
PM10CH02-Marra ARI 2 December 2014 8:13

Driver and Passenger
Mutations in Cancer
Julia R. Pon1 and Marco A. Marra1,2

1Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver,
Canada V5Z 1L3; email: jpon@bcgsc.ca
2Department of Medical Genetics, University of British Columbia, Vancouver,
Canada V6T 1Z4; email: mmarra@bcgsc.ca

Annu. Rev. Pathol. Mech. Dis. 2015. 10:25–50

First published online as a Review in Advance on
October 17, 2014

The Annual Review of Pathology: Mechanisms of
Disease is online at pathol.annualreviews.org

This article’s doi:
10.1146/annurev-pathol-012414-040312

Copyright c© 2015 by Annual Reviews.
All rights reserved

Keywords

epigenome, microRNA, copy number alterations, regulatory regions,
bioinformatics

Abstract

Next-generation sequencing has allowed identification of millions of so-
matic mutations and epigenetic changes in cancer cells. A key challenge in
interpreting cancer genomes and epigenomes is distinguishing which genetic
and epigenetic changes are drivers of cancer development. Frequency-based
and function-based approaches have been developed to identify candidate
drivers; we discuss the advantages and drawbacks of these methods as well as
their latest refinements. We focus particularly on identification of the types
of drivers most likely to be missed, such as genes affected by copy number
alterations, mutations in noncoding regions, dysregulation of microRNA,
epigenetic changes, and mutations in chromatin modifiers.
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INTRODUCTION

Next-generation sequencing has enabled the detection of thousands of mutations in single samples
and in large cohorts [e.g., The Cancer Genome Atlas (TCGA) (1), the Cancer Genome Project
(CGP) (2), and the International Cancer Genome Consortium (3)]. However, not all mutations in
cancer genomes contribute to malignant initiation or progression, as mutational processes affect
cellular functions and processes beyond those relevant to cancer development. Identifying which
mutations contribute to cancer development is a key step in understanding tumor biology and
developing targeted therapies. Mutations that provide a selective growth advantage, and thus
promote cancer development, are termed driver mutations, and those that do not are termed
passenger mutations (4). The terms driver and passenger may also be used to refer to the genes
harboring driver mutations. Genes that have been identified as drivers in at least one cancer type
are described as cancer genes (5).

Large-scale sequencing projects such as TCGA (1), the CGP (2) and the International Cancer
Genome Consortium (3) aim to enable identification of all human cancer genes. Data from the
CGP and other published literature were used to produce the list of 522 cancer genes in the
Catalogue of Somatic Mutations in Cancer (COSMIC) (6). Although the discovery of new genes
containing driver mutations has slowed, suggesting the list is nearing saturation (5), there is ample
room for exploration of which cancer genes tend to drive each cancer type, particularly for the
rarer types. Moreover, accurate identification of all driver genes in the cancer of individual patients
is of increasing interest for the application of precision medicine (7).

This article focuses on how approaches to identifying drivers have been refined since the
last reviews (8–10), how their use affects which types of genes are classified as drivers, and what
challenges remain in the field of driver identification. In particular, we focus on what types of
driver genes and mutations have traditionally eluded detection and how epigenetic changes are
now becoming recognized as cancer drivers.

TYPES OF DRIVER MUTATIONS

Oncogenes are defined as driver genes in which driver mutations are activating or result in new
functions. Tumor suppressors are driver genes in which driver mutations are inactivating. Onco-
genes tend to be affected by focal amplifications or missense mutations at a limited number of
codons, whereas tumor suppressors tend to be affected by focal deletions or nonsense, frameshift,
and splice-site mutations dispersed across the gene (11). Exceptions of course exist, such as mis-
sense mutations that frequently occur in the tumor suppressor p53 (11), truncations that confer
gain-of-function activity (12), and splice-site mutations that increase the abundance of oncogenic
isoforms (13). The specific type of activating or inactivating mutation that occurs most frequently
varies between driver genes. For instance, the MYC oncogene contributes to non-Hodgkin lym-
phoma almost exclusively through gene rearrangements (14), whereas the BRAF oncogene is most
commonly affected by the V600E mutation (15). Driver genes may not be recognized unless the
type of mutation predominantly affecting them is assessed.

