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integrative, and standardized way. Artificial intelligence (AI) and, more pre-
cisely, deep learning technologies have recently demonstrated the potential
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clinical outcome prediction. This review provides a general introduction to
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AT and describes recent developments with a focus on applications in diagnostic pathology and
beyond. We explain limitations including the black-box character of conventional Al and describe
solutions to make machine learning decisions more transparent with so-called explainable AI. The
purpose of the review is to foster a mutual understanding of both the biomedical and the Al side.
To that end, in addition to providing an overview of the relevant foundations in pathology and
machine learning, we present worked-through examples for a better practical understanding of
what Al can achieve and how it should be done.

1. INTRODUCTION
1.1. A Century of Technological Innovation in Pathology

Histopathology was established as the basis of tissue diagnostics more than 100 years ago, and it
soon demonstrated the ability to robustly classify diseases and predict outcome. In addition to the
technological leap that occurred at that time owing to microscopy, decades of closely correlating
clinical observations with histomorphological changes have been complemented by immuno-
histochemistry and, more recently, molecular profiling techniques that have given pathology its
central role in precision medicine. Despite these novel technologies, however, human expertise
is still key to integrating clinical imaging and molecular data into a diagnosis, offering a quali-
tative or sometimes semiquantitative assessment of the pathological findings that guide clinical
decisions.

With recent developments in artificial intelligence (Al) and, more precisely, deep learning,
hopes are high that another technological leap will transform pathology. Aside from the scien-
tific interest in exploring ways to analyze histopathological data, there is a great medical need
because today’s precision medicine requires increasingly fine-grained quantitative evaluation of
tissue features. While pathologists excel at qualitative assessments of tissue properties for render-
ing diagnoses, the human brain has limited abilities to quantify observations. Here, Al can assist
pathologists in classical tasks such as tumor detection by prescreening tissue for cancer cells and
quantification of immunohistochemical stains. While the assistance offered by Al can already help
improve diagnostics, Al will reveal its full potential only if novel diagnostic features are identified
using end-to-end learning in combination with so-called explainable Al (XAI), which can make
the otherwise black-box approach of classical Al transparent.

This review is intended for pathologists and a broader medical audience, as well as compu-
tational scientists who would like to better understand the potential as well as the limitations
of current machine learning (ML) approaches in the medical domain, especially tissue-based di-
agnostics. While we provide mathematical descriptions of certain ML concepts for interested
readers, these can be skipped without losing the central theme of the review. We focus especially
on XAI as a way to extract a link in complex data between concepts of artificial and human intel-
ligence. The review also discusses requirements for implementation of Al in pathology, including
technical, organizational, and clinical aspects. Note that this review does not attempt a full treat-
ment of all available literature; instead, we present a somewhat biased point of view illustrating the
main ideas by often drawing from the authors’ research and providing reference to related work
for further reading. The review emphasizes how to insightfully use Al and, in particular, XAI in
the quest to bridge the gap between research in disease mechanisms and clinical application. The
practical steps of this process are showcased by two examples detailing steps from a pathology
challenge to an XAI solution.
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2. MACHINE LEARNING

ML, in particular deep learning, is a prominent approach to building predictive models that
has successfully solved complex tasks in computer vision (e.g., 1-3), natural language processing
(e.g., 4), robotics, and the sciences (e.g., 5, 6), as well as in medical applications (2, 7, 8). ML starts
with a data set, for example, a collection of histopathological images with class labels indicating
whether the given image contains cancerous tissue. It then learns a complex model (e.g., a neural
network) by adjusting its many parameters such that some measure of error is minimized (e.g., the
number of misclassified images should be as low as possible).

More formally, we denote {(x1,#1), ... (xn,2n)} as the set of data and their respective labels,
fa as the ML model mapping inputs to predictions, and £ as an error or loss function measuring the
discrepancy between the ML model’s prediction and the labels. Mathematically, the ML problem
is to find the parameters 6 of the prediction function f; that minimize the prediction error averaged
over the data set:

N
£0) = 35 Y Uit 0. 1
i=1

The minimization of £(0) is typically carried out by gradient descent, that is, by repeating
iteratively 6 < 6 — y - VE(0) until convergence, or variants thereof (9, 10). In the following sub-
sections, we give an overview of the typical practical tasks ML models can solve, models and
algorithms to learn these tasks, and methods to verify a model’s performance, in particular, veri-
fying that the learned model not only memorizes the current data but also correctly predicts new
unseen instances (or in technical terms, does not overfit). We also present several countermea-
sures to reduce the risk of overfitting. These multiple aspects of ML, along with references, are
also presented systematically in Table 1.

2.1. Data/Machine Learning Tasks

In the broad ML usage spectrum we distinguish so-called supervised tasks, which aim to learn
a specific mapping between input and targets (e.g., predicting for each histological image given
as input its associated cancer type), from unsupervised tasks, which aim to reveal the intrinsic
structure of data (e.g., the presence of clusters or outliers). Most ML tasks fall into one of the
following categories:

1. Classification/regression: predicting a categorical/continuous value from a data point (e.g.,
the cancer type/survival time from a histology image).

2. Multiple-instance learning (MIL): a specific form of classification (or regression) to learn
from a number of observations at once, typically from a number of image regions of a whole-
slide image (WSI).

3. Object detection: predicting object positions (and categories) within an image (e.g., cell
locations and types).

4. Semantic/instance segmentation: predicting regions/object outlines within an image by
assigning a category to each pixel (e.g., stroma regions or cell shapes).

5. Anomaly detection: detecting whether an instance is typical or atypical (the latter outcome
may correspond to some rare medical condition to be worthy of special interest).

6. Clustering: identifying whether points naturally aggregate into multiple subgroups, which
may give insights into the underlying structure of the data (e.g., multiple cancer subtypes
in a population).

In addition to these well-defined tasks, another substantial effort in ML is to build general-
purpose data representations. Examples include general feature representations of images, which
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Table 1 Representative ML/XAI references®

ML tasks/formulation Algorithms Validation and improvement
Classification (1, 15; *30) Linear models/kernels (15, 39; *40) Cross-validation (°40, 41; **°*56)
Regression (31) Decision trees Regularization (***57)
MIL (32) Random forests (°40, 41; *42; °43; Ensemble models (°40)
Segmentation (2) ° 44 Data augmentation/prior knowledge
Object detection (3, 33) Gradient boosting (°45, *46, 47) (°°°58,°°59, °60,°61)

E Representation learning (34, 35) Deep learning models (19-21)

Transfer learning (' 7, 11; 36)
Self-supervision (125 *22, 37, 38;
23)

FFNs/MLPs (°40, °48, *49)

CNNs (1, 25; °50; °51)

RNNSs (26; 52, 53; 54)

Transformers (27, 38)
Others (°55)

Feature types
Tabular (*48; 62, 63)
Images/text (°56, 64-66)
Others (67, 68)
Latent variables (64, 69, 70)
Higher order (68; 70; 71, 72)
Counterfactual explanations (73, 74)

