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Abstract

Item response theory (IRT) is a modeling approach that links responses to
test items with underlying latent constructs through formalized statistical
models. This article focuses on how IRT can be used to advance science and
practice in organizations. We describe established applications of IRT as a
scale development tool and new applications of IRT as a research and theory
testing tool that enables organizational researchers to improve their under-
standing of workers and organizations. We focus on IRT models and their
application in four key research and practice areas: testing, questionnaire re-
sponding, construct validation, and measurement equivalence of scores. In
so doing, we highlight how novel developments in IRT such as explanatory
IRT,multidimensional IRT, random itemmodels, andmore complexmodels
of response processes such as ideal point models and tree models can poten-
tially advance existing science and practice in these areas. As a starting point
for readers interested in learning IRT and applying recent developments in
IRT in their research, we provide concrete examples with data and R code.
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INTRODUCTION

Measurement is foundational to science, but it is frequently a challenging endeavor that leads
to controversy. One idea that has gained traction in many scientific disciplines is to advance the
scientific discourse on measurement through the use of formal mathematical or statistical mod-
els (Mitchell et al. 2017, Tal 2017). Models make assumptions around measurement explicit and
testable. Frequently, models also have value for practice because they can help in retrieving vital
information from complex response patterns. In the social sciences, model-based views of mea-
surement are frequently closely associated with the term item response theory [IRT (Borsboom
2006, De Boeck &Wilson 2004, Drasgow &Hulin 1990, Kubinger 2009,McClimans et al. 2017,
Wilson et al. 2008)].

The focus of the current article is on describing what IRT is and how it can be used to advance
science and practice in organizations. We start by discussing the central role of measurement in
both science and practice and then move on and review some of the core ideas and motivations
behind using IRT models. We discuss the more traditional view of IRT as a scale development
tool, and the more recent perspective that IRT models have broader applications and can serve as
useful tools for theory testing. Specifically, IRT can be used to improve researchers’ understand-
ing of human behavior in different areas of organizational research by modeling how respondents
react to variations of items or behavioral scenarios and by testing theories of the response process.
The remainder of the article then describes specific IRT models and their application in four key
research and practice areas: testing, questionnaire responding, construct validation, and measure-
ment equivalence of scores. Our review of IRT in these areas is not intended to be exhaustive.
Instead, it focuses on highlighting IRT models, research, and perspectives that have the potential
to advance research and practice in these areas.

MEASUREMENT, SCIENCE, AND PRACTICE

Measurement is an integral part of most scientific disciplines and typically describes some regular
way of linking theoretical and abstract constructs or variables to empirical observations (Michell
2015, Tal 2017). In daily life, many measurement tasks such as measuring the volume of gas in a
car’s tank,measuring time using amodern quartz watch, ormeasuring temperature using amodern
digital thermometer are perceived as routine activities. Few readers would question the accuracy
of these measurements, and some readers may similarly view measurement as a pedestrian activity
in science. However, measurement issues are frequently at the center of scientific advancement.
Many scientific discourses focus on questions surrounding the appropriateness of measurement
instruments as representations of theoretical quantities, discrepancies between different measure-
ment instruments for the same theoretical construct, or the accuracy and replicability of measure-
ments. In line with these observations, it is not surprising that major scientific steps forward are
frequently closely tied to innovative new ways of performing measurement. As a motivation for
readers to consider the value of studying measurement (and IRT methods later in this article), we
provide two examples of how measurement innovations can advance science from other research
fields.

As a first example, consider navigation at sea in the eighteenth century ( Johnston et al. 2015).
Accurate navigation at sea was only partly possible until the mid-1750s because navigators were
unable to determine longitude on the equator accurately. This situation changed through major
innovations in watchmaking in the 1750s and the resulting availability of highly accurate watches
that could be used to measure time on ships—so-called marine chronometers. To calculate longi-
tude, navigators could use marine chronometers to compare the local time (on the basis of known
positions of stars on the horizon) with a referent time (on the chronometer) at a known point
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(typically the observatory in Greenwich). These developments accelerated discoveries and global
trade over the next decades.

As another example, consider the measurements that ultimately led to the wide acceptance of
Albert Einstein’s theory of general relativity (Coles 2019). Einstein published his general theory
of relativity in 1915, but the theory was only widely accepted when astronomer Arthur Stanley
Eddington realized that Einstein’s theory predicted a different effect of gravity on light than Isaac
Newton’s theory of gravity. Eddington reasoned that the theories could be tested against each
other by recording the deflection of light by the gravitational field of a star (the sun) during a total
solar eclipse. He started two expeditions to measure this deflection by recording the position of
stars on photographic plates during a total solar eclipse in 1919. These measurements ultimately
supported Einstein’s theory. Today, Einstein’s theory is, for instance, crucial for the functioning of
the global positioning system [GPS (Ashby 2003)].

The two examples we described demonstrate why measurement is frequently critically impor-
tant in science and also in using science in practice. Admittedly, the two cases may seem somewhat
removed from the way measurement is frequently done in organizational research.Organizational
research typically focuses on measuring behaviors, attitudes, feelings, or observations of individu-
als, teams, or organizations.Themeasurement routine most commonly involves collecting a series
of responses to questions (or items) and simply aggregating these responses. The rationale for ag-
gregating responses in this manner is typically not explicitly discussed but is commonly based on
classical test theory. Classical test theory (Gulliksen 1950) makes the assumption that observa-
tions from a set of similar items or observations consist of a linear effect of a typically not more
closely defined latent variable or process and random error. As the error in each item is random,
the expectation of classical test theory is that aggregating a series of items will lead to greater
measurement precision.

In contrast to the relatively simple view of measurement in classical test theory, the measure-
ments of the longitude of ships in the first example includes an elaborate model and knowledge on
the precise position of the stars, the rotation of the earth, and the accuracy of building precise ma-
rine chronometers. As with the constructs measured in organizational research, longitude is not
directly observable for the human eye and can only indirectly be inferred from the configuration
of different measurements. However, the accuracy of the approach can be checked indirectly by
comparing the relative position of a series of measurements.

Eddington’s approach for testing Einstein’s theory also includes a relatively complex underlying
model. As with the measurement of longitude, the measurement of gravitational force through the
light that is reflected by stars during a solar eclipse is quite indirect. The gravitational force itself
is, of course, neither visible to the human eye nor can it be directly measured. The presence of the
gravitational force can only be inferred indirectly by recording the exact positions of the stars on
the photographic plates. However, as with the approach for longitude measurement, surprisingly
complex physical processes also can be understood indirectly by carefully recording the exact
positions of stars.

What can organizational researchers potentially learn from the two examples we described?
One insight is that patterns of measurements about a phenomenon can enable researchers to build
and test an elaborate model about a process even when these measurements are relatively indirect.
Carefully studying configurations or positions of objects in space enabled researchers to measure
the underlying physical properties that led to these configurations. The condition for this to hap-
pen, however, is an elaborate and accurate theory. Although organizational research may never
develop measurement theories that are as precise as measurement in physics and more specifically
in the two described examples, the two examples nevertheless demonstrate the value of gaining
additional insights about the nature of an underlying phenomenon.
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A second insight is that a complex measurement model may be useful in practice. Longitude
navigation enabled a new age of discovery and global trade (but also colonialism), and the general
theory of relativity ultimately made GPS navigation possible.

A third insight that is closely related to the two earlier insights is that applying a simplistic
model that ignores the nature of the underlying processes has no guarantee of being useful at all.
Imagine that a researcher attempts to study the physical property of longitude or the gravitational
force of the sun by simply aggregating light intensity measurements for different stars.

WHAT IS ITEM RESPONSE THEORY?

IRT models are by far not as elaborate as the measurement examples from other research areas
we discussed in the previous section. Yet, in many cases, modern IRT approaches can still provide
insights that can go beyond more simple measurement approaches and help in understanding the
underlying latent processes. The core motivation behind this article is, therefore, to describe how,
why, and when IRT can advance measurement and especially theory and practice in organizations
beyond simplistic approaches such as classical test theory. We seek to present the material in a
nontechnical way and describe the practical and theoretical ideas behind the use of IRT. In a
nutshell, IRT can, in many cases, be to measurement in organizational research what solar eclipse
measurement is in the physical sciences: an important measurement device and theory testing tool.