The predominant mutation type also varies between cancer types and between samples within
the same cancer type. Interestingly, the frequency of somatic copy number alterations (CNAs)
and the frequency of somatic single-nucleotide variants (SNVs) were inversely correlated across
12 cancer types, such that individual samples had predominantly either one or the other, but never
both (16). Moreover, in breast and serous ovarian carcinomas, almost all samples had predomi-
nantly CNAs, whereas for kidney clear cell carcinoma, glioblastoma, acute myeloid leukemia, and
colorectal carcinoma, almost all samples had predominantly SNVs. Translocations and inversions
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also have variable frequency between cancer types (17); overall they are drivers in ∼20% of all
cancer cases (18). Comprehensive driver identification will require consideration of this diverse
array of mutation types.

In contrast, single-nucleotide polymorphisms (SNPs), even though they may be associated
with increased cancer risk, are not typically considered drivers. This is because the magnitude of
positive selective advantage that a driver mutation provides to a cancer cell tends to be proportional
to the magnitude of the negative selective advantage that the mutation would confer to the whole
organism if it was present in germ-line DNA (19). Driver mutations are typically defined as
having such a large impact on fitness that they do not commonly occur in the germ-line DNA of
populations. SNPs by definition occur in >1% of the population and thus do not have a strong
enough effect on fitness to be considered driver mutations.

Nonetheless, driver mutations can be inherited; classic examples include BRCA1 and BRCA2
mutations in familial breast and ovarian cancer (20) and APC mutations in familial adenomatous
polyposis (21). In these and other cancer predisposition syndromes, driver mutations may also
occur in the germ line de novo (22–25). Approximately 10% of cancer genes show only germ-line
mutations; 10% show germ-line and somatic mutations, and 80% show only somatic mutations
(2). The existence of driver mutations in the germ line demonstrates that driver mutations can
be acquired decades before the cells harboring them become cancerous. This is possible because
a cell requires multiple mutations to become cancerous, which are acquired gradually over time
(4). Some mutations do not provide any growth advantage and thus do not act as drivers unless
certain other mutations are also present. For instance, a growth advantage is conferred by in-
activation of one allele of a haplosufficient tumor suppressor only if the other allele is already
inactivated (26). Moreover, mutations may act as drivers only during certain stages of cancer
development. For instance, mutations inactivating TGF-β signaling appear to drive early tu-
morigenesis by preventing TGF-β-induced growth arrest, whereas mutations increasing TGF-β
signaling appear to drive later stages of tumorigenesis by promoting angiogenesis and invasiveness
(27).

Mathematical modeling estimates that 5 to 8 driver mutations are required for cancer devel-
opment (4, 28). However, the number of passenger mutations far exceeds the number of driver
mutations. Samples from 11 adult cancer types that had on average 200 somatic point or small
insertion/deletion (indel) mutations in exons had only 2 to 6 mutations predicted to be drivers
(29). Similarly, at the level of driver genes, common solid tumors had an average of 33 to 66 genes
with protein-altering somatic mutations, but only 3 to 6 mutated genes per sample were predicted
to be drivers (5). The presence of so many more passengers than drivers makes it impractical to
functionally test all mutations detected by next-generation sequencing. This limitation has neces-
sitated the development of bioinformatic methods for predicting which genes and mutations are
most likely to be drivers. The most likely candidates can then be prioritized for functional testing.
There are two main categories of approaches: those that assess the frequency of mutations and
those that predict the functional impact of mutations.