Model-specific ( 71,75, °*76)
Model-independent
Perturbation (64, 77-79)
Backpropagation (°48; °49; *56;
°°*58; °60; 64, 65)
Others (80, 81)
Hybrid approaches

Detecting/reducing CH effects
(89, 90; *91)
Value alignment (92)

Local surrogates (° 44; 79, 82;
*83-85; °86; °**87)
Regularization (88)

*Legend: *, histomorphology; °, genomics; *, methylation; *, RNA; °, scRNA; °, proteomics; , clinical/others.
bAbbreviations: CH, Clever Hans; CNN, convolutional neural network; FEN, feed-forward network; MIL, multiple-instance learning; ML, machine
learning; MLP, multilayer perceptron; RNN, recurrent neural network; scRNA, single-cell RNA; XAI, explainable artificial intelligence.

are typically obtained by training a large model on some large-scale generic (e.g., nonmedical)
image recognition task. Often the learned features are transferable to the specialized (e.g., medi-
cal) domain and enable higher predictive accuracy (7, 11). More recently, self-supervised learning
(12, 13) has emerged, where a supervised task is built from purely unlabeled data. The resulting
so-called pretrained models are then used as a starting point for (supervised) downstream tasks.
The promise of this approach is that there are abundant unlabeled data, and models that have
seen all these data will generalize better on downstream tasks with restricted data sets. A recent
prominent example demonstrating the power of self-supervised learning is the pretrained model
GPT (4), which is trained by predicting the next word for a given text and has been refined to
ChatGPT by supervised learning in order to respond to user queries. An analogous example in
pathology would be training a model that predicts the content of a masked region in a histology
image—thereby, for example, learning that immune cells are less likely to appear in dense tumor
regions than in sparse ones—and later using this model as starting point for, say, the prediction of
clinical endpoints from histology.

2.2. Machine Learning Models and Learning Algorithms

Various ML models and architectures are suitable for different types of data and ML tasks. We
can broadly distinguish between linear and nonlinear models. As their name implies, in linear
models, data input and model parameters are related in a linear fashion, f;(x) = 276, as in, for ex-
ample, linear regression (14) or linear support vector machines (15). Because of the linear relation,
the influence of a model parameter on a data input feature can be directly inspected, enabling these
models to be deployed with more confidence than pure black boxes.
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The large class of nonlinear models facilitates modeling more-complex relations among model
parameters and data features. Biological systems, for instance, show highly nonlinear behavior.
One category of nonlinear models involves starting with a nonlinear representation ®(x) of the
data, then building a linear model on top of the nonlinear representation rather than on the raw
data themselves. This class of methods incorporates so-called kernel methods (16), whose main
advantage over hand-designed feature maps is that any operation during learning and prediction
can be rewritten in terms of a computationally cheap kernel evaluation, known as the kernel trick.
An example of a kernel function is a Gaussian, but kernels can also be engineered with prior knowl-
edge (16, 17). This property helps establish nonlinear versions of linear methods by “kernelizing”
(18), leading to kernel support vector machines, kernel regression, kernel principal component
analysis (PCA), and so forth. Note, however, that the higher predictive power obtained through
nonlinearity comes at the cost of increasing the model’s black-box nature. In Section 3 we describe
various techniques to bring some level of transparency back into these more-complex models.

In contrast to shallow methods, which build on top of kernels or preextracted features, deep
learning methods (19-21) follow the idea of learning the features relevant for a task from the
data themselves via multilayered (deep) neural networks. This approach of learning the data rep-
resentation via deep neural networks in combination with enormous quantities of data currently
sets the state of the art in many domains (1, 2, 5) for different data types; recent breakthroughs
have relied especially on self-supervised learning (4, 12,22, 23). There exist different architectures
that incorporate different assumptions, or “inductive biases” (24), about data representation; these
include convolutional neural networks (CNNs) (1, 25), recurrent neural networks (RNNNs) (26),
and transformers (27). The parameters of these networks, which can number in the billions for
modern deep networks, are trained mostly with variants of stochastic gradient descent (SGD) (9,
10), which iteratively update the network parameters following the gradient of the error function
[computed via backpropagation (e.g., 28, 29)]. While deep neural networks were often referred to
initially as black boxes, a lot of research has gone into making deep networks explainable, as we
show in Section 3.

Lastly, powerful solutions for digital pathology often incorporate multiple ML models (shallow
and deep) that are ultimately combined into composite models for patient characterization. For
example, comprehensive characterizations of the tumor microenvironment (TME), which may
serve as digital biomarkers in immuno-oncology, often involve deep models for cell detection and
classification, tissue region segmentation, and so forth. Combining these models allows to derive
informative and interpretable features such as the ratio, density, and infiltration of different cell
types within different tissue regions. These features can then be fed into more classical models
(e.g., linear regression models) to predict patient outcomes such as response to therapy or overall
survival.

2.3. Validating and Improving a Machine Learning Model

Minimization of functions similar to that in Equation 1 enables the model to minimize the pre-
diction error on the training data. Therefore, as a result of training, the ML model will tend to
achieve accurate predictions on these data. However, there is no guarantee that the model will
work accurately outside the training data, for instance, on future observations, which the ML
model has not yet seen. The resulting gap in prediction accuracy is called overfitting. Overfitting
is particularly severe in the context of high-dimensional molecular data, where a model can easily
identify correlations in the available data (e.g., between the predicted cancer type and one of the
20,000-plus gene mutations available as input). These correlations on the training data are often
spurious and do not generalize to new data. The problem only gets worse when nonlinear features
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are added to the model. Overfitting results in models that work poorly on new data and do not
offer many scientific insights because of their reliance on spurious correlations. Methods based on
cross-validation (Figure 1), where the data are split into several parts, trained on some, and tested
on others, have become the gold standard for detecting overfitting.

Another popular approach to avoid overfitting is to artificially augment the input data with
small random perturbations to favor correlations that are more robust (and more likely to hold
on new data). An approach that is particularly effective in practice is Monte Carlo Dropout (or
Dropout) (93). Dropout trains the model while simultaneously applying noiselike perturbations
in the input layer as well as in the multiple intermediate layers of the neural network. Monte Carlo
Dropout has been applied broadly in biomedical applications ranging from models of molecular/
omics data (e.g., 61, 94) to CNNs for histopathology (e.g., 95). Dropout layers are available in
common neural network frameworks such as PyTorch (see https://pytorch.org) or TensorFlow
(see https://www.tensorflow.org). Other sources of overfitting are mislabelings (e.g., a misdi-
agnosis, a measurement error, or a fault in the data preparation), which may artificially generate
incorrect correlations in the data. Some mislabeling may be avoidable, but in other cases it is in-
trinsic to the data acquisition [ranging from falsely unexpressed genes in the context of single-cell
RINA sequencing (96) to potential ambiguities in disease taxonomies]. A more direct approach
to address this type of overfitting is through robustness-inducing loss or error functions. These
robust loss functions are designed to tolerate more incorrect labels while yielding stable classifi-
cation results. Common ML frameworks such as PyTorch and TensorFlow include a number of
losses with or without robustness properties.

