (RA) ( joints),
multiple sclerosis (MS) (neurons), and Sjögren’s syndrome (SjS) (mitochondria or centromeres).
The key elements in organ-specific AIDs are overshooting Th1 and Th17 responses, while in
systemic AIDs, Th2 cells and macrophages are key players. Hyperproduction and activity of neu-
trophils are being uncovered in more and more AIDs (224, 263). Autoreactive T and B cells as
well as malfunctioning DCs and Treg cells are regularly found in AIDs underlying the disturbed
tolerance (255).

As recently summarized (224, 263) and illustrated in Figure 6, evidence of the association of
zinc deficiency in the etiology of AIDs is accumulating, although the question of whether zinc de-
ficiency is a trigger or a consequence of disease has not been clearly answered. Decreased serum,
plasma, or hair zinc levels are often found in patients with AIDs or corresponding animal mod-
els, as has been well studied in MS, T1DM, and RA (192, 263). However, in RA, tissue zinc was
elevated despite low serum zinc; further studies are needed to uncover this paradox in RA and
other AIDs regarding a possible redistribution of zinc to the tissues. The mechanisms underlying
the association between zinc homeostasis and the disturbed immune response found in patients
with AIDs are in many cases suggested (Figure 6) but are not entirely clear, as the mechanisms
underlying AIDs are poorly understood.

An elevated NLR was found in several AIDs and was associated with disease activity and onset
in relapsing-remittingMS patients (56). An increased NLR is also a hallmark of zinc deficiency, as
shown in mice and suspected in humans, and thus benefits of zinc supplementation to rebalance
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immune cell ratios can be expected. Some AIDs are characterized by the increased recruitment
of highly reactive neutrophils to the tissue, by an overshooting inflammatory response, and by
altered redox metabolism. A multitude of those symptoms were suggested to be related to altered
zinc homeostasis during AID and are classic consequences of zinc deficiency (127, 224, 260, 267).

In line with the hypothesis that zinc deficiency negatively impacts AIDs, zinc supplementation
reduced disease severity in cases of T1DM,MS-related depression, and RA (263). Supplementing
50 mg of elemental zinc for 12 weeks reduced depression. However, no neurological effects
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Figure 6 (Figure appears on preceding page)

The role of zinc homeostasis in the development of AIDs. Zinc deficiency is frequently observed during AIDs. Both zinc
supplementation and zinc deficiency impact the secretion of cytokines by immune cells and influence many factors that are involved in
AIDs. These effects are indicated by small green arrows (zinc supplementation) and small red arrows (zinc deficiency) next to the
cytokines and features. The impact of zinc on the underlying signaling pathways is indicated within the cells. Positive regulation is
indicated by green arrows, and inhibition is depicted as red blunted arrows. (a,b) Zinc modulates signaling pathways in (a) Th17 cells
and (b) Treg cells and thus impacts the Th17/Treg ratio as well as the NLR. (c) Zinc modulates the activation of DCs, the expression of
cytokines, and their antigen-presenting capacity. During zinc deficiency, antigen presentation is enhanced, whereas the tolerogenic
phenotype is reduced, supporting the pathogenesis of AIDs. (d) Zinc deficiency increases the number and reactivity of myeloid cells.
Intracellular zinc impacts central signaling pathways, and zinc deficiency induces increased cytokine production. Furthermore, the
recruitment of myeloid cells to tissues is enhanced. All of these factors can promote the development of AIDs. Abbreviations: Ac,
acetylation; AG, antigen; AID, autoimmune disease; AP-1, activator protein 1; CCL20, chemokine (C-C motif ) ligand 20; CD, cluster
of differentiation; CREB, cAMP response element binding protein; CTLA-4, cytotoxic T lymphocyte–associated protein 4; DC,
dendritic cell; ERK, extracellular signal–regulated kinase; FoxP3, forkheadbox P3; GM-CSF, granulocyte-macrophage
colony–stimulating factor; HAT, histone acetyltransferase; IDO, indoleamine-2,3-dioxygenase; IFNβ, interferon beta; IFNR, IFN
receptor; IL, interleukin; IL-2R, IL-2 receptor; iNOS, inducible nitric oxide synthase; IRF3, interferon regulatory factor 3; IκB,
inhibitor of κB; JAK, Janus kinase; JNK, c-JUN N-terminal kinase; MHC, major histocompatibility complex; MKP, mitogen-activated
protein kinase phosphatase; mTOR, mechanistic target of rapamycin; NF-κB, nuclear factor kappa light-chain enhancer of activated
B cells; NFAT, nuclear factor of activated T cells; NLR, neutrophil-to-lymphocyte ratio; P, phosphorylation; PD-L, programmed death
ligand; PDE, phosphodiesterase; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; RORc, RAR-related orphan receptor C;
Sirt-1, Sirtuin-1; STAT, signal transducer and activator of transcription; TCR, T cell receptor; TGF, transforming growth factor; Th,
T helper cell; TLR, Toll-like receptor; TNF, tumor necrosis factor; TRAM, TRIF-related adaptor molecule; Treg, regulatory T cell;
TRIF, TIR domain–containing adaptor–inducing IFNβ; Zip, Zrt- and Irt-like protein.