IDENTIFYING CANDIDATE DRIVER MUTATIONS BY FREQUENCY

One approach considers candidate driver genes to be genes mutated in a greater proportion
of cancer samples than would be expected from the background mutation rate. More frequent
mutation than expected from the background mutation rate suggests that cells with mutation of
that gene are more likely to become cancerous than they would have been without mutation of
that gene, and thus that the gene is a candidate driver. Once a candidate driver gene is identified
in this manner, somatic mutations in that gene that have a consistent predicted effect on the

www.annualreviews.org • Driver and Passenger Mutations in Cancer 27



PM10CH02-Marra ARI 2 December 2014 8:13

gene’s activity (i.e., activating mutations in a candidate oncogene and inactivating mutations in a
tumor-suppressor gene) may be considered candidate driver mutations.

Assessing the relative frequency and distribution of missense, nonsense, frameshift, and splice-
site mutations can suggest whether a candidate driver is likely to be an oncogene or a tumor
suppressor (5, 9). A 20/20 rule was suggested: Genes in which >20% of somatic mutations are
missense and occur at recurrent positions are considered oncogenes, whereas genes in which >20%
of somatic mutations are inactivating are considered tumor suppressors (5). A more complex tool
for distinguishing oncogenes from tumor suppressors is OncodriveCLUST, which identifies can-
didate driver oncogenes by evaluating mutation clustering within the primary structure of a protein
(30). A similar tool, iPAC, identifies clusters of mutations in three-dimensional protein structures
(31). Aside from indicating that a gene may be an oncogene, the recurrence of mutations at par-
ticular nucleotides in a greater proportion of samples than expected from background frequencies
also provides support that those mutations are driver mutations. Statistical tools have used this
principle to identify candidate driver mutations at phosphorylation sites (32).

There are two major concerns with defining drivers by frequency, reviewed below: the difficulty
of accurately estimating background mutation frequencies (33, 34) and the difficulty of identifying
infrequently mutated driver genes (35).

Background Mutation Frequency Estimation

Accurately estimating background mutation frequency is difficult because of the variability in mu-
tation rates between cancer types (>1,000-fold variation), between samples of the same cancer type
(∼1,000-fold variation), and across the genome itself (>5-fold variation) (33). Even if the correct
average background frequency is used, underestimating variability between genes or between sam-
ples increases false positive calls (33). Indeed, large studies have identified candidate driver genes
with seemingly irrelevant functions (33), such as olfactory receptors (36) and the muscle protein
titin (37). Supporting the notion that underestimation of heterogeneity contributes enormously
to false positive rates, correction for heterogeneity shrank one list of candidate drivers from 450
to 11 (33), and another from 34 to 8 (34).

Background frequencies have been estimated from synonymous mutation rates, under the
assumption that synonymous mutations are selectively neutral and occur at rates proportional
to the rates of other types of mutation (38). However, this approach has limited accuracy at
estimating gene-specific mutation frequencies for genes with low rates of synonymous mutations.
An alternative method of gene-specific background frequency estimation assumes that mutations
in introns and untranslated regions (UTRs) are selectively neutral, and thus that the mutation
frequency for introns and UTRs is indicative of the background mutation frequency across the
gene (39). However, as discussed below, mutations in UTRs and intronic regions are not always
selectively neutral (40–42).

Other approaches have sought to model mutation frequencies using genomic features. Muta-
tion rate is affected by replication timing, GC content, gene density, distance to telomeres and
centromeres, and nucleosome occupancy. However, these factors account for less than 40% of
the variance in mutation frequency in cancer genomes, suggesting modeling alone was insufficient
for accurate background rate predictions (43). More recently, discovery of transcription-coupled
repair has led to the consideration of expression levels when estimating background mutation rates
(33, 44). MutSigCV estimates gene-specific background mutation frequencies from both genomic
features and synonymous mutation rates and was the method of choice in recent studies (45–47).