Another issue that can harm model performance and is often observed in the context of bi-
ological data arises from spurious correlations that occur systematically on the whole available
data set, including the data reserved for testing (97, 98). Consider a scenario in which data from
multiple hospitals are aggregated (e.g., different hospitals are equipped with different slide scan-
ners). To solve the prediction task, the ML model might find it easier to recognize the distinct
color signature of each slide scanner rather than the truly predictive biology. Techniques to re-
duce overfitting such as Dropout do not help in this case. Classifiers leveraging these systematic
spurious correlations are commonly referred to as Clever Hans classifiers (89), in memory of the
horse Hans, because they predict correctly but for the wrong reason. Such classifiers are, again,
at high risk of becoming inaccurate on future observations. Continuing our biological example,
the ML strategy of detecting the scanner’ color signature may start to fail dramatically when a
hospital renews its equipment or reorients its practice. Furthermore, a model relying on spurious
features is of little interest if we want to extract scientific knowledge from it.

Unlike overfitting, Clever Hans effects cannot be properly detected using cross-validation (we
present an alternative approach to detect such flawed classifiers in Section 3.3). However, the
issue described above can often be avoided proactively by, for instance, an appropriate data set
design or by introduction of prior knowledge. As an example, assuming metadata with regard
to acquisition device, age of the subject, and so on are available, one can use a proper sampling
strategy to ensure that the samples are stratified. This process can considerably reduce the reliance
on spurious correlations. If the data set has already been collected and cannot be changed, one can
instead try to induce the proper prediction behavior by various means, such as normalizing the
input data (e.g., contrast/brightness normalization) or augmenting the training data with artificial
color variations.

3. EXPLAINABLE ARTIFICIAL INTELLIGENCE

XAI (e.g., 99-102) is a major development in ML, driven by the need to make ML models more
transparent and understandable to their users. The practical need for transparency in ML models

Klauschen et al.
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in medicine has been acknowledged many times (7, 103). Motivations include verifying that the
ML model uses a valid/well-generalizing decision strategy (see Section 3.3) and gaining more
insight into the data being predicted and thereby increasing scientific knowledge. While classical
ML models can provide basic insights, such as testing whether one data modality (e.g., cancer type)
is predictable from another (e.g., histological images), XAl can generate much deeper insights,
uncovering the exact input features (e.g., pixels or their nonlinear correlations) that are used by the
ML model for prediction. In this section we focus on the technical aspects of XAI (for a systematic
overview and references, see also Table 1); we return to medical aspects in Sections 4 and 5.

3.1. Understandability and Informativeness

A common formulation of the problem of explanation is to map a data point x € R? and its pre-

diction by the function finto a collection of scores (R, . . ., Ry), highlighting the relevance of each
input feature to the prediction (62, 65, 77):
(@, )= Ry,...,Ry). 2.

Before entering into the technicalities of how to produce such explanations, it is essential to ensure
that the explanation being generated is understandable and informative for the human—that is, it
enables the user to identify and correct a flawed ML model or arrive at new scientific knowledge
in a data-driven manner.

First, for an explanation to be understandable, the meaning of individual input features on
which the explanation is based should be clear to the human. When the data have a tabular struc-
ture (e.g., showing for each subject an array of protein expressions, gene mutations, or clinical
features), ensuring that the user has the expertise to interpret these features is a prerequisite. An
explanation can then take the form of a bar plot, where each bar represents a particular input fea-
ture and the bar length its contribution to the prediction. Another common type of data is image
data (e.g., in histopathology). In this case, input features received by the model are pixels, which,
unlike tabular data, rarely carry meaning on their own. For this type of data, explanations are bet-
ter rendered as a highlighting of the input image (or heatmap), enabling the human to identify
which visual pattern the model has used for its prediction. Figure 1 depicts some heatmap-based
explanations. At the interface between visual data and tabular data are efforts to generate dictio-
naries of human-interpretable concepts that the network uses for predicting (e.g., midlevel visual
features) and that can be used to support an explanation (69, 70). Lastly, identifying the contribu-
tion of individual features to the prediction may be of limited use, and one may instead want to
determine how features interact with other features to arrive at the prediction (68, 70, 72).

Second, it is important to pay attention to the precise question the explanation answers. For
example, asking what makes the output neuron associated with class 1 activate differs from asking
what makes this image predicted to be of class 1 rather than another class, and so should the
associated explanations (104). Another subtle difference is to ask what makes an image x of class 1
whereas another image ¥ is predicted to be of another class. The latter question is addressed by
counterfactual explanations (73, 74). In the context of molecular data, a counterfactual example
may be a vector of mutations similar to the original vector, without the few mutations that cause
the model to predict cancer, or a histopathological image without the region containing the cells
relevant for the prediction.

3.2. Techniques of Explanation

We now focus on the question of how to explain models technically, knowing that most ML models
used in practical applications are complex and highly nonlinear (e.g., deep neural networks). We
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distinguish between two general families of explanation techniques: model-specific and model-
independent (for discussion, see 102, 105, 106).

The model-specific (i.e., self-interpretable) approach imposes a predefined structure to the ML
model, so that an explanation can be easily extracted. For example, when the prediction function
is of the type f(x) = Zil gi(x;), where gy,..., g; can be any nonlinear functions, an attribution
to the input features can be easily extracted by taking the summands (71, 75):

R; = gi(x;). 3.

Other structures that enable a limited form of interpretability include decision trees, until a depth
of three or four layers (72, 107). Beyond a certain depth, they are no longer interpretable by
humans.

When such restrictions on the structure of the model are not practical (e.g., because high
prediction accuracy or low run time is of primary concern), one usually resorts to a model-
independent (i.e., post hoc) approach, which makes no assumptions about the function f. An
intuitive way of extracting model-independent explanations is to measure the effect on the
prediction of adding/removing input features. For example, one can compute

R,' = f(x) - f(x,,»). 4.

Here, x_; denotes the data point x where feature 7 has been removed (e.g., set to zero or replaced
by the corresponding feature of the counterfactual ¥). Many variants of feature removal techniques
have been proposed (for a review, see 78). A popular formulation with good theoretical proper-
ties is the Shapley value (77, 79), which considers multiple joint feature perturbations and weighs
them appropriately. Note that perturbation approaches in general require the function to be eval-
uated many times (typically at least once per input feature), which can significantly slow down the
generation of explanations and make it impractical for large models.

Layer-wise relevance propagation (LRP) (65) is another post hoc explanation approach that
addresses the scaling issue by leveraging the underlying sequential (deep-layered) structure of the
prediction function. LRP starts at the output of the model and backpropagates the prediction layer
by layer until the input features are reached. A simple propagation rule between two layers is

Wik

R =S Wik
T2 Wik

¢/ Ry, 5.
where j and & are indices of neurons in the two consecutive layers, #; denotes the activation of
neuron j, and wy is the weight connecting neuron j to neuron k. Different propagation rules have
been designed to address layers encountered in specific architectures such as CNNs (104), long
short-term memory models (66), and transformers (108).