At its core, IRT can be understood as a modeling approach that aims to describe relation-
ships between responses to test items and underlying latent constructs using formalized statistical
models. In the broadest sense, IRT is a framework that enables researchers to test theories about
configurations of item responses in a somewhat similar way to how Eddington used configurations
of stars to test Einstein and Newton’s theories. As with most theories that describe mechanisms or
relationships, IRT can frequently be useful for research and practice. However, the specific bene-
fits of IRT vary somewhat depending on the IRT approach that is employed, the research context,
and the philosophical perspective of the researcher.

Basic Item Response Theory Models

Historically, IRT started as a formalized mathematical model for ability or skill measurement in
testing (Bock 1997,Drasgow &Hulin 1990,Hambleton et al. 1991, Lord &Novick 1968, van der
Linden &Hambleton 1997). The simplest IRTmodel for this purpose is the 1PL or Rasch model
(named after the Danish mathematician Georg Rasch). This model describes the probability Pi
that a respondent with a given ability or characteristic theta (θ) solves a given dichotomous (cor-
rect/incorrect) item i. This probability is a function of the item easiness bi, and follows a logistic
function with e [approximately equal to 2.718 and accessible by typing exp(1) in most statistics
programs] as the logarithmic constant, Pi(θ) = 1

1+e−(bi+θ) when the parameters are in the modern
intercept-slope metric that is now most commonly used.1 The model can be fitted to a set of item
responses by an optimization algorithm.This procedure yields both the θ and bi estimates that are
easy to interpret because they are placed on a common continuum. For instance, a person with an
ability of θ = 1 that works on an item with an easiness of bi = −2 has a probability to solve the

1An alternative for writing the model is the more traditional Pi (θ) = 1
1+e−D(θ−bi ) . This version of the model

also includes a scaling factor D that is 1 in the original version of the model but frequently also 1.7 in mod-
ern applications. 1.7 transforms the θ and bi estimates such that the metric of the estimates approximately
corresponds to a normal distribution. In this parametrization of the model, the easiness parameters become
difficulty parameters (i.e., the higher the values the more difficult the item is).
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items correctly of 1
1+e−(−2+1) = 0.27, or approximately 27%. In practice, the 1PL/Rasch model is

similar to classical test theory in the sense that the items do not have different weights and thus the
estimated θ values are identical to the simple sum score of all items from classical test theory. On
the surface, the model does not add anything new in the way test scores are estimated. However,
the model still has several theoretical advantages for scaling and test development.

One important advantage of the 1PL and other IRT models over classical test theory ap-
proaches is that the fitting of a logistic function also solves an important problem with measure-
ment error in test scores. In classical test theory,measurement error is construed as a characteristic
of the test—the so-called test reliability. Test reliability is typically defined as the squared correla-
tion between test scores and the true underlying characteristics, or alternatively, as the correlation
between two perfectly parallel tests. Test reliability is a property of samples and not a property of
persons. In research that focuses on samples, this is rarely a problem and test reliability provides
useful information. However, when test scores of individuals are of interest as with in most appli-
cations of IRT in practice (e.g., cognitive ability testing of applicants), classical test theory needs
to resort to a makeshift assumption. The classic test theory framework then simply assumes that
the amount of measurement error at the level of the sample directly generalizes to the test score of
each respondent. In other words, it assumes that the amount of measurement error is the same for
each respondent. IRT overcomes this quite problematic idea and enables researchers to estimate
a specific standard error (SEθ) for each response pattern. This standard error varies across the
continuum of ability scores, depending on the difficulties of the items included in the test. One
reason is that items provide the most information about the true underlying ability when the item
difficulty is close to the θ of the respondent. Accordingly, a test with few items close to the ability
of the respondent provides less measurement accuracy than a test with many items around the re-
spondent’s ability level. This property of test scores in IRT is actually what one would intuitively
assume to be the case. Most readers may be familiar with the phenomenon of being confronted
with a test that is way too easy for them so that the test does not provide much information beyond
showing that the ability level of the respondent is obviously higher than most of the test items.
Another reason is that response patterns that are inconsistent (e.g., high cognitive ability individ-
ual getting many simple items incorrect but hard items correct) have low measurement accuracy
as opposed to response patterns that are consistent (e.g., high cognitive ability individual getting
some hard items correct and most simple items correct). IRT still makes the estimation of a test
reliability parameter possible even though such a parameter is traditionally not directly a part of
the IRT framework. In the IRT context, the reliability is simply the average amount of measure-
ment error in a sample of respondents. The most intuitive form of this test reliability—empirical
IRT reliability—therefore simply relies on the average of the standard errors of the persons in a
sample of respondents (Kim 2012, Lang 2014).

Another advantage of the 1PL model is that it provides a testing framework for checking
whether responses to the items follow the logistic curve that the model suggests.When this is the
case, a couple of desirable properties of the model apply. For instance, the model assumes that the
logistic curve has the same slope for all items in the test. As a result of this property, Rasch himself
used the term specific objectivity—the item parameters and the ability parameters become inde-
pendent of each other. For instance, measuring two individuals with another set of items should
lead to the same θ parameters for the individuals. Although these properties are desirable, it can
be difficult in practice to find test items that fulfill the a priori properties of the model.

A frequently used alternative to the 1PL model is the 2PL model (Birnbaum 1968,Hambleton
et al. 1991). The 2PL adds a slope parameter for each item ai in addition to the easiness parameter,
Pi(θ) = 1

1+e−(bi+aiθ) . The introduction of this slope parameter makes the model far more flexible and
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Table 1 Item parameter estimates from a basic item response theory analysis using the 2PL
model and a dataset on the Law School Admission Test from Bock & Lieberman (1970)a

ai bi
Item 1 0.99 1.86
Item 2 0.81 0.81
Item 3 1.71 1.80
Item 4 0.77 0.49
Item 5 0.74 1.85

aEmpirical reliability is 0.45, ai is the slope parameter, and bi indicates item easiness.

Table 2 Model fit statistics from a basic item response theory analysis using the 2PL model
and a dataset on the Law School Admission Test from Bock & Lieberman (1970)

Fit statistic 2PL model
Akaike information criterion 5,337.61
Akaike information criterion corrected 5,337.83
Sample-size adjusted Bayesian information criterion 5,354.93
Hannan-Quinn criterion 5,356.26
Bayesian information criterion 5,386.69
loglikelihood −2,658.81

allows it to differentiate between items that are more successful in capturing the characteristic of
interest and those that are less successful. The ai is conceptually similar to a factor loading in the
context of exploratory or confirmatory factor analysis. The person parameter estimates (θ) are
thus not identical to sum scores and instead present a weighted average of the item responses.
A disadvantage of the 2PL model is the fact that it loses some of the desirable properties of the
1PL surrounding specific objectivity (see Irtel 1995 for a discussion). However, the model still
preservesmany of the core advantages of IRT such as placing both items and persons on a common
continuum.