Attempts to refine background frequency prediction have included estimation of separate mu-
tation rates for different mutation types. Whereas differences in the rates of indels versus point
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mutations and transitions versus transversions have typically been adjusted for, only recently have
mutation subtypes been considered. For instance, DrGaP predicts background frequencies of 11
different subtypes of mutations, each distinguished by the sequence context and identity of the
mutated bases (48). In some cases, the mechanism of mutation can be inferred, allowing com-
parison to background frequencies specific to that mechanism. For instance, defective mismatch
repair produces indels at polynucleotide tracts (49). Novel candidate drivers have been identified
by comparing the frequency of polynucleotide tract indels in coding regions to the frequency
of polynucleotide tract indels in intronic regions (50). However, most samples have evidence of
at least two different mutational mechanisms, and within cancer types, many different combina-
tions of mechanisms have been identified (51). Moreover, additional mechanisms of mutation may
remain to be discovered. A mutation signature related to APOBEC cytidine deaminase activity
(52), termed kataegis (53), remained unrecognized until 2012, despite being prominent in many
cancer types (54, 55). In some samples kataegis appears to be the most prevalent of all mutational
mechanisms, associated with up to 68% of exome mutations (54). Kataegis mutations have been
identified in known cancer genes (53, 54), suggesting they may act as drivers.

Identifying Infrequently Mutated Candidate Drivers Using
Frequency-Based Approaches

An additional concern with frequency-based approaches is the prohibitively large sample sizes
needed to identify infrequently mutated driver genes. Infrequent mutations in driver genes appear
to be the norm, not the exception: The mutational landscape of cancer is dominated by “hills” of
genes mutated in <5% of samples, rather than “mountains” of more frequently mutated genes
(56). For instance, a study of ovarian carcinoma found only one gene to be a “mountain” (TP53,
mutated in 96% of samples) but found eight genes to be mutated in less than 7% of samples
(57). Some rarely mutated driver genes have only recently been recognized. For instance, CUX1
is mutated in only ∼1–5% of samples across cancer types and was not recognized as a cancer
gene until an extremely large sample size (7,299 exomes) was used (58). Similarly, candidate driver
mutations may be overlooked because they occur in infrequently mutated regions of cancer genes:
Functional testing revealed that some mutations outside of the commonly mutated region of the
cancer gene FLT3 were indeed driver mutations (59).

Why are so many driver genes only rarely mutated? In some cases, it may be because of
functional redundancy with mutation of other genes in the same pathway. A pathway has been
loosely defined as “the stepwise interaction of multiple proteins designed to achieve a defined
cellular process” (60, p. 1310). If only the first mutation of any gene in a pathway provides a
selective advantage, each of the genes in a pathway would only rarely have the first mutation and
would thus only rarely act as a driver. However, the stipulation that only the first mutation in a
pathway provides a selective advantage is true only if the mutation can act dominantly, as is often
the case for oncogenes but rarely the case for tumor suppressors.

The recognition that a large number of driver genes may affect a smaller number of pathways
has spurred attempts to identify the driver pathways in which driver genes act. Just as candidate
driver genes may be defined as genes containing more mutations than expected from the back-
ground mutation frequency, candidate driver pathways may be defined as pathways whose genes
collectively contain more mutations than expected from the background mutation frequency (48).
Consider a group of infrequently mutated genes, all in the same pathway, that have mutations in
a slightly greater proportion of samples than expected from the background mutation frequency.
The difference between observed mutation frequency and background mutation frequency may
not be statistically significant for each individual gene, as the sample size of mutation events is
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small. However, when the genes are analyzed as a group, the difference between observed mutation
frequency and background mutation frequency may become statistically significant, as the sample
size of mutation events is increased. Thus, aiming to first identify driver pathways and then infer
that the genes within them may be drivers elegantly avoids the problem of identifying rare driver
genes independently. Moreover, as the cellular roles of many pathways are known, identifying
driver pathways can suggest which cellular processes tend to be dysregulated (61).