At the frontier between model-specific and model-independent approaches, we find other types
of XAl methods. These include methods such as LIME (local interpretable model-agnostic expla-
nations) (82) and SHAP (Shapley additive explanation) (79), which build a readily interpretable
local surrogate of the original ML model, and methods that regularize the ML model to ease the
process of post hoc explanation (88).

3.3. Inspecting a Model with Explainable Artificial Intelligence

In Section 2.3, we note that for a model to perform well on new data, it is critical to verify that
the model neither overfits nor uses spuriously correlated features (e.g., predicting on the basis of
the scanner’s color profile or other types of artifacts). Use of spurious features (so-called Clever
Hans effects) is hard to detect on the basis of classical cross-validation techniques; however, XAI
can systematically unmask Clever Hans effects (89, 90). The reliance of the model on a spuriously

www.annualreviews.org o Explainable Al for Precision Pathology

549



550

correlated feature is indeed readily highlighted in the explanation. Several XAl-based approaches
have been proposed for systematically uncovering and removing Clever Hans effects from large
neural network models (e.g., 89, 90). A worked-through example illustrating the process of
detecting and removing Clever Hans effects in a histopathology context is provided in Section 6.1.

XAl also has a role in imparting further scientific insight. Given an ML model trained to predict
some complex, nonlinear biological system of interest, XAl can extract from the model biologically
meaningful network structures (e.g., related to cells’ signaling pathways) that go beyond what can
be achieved with common statistical/bioinformatic approaches in terms of resolution and overall
accuracy (48). A use case of XAl for such scientific purposes is provided in Section 6.2. Further
applications of ML/XAI in pathology are presented systematically in Section 7.

4. COMPUTATIONAL PATHOLOGY

Computational or digital pathology aims to create and implement tools that provide assistance in
the conventional clinical pathology workflow. This workflow consists of three phases: preanalyti-
cal (sample collection, accessioning, specimen preparation, grossing, tissue and slide preparation),
analytical (interpretation), and postanalytical (report preparation, transmission). At all levels, there
are specific tasks, including associated error sources, that could benefit from computational assis-
tance (109). The availability of slide scanners that produce WSIs is the precondition for pathology
to enter the digital age as well as to benefit from image analysis techniques in computer vision
(110), notably deep learning. Open source software like QuPath (111) facilitates preprocessing
(annotation) of the digitized slides. Libraries like TIAToolbox (112) allow easy module integra-
tion of common subtasks, namely reading WSI data, patch extraction, stain normalization and
augmentation, model inference, and visualization.

4.1. Artificial Intelligence for Histological Data Analysis

With its ability to classify complex unstructured data, Al is highly suitable for histological image
analysis. The following subsections review strongly and weakly supervised as well as unsupervised
learning approaches.

4.1.1. Strongly supervised learning in histopathology. Al is being used successfully in vari-
ous histological image analysis steps (113). The classical application is to replicate tasks performed
by humans, with a side effect of higher reproducibility, such as in cell detection (114) and tissue
segmentation (2). For tumor diagnostics, features of different cells from the TME with tumor
content, the cytological features of the tumor cells, and the cells’ spatial relationships can be com-
bined. Such morphological profiles can then be either further analyzed by conventional (spatial)
statistics or again used as input for training ML models to predict (clinical) endpoints. A detour
via established morphological features can reduce dimensionality and include prior knowledge
and/or hypotheses on the relevance of certain tissue properties. A disadvantage of this fully su-
pervised approach on strongly annotated data, however, is the need to generate annotations for
training down to the single-cell level—an expensive and cumbersome task.

4.1.2. Weakly supervised learning and explainable artificial intelligence. An alternative
approach is the direct prediction of clinical endpoints or molecular properties from histological
images (i.e., end-to-end learning). Here, labels are required only at the slide level, so-called weak
annotations (e.g., survival), in contrast to pixel-wise strong annotations (which require more
cases for training). Another limitation of conventional ML that applies to both approaches, but
particularly to end-to-end learning, is the inability to understand the AI decision process. This
so-called black-box characteristic of ML limits the user’s ability to understand the Al-based
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decision process. Recently, XAI has been used to highlight the image regions that contribute the
most to the Al’s decision in form of heatmaps (56, 91). Unlike conventional heatmaps, which
simply visualize the resulting classifier scores for an image patch, XAl-generated heatmaps
offer more fine-grained information in the form of pixel-wise scores even when (only weak)
annotations exist only at the slide level (56, 65, 91).

While cell detection and tissue segmentation approaches can achieve high accuracy on par with
that of pathologists, the accuracy of predictions of molecular markers from histology still falls be-
hind that of sequencing techniques. Whereas the detection of, say, oncogenic mutations can be
achieved with state-of-the art sequencing at an accuracy of nearly 100%, ML-based prediction
reaches an area under the curve (AUC) of no more than 70-80% for the best cases (56, 115). This
discrepancy may not be surprising given that the complex molecular states governed by genes,
genetic regulatory networks, and ultimately proteins are integrated at the histological level. To
be predictable by Al, molecular features need to have a strong impact on cellular morphology.
An interesting example of a relatively simple-to-predict molecular feature is microsatellite in-
stability (MSI), which is predictable from histology with a good AUC of more than 80% (115).
MST is related to a deficiency in mismatch repair, resulting in a high mutational load and high
neoepitope generation that, in turn, cause an inflammatory response in the TME. This response
provides relatively clear morphological clues in the form of massive lymphocyte infiltration. Most
current models used for the prediction of molecular properties rely on MIL, and approaches using
support vector machines show similar accuracy (56). A challenge with these models is that their
generalizability is still limited, as the models are trained mostly with single-institution data sets or
single-clinical-trial data.

In the future, novel ML approaches may offer improvement by allowing users to incorpo-
rate knowledge from more data, including decentralized learning or foundational models. While
by definition they are never as effective as centralized training, federated or swarm learning ap-
proaches (116, 117) can be used to extend the database by working around regulatory or data
protection limitations by leaving data at their respective locations and training the Al models in a
distributed fashion (i.e., sharing only the trained weights 0).

4.1.3. Unsupervised learning. In contrast to supervised learning, unsupervised learning can
help extend the database by allowing the model to learn from all data, not just annotated data
(i-e., no label needed). This can expand the accessible data by orders of magnitude and can lead to
breakthrough results in current natural language processing applications like ChatGPT (118). The
approach works by imposing a task, such as masking an image patch that needs to be reconstructed,
and requires the trained model to understand complex concepts while not requiring any human
input, for example, certain tumor types showing a prominent desmoplastic stroma reaction. The
resulting so-called foundation or pretrained model can then be refined to solve a downstream
task like predicting survival. If what is learned from general domains like text understanding can
be translated to medicine and pathology, then, given enough data, such techniques could enable
solutions to a complex task like performing a continuous text-based diagnosis as a pathologist
would perform it.