Tables 1, 2, and 3 and Figure 1 illustrate the described mechanisms of IRT using a classic
example taken fromBock&Lieberman (1970).Tables 1,2, and 3 report item parameter estimates,
typical model fit statistics (De Boeck et al. 2011, Sen&Bradshaw 2017), and response patterns with
ability and measurement error estimates, respectively. The example model is a 2PL analysis, and
the data include a small set of items from a version of the Law School AdmissionTest.The analyses

Table 3 Six response patterns with the corresponding θ and SEθ estimates from a basic item
response theory analysis using the 2PL model and a dataset on the Law School Admission
Test from Bock & Lieberman (1970)

Person Item 1 Item 2 Item 3 Item 4 Item 5 θ SEθ

Person A 0 0 1 0 0 −1.095 0.665
Person B 0 1 0 0 1 −1.046 0.665
Person C 0 1 1 1 0 −0.243 0.705
Person D 1 0 0 1 1 −0.745 0.692
Person E 1 1 0 0 0 −0.934 0.668
Person F 1 1 1 0 1 0.265 0.665
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Figure 1

Results from a basic item response theory (IRT) analysis of a dataset on the Law School Admission Test
reported in Bock & Lieberman (1970). Panel a shows the item characteristic curves from the model. These
curves describe the probability (P) of a correct response for each item as a function of the ability of the
person (θ). Panel b illustrates the amount of information (I) each of the items provides for different ability
levels. Panel c plots the test information curve. This curve is a direct result of the amount of information
provided by the items shown in b. Finally, panel d illustrates the amount of measurement error (standard
error, SE) for ability scores for the test at different ability levels. This curve is a key difference between IRT
and classical test theory (for the latter, the curve would be a straight line). The graph was originally
generated using the mirt package (Chalmers 2012).

were conducted in the freely available open source environment R using the mirt package.2 mirt
(Chalmers 2012) is one of several available R packages for IRT analyses. Other software that can
conduct similar analyses such as the example in Figure 1 include the R packages ltm (Rizopoulos
2006), sirt (Robitzsch 2020), lme4 (Bates et al. 2015b,Doran et al. 2007), and lavaan (Rosseel 2012)
as well as commercial software such as Mplus (Muthén & Muthén 2015).

As shown in Figure 1a,b and in Table 1, the items vary in their slope/ai and easiness/bi pa-
rameters and thus yield different amounts of information across the ability continuum. As a result

2The Supplemental Appendix provide the code and output for running all examples in this article.
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and as illustrated in Figure 1c, the overall information that the test provides across the ability
continuum also varies. Figure 1d shows the consequences of the varying amounts of information
across the ability continuum for the standard error of test scores. The test in the example shows
the highest measurement precision slightly to the left of the ability continuum.

There are many other IRT models beyond the 1PL and 2PL (e.g., De Boeck et al. 2011, Tay
et al. 2015, van der Linden & Hambleton 1997). However, we have restricted our discussion at
this point to illustrating and explaining the basic mechanisms and rationales behind IRT as a
scale development tool using these basic models. Most other IRT models can be understood as
extensions of these models to accommodate specific purposes such as, for instance, polytomous
IRTmodels to accommodate ordinal (Likert-type) rating scales, partial-credit models to deal with
tests in which some answers are partly correct, or the 3PL model to account for guessing by
respondents.

APPLICATIONS OF ITEM RESPONSE THEORY
IN ORGANIZATIONAL RESEARCH

The remainder of this article is organized along practical applications of IRT in four critical ar-
eas of organizational research: testing/assessment, questionnaire responding, construct validation,
and the group equivalence of scores. As we discuss these key areas, we also introduce the different
views of IRT that are relevant for these areas: traditional views of IRT as a scale development
tool in large-scale testing and a more modern view of IRT as a set of theory testing tools about
measurement. The view of IRT as a theory testing tool also includes analytical frameworks such
as explanatory IRT and response-process IRT. Viewing IRT as a theory testing tool is also closely
linked to an alternative internal or psychometric view of validity that focuses validation on linking
item responses to latent attributes (e.g., Borsboom & Mellenbergh 2007, De Boeck & Wilson
2004, Embretson 1998,Wilson 2005) and contrasts with the traditional view of validity as a prop-
erty of tests with many different facets that requires a large nomological network of relationships
with other tests (Messick 1989a,b).

TESTING/ASSESSMENT

Practical: Item Response Theory as a Technical Tool to Improve Efficiency
in Large-Scale Testing

The advantages of IRT for scale development, which we discussed when we described the 1PL
and 2PL, may seem somewhat theoretical at first sight. However, these characteristics of IRT
models have significant practical advantages and have solved several issues that large-scale testing
programs faced since the start of the twentieth century. Large-scale testing programs are used in
educational assessment for evaluating ability in students or selecting applicants into educational
programs. Several large-scale testing programs have also been implemented in organizational con-
texts to select future employees or evaluate their progress in training. An early example is the US
Army Alpha, which assessed the ability and knowledge of soldiers in World War I (Yoakum &
Yerkes 1920).

For large-scale testing, classical test theory has two important limitations (Kolen & Brennan
2004, Lord 1980, Wainer et al. 2007, Weiss 1982). First, using classical test theory requires that
all respondents work on all items to make the overall scores easily comparable. Second, with
classical test theory, developing a different version of a test requires labor-intensive equivalence
research (e.g., present the two test forms to identical groups or let a group of respondents work
on both test forms in counterbalanced order). Both limitations can be overcome by IRT. IRT
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makes respondents who worked on different sets of items comparable because the item and ability
parameters can be brought to a common scale.

Many testing programs use this advantage of IRT to link different forms of a test through test
equating procedures. Test equating procedures (Bock et al. 1988, Kim & Cohen 1998, Kolen &
Brennan 2004) only require that different forms of a test share some common linking items. It is
then possible to bring the metric of the different versions of the test to the same scale even when
the samples to which the tests were administered differ in their ability level.

One form of flexible item presentation is computerized adaptive testing (Oswald et al. 2015,
Thissen et al. 2007, Weiss 2004). In an adaptive test, the item difficulty is tailored to the re-
spondent. Respondents typically start with an item of average difficulty and the next item is then
adaptively selected on the basis of the result of the first item (i.e., correct or incorrect). The idea
of an adaptive test was a part of the first intelligence tests developed in 1905 by Binet & Simon
(1916) and adapted and further developed by Terman (1916). These tests included several versions
of scales with varying difficulty and were administered by a psychologist in one-on-one sessions.
The psychologist would choose an easier or more difficult second part of a scale depending on the
performance of the respondent in an initial scale. The idea of adaptive testing was subsequently
abandoned for a considerable time, mainly because it was not practically feasible for large-scale
testing with large numbers of respondents but also because of the difficulties in making scores
comparable and conducting scale development without an analytical framework (Yerkes 1917).
The development of IRT provided the framework that made adaptive testing feasible. Modern
computerized adaptive testing developed from the 1970s (Weiss 2004). In modern adaptive
testing, the items are first all administered to one or more reference samples to estimate item
parameters for all items (ai and possibly bi). These item parameters are then subsequently added
to an item bank. The item bank is then used in the computerized adaptive test to estimate ability
after the respondent worked on each item. After a correct answer, a more difficult item that is
closest to the new ability estimate for the respondent is selected by the computer program. After
an incorrect answer, an easier item that is closest to the new ability estimate of the respondent
is chosen. The computer program also estimates the measurement error of the ability estimate
after each answer by the respondent. The adaptive process of selecting and administering items
typically continues until a specific measurement precision is reached.With modern computerized
adaptive tests, the length of the test thus varies across respondents and is affected by several
factors such as the ability of the respondent, the availability of items at a particular point of the
ability continuum, and the consistency of the item responses by the respondent. Not all modern
computer-based large-scale tests are fully adaptive. However, many of these tests include adaptive
elements and, for instance, start with an initial set of items and then select an easier or more
difficult set of items in a second step. The application of IRT-based adaptive testing can also
provide a way to enhance test security (i.e., lower item exposure and reduce overlaps between
applicants); this is particularly important in unproctored Internet testing, which is becoming
more popular among organizations due to convenience and cost-savings (Lievens & Burke
2011).

Item Response Theory as a Tool for Scale Development for Measurement
Purists and Statisticians

In addition to the use of IRT in large-scale testing programs, IRT has also been advocated by
measurement purists and statisticians to improve tests with a fixed set of items. The motivation
in these applications is frequently to improve scientific practice, and the practical advantages for
flexible test administration and scaling are less important.
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For instance, organizational researchers have conducted IRT analyses of scales developed with-
out IRT to examine to what degree the responses on the scales fit the IRT assumptions and
to provide recommendations for future improvements of the scales (DeSimone & James 2015,
Hernández et al. 2004, Zickar 1998). One argument for the broader scientific use of IRT is also
that IRT guarantees “pure” unidimensional test scores. Measures developed on the basis of uni-
dimensional IRT models, for instance, do not suffer from the common issues with estimating test
reliability that result from measures that do not have a clear unidimensional structure (Drasgow
&Hulin 1990, Revelle & Zinbarg 2009, Sijtsma 2009). Although the use of IRT to improve scien-
tific practice has gained some traction within the community of organizational researchers (Foster
et al. 2017), its use as a scale development tool may be more widely established in other research
domains such as, for instance, medical outcome assessment (McHorney & Monahan 2004, Reeve
et al. 2007, Smith & Burns 2014) or screening in clinical psychology (Bliese et al. 2008).