Approaches for driver pathway identification differ in how they define pathways. Some meth-
ods define pathways using information from pathway databases (60, 62, 63) or protein-protein
interactions (64, 65). However, currently known interactions may not be applicable to different
tissues (60) and may be altered by gain-of-function mutations (66). These concerns prompted the
development of de novo pathway prediction methods (67–69). Pathways are built by placing genes
with co-occurring driver mutations in separate pathways. Each resulting pathway contains only
mutually exclusive and presumably functionally redundant mutations (70). However, acting in the
same pathway is not the only explanation for why two driver genes may be mutated in a mutually
exclusive manner: Two mutations may provide selective advantage only in different cellular con-
texts. For instance, mutations in the driver genes PBRM1 and BAP1 are largely mutually exclusive
in renal cell carcinoma, yet PBRM1 and BAP1 appear unlikely to act through the same pathway:
Gene expression signatures, pathologic features, and patient outcomes differ between PBRM1- and
BAP1-mutant tumors (71). Rather, PBRM1 and BAP1 may confer selective advantage in different
cellular contexts existing within renal cell carcinoma cases (71).

IDENTIFYING CANDIDATE DRIVERS BY PREDICTING
FUNCTIONAL IMPACT

Candidate driver mutations may also be distinguished from passengers by their tendency to have
a greater impact on protein function than passenger mutations do. The functional impact of
a mutation may be assessed on the basis of evolutionary conservation (if the protein has close
homologs), secondary and tertiary structural features, biochemical similarity of the previously
existing amino acid to its replacement, and placement of side chains in the three-dimensional
protein structure (8). Some methods consider mutations only in specific functional domains (72),
and some consider features specific to certain protein families, such as kinases (73). The functional
impact of mutations may be summed across genes or pathways to identify the genes or pathways
that are biased toward the accumulation of mutations with strong functional impact; such genes
and pathways may be considered candidate drivers (35).

Unlike frequency-based approaches, function-based approaches can identify candidate driver
mutations using data from a single sample. Function-based approaches are thus well suited for
studies of inter- and intratumor heterogeneity and precision oncogenomic projects (e.g., select-
ing chemotherapies on the basis of mutations present in the tumor to be treated). However, the
generalizations made by methods of functional impact prediction can introduce error. For in-
stance, not all mutations in well-conserved domains are drivers and not all in poorly conserved
domains are passengers (59). Out of eight functional impact prediction methods, none had greater
than 81% accuracy (9). Sensitivities ranged from 40% to 79% and specificities from 57% to
99%.

Recent advances in functional impact prediction methods include the incorporation of tran-
scriptome data. For instance, searching for correlations between transcription factor mutations
and target gene expression has identified both well-known and novel candidate drivers (61). Can-
cer genes also tend to be expressed in the tissues in which they are mutated (74), a feature only
recently incorporated into high-throughput driver identification (46, 47, 75). Comparison with
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protein-protein interaction networks has also helped identify candidate drivers. Genes whose pro-
tein products are central nodes in protein interaction networks (76, 77) or interact with proteins
from known cancer genes (64, 78) are more likely to be drivers. Consistent with their centrality
in interaction networks, driver genes appear to have arisen early in evolution: Tumor suppressors
tend to have orthologs in prokaryotes, whereas most oncogenes arose with the divergence of meta-
zoans (79). Prediction of evolutionary origin has been included in some approaches to candidate
driver identification (74).

The data from multiple features related to functional impact may be integrated to produce
more accurate predictions. The advantages and drawbacks of combining outputs from different
methods into a single candidate driver list depend on whether one uses the intersection (i.e., genes
in list A and list B) or the union (i.e., genes in list A or list B). Using the intersection may reduce
false positives but may cause some drivers to be missed. Using the union reduces the chance true
drivers are missed but risks including false positives.

Some studies have taken a rule-based approach, such as using the majority vote of multiple
methods (80). More complex statistical methods have also been developed, such as those that
compute a weighted average of the normalized scores of individual methods (81). Scores from
methods appearing more accurate may be given more weight than scores from methods appearing
less accurate. Integrating data in this manner has shown mixed results, outperforming individual
methods in one study (81) but not another (9). Another option is to use machine learning tools,
which can train classifiers in how best to use data from multiple features of a mutation. “Best” is
defined as resulting in the most accurate classification of a training set of high-confidence drivers
and passengers.