Although unsupervised expansion of the training data allows for a complex understanding of
the model, a final, supervised step is typically needed to unlock the model’s power for applications
such as classification, regression, or segmentation; this step thus poses some limitations. One such
limitation is the prediction of rare disease, for which it is hard to gather enough annotated ex-
amples to train any ML model. This long tail of disease can be approached by anomaly detection
(119, 120), an ML concept that revolves around detecting data that are not similar to most of the
data at hand and, therefore, allows the model to train on naturally distributed data and promises
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to flag data that are uncommon to it. This orthogonal approach is fundamental to Al in real-world
scenarios in order to catch potential fail cases that should be referred to human experts.

Concepts like decentralized learning, foundation models, and anomaly detection are intro-
duced here in the context of histopathology. In principle, however, they can translate to any other
biomedical domain and beyond.

In light of the limited clinical impact of computational pathology, and despite some studies’
claims of “clinical-grade” computational pathology (121, 122), there is still a lack of solid clinical
validation (115,123, 124). Also, aspects of the pre- and postanalytical workflow, including the vary-
ing depth of digitization and implementation of structured reporting, slow down clinical adoption.

4.2. Artificial Intelligence for Molecular Data Analysis

While Al applications in pathology have so far focused mostly on histomorphological images, as
described in the preceding section, the increasing use of molecular profiling approaches (ranging
from single-gene mutational analysis to omics technologies in diagnostics and research down to
the single-cell level) in combination with increasingly structured clinical data requires novel com-
putational techniques capable of dealing with complex heterogeneous data. In the future, XAl
methods may be used not only to analyze the different data modalities but also to help integrate
and interpret those data through multimodal learning concepts. In this section, we review cur-
rent Al approaches for the analysis of different omics data modalities, for both bulk tissue and
single-cell data, and provide an outline of what exists and what is expected regarding multimodal
learning approaches.

4.2.1. Molecular data and artificial intelligence for treatment guidance. While the use of Al
in clinical practice is still under development, it has already demonstrated the potential to support
the use of molecular data for precision pathology. Significant milestones have been achieved, in-
cluding the improved identification of single-nucleotide polymorphisms (SNPs) through the use
of neural networks (50, 125). Additionally, ML models like neural networks and random forests
can predict cancer prognosis or response to therapy on the basis of mutations, copy number vari-
ations, and RNA-sequencing data (e.g., 76, 126). For a more detailed review of Al approaches in
these areas, we refer readers elsewhere (127).

4.2.2. Artificial intelligence in DNA methylation-based tumor diagnostics. DNA methyl-
ation is a so-called epigenetic modification. When located in a gene promoter, DNA methylation
usually leads to transcriptional repression (128). It is well known that global DNA methylation
signatures are tissue-specific, defining the expression profile of different cell types according to
their individual function (129). Although DNA methylation is altered in virtually all types of can-
cer, the global DNA methylation profile of malignant cells still contains substantial information
about their cells of origin (130). Currently, DNA methylation analyses are performed mostly using
an array-based method that measures approximately 850,000 CpG sites (131). Such analyses can
be performed on fresh-frozen or paraffin-embedded formalin-fixed tissue without major batch
effects, enabling the simultaneous analysis of different data sets (41).

Due to their high complexity, analyses of DNA methylation data require ML-based ap-
proaches. Unsupervised dimensionality reduction and clustering methods can be used to define
epigenetic classes, which were the basis for the definition of several new tumor entities and
subtypes (132-135). Furthermore, ML-based classification algorithms developed for tumor
classification outperformed conventional approaches as well as other molecular methods (40, 41,
94, 136). Most importantly, the DNA methylation—based Heidelberg Brain Tumor Classifier has
become the gold standard for the diagnostic classification of several brain tumor entities and is
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one of a few ML-based methods that are used directly in the clinic (41) and are included in the
current World Health Organization classification (137).

Beyond their diagnostic utility, DNA methylation data can be used for prognosis prediction or
the estimation of tumor-infiltrating lymphocytes (138-141). Due to their application in the two
most popular algorithms (41, 136), random forests are the most commonly used techniques. How-
ever, several studies have shown that other techniques, such as support vector machines or neural
networks, can clearly outperform random forest classifiers in specific applications (40, 94, 142).

Currently, there are no well-established XAI methods for unsupervised or supervised ML anal-
yses of DNA methylation data. For classification tasks, the relevance of CpGs can in principle be
computed; however, their biological interpretation is difficult. Specific XAI methods are there-
fore needed for validation and for a better understanding of DNA methylation—based predictions,
which will be key for wider clinical deployment of these approaches.

4.2.3. Molecular marker discovery in precision pathology. Precision pathology aims to find
treatment-guiding patient-specific characteristics. In cancer diagnostics, great progress has been
made in characterizing patient subgroups that are predictive of the efficacy of targeted ther-
apies. Prominent examples are the identification of HER2/neu expression as a biomarker for
trastuzumab treatment response in breast cancer (143) and BRAFYS®F mutations predictive of
vemurafenib efficacy in melanoma (144). A recent breakthrough was the identification of a patient
group suffering from advanced colorectal cancer with mismatch repair defect (145) that went into
full remission after targeted treatment with a PD-L1 inhibitor.

The identification of molecular biomarkers holds great potential for precision pathology, but
experimental investigations are limited given the complexity and heterogeneity of disease mech-
anisms in different patients. ML approaches can help by modeling the complex associations
between disease and biomarker candidates for large sample numbers. Below, we outline how XAI
can leverage these models to extract underlying biological mechanisms and identify key molecular
features.

Based on an ML model that predicts a certain clinical endpoint from molecular data, XAT de-
termines the most important markers for this prediction (Figure 2e). Chen et al. (76) predicted
the risk of cancer death on the basis of imaging and molecular profile data and explained these
predictions by an integrated gradient approach. This approach allowed them to find prognos-
tic biomarkers such as IDHI mutations in low-grade glioma. Model-agnostic XAI methods like
SHAP (79) have been applied to explain survival predictions of different models, such as ran-
dom survival forests, survival support vector machines, and gradient boosting (44, 47, 146). These
studies identified prognostic biomarkers for colorectal, pancreatic, and breast cancers. Kim et al.
(54) used an RNN to identify factors that determine progression from atrophic gastritis to gastric
cancer.

Another common application of XAl is searching for molecular markers that identify cancer
subtypes or distinguish metastases from primary tumors. Here, established knowledge about can-
cer subtype behavior (e.g., with respect to treatment) is linked to newly identified markers (e.g.,
epigenetic and transcriptomic data) (83-86). While these approaches have found markers for a
known outcome, even unsupervised methods have been combined with XAl to find multiomics
markers that cluster cancer patients into distinct molecular subtypes (87).