Critical readers may also note that the applications of IRT that we reviewed in this section
offer clear advantages but seem more like a nuisance than a fundamental paradigm shift. Applying
a 1PL to a scale of homogeneous items yields a score that is perfectly correlated with a simple sum
score, and the item difficulty parameters from the 1PL analysis are also very similar to parameters
from test analysis using classical test theory. Simply using IRT thus does not necessarily allow the
organizational researcher to gain important theoretical insights into the nature of the underly-
ing mechanisms. However, IRT as a scientific framework also has important potential advantages
beyond its use as a scale development tool that many organizational researchers may not be fully
aware of. In the next section, we describe how researchers can gain new insights from IRT that
are interesting, helpful, and go beyond what is available from classical test theory approaches.

Item Response Theory as a Tool to Test Theories About Test Items:
Explanatory Item Response Modeling

In our earlier definition of IRT in the section titledWhat Is Item Response Theory?, we described
IRT as a modeling approach that aims to describe relationships between responses to test items
and underlying latent constructs using formalized statistical models. IRT is thus fundamentally
about modeling and mapping responses of the latent trait(s) to the observed responses. In the scale
development examples we discussed in the previous section, each item receives its own difficulty
parameter estimate. Although this approach is useful for maximizing the information that can be
gained from an item, especially in a flexible model such as the 2PL, these models do not provide
insights into why a particular item is difficult or easy for respondents or discover relationships that
are not easily apparent from descriptive examinations of the data. In other words, these models
do not provide insights into the drivers behind the responses. IRT approaches that use IRT as
a theory testing tool seek to open up this black box and utilize IRT as a theory testing tool to
understand the drivers of human responses to stimuli or uncover processes behind responses that
are not easily apparent through descriptive examinations of the data.

The first researcher who proposed that IRT can be useful to test theory was possibly Austrian
Gerhard Fischer (Fischer 1973, Hornke 2002, van der Linden & Hambleton 1997). Fischer
suggested the use of item features (e.g., item generation principle, similarity of content, wording,
style) as predictors of test responses instead of a specific item difficulty parameter for each item.
The approach can be illustrated by thinking of the traditional 1PL/Rasch model as a logistic
regression model with dummy codes for items and persons as predictors as well as a dichotomous
dependent variable. Readers familiar with regression analysis will likely agree that such a model
is not a very parsimonious model. Fischer suggested the linear logistic test model (LLTM) as
an alternative. In the LLTM, the dummy codes for items are exchanged with predictors of item
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characteristics; statistically, this also reduces the number of dummy codes and makes the model
more parsimonious. For instance, a researcher may use a set of ethical dilemmas about behavior
in organizations and may systematically vary the characteristics of these dilemmas (e.g., young
versus old person in the scenario, presence of observers or not) to study when respondents decide
to violate organizational policies. The characteristics of the dilemmas will probably not explain
all of the differences in the difficulty of the scenarios and thus an LLTM will typically provide
a less good fit to the data than a 1PL/Rasch model. However, the use of an LLTM can provide
useful insights in this case because through the use of item features as predictors it explains
why respondents react to the items in a certain way. An LLTM approach has many parallels
to a repeated-measures experiment, and thus it is frequently feasible to interpret the estimates
causally. Within the LLTM framework, it is possible to vary certain item characteristics between
persons while ensuring that there are items common across conditions so that all items and ability
estimates can be placed on a common scale. For instance, between-person manipulations can be
useful when a researcher suspects that order effects may distort estimates.

The original LLTM had several limitations, including the fact that the approach was not ca-
pable of incorporating unexplained variance in the difficulty of the item parameters. The LLTM
framework was therefore rarely used in practice until the early 2000s when a group of researchers
showed how software originally designed to estimate multilevel models can be used to estimate
the LLTM and several extensions of it (De Boeck &Wilson 2004, Embretson 1998,Wilson 2005,
Wilson et al. 2008). These insights led to the development of an analytical framework that is today
most widely known as explanatory item response modeling. Within the explanatory framework,
researchers can fit models such as the LLTM plus error (LLTMe)—a model that accounts for
remaining variation in the item difficulties after predictors are added, the multilevel extensions of
IRT models, or models that add person predictors (e.g., De Boeck et al. 2011, Tay et al. 2016)—
so-called latent regression IRTmodels. The use of software to estimate multilevel models allowed
new flexibility by allowing multiple dimensions, overlapping dimensions, and random items. To
understand the concept of random items (De Boeck 2008), it is frequently helpful to reconsider
our earlier example of a basic IRTmodel as a logistic regressionmodel with dummy codes for both
items and persons. This example is accurate for some early forms of IRT models. More modern
versions of IRTmodels additionally assume that the person parameters are sampled from a normal
distribution. This assumption adds additional model assumptions but also makes the estimation
of the model simpler and faster. Random items in the explanatory IRT framework additionally
assume that the items come from a random distribution and thereby make models even simpler
(but also adding the additional assumption that the items are sampled from a normal distribution).

The explanatory IRT approach includes ideas that are in line with some recent development
in selection and assessment (Lievens & Sackett 2017, Sackett et al. 2017). These researchers have
issued calls to go beyond the typical emphasis on researching selection and measurement proce-
dures as holistic entities to examine their inner workings (i.e., a modular approach to selection).
A broader use of explanatory IRT could be one way to accomplish such a novel approach to test
development, theory development, and theory validation.

Example of an Explanatory Item Response Theory Analysis

Suppose an organizational researcher has argued that a new construct of sensitive thinking is im-
portant in social situations and also predicts leadership of virtual teams.The researcher also argues
that the construct includes a total of three suboperations: (a) detecting sensitive situations, (b) ap-
plying sensitive reasoning, and (c) balancing emotions and thoughts. The researcher also reasons
that suboperations b (applying sensitive reasoning) and c (balancing emotions and thoughts) would
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Table 4 Model fits for a 1PL model, an explanatory item response theory (IRT) analysis using the linear logistic test
model plus error (LLTMe), and a multidimensional (bifactor) model in the same dataset

Fit statistic 1PL LLTMe Multidimensional
Akaike information criterion 14,510.96 14,628.24 14,491.51
Akaike information criterion corrected 14,513.70 14,628.54 14,516.13
Sample-size adjusted Bayesian information criterion 14,536,97 14,636.57 14,566.43
Hannan-Quinn criterion 14,552.30 14,641.48 14,610.59
Bayesian information criterion 14,616.33 14,661.96 14,794.97
loglikelihood −7,230.48 −7,306.12 −7,173.76

be easier when the item includes a hypothetical social situation with a colleague than when the
item is a social situation with a follower. To study sensitive thinking, the researcher decides that
he/she wants to develop a new test that measures sensitive thinking using hypothetical scenar-
ios. Each scenario will include a couple of response options and one of the options is the correct
answer.

In the traditional validity framework, the researcher would develop items, and then use
classical test theory or a basic IRT model such as the 1PL/Rasch model to study the properties of
the scale. In the next step, the researcher would use the items to predict leadership outcomes in
virtual teams. In contrast, developing a measure using an explanatory IRT framework by varying
core elements of the new construct and examining whether item responses reflect features of the
hypothetical scenarios allow the researcher to gain insights about the mechanisms underlying the
test items. Table 4 provides model fit statistics for both analyses. The first column of Table 5
provides the easiness parameter estimates from the simple 1PL/Rasch model. As Table 5 shows,
the 1PL analysis provides the expected item difficulties for each item. However, it is difficult
to see a pattern in these estimated difficulties. In contrast, Table 6 shows the estimates for the
explanatory LLTMe analysis. The LLTMe analysis provides important additional insights. As
expected, the suboperations contribute to the difficulty of the item. Furthermore, the second
(applying sensitive reasoning) and third (balancing emotions and thoughts) suboperations are
indeed relatively easier when the scenario is with a colleague instead of a follower. The model fit
information in Table 4 also reveals that the LLTMe provides a slightly less good fit compared
to the 1PL model as indicated by the smaller values of the fit criteria. The reason is that the
LLTMe is a simpler model because the random item parameters are not technically a part of the
model. A caveat with model comparisons is that the two models are not nested and represent two
different ways to think about test items. The important take-away message is that the explanatory
approach provides important insights into how the items function psychologically.