One advantage of machine learning methods is that a large number of features can be evaluated.
A recently developed classifier, CanDrA, evaluates 95 features of each mutation (82). Relevance
of predictions to particular cancer types may be heightened using training sets of drivers from
the cancer types of interest (82). However, accuracy is limited by the number of high-confidence
drivers available for use in training sets. Moreover, with more features, exponentially more sam-
ples are needed to train a robust model. Training sets are most representative of the databases
from which they were drawn; consequently, classifiers have performed more poorly on mutations
from outside those databases than on mutations within them (9). Incorporating mutation data from
additional databases, and including real rather than computer-generated passenger mutations, has
allowed CanDrA to outperform a previously developed classifier (82). Continual improvement of
machine learning tools will require continual incorporation of new mutation data into training set
construction.

INTEGRATING FREQUENCY- AND FUNCTION-BASED APPROACHES
TO CANDIDATE DRIVER IDENTIFICATION

Given the different advantages and drawbacks of frequency- versus function-based approaches (see
the sidebar, Comparison of Frequency- and Function-Based Methods), it is not surprising that the
candidate driver lists they produce overlap only moderately. For instance, when the frequency-
based algorithm MuSiC (63) and the functional impact bias tool OncodriveFM (35) were used to
identify candidate driver genes in 3,205 samples from 12 cancer types, both methods identified
similar numbers of candidate driver genes (232 and 259, respectively), but only 68 of those candi-
date driver genes were in common (83). In recognition that certain true drivers may be identified
only by either frequency- or function-based approaches, the IntOGen-mutations platform was
developed to run multiple frequency- and function-based methods in a single pipeline (84).
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COMPARISON OF FREQUENCY- AND FUNCTION-BASED METHODS

Advantages specific to frequency-based methods:
� They directly suggest selective advantage was conferred.
� They are useful for identifying which regions affected by CNAs are most likely to contain driver genes.
� They never require training sets.
� They are not limited by current understanding of protein function or generalizations about mutations in certain

protein regions.
� They are effective regardless of whether genes have close homologs.

Capabilities common to both frequency- and function-based methods:
� They can distinguish candidate oncogenes from candidate tumor suppressors.
� They can be applied to find driver mutations, genes, or pathways.
� They are adaptable to specific types of mutation and specific cancer types.
� They are useful for identifying candidate driver epigenetic changes and mutations in noncoding regions.

Advantages specific to function-based methods:
� They can identify candidate driver mutations from single-sample data.
� They are equally effective for rarely and commonly mutated genes.
� They do not require background rate estimation.
� Function-based methods that consider gene expression data assist with identification of candidate driver genes

in broad regions of CNA.

A recent study integrating frequency- and function-based predictions into a single candidate
driver list used a rule-based method for the integration (83). High-confidence candidate drivers
were those predicted by more than one method, plus those predicted by a single method that were
already in the Cancer Gene Census or were predicted to functionally interact with high-confidence
candidate drivers. The resulting high-confidence list contained 165 candidate driver genes that
were not in the Cancer Gene Census, demonstrating that integrating frequency- and function-
based approaches can suggest novel drivers. Moreover, the high-confidence list contained only
291 genes, far fewer than the 522 in COSMIC, suggesting it may also contain fewer false positives.