4.2.4. Using higher-order explainable artificial intelligence to include prior knowledge for
marker identification. Molecular profiles screened by XAl for informative markers can encom-
pass tens to hundreds of thousands of molecular features. In most cases, this search space is too
large for the reliable identification of biomarkers, and prior knowledge may be used to restrict the
model. Several existing approaches integrate such functional information in the form of biological
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Al applications in precision pathology based on histology and molecular data. (#) Semantic segmentation of histological slides
distinguishes cancer (red) from healthy tissue (yellow) and necrosis (blue). () Instance segmentation identifies cancer cells (red),
fibroblasts (yellow), lymphocytes (green), and others. (¢) XAl heatmap visualizes relevance of each pixel for the prediction “cancer.” Low
(negative) relevance is shown in blue and high relevance in red. (d) Neural networks distinguish primary lung cancer, normal lung
tissue, and head and neck metastases on the basis of DNA methylation profiles. (¢) Biomarker identification with XAI. An outcome of
interest is predicted on the basis of genomic data. XAl then determines the most relevant single-nucleotide polymorphisms for this
outcome. Red color intensity and line width indicate the relevance of neural network nodes for the prediction. (f) XAl for a single-cell
gene regulatory network prediction based on single-cell tumor RNA-sequencing data identifies tumor-specific (T; black lines) and
normal (C; ellipses) network modules. (g) Architectures of multimodal modeling. Abbreviations: Al artificial intelligence; HNSC, head
and neck squamous cell carcinoma; LUSC, squamous cell lung carcinoma; XAI, explainable AL

networks. Chereda et al. (60) used known protein—protein interactions and gene expression data
to model the metastasis of breast cancer with a graph-CNN. They then applied an LRP variant,
GLRP, to identify relevant subnetworks for the prediction of breast cancer metastasis, and they
even reported actionable genes. Pfeifer et al. (59) integrated a protein—protein interaction network
to identify relevant disease network modules. Schulte-Sasse et al. (58) applied a graph-CNN to
multimodal data, including single-nucleotide variants, copy number alterations, gene expression,
and DNA methylation, as well as protein—protein interaction network information, for the pre-
diction of cancer genes. Using LRP, they determined how different data modalities contribute to
such predictions. Bourgeais et al. (61) integrated gene ontology information with gene expression
data to leverage cancer detection and used a self-explainable network to find cancer-specific gene
ontology functions.

4.2.5. Discovery of functional interactions by explainable artificial intelligence. Network
inference methods for the prediction of molecular networks can help uncover functional relation-
ships in omics data (reviewed in 147-150). Here we focus on ML/XAI for network predictions for
single-cell tumor RNA-sequencing data. Even small patient cohorts can provide sufficient training
data; thousands of sequenced cells per tumor offer a unique view of intratumoral heterogeneity,
which is important for understanding clonal evolution and resistance to therapy (151, 152).

Based on an ML model trained to predict the expression of a gene by other genes, XAl can
determine the most relevant genes for that prediction (49, 153), not only for specific cell types
but also for individual cells (Figure 2f). The regulatory relationships have been modeled using,
for instance, random forests (153) and gradient boosting (154). The single-cell gene regulatory
network prediction identifies networks specific to cancer cells, information that may be used to
understand dysregulation and identify potential drug targets.

5. MULTIMODAL DATA INTEGRATION

The diagnosis and risk stratification of a tumor disease, as well as the evaluation of treatment
success, are based on a multitude of clinical and diagnostic assessments. These include patient
characteristics, clinical examination, histopathological and molecular characterization of the tu-
mor, blood work, imaging (computed tomography, magnetic resonance imaging, ultrasound),
and patient-reported outcomes. Methodologies for multimodal data integration can use these
digital biobanks (155) from cancer patients to develop data-driven biomarkers. In cases where
the different data layers represent orthogonal information, they promise to yield better predic-
tive performance than the unimodal model. The prospect of combining molecular data with
histopathology predates Al-based image analysis. In this section, we focus on important as-
pects of processing data from histopathology and molecular analyses and present an overview
of architectures for multimodal data integration.
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5.1. Feature Selection in Molecular Data

The combined molecular data of a tumor (methylome, genome, transcriptome, proteome) can
exceed a million data points, making feature selection essential for successful multimodal in-
tegration in cohorts of usually a few hundred patients. To account for the long tail of rare
mutations in cancer, cutoffs for the recurrence of a mutation or copy number alteration within
the cohort enable a straightforward approach to feature selection [e.g., 5-10% (76, 156, 157)].
In contrast, feature engineering in transcriptomic data is more challenging. Curated gene sets
[e.g., from the Molecular Signatures Database (158)] have been used to select gene expression
features (76, 156) but, without further filters, also include genes with low expression or low
variation between samples and likely have no meaningful representation of the transcriptome.
Ultimately, a large fraction of the variance observed in the transcriptome should be retained
after feature selection. The expression of a gene is dependent on other genes in the gene regula-
tory network; therefore, one promising approach is to represent gene expression by interactions
[e.g., by using a sparse graph-CNN (159)] rather than as a vector of single-gene expression
levels.

5.2. Architecture: Early and Intermediate Versus Late Fusion

Multimodal models differ by time of integration (Figure 2g). In an early-fusion architecture,
the selected features from the individual data layer are concatenated and serve as joint model
input. Late-fusion architecture models every data layer individually and then fuses the learned
parameters at the end. In both early- and late-fusion architectures, the unimodal embeddings are
not affected by the embeddings from other data layers. In contrast, in an intermediate-fusion
architecture, feature representations of the unimodal data are iteratively improved by backprop-
agation from the multivariate model. For a more extensive overview of model architectures, we
refer readers to excellent reviews in this area (160, 161). We envision that XAI will be particu-
larly powerful when used in an intermediate-fusion architecture, enabling the assessment of links
between morphological and molecular cancer properties (56).

6. WORKED-THROUGH EXAMPLES

In this section, we work through two specific, real-world examples to demonstrate the modeling
and evaluation process and provide some best practices.

6.1. Example 1: Cancer Classification From Images

Deep learning models are in principle able to capture morphological features in histopathological
images in order to, for instance, differentiate between cancer and noncancer. However, developing
models that perform robustly in a routine clinical setting remains a difficult task. In this example,
we highlight common pitfalls and best practices for training a deep learning model to classify
colorectal cancer tissue. Our example also outlines some of the specific issues encountered in
pathology AI and how best to address them.

We use the NCT-CRC-HE-100K patch data set (162) to differentiate among nine different
colon tissue types. The data set consists of 100,000 annotated patches from two different source
sites without any color normalization. We split the data set into 50% training, 25% validation,
and 25% testing.

Let us start by training a CNN classifier on the training split. We use the standard ResNet18
(25) architecture with 11 million parameters to balance computational requirements and model
capacity. We use a collection of functions built on top of the PyTorch framework to train and test
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our model (the code can be found at https://github.com/jonasd4/pathology-worked-through).
As an objective, we use the categorical cross-entropy loss and optimize our model with SGD
(Figure 3a, subpanel 7). To prevent overfitting (see Section 2.3), we make the usual recom-
mendation to use regularization, which aims to limit model complexity and therefore supports
generalizability to new data.