Multidimensional Item Response Theory

Another development that we highlight in this section on IRT in testing is multidimensional
IRT (Ackerman 1989, De Boeck et al. 2011, De Boeck & Wilson 2004, Reckase 2009). Most
IRT approaches in practice are still unidimensional because unidimensional models are familiar
to most assessment practitioners and can easily be interpreted. Multidimensional IRT models, in
contrast, are relatively complex to estimate. However, the availability of faster computers, new
optimization procedures, and more efficient estimation (Bates et al. 2015b, Cai 2010) have made
the use of multidimensional IRT much more readily available for researchers.

One important advantage of multidimensional IRT is that the approach can deal with tests with
a complex dimensional structure. It is quite common that test items load on a main dimension and
additionally on a narrower side dimension and thus violate the assumptions of unidimensionality
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Table 5 Item parameter estimates for a 1PL model and a multidimensional (bifactor) model
fitted on the same dataa

1PL Multidimensional model
Item bi a1i a2i a3i a4i bi
Item 1 −0.25 0.55 0.11 — — −0.24
Item 2 −0.44 0.99 −0.03 — — −0.47
Item 3 0.22 1.18 0.64 — — 0.27
Item 4 −0.29 0.29 0.21 — — −0.27
Item 5 0.18 1.04 — −0.65 — 0.21
Item 6 0.03 1.12 — 0.23 — 0.04
Item 7 0.81 0.94 — 0.45 — 0.88
Item 8 0.06 0.77 — 0.57 — 0.07
Item 9 0.45 0.43 — — 0.20 0.43
Item 10 0.51 0.59 — — 0.43 0.51
Item 11 0.24 0.63 — — 0.40 0.25
Item 12 0.31 0.47 — — −0.24 0.30
Item 13 −0.64 0.67 0.30 — — −0.64
Item 14 −0.24 0.83 0.08 — — −0.25
Item 15 0.05 1.12 −0.29 — — 0.07
Item 16 0.03 0.65 0.60 — — 0.04
Item 17 1.40 0.44 — 0.26 — 1.34
Item 18 0.87 0.60 — 0.30 — 0.86
Item 19 1.04 0.49 — 0.06 — 0.99
Item 20 0.84 1.58 — 0.42 — 1.09
Item 21 1.91 0.98 — — 0.07 2.04
Item 22 2.01 0.61 — — 0.12 1.97
Item 23 1.64 0.91 — — 1.50 2.22
Item 24 1.69 0.98 — — −0.24 1.82

aa1 i, a2 i, a3 i, and a4 i are slope parameters; bi indicates item easiness.

Table 6 Item parameter estimates for an LLTMe (linear logistic test model plus error)

Parameter Estimate SE z
Fixed effects
Sub 0 (detecting sensitive situations) −0.302 0.136 −2.215∗

Sub 1 (applying sensitive reasoning) 0.141 0.085 1.661
Sub 2 (balancing emotions and thoughts) 0.464 0.185 2.511∗

Context 1 (colleague) −0.003 0.209 −0.013
Sub 1 × context 1 (colleague) 0.863 0.392 2.199∗

Sub 2 × context 1 (colleague) 1.193 0.227 5.264∗∗

Random effects variances
θ (person) 0.518
Item 0.059

∗p < 0.05; ∗∗p < 0.01.
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that unidimensional IRT models make. Unidimensionality, in practice, means that the items are
linked only by the common trait that they measure. However, within a single test, it is common
to find sets of items that share a common question format, context, or content area. In cases of
this type, it makes sense to estimate models that allow items to have two loadings—one loading
on the primary factor of the test and a second loading on a subfacet to reflect similar formats or
content in sets of items. There are several different approaches for implementing multidimen-
sional models. One popular model is the bifactor approach, which can be understood as a 2PL
model with two loadings and uncorrelated factors. The third column in Table 4 and the second
column inTable 5 provide such an analysis of the dataset we discussed in the previous section on
explanatory item response modeling using the mirt package. As shown in Table 5, the item diffi-
culties for the multidimensional model are very similar to the item difficulties in the first column
ofTable 5 for the 1PL that we already discussed earlier.However, each item has two loadings that
are freely estimated. In contrast to the LLTMe analysis in the previous section that assumes that
a unidimensional latent dimension exists that involves several different mechanisms or operations
that cause the difficulties, the multidimensional model is quite flexible but also attempts to explain
what causes the difficulty of the items. One important limitation of the bifactor approach is that
it can lead to counterintuitive findings in rare situations (van Rijn & Rijmen 2012). Specifically,
a response to an item can also lead to a lower score on the overall dimension. The reason is that
the model seeks to estimate all components as accurately as possible and thereby maximizes the
use of information. Scores on subdimensions can therefore affect scores on main dimensions and
vice versa. This sound methodological idea can sometimes go against the intuitive interpretation
of tests as competitions. An alternative noncompensatory model that addresses this situation is
the testlet model (Wainer et al. 2007). In the testlet model, the loadings of the items on the main
dimension and the subfacet for each item are set equal, and the variance of the subfacets is freely
estimated (typically set to 1 in the bifactor model). This model specification is less flexible but
ensures that counterintuitive findings cannot occur.

Another frequent application of multidimensional IRT is in the assessment of constructs that
have a natural multidimensional structure. For instance, IRT models can be used to model re-
sponses in construct-driven situational judgment tests (Lievens 2017, Lievens & Sackett 2017). A
variant of the multidimensional approach that has recently received attention in the literature is
cognitive skill modeling procedures (e.g., DINA models; see de la Torre 2009). These procedures
were originally developed in the context of educational research to better understand necessary
skills in complex items but have recently been used also to model the presence of knowledge in
situational judgment tests (Sorrel et al. 2016). Fundamentally, these models are multidimensional
models with discrete latent variables (i.e., the discrete latent variables capture whether a skill is
present or not).

QUESTIONNAIRE RESPONDING

In organizational research, questionnaires are perhaps the most widely used tool to capture in-
formation about workers and their workplaces (e.g., Podsakoff & Organ 1986, Rogelberg et al.
2008). Given that most questionnaire instruments are quantitatively scored (e.g., Likert-type re-
sponses, categorical responses), IRT can readily be used to study the response processes behind
questionnaire responses.

The use of IRT frequently has the potential to advance research using questionnaires in im-
portant ways. In the remainder of this section, we highlight some core principles and novel devel-
opments in using IRT for questionnaire responses.
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Item Response Theory as a Tool to Study the Assumptions of Rating Scales

IRT has historically been used for modeling test responses to deal with categorical right-wrong
scoring usingmodels such as the 1PLor 2PL.However, as wementioned in our initial discussion of
IRT, models that can deal with polytomous, ordered, or categorical responses are straightforward
extensions of basic dichotomous models. For models with multiple response categories, IRT has
distinct advantages because it allows researchers to systematically study assumptions about the
scaling of responses. For example, the Job Descriptive Index (Smith et al. 1969), a widely used
job satisfaction measure, has response options of “Yes,” “?,” and “No.” IRT modeling revealed
that individuals respond to the category “?” in incommensurate ways; a majority of individuals
do not use the “?” category, whereas others use it as a middle category between “Yes” and “No”
(Hernández et al. 2004).