FUNCTIONAL VALIDATION OF CANDIDATE DRIVERS

Bioinformatic methods cannot provide definitive classification of mutations as drivers or pas-
sengers but can prioritize them for functional testing (8). The gold standard of evidence that a
mutation is a driver is that the mutation produces a cellular phenotype that contributes a selec-
tive advantage to the cells harboring it. Such phenotypes may be related directly or indirectly to
survival and proliferation. For instance, reprogramming energy metabolism and evading immune
destruction can contribute indirectly to the likelihood that a cell will proliferate and are now con-
sidered hallmarks of cancer (85). Notably, other cell types may need to be present for the effects
of a driver mutation to be noticeable. For instance, driver mutations may alter cytokine secretion
from cancer cells, and those cytokines may interact with endothelial cells to promote angiogenesis
or with immune effector cells to reduce the immune response against the cancer cells (reviewed
in 86).
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This growing appreciation for the role of the microenvironment in cancer development has
highlighted the benefits of investigating gene function in coculture systems or any of a wide variety
of model organisms. One concern with the use of model organisms is the difference in cell biology
between species. For instance, mice with germ-line Rb (87) or p53 (88) mutations tend to develop
cancers in different tissues than do humans with those germ-line mutations (87, 89). Moreover,
most mouse cells, but not most human cells, have active telomerase (90). The activity of telomerase
in mice may mask effects of drivers that activate telomerase and tends to reduce the number of
mutations required for cancer development in mice. Consequently, a mutation may appear to be
a more potent cancer driver in mice than it is in humans.

Moreover, functional testing is ideally performed in the cell type that gave rise to the cancer
type in which the candidate driver mutation was found. Cell type may influence not only whether
a mutation acts as driver, but also whether a driver gene appears to be an oncogene or a tumor sup-
pressor (91). However, not all cancers have a known cell of origin; rhabdoid tumors, for instance,
do not (92). Other mutations present in the model system used must also be considered. Cancer
cell lines and other immortalized cells are more likely than primary cells to already have mutations
in the pathways that the candidate driver would otherwise have affected. Such mutations could
mask the candidate driver’s effects. Conversely, additional mutations may need to be introduced
in order for a phenotypic effect to be seen. For instance, MITF overexpression only transformed
melanocytes that also had a BRAF V600E mutation (93). Interdependence between mutations
is not unusual: Analysis of 127 candidate driver mutations found 148 significantly co-occurring
mutation pairs and 14 mutually exclusive pairs (29). To help anticipate conditions needed for
functional testing, at least one package of bioinformatic tools for candidate driver identification
includes a test for correlation and mutual exclusion relationships between candidate driver genes
(63). Overall, dozens of cancer genes have been found to act in opposite ways in different experi-
mental contexts (94), highlighting the sensitivity of gene function to genetic and cellular contexts.

The difficulty of performing functional testing in a high-throughput manner has made it a
bottleneck for driver identification. Tools for functional characterization of multiple genes in
parallel, including screens using siRNA, small molecule, cDNA, or miRNA libraries, are reviewed
elsewhere (95). Studies in mice have been expedited by the use of non-germ-line mouse models,
which can be made more quickly than germ-line models (96). A further concern is the accessibility
of functional data: Establishing more opportunities for the organized exchange of functional data
could facilitate the comparison of driver predictions with functional results, a key step in improving
the accuracy of prediction methods (8).

THE MISSING DRIVERS

The consequence of the imperfect sensitivity of bioinformatic and sequencing methods is, by def-
inition, that some driver mutations are missed. This shortcoming is evident in observations that
fewer drivers tend to be detected in tumor sequencing studies than are predicted to be required for
cancer development (5). However, actually estimating how many drivers are missed is complex.
Modeling suggests the number of drivers expected in a sample is dependent on the patient’s age at
tumor initiation (5) and how much time has passed between tumor initiation and sampling (97).
Attempts to find the missing drivers are dependent upon efforts to understand which types of
drivers tend to be missed. Some may be missed due to the aforementioned limitations of bioin-
formatic approaches and the limitations of next-generation sequencing itself. In studies focusing
only on somatic mutations, driver mutations in the germ line would also not be recognized. Still
other drivers are missed because they fall into broad categories of mutations for which driver
discovery is still being pioneered. The two main categories are (a) mutations affecting multiple
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genes in ways that are relatively easy to predict and (b) mutations affecting single genes in ways
that have historically been difficult to predict. The former include structural alterations affect-
ing many genes, whereas the latter include mutations in noncoding regions and those affecting
RNA stability. Investigation of the former may reveal previously missed driver genes, whereas
investigation of the latter may reveal previously missed driver mutations.