6.1.1. Regularize the machine learning model. We use a combination of regularization tech-
niques, including weight decay. We augment the images (random horizontal and vertical flipping,
random crops) and choose the regularization parameters that lead to the lowest validation loss.
We then measure the test error on a separate test set, which we have used neither for training the
model nor for selecting the regularization parameters (that were chosen with the validation data
set):

model = resnet18 ()
model . fit (training_data)
model . predict (training_data)

model . predict (validation_data)

model . predict (test_data)

6.1.2. Validate the findings on an external cohort. The classifier achieves an accuracy of
99.2% on the test set. As a further verification experiment, we now test our model on an external
test set (CRC-VAL-HE-7K) consisting of tissues collected at different source sites and on different
patients. The external test set contains 7,180 image patches from 50 patients:

model . predict (external_test_data)

Unlike the original test set accuracy, we observe a poor performance on this external test. The
classifier achieves an accuracy of 47.9%, showing that it does not generalize well to new data. Not
performing this additional experiment would have resulted in an overoptimistic assessment of the
model performance and would have made the practical use of this model quite hazardous, hence
our third recommendation, below.

6.1.3. Inspect the machine learning model with explainable artificial intelligence methods.
"To understand the poor performance of the classifier on the external test set, we apply XAI by
computing LRP heatmaps with the Zennit framework (163). The resulting heatmaps highlight the
contribution of individual pixels to the model’s prediction (Figure 34, subpanel #z). We notice
that our model does not seem to focus on the relevant image features. Instead, larger regions
of the image are marked as equally relevant. This suggests that the model relies on a Clever Hans—
type strategy, that is, a strategy that exploits spurious correlations in the available data but fails to
generalize on instances outside those data.

6.1.4. Use stain normalization and data augmentation. Reliance on color distribution rather
than the more predictive geometrical shapes is a common Clever Hans strategy that is usually
much easier to learn by a model. To understand the emergence of the Clever Hans strategy, we
conduct a simple additional experiment wherein we represent each image by its average color
(a vector containing the pixel-wise mean of the three color channels). Figure 34, subpanel ii
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Figure 3

Depiction of our two worked-through examples. (#) (?) Training pipeline for the image analysis example. (i) A principal component
analysis plot of the training image mean colors shows that color information is correlated with class labels. (ii7) LRP explanation
heatmaps of the simple model. Large areas of the image are highlighted in the relevance map, which indicates a bias toward the image
color. (7v) LRP heatmaps of the improved model. By applying stain normalization and color augmentations during the training, we
reduce the color bias of the model. (4) (/) Enhanced ML/XAI approach to reconstruct protein—protein interaction networks for
individual tumors (49). (i) Examples of protein interaction scores resolved by cancer type for pairs of functionally related proteins.
Abbreviations: ADI, adipose; BACK, background; DEB, debris; GA, global average; H&E, hematoxylin and eosin; LRP, layer-wise
relevance propagation; LYM, lymphocytes; ML, machine learning; MUC, mucus; MUS, smooth muscle; NORM, normal colon
mucosa; STR, cancer-associated stroma; TUM, colorectal adenocarcinoma epithelium; XAI, explainable artificial intelligence. Data

from Reference 48.
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Table 2 Model accuracy on the first cohort’s test set (NCT-CRC-HE-100K) and on the external cohort (CRC-VAL-
HE-7K)

Model Color augmentation Stain normalization First cohort External cohort
Baseline 99.19 47.89
+ color augmentation X 98.61 87.91
+ stain normalization X 98.80 93.12
Improved X X 98.14 94.09

shows a PCA biplot visualization of the data set in this simple 3D space. For some of the classes,
the color-based representation is highly predictive of the tissue class, and a k-nearest neighbor
classifier built on this simple representation achieves 78.2% accuracy on the test set.

Now that we have identified the problem with XAI and our color analysis, we want to improve
our training procedure by preventing it from relying solely on color information. Therefore,
we use stain normalization (164) as a preprocessing step and introduce color augmentations.
We use color jitter, randomly equalize the color histogram of the image, and randomly make
the image grayscale. The improved model achieves an accuracy of 94.1% on the external test set.
Table 2 shows the individual contributions of the color augmentations and stain normalization
on model performance.

We observe that both stain normalization and color augmentation have a strong positive effect
on the external test set performance. By inspecting the LRP heatmaps of the improved model,
we can see that the model focuses less on the overall background of the image and more on class-
discriminating features (Figure 34, subpanel #v). We stop our analysis here but note that applying
XALI is an iterative process: Further inspection of the model might yield further improvements.
Notably, simple pixel-wise attribution techniques such as standard LRP might not always be the
best way to identify flawed decision strategies, and one may benefit from enriching the explanation
with counterfactuals or latent representations (see Section 3).

6.2. Example 2: Proteomic Network Prediction Using Explainable
Artificial Intelligence

In this application example, we highlight how XAI can predict functional protein interactions from
large proteomics data sets that are difficult to interpret functionally with conventional bioinfor-
matics approaches. We follow the main steps from Reference 48, apply them to data from 5,144
patients across 19 cancer types with 147 proteins, and validate our predictions with data from the
Reactome Pathway Database (165), a curated resource for protein interactions.

6.2.1. Prediction of protein interactions with explainable artificial intelligence. Here, we
demonstrate how to predict protein interactions using XAI (48) (Figure 35, subpanel 7). The
data are first split into a training set and a test set. We train a fully connected neural network on
the training set to impute proteins that are masked in the input with a probability between zero
and one. This masking task procedure can also be regarded as a variant of the dropout method;
consequently, it has a beneficial regularization effect on the neural network.

Once the neural network has been trained, we compute predictions over 100 randomly gen-
erated masks (where proteins are masked with probability 0.5), which are then attributed to the
proteins at the input of the neural network. Averaging over the 100 samples yields a matrix of
protein—protein scores for each patient. We can interpret these matrices as individualized mea-
sures of protein interactions. The direction of interaction can be ignored by applying the absolute
value and adding the transpose of the matrix.

www.annualreviews.org o Explainable Al for Precision Pathology 559



Note that our ML/XAI approach differs from a classical correlation approach in the following
ways:

1. Instead of one global (average) interaction matrix, we compute one matrix for each
individual patient.

2. The type of modeled interactions is no longer restricted to linear or monotonous but can
be any form of interaction learned by the ML model.

Let us now test whether the interactions predicted by ML/XAI match our ground truth. As
with the correlation-based approach, we generate a global protein interaction matrix by aver-
aging patient-specific interaction matrices. We find that the ML/XAI approach, where 56 of
the strongest 100 predicted interactions are confirmed by Reactome, outperforms the standard
correlation approach, which identifies only 40 correct interactions.

6.2.2. Predictions for individual patients. An advantage of the XAI approach used here
is its ability to make predictions for individual patients, instead of the population average
made with standard statistical approaches. This can help reveal differences among patients with
one cancer type and/or across different cancers (Figure 35, subpanel #i). The analysis indicates
that the functional relation between proteins depends strongly on the cancer type and may help
formulate hypotheses about proteomic network differences among cancers.

7. A SYSTEMATIC VIEW OF MACHINE LEARNING AND EXPLAINABLE
ARTIFICIAL INTELLIGENCE FOR PATHOLOGY

In this section, we aim to provide a systematic view of possible uses of ML/XAI in pathology.
We identify three major prototypical use cases: (#) assisting a human decision-maker, (») building
autonomous decision systems, and (¢) extracting scientific insights (Figure 4).