Item Response Theory as a Tool to Test Theories: Response Process Item
Response Theory

The use of IRT for modeling survey questionnaires has increased in appeal over the course of the
last two decades because researchers have realized that IRT not only can serve measurement pur-
poses [e.g., ensuring measurement equivalence for between-group comparisons (Tay et al. 2015)]
but also can make substantive contributions. This perspective represents a shift from viewing
IRT methods merely as tools for substantive research to applying IRT methods to operational-
ize, detect, and understand substantive phenomena that would previously have been inaccessible
(Greenwald 2012).These advances are recognized asmethodological-substantive synergies for the
scientific process (Marsh & Hau 2007). One burgeoning area of IRT research is in modeling the
response processes individuals use to respond to self-reported typical behaviors such as attitudes,
affect, personality, and interests, which are key constructs in organizational research (Böckenholt
2012, De Boeck & Partchev 2012, Lang 2014, Tay et al. 2009, Tay & Ng 2018).

In the earlier section on testing, we already described explanatory IRT modeling as one im-
portant way in which IRT can be used for theory testing. The use of IRT for modeling response
processes is a second way that IRT can contribute to advancing theory.We use the term process to
indicate that these models do not simply assume a likelihood of some sort of reaction at a certain
threshold such as in basic IRT models but a more complex series of decisions or comparisons by
the respondent.

Process IRTmodels have developed gradually and over the course of many decades.The broad
use and availability of these methods, however, are relatively recent. Starting in the late 1990s
and 2000s, psychometricians became increasingly aware that some of the more complex decision-
making models in economics, psychophysics, or marketing (e.g., McFadden 2001, Thurstone
1927) that were typically fitted to large groups of participants could be transformed into IRT
models by adding person-specific parameters. Another key development was that the availability
of advanced software made revisiting concepts from the early twentieth century possible because
item parameter estimation became suddenly feasible (e.g., Böckenholt 2001, De Boeck &Wilson
2004, Roberts 2001).

A novel element in process IRT models is that IRT response processes are not restricted to
specific items. The IRT processes can span several items or response options. Another core novel
element in process IRT models is the fact that these models can extract information in a way that
classical test theory−based tests fundamentally cannot. In other words, the information that these
models can extract from data can reveal important novel information and can provide insights into
underlying response processes that would not be available without these models.
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Response process IRT includes several different types and classes of models.We start by high-
lighting two response process approaches that may be particularly promising and are easy to use
using available packages in R: ideal point models and response tree models.

Ideal point models.The development of an ideal point IRT model (Roberts 2001, Thurstone
1928) has enabled the detection of ideal point responding to self-reported typical behavior; in-
dividuals respond most positively to items closest to their latent trait standing [e.g., endorsing
“happy” when one is “happy” but not when one is “extremely happy” or “somewhat happy” (Tay
& Kuykendall 2017)]. It had previously been assumed that individuals used dominance respond-
ing; individuals respond most positively the higher they are on the latent trait compared to the
item location (e.g., a greater probability of endorsing “happy” when one is “extremely happy”
compared to “happy”). This assumption resulted from past research that had exclusively relied on
dominance measurement models (e.g., sum-score, factor analysis). Dominance models had origi-
nally been developed to be applied to maximal performance constructs (e.g., cognitive ability) and
were then simply used for self-reported typical behaviors.

Figure 2 illustrates the conceptual differences between ideal point and dominance models. In
Figure 2a, the ideal point item characteristic functions of nine dichotomous extraversion items
are shown. These item characteristic functions come from the most widely known ideal point
model, the generalized graded unfolding model (Roberts et al. 2000), and were fitted using the
mirt package in R (code available in the Supplemental Appendix). Although most modern ideal
point approaches are designed for data with multiple categories, we use dichotomous items here
for illustrative purposes. The shape of the response function in Figure 2a markedly differs from
the more commonly used form of the response function in Figure 2b. The model underlying the
item characteristics in Figure 2b are from the standard dominance IRT model (2PL or graded
response model with several categories).

The use of ideal point IRTmodels has led to substantive advances on researchers’ understand-
ing of some self-reported typical behaviors. For instance, ideal point IRT models can test the
empirical viability of core affect theory [where positive and negative affect are in opposition (Tay
& Kuykendall 2017)], which is widely used in organizational research (Lord & Kanfer 2002).

Research has also studied what happens when dominance models are incorrectly applied to
ideal point data. One important finding is that ideal point responding on a bipolar dimension
(positive-negative affect) can lead to ostensible orthogonal unipolar dimensions (e.g., positive af-
fect and negative affect) when dominance models are applied (Davison 1977). Personnel selection
using instruments such as personality or vocational interests also found that the incorrect use
of dominance models for ideal point data can lead to inaccurate rank ordering of individuals at
the high end of the continuum (Stark et al. 2006, Tay et al. 2009). Moreover, the misapplication
of dominance models on ideal point data can lead to problems in detecting curvilinear effects
(Carter et al. 2014). Accordingly, it seems important for researchers either to make a theoretically
informed choice between ideal point and dominance models when they develop new measures, or
alternatively, to compare both models on their datasets (Nye et al. 2019).

Tree models. Another growing area of research is in the use of IRT tree models (Böckenholt
2012, Böckenholt & Meiser 2017, De Boeck & Partchev 2012, LaHuis et al. 2019, Plieninger
2020). Tree models assume that a response tree that includes several stacked decisions can fre-
quently underlie items with several response categories. For instance, individuals responding to
Likert-type responses (e.g., strongly disagree, strongly agree) use multiple judgment points to
reach a final decision as to which option to choose. For example (Böckenholt 2012), individuals
may choose first between an indifferent (i.e., neutral) or directed response (i.e., strongly disagree,
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Figure 2

Ideal point (a) and graded response (b) model item characteristic curves for nine extraversion items from the
Eysenck Personality Inventory (Eysenck & Eysenck 1968) in a dataset included in the psych package in R
(Revelle 2020). These curves describe the probability (P) of a correct response for each item as a function of
the standing of the person on the extraversion continuum (θ). The graph was originally generated using the
mirt package (Chalmers 2012).

disagree, agree, and strongly agree), followed by the direction of the response (i.e., strongly dis-
agree and disagree versus agree and strongly agree), followed by a magnitude of the response (i.e.,
strongly or not). These decision points—akin to decision trees—can be examined to understand
how individuals choose specific response options while modeling latent trait standing. An attrac-
tive characteristic of tree models is that they can be used to systematically study the degree to
which decisions in a response process are related to each other. A common expectation in the
literature, for instance, is that respondents view Likert scales as a continuous ordinal scale. Tree
models, however, suggest that this may frequently not be the case. Empirical research found that
different decisions on the same response scale can sometimes be surprisingly independent of each
other (Zettler et al. 2016) and have different correlates. For instance, the occurrence of response
styles (e.g., extreme responding versus neutral andmidpoint responding) has been linked to person
characteristics, whereas directional responding (i.e., agree or disagree) is linked to item content.
Practically, it has also been shown that the decision on the direction of the response (i.e., agree
or disagree) in self-reported personality predicted job performance better than the other decision
processes (LaHuis et al. 2019). Tree models can also be used to address a longstanding discussion
within personality research on the usefulness of variability traits. For instance, a specific type of
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tree model—the trait variability tree model—can be used to extract a situational variability trait
from construct-driven situational judgment tests (Lievens et al. 2018) or from personality inven-
tories (Lang et al. 2019).

Other response process item response theory approaches.Thurstonian IRTmodels have de-
veloped from Louis Thurstone’s work on scaling (Thurstone 1927) and are based on the idea that
respondents compare the utility of different choice alternatives on a latent utility scale. These
models have recently been proven useful in scoring forced-choice questionnaires (Brown 2016;
also see Drasgow et al. 2010, Maydeu-Olivares & Brown 2010, Stark et al. 2006) and also in re-
covering latent motive scores from implicit motive measures (Lang 2014, Runge & Lang 2019).
Dynamic IRT models (De Boeck et al. 2011, Verhelst & Glas 1993) assume that responses to
earlier items affect subsequent items and have been useful in IRT modeling of implicit motives
(Lang 2014, Runge & Lang 2019) and have also successfully been utilized to study item-order
effects (Debeer & Janssen 2013, Verhelst & Glas 1993, Wang et al. 2013) and systematic missing
observations (Debeer et al. 2017).