were observed. Other studies did not reveal any effects of zinc supplementation regarding AIDs
(171, 209, 222). In view of the usage of different zinc concentrations, different zinc compounds,
and different durations during supplementation and the varying results, the optimal dose of
supplementation needs to be defined. In a very recent study investigating the effects of zinc
supplementation (0.25 mg/kg, oral gavage, 8 weeks) on T1DM in rats, zinc prevented diabetic os-
teoporosis; this result probably involves zinc’s hypoglycemic effects, the inhibition of lipogenesis,
and improved bone marrow metabolism (204). Decreased serum zinc and elevated cerebrospinal
fluid zinc levels were found in MS patients. Results from zinc-deficient PBMC cultures sug-
gest that zinc deficiency augments Th17 polarization while Treg cell functions are lost, which
may relate to MS symptoms (140). In a murine model of MS, daily zinc supplementation (0.3
mg/kg body weight) starting 2 days before disease induction attenuated disease symptoms and
reestablished self-tolerance by decreasing the activation of effector T cells while increasing the
number and function of Treg cells (216, 226, 263). In vitro analyses revealed that adding zinc
(150 μM zinc aspartate for 3 days) to stimulated human T cells reduced expression of a variety of
AID-related genes, including those encoding activation-induced IL-2, IFNγ, TNFα (Th1), IL-4,
IL-5, IL-13 (Th2), IL-17, and GM-CSF (Th17) (226).

7. CAUSALITY BETWEEN ZINC DEFICIENCY AND DISEASES:
WHAT WE NEED TO ADDRESS

As discussed above, zinc deficiency has been observed in association with many diseases and in-
flammatory reactions (175, 263).However, inmultiple cases, including anemia, allergies, and AIDs,
whether zinc deficiency is involved in disease etiology or a consequence of the disease is not clear.

An urgently needed prerequisite to advance our knowledge regarding the causality of zinc de-
ficiency and other diseases is a valid biomarker to assess a person’s zinc status. One major obstacle
in this regard is the strong, but not well-defined, effect of inflammation on serum zinc levels. It
has been suggested that serum zinc levels should be normalized to the inflammatory state of an
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individual; however, how this should be accomplished has not been defined. Different methods
and calculations have been suggested (151, 175), but the lack of agreement between the adjustment
methods suggests that further investigation is needed. Furthermore, it needs to be defined which
of the various inflammatory markers is best suited for normalization of serum zinc levels. The
main inflammatory markers for allergy differ from those defining sepsis or chronic inflammatory
autoimmune diseases. Finally, a vicious circle may form since zinc deficiency may augment the
proinflammatory response. Thus, disease-specific adjustment methods may be needed.

For certain diseases, assessing serum zinc levels may even be strongly misleading. Leukemia
and tumor cells were often found to accumulate zinc, leaving the patient with serum hypozincemia
(254). Tissue zinc derived from RA patients was higher whereas serum zinc was lower relative to
healthy controls (263). In addition, data on changes in the zinc content of zinc-rich organs (e.g.,
brain and bone marrow) in cases of altered zinc supply are only beginning to emerge (43, 46, 273).
A better understanding of local versus systemic changes in zinc homeostasis may form the basis
for deeper investigations into the causal relation between zinc deficiency and disease.

In animal models, specific diseases can be modeled and are actively induced. This approach has
the advantage that the effects of preexisting zinc deficiency and of zinc reconstitution can be clearly
investigated. In most cases, preexisting zinc deficiency augments inflammatory disease, while pro-
phylactic zinc supplementation reduces disease severity or even prevents the development of dis-
ease. Clinical studies on zinc supplementation, for example, before planned major surgery, reveal
similar benefits for humans but are rare (2, 67). Since clinical human studies on the effects of
preexisting zinc deficiency are hardly feasible, so far our knowledge and hypotheses have been
based on the results of animal models and on data from cell culture studies. One way to address
this issue may be retrospective analyses of large quantities of serum zinc data. Large numbers may
overcome the problem of the inaccuracy of serum zinc as a marker for zinc status.However, serum
zinc measures are not yet included in routine laboratory tests for humans. Thus, physicians need
to regularly assess the zinc status of their patients to enable retrospective studies. Such knowl-
edge should help relate preexisting zinc deficiencies with the development and severity of certain
diseases.

8. SUMMARY AND CONCLUSION

Alterations in the immune response due to preexisting zinc deficiency increase susceptibility to
infections, and zinc deficiency has been found in all kinds of diseases, although cause and con-
sequences need to be more clearly defined. While a transient decrease in serum zinc during the
APR appears to be necessary to activate proinflammatory immune cells and to mount an efficient
immune response, normalization of zinc homeostasis seems to be essential for anti-inflammatory
and antiredox reactions as well as for the recovery of immune cell numbers, including an increase
in Treg cells. If serum hypozincemia is augmented or prolonged, severe consequences, including
tissue damage and severe progression of inflammatory diseases, can be expected. Thus, even mild
zinc deficiencies should be addressed, and supplementation should be considered for patients at
risk of zinc deficiencies. This advice is strongly supported by positive results from supplemen-
tation studies, revealing great benefits regarding various infectious diseases, certain autoimmune
conditions, allergies, and certain cancers.

Although we have seen great progress in understanding zinc’s role in the immune system, there
aremany open questions. Future research should focus on the development of a reliable biomarker
for zinc status. Significant future challenges are to define zinc’s interactionmore closely with other
nutritional elements and to include that information in the development of efficient treatment
strategies.
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