7.1. Machine Learning and Explainable Artificial Intelligence
as a Personal Assistant

Human decision-making is a resource-intensive process. Especially in pathology, manual eval-
uation of multimodal diagnostic data [(immuno)histology, mutational profiles, clinical data] is

Database |

a ML/XAI for assisted decisions b ML/XAl for autonomous agents € ML/XAI for scientific insights
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Database e v Database
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Overview of practical uses of XAI that are relevant in biomedicine. XAl can be used to (#) assist the medical expert in making decisions,
(b) validate and improve a decision system, and (¢) reveal scientifically interesting data features that could lead to new hypotheses.
Dashed arrows indicate steps such as training and validation that are taken before the ML or ML/XAI model is deployed to perform
autonomously. Abbreviations: Al, artificial intelligence; ML, machine learning; XA, explainable AL
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complex. ML/XAI can be used as a preprocessing tool for such data by, for instance, highlight-
ing suspicious regions. In this context, XAI has been instrumental in generating heatmaps for
histopathological images (56) that draw the human eye to specific tissue features. Highlighting
tissue regions is already part of medical products such as Paige Prostate (see https://info.paige.ai/
prostate); however, Paige Prostate uses so-called attention maps that are not true XAI. An ML
model can also be used as a second opinion for the pathologist. In case of disagreement, further
inspection is recommended (e.g., using XAl), a functionality that is already present in medical
products such as the Ibex Second Read system (see https://ibex-ai.com). When using ML/XAI
as a personal assistant, where the model is queried in real time, fast solutions based on neural
networks combined with attention maps or propagation methods such as LRP are particularly
suitable.

7.2. Machine Learning and Explainable Artificial Intelligence
for Autonomous Decisions

While diagnostic decisions can be critical and ultimately require board-certified pathologists,
time-consuming quantitative evaluations of tissue features [e.g., counting mitoses (166)] and a
growing global shortage of pathologists pose a challenge. Fully autonomous diagnostic ML/XAI
tools may be a solution, but obtaining regulatory approval is hard and systems need to prove
robustness and highest accuracy. Best ML practices, as discussed above, such as choosing a
proper model and regularization scheme and verifying the model performance not only via cross-
validation but also on independent data sets, are all applicable here. In addition, XAI can be used
to reveal flaws that are undetectable with cross-validation, such as reliance on artifactual features
(89, 90). XAI may also be used to identify flaws after deployment. Several regulatory frame-
works have been developed for such decision processes [e.g., General Data Protection Regulation
(167), In Vitro Diagnostic Regulation], and discussions on how to standardize explanations are
ongoing.

7.3. Machine Learning and Explainable Artificial Intelligence
for New Scientific Insights

Biomedical research is producing increasingly large quantities of complex data. Prominent
examples include The Cancer Genome Atlas (see https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga), the Gene Expression Omnibus
database (168) for genomics data, and BigPicture.eu (see https://bigpicture.eu) for histo-
logical imaging data. These data sets have many potential scientific uses, ranging from descriptive
statistics to research into disease mechanisms. Here, XAl provides a powerful extension to
classical bioinformatics. ML models can learn complex, nonlinear, multivariate relations among
different variables that are further evaluated by XAI and subsequently exploited in data-driven
hypothesis generation (48, 49, 56).

8. DISCUSSION AND CONCLUSION

In addition to improving quantitative image evaluation, XAl enables physicians to verify results
and obtain novel insights. Furthermore, XAl may support regulatory approval. In research, it
may help solve a long-standing conundrum wherein data-driven (omics) approaches applied to
large patient cohorts result only in high-dimensional static descriptions of disease states with-
out the ability to functionally explore diseases, while insights gained from cell culture or animal
models often cannot be transferred to the human situation. Here, XAI can help infer functional
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properties and even higher-order associations in static high-dimensional data. In this manner,
XAI can bridge the gap between data-driven hypothesis generation and conventional hypothesis—
driven approaches. While our review has showcased successful pathology applications of ML in
general and XAl specifically, there remain challenges that require further research between the
disciplines.

A fundamental property of medical data is their uneven distribution. Relatively few diseases
occur very frequently, while the majority of diseases are relatively rare. This is in contrast to
most typical ML applications and makes the collection of training data covering the full spec-
trum of diseases very difficult. In addition, there is often a misfit between the number of cases
and data dimensionality; for example, for omics data with tens of thousands of parameters, even
the largest currently available data sets may not be sufficient for training robust models. Here,
data-rich single-cell sequencing approaches may hold promise. Furthermore, very rare diseases
yield an imbalance among classes that so far has been nearly impossible to model. While novel loss
functions and data augmentation have been tested to improve the classification of rare classes, fun-
damental progress is still urgently needed. Long-tail distribution effects can be alleviated through
anomaly detection. Cases that do not belong to any of the classes known to the classifier would
typically be assigned to the most similar class, which could yield highly nonsensical predictions.
More useful would be a rejection of classification for such rare cases, reflecting their anomalous
characteristics. ML models should also be able to reflect their decision uncertainty.

An important aspect of the impressive recent success of foundation models (e.g., GPT, Lambda)
in natural language processing is the size of the training data, which essentially consist of all text
data in the Internet. In contrast, most cohort sizes in biomedicine are comparatively small. There-
fore, extracting knowledge from the sheer quantity of data is currently infeasible in the medical
domain. Thus, models have to rely on including prior medical knowledge, such as results from
gene or protein interaction studies, that effectively increases data efficiency.

A further challenge is to better harness multimodal heterogeneous data. The issue is to
integrate different types of imaging, omics, and clinical data, all with substantially different in-
formation structure and noise characteristics. Moreover, multimodal explanations need to be
fused.

Recent research has shown that ML models can successfully predict clinical outcomes—a po-
tentially valuable instrument for clinical trials and companion diagnostics. However, a word of
caution seems necessary. ML models can overfit; therefore, a meticulous separation between trial
data and model is mandatory in order to avoid overoptimistic predictions. While it is highly im-
portant to maintain fully independent validation, strategies for calibration from one clinical trial
to another are needed.

Another challenge is interdisciplinarity, as ML experts and pathologists need to learn to interact
and find a common language. Current curricula rarely cover the coursework necessary for students
to appropriately reach a level at which they can seamlessly cooperate with members of the other
discipline. Novel academic curricula, such as digital clinician scientist programs, are required at
levels ranging from specialized minors to postgraduate education.

Finally, data privacy concerns need to be addressed with respect to both training and model
deployment. Federated learning has recently shown promise in this regard (169).

The opportunities arising from Al are manifold, and Al has the potential to transform pathol-
ogy. At the same time, current Al is far from being on par with human intelligence and should be
seen as another, although mighty, ancillary technique that will improve diagnostics with respect to
accuracy and predictive capabilities in the hands of expert pathologists. The full potential of Al,
however, will unfold if it succeeds in integrating complex multimodal data for the development of
novel diagnostics and the generation of novel biological insights.
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