Further Applications of Item Response Theory in Studying Questionnaires

In closing this section, we highlight additional applications of IRT for understanding question-
naires beyond the scope of this article. For instance, extreme responding or faking has been
studied using tree models in the recent literature but there are also other approaches to detect po-
tential faking or unusual responding such as person-fit indices (LaHuis & Copeland 2009,Meijer
& Sijtsma 2001). Furthermore, the methods we highlighted in the earlier section on testing/
assessment can frequently also be readily used for questionnaires. For instance, researchers can
use IRT to model the multidimensional structure of emotions (Tay et al. 2011).

CONSTRUCT VALIDITY/VALIDATION

An important theoretical idea related to the explanatory IRT and the response process IRT
approaches discussed earlier is a novel view of test validity (Borsboom & Mellenbergh 2007,
Borsboom et al. 2004, De Boeck & Wilson 2004, Doran et al. 2007, Embretson 1998, Wilson
2005). Test validation was long viewed as a complex process, in which a researcher should exam-
ine a variety of different forms of validity and especially put the test into a larger framework of
relationships to outside criteria (Messick 1989a,b). Psychometricians in the 2000s began to advo-
cate an alternative and more straightforward view of validity. An important starting point for this
alternative view was a paper by Borsboom et al. (2004). These authors argued that a test is valid
for measuring an attribute “if (a) the attribute exists and (b) variations in the attribute causally pro-
duce variation in the measurement outcomes” (p. 1061). This internal or psychometric definition
of validity shifted the focus on test validation from placing a test into a larger nomological net-
work to developing an IRT response model and studying it psychometrically through tools such as
explanatory IRT or response process IRT. An important scientific advantage of this revised view
of validity is the fact that it is possible to have a valid test that does not predict an outcome of
theoretical interest. The core limitation of earlier validity theory with its emphasis on examining
a variety of forms of validity and placing a measurement instrument into a larger nomological
net of constructs is the fact that a failure of a measurement instrument in showing correlations
with an outcome or correlate of theoretical interest also automatically raises questions about the
validity of the instrument. In shifting the focus in test validation away from outside criteria and
to the inner mechanisms of how responses react to a posited attribute, this modern perspective of
validity addresses this fundamental limitation of earlier validity theory.
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Several developments in organizational research are related to this modern view of validity.
In our earlier discussion of explanatory IRT, we mentioned recent development in selection and
assessment (Lievens & Sackett 2017, Sackett et al. 2017) suggesting that researchers should not
only focus on selection and measurement procedures as holistic entities and instead try to examine
their inner workings.

Recently, researchers have also extended the psychometric view of validity by suggesting shift-
ing the focus in test development. When researchers develop a new test, they typically start by
defining a research area and developing items. An alternative approach is to shift the focus around
and start with the continuum (Tay & Jebb 2018). In continuum specification, researchers carefully
define the construct continua and its operationalizations (e.g., response options). In determining
whether construct continua overlap on a continuum, IRT can be applied to examine the extent
item locations fall along a common continuum (Wilson 2005).Moreover, because people use ideal
point response processes for self-reported typical behaviors (e.g., personality, attitudes, interest, at-
titudes), relying on ideal point IRT is necessary for suchmodeling given that there is no ideal point
factor analytic comparison (Tay & Ng 2018). Continuum specification seems particularly rele-
vant with the proliferation of organizational constructs in both the light [e.g., character strength
(Peterson & Park 2004)] and dark sides [e.g., dark triad (Paulhus & Williams 2002)]. There are
questions as to the extent these constructs are continuous or distinct from prior constructs (e.g.,
normal personality).

The implications of the psychometric view of validity can be illustrated by reconsidering the
earlier example of a novel test on sensitive thinking (see Table 6). Imagine, the researcher finds
that the newly developed sensitive thinking test has no relationship with the outcome of interest. In
the traditional framework, a researcher would not knowwhether the new test does notmeasure the
new construct adequately or whether the new construct just has no relationship with the outcome
of interest. In the psychometric view of validity, it is possible that a valid measure of sensitive
thinking exists and that the construct simply does not predict leadership outcomes in virtual teams.
This example shows that the explanatory item response framework and the psychometric view
of validity have some resemblance to the innovative measurement approaches in other areas of
science discussed at the start of this article. As in the examples estimating the longitude of ships
or indirect measurements of gravity at the start of this article, the sensitive thinking example in
Table 6 uses configurations of responses to make inferences about the way an underlying latent
construct causes responses.

MEASUREMENT EQUIVALENCE OF SCORES

Over the decades, organizational psychologists have recognized the importance of measurement
equivalence when making group comparisons or comparisons between measurements over time
(Vandenberg & Lance 2000). Measurement equivalence especially forms the basis of whether
mean-level comparisons between groups represent true latent differences or measurement arti-
facts [e.g., differences in how measures are interpreted and used (Drasgow 1982)]. Organizational
researchers pay close attention to this not only because of concerns about validity of findings but
also because of legal ramifications, as measurement bias can unfairly disadvantage certain groups.
Although measurement equivalence was popularized in organizational psychology research
using factor analytic models (Vandenberg & Lance 2000), measurement equivalence was also
widely tested using IRT methods in employment and educational testing (Bock 1997, Drasgow
1987). One major reason for the use of IRT was the dichotomous response options in test items
(i.e., right versus wrong). More importantly, many tests have a multiple-choice format that
allows for guessing the right answer. For example, with four multiple-choice options, there is a
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0.25 probability of obtaining the right answer by chance. The traditional three-parameter logistic
IRT model can account for the possibility of guessing on an item by incorporating a lower
asymptote in the item response curve (Birnbaum 1968). In general, IRT can enable flexible
assessment of measurement invariance for psychological tests and categorical items (Tay et al.
2015). The IRT methods can serve to pinpoint which items lack measurement equivalence [i.e.,
differential item functioning (DIF)] on such tests so that noninvariant items can be excluded. For
example, past research showed that on the SAT, a verbal item containing the term regatta was
biased against blacks as compared to whites; for the same level of ability, blacks were less likely
to get the item correct (Weiss 1987). These methods have been extended to an IRT-covariate
approach so that multiple covariates (e.g., race, gender, age) can be modeled simultaneously to
determine the key predictors of DIF (Tay et al. 2011, 2016).

Most advanced IRT approaches can be relatively straightforwardly extended to allow re-
searchers to conduct DIF analyses (e.g., De Boeck 2008, De Boeck et al. 2011 extended to Runge
et al. 2019). For instance, earlier in this article, we discussed the LLTMe model. This model in-
cludes a random item parameter (De Boeck 2008, De Boeck et al. 2011). Removing the item
predictors from the LLTMe leads to the basic random item IRT model. An important assump-
tion in random item IRT models is that test or survey items are assumed to be drawn from a pool
of items (and set of item parameters). As applied to measurement invariance, unlike typical mea-
surement invariance approaches where items are assumed to be fixed parameters, random item
IRT models can allow random item effects to vary across different groups (e.g., countries), and it
is not necessary to establish full measurement invariance for group comparisons (De Boeck 2008,
Fox & Verhagen 2010). This is a critical advancement given that there are always concerns about
whether anchor items used to assess measurement invariance of other items are themselves invari-
ant (Meade &Wright 2012, Stark et al. 2006). For example, past research found that a substantial
number of biodata employment items exhibited race DIF (Whitney & Schmitt 1997), and it is
known that a greater proportion of DIF items in a scale can lead to problems in detecting DIF
and suitable anchor items (Gierl et al. 2004).

Another extension of common IRT models that is relevant for studying measurement invari-
ance is multilevel IRT models (Doran et al. 2007). Multilevel IRT models are basically standard
measurement invariance models with a larger number of groups. Especially when group mem-
bership has implications on item functioning, it can make sense to include the multilevel nesting
into the IRT model. For instance, Doran et al. (2007) used organizational data from a survey of
military personnel and showed that group membership had an impact on parameters in the IRT
model. Multilevel IRT models are conceptually related to models that include predictors at the
person or at the group level into the IRT model (De Boeck et al. 2011, De Boeck &Wilson 2004,
Tay et al. 2016).

CHALLENGES AND LIMITATIONS

Over the course of the past two decades, the field of psychometrics has made significant progress.
Nevertheless, several challenges for researchers, who use or are interested in using IRT and es-
pecially novel developments in IRT, remain. One challenge for researchers is the fact that it can
be hard to figure out how different IRT approaches and software solutions (a) differ from each
other and (b) differ from other analytical frameworks for testing andmeasurement.Other common
analytical frameworks for testing and measurement include classical test theory, structural equa-
tionmodeling, confirmatory factor analysis, exploratory factor analysis methodology, or multilevel
models (generalized linear mixed-effects models). In many cases, different IRT frameworks and
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other analytical frameworks are closely related to each other but use different terminology to refer
to the same things. This sometimes confusing situation is the result of the fact that researchers
have increasingly identified links between different analytical frameworks in the past two decades.
On the one hand, the identification of these links has led to a wealth of innovation in IRT model-
ing and the emergence of new ways to view IRT models and measurement. Users now routinely
use software developed for other analytical frameworks to fit their IRT models. On the other
hand, this new flexibility can be confusing because the terminology in the theoretical model that
researchers seek to estimate and the terminology that the software that he/she uses for the same
parameters frequently differ from each other. This situation has made it considerably harder for
non-methods experts to navigate this research area and communicate with other researchers such
that both parties actually talk about the same thing.Misunderstandings can easily emerge because
different terms can refer to the same phenomenon, and, vice versa, similar terms can refer to very
different phenomena.Differences in the use of terminology between different social science disci-
plines may further increase these complexities. For instance, ideal point in political science refers
to 1PL/Rasch type models (Bafumi et al. 2005) and not the type of ideal point models used in or-
ganizational research discussed earlier in this article. Furthermore, within organizational research,
the term unfolding model can be used to refer to ideal point IRT models (Roberts et al. 2000), a
process of responding to multidimensional forced-choice items (McCloy et al. 2005), or a theory
of voluntary turnover (Lee & Mitchell 1994).

Another challenge for researchers and practitioners who seek to use IRT in their work is to
adequately balance model complexity versus parsimony in developing their research models. Is-
sues around overfitting versus underfitting exist in many research areas and even in statistics (Barr
et al. 2013, Bates et al. 2015a,Matuschek et al. 2017). Model evaluation in IRT has made progress
in recent years (Foster et al. 2017, Nye et al. 2019). However, it can still be hard for researchers
to conclusively evaluate model fit and decide between alternative modeling approaches. Most im-
portantly, the fact that an IRT model fits the data well does not automatically guarantee that the
parameters that are being estimated are also sufficiently free of bias and accurate. Especially for
multidimensional and other complex models, it is frequently advisable that researchers conduct
a model parameter recovery study (Brown 2016, Lang 2014, Reise & Yu 1990, Weiss 1982). In
a model parameter recovery study, researchers first simulate data with known properties. In the
second step, the IRT model is estimated, and the estimated parameters from the IRT model are
compared with the true parameters. This procedure is typically repeated many times, and the
characteristics of the simulated data can be varied across different conditions to develop a system-
atic understanding of how well the model recovers the true parameters under the assumption that
the model would actually be true. When the procedure suggests that significant bias may exist in
the item parameters, person parameters, or reliability estimates, it may be advisable to correct the
estimates for bias, or alternatively, to consider a simpler model.

Readers who are interested in developing an understanding of how a parameter recovery study
works can use the code (see the Supplemental Appendix) we provided to simulate the data used
for the analyses in Tables 4, 5, and 6. It can be insightful, for instance, to alter the parameters
in the simulation code and rerun the simulation. It can also be of interest to run the simulation
and analyses multiple times to see natural sample variation. Finally, it is possible to compare
the squared correlation between the true theta values and the estimated theta values from the
models (the real reliability) with the estimated empirical reliability using the code we provided
(see the Supplemental Appendix). As shown in the Supplemental Appendix, these estimated
values are close to each other for the models we fitted earlier in this article (see Tables 4, 5,
and 6).
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Table 7 Checklist: scientific and practical advantages of using item response theory (IRT)

Checklist question Key points Section

Is accurate information on measurement
error of individual test scores (not just
sample-based) needed?

IRT provides response-pattern-specific estimates of
measurement error.

Basic IRT models

Is there interest in the degree to which a
measure or item response follows an
idealized measurement model?

IRT can be used to study these properties. Basic IRT models, IRT as a tool
for scale development for
measurement purists and
statisticians

Are many different test forms needed (while
having a way to compare people and
items)?

IRT makes the development of multiple versions of
tests more flexible because item and person
parameters can be brought on a common scale
for comparison.

Practical: IRT as a technical tool
to improve efficiency in
large-scale testing

Should theories about what affects
responses to the test items be tested?

Explanatory item response models enable
researchers to test theories on the role of item
features, person predictors, and random error in
test items.

IRT as a tool to test theories
about test items: explanatory
item response modeling

Are unidimensional scores needed, but the
test violates the assumption of
unidimensionality?

Multidimensional IRT provides a framework to
model tests with a complex dimensional structure
(e.g., items loading on a main dimension and
additionally a narrower dimension, or several
equally important dimensions).

Multidimensional IRT is efficient (quick estimation
with modern algorithms).

Multidimensional IRT is quite flexible (can deal
with missing data and allows for multiple
constraints).

Multidimensional IRT

Should assumptions about the scaling of the
response options in rating scales be
tested?

IRT can model dichotomous, polytomous, ordered,
or categorical responses.

IRT can be used to study characteristics of specific
response options within rating scales.

IRT as a tool to study the
assumptions of rating scales

Should a complex (not simply additive)
decision-making process in responding to
items be modeled?

Process IRT models such as ideal point models,
tree models, Thurstonian IRT models, or
dynamic IRT models allow researchers to test
theories about how respondents make decisions
when they respond to test items that could
otherwise not be uncovered.

IRT as a tool to test theories:
response process IRT

Is a modern approach to test validation of
interest?

The internal or psychometric view of validity
focuses on linking variations in attributes to
variations in the measurement
outcomes—typically by developing an IRT
measurement approach.

Construct validity/validation

Are mean differences between groups true
latent differences or measurement
artifacts?

IRT is a flexible framework for modeling
measurement equivalence (e.g., accounting for
guessing, incorporating covariates, partial
invariance with random items).

Measurement equivalence of
scores

Does IRT offer a unique advantage over
other modeling frameworks and not
merely a re-expression of a comparable
model in a particular context/application?

Some IRT models and estimates can be highly
similar or even identical to models fitted with
tools such as classical test theory, structural
equation modeling, confirmatory factor analysis,
exploratory factor analysis, or multilevel models.

Challenges and limitations

Is the IRT model adequately balancing
complexity versus parsimony?

Although many IRT models are parsimonious,
modern software also allows researchers to
specify overly complex models potentially.

Tools such as fit statistics and parameter recovery
studies can help researchers examine the
implications of increasing or decreasing model
complexity.

Challenges and limitations
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SUMMARY AND CHECKLIST

The degree to which different social science fields use IRT models markedly differs. Whereas
some fields have enthusiastically embraced IRT methods, other fields have been critical, and or-
ganizational researchers typically fall in between these extreme positions. However, IRT is not
a homogeneous method, and the usefulness of IRT depends on the context and purpose of the
application. When IRT is used as a scale development tool for fixed-item tests, it frequently has
few clear benefits over other methods. A traditional strength of IRT is its use as a scale develop-
ment tool in large-scale testing that makes more flexible item presentation and test development
possible. We also highlighted the other strengths and unique features of IRT for theory testing
and test validation purposes such as explanatory and process IRT methods.

To highlight how and when IRT can provide benefits for science and practice, we have as-
sembled a checklist. Table 7 presents this checklist and summarizes the key concepts and ideas
in this article. Both researchers and practitioners can linearly go through this checklist to make
an informed decision on whether and how IRT can provide benefits in a particular measurement
situation.

CONCLUSION

In this article, we put the emphasis on how IRT can contribute something novel to research and
practice.We have described a set of emerging views in the literature that emphasize that IRT can
not only be understood as a scale development tool but has developed into a solid framework for
testing important theories about measurement. These developments may form a foundation for
IRT to develop from a niche application for scale development purists and statisticians into a more
commonly used research tool in organizational research.
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