Structural Alterations Affecting Multiple Genes

CNAs are examples of structural alterations that can affect multiple genes in relatively predictable
ways: Expression of some genes in the deleted and duplicated regions is likely to be reduced
and increased, respectively. However, thousands of genes may be included in a region of CNA.
Moreover, the median number of CNAs per sample from 11 different cancer types was 39 (98),
far exceeding the number of driver mutations needed for cancer development. Thus, only a small
fraction of CNAs may actually affect driver genes.

The gold standard for finding a driver gene in a region of CNA is to functionally test each
gene in the region, an approach that has identified novel drivers (99). To prioritize regions for
functional testing, frequency-based approaches have been adapted to CNA (100–102). Studies of
the genomic features of intrinsically fragile regions have enabled prediction of which deletions
are recurrent because of a higher background CNA frequency, rather than because of selective
advantage (101). Separate background CNA frequency estimations may need to be developed for
CNAs that are telomere bounded than for those internal to the chromosome, as these two types
may result from different mechanisms (98).

Peak regions most frequently affected by CNAs may be computed by algorithms such as
GISTIC, which considers both the frequency and amplitude of CNAs at each position in the
genome (illustrated in 102). However, peak regions still tend to include multiple genes. Even
using a sample size of 4,934 tumors from 11 cancer types, peak regions included a median of 3 to 4
genes (98); 28 of 140 peak regions contained more than 25 genes. Peak regions tended to be even
broader when cancer types were analyzed separately. One method of predicting which genes in
peak regions are drivers relies on previously identified cancer genes. However, in the above study,
only 36 of 140 peak regions contained known cancer genes.

The low proportion of peak regions with known cancer genes may be an indication that
many driver genes affected by CNAs remain to be discovered. This is plausible considering that
some driver genes are affected predominantly by CNAs, not SNVs (101), and that most known
cancer driver genes were identified by the study of SNVs, not CNAs. Moreover, cancer genes
may or may not actually be drivers in the cancer type with the CNA of interest. Identifying which
genes affected by CNAs are drivers without relying on cancer gene lists is thus important for both
developing comprehensive cancer gene lists and understanding CNA-dominated cancer types.

Candidate driver genes in CNAs can instead be identified by comparison with gene expression
data: Only genes whose expression is altered remain candidates. Techniques for integrating tran-
scriptome sequencing data with CNA data have been used to identify known and novel candidate
driver genes within broad CNAs (103). Comparison with gene expression data has also suggested
that whether or not a gene acts as a driver may depend on the size of the CNA affecting it. For
instance, EGFR overexpression occurred in glioblastoma samples with focal EGFR amplification,
but not in those without focal EGFR amplification, even if there were broad amplifications of
the chromosome on which EGFR is located (102). That the effect of a large CNA is not simply
the sum of the effects of smaller CNAs in that region may explain how cells with whole-genome
duplication remain viable. Indeed, whole-genome duplication occurred in 37% of samples across
11 cancer types (98). Whole-genome duplication appears to be an early event in the cancer types
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in which it occurs frequently (98), consistent with the notion that it may contribute to oncogenesis
in those cancer types.

Translocations and inversions may also act as drivers by disrupting genes at their breakpoints
or altering the position of regulatory regions relative to the genes they regulate. Instances have
been noted of tens or hundreds of structural alterations that appear to have arisen in a single catas-
trophic event. In these cases it can be particularly difficult to discern which, if any, of the genes
affected by the many rearrangements are candidate drivers. Three types of “genome chaos” have
been identified: chromothripsis (104), chromoanasynthesis (105), and chromoplexy (106). Chro-
mothripsis and chromoanasynthesis tend to be restricted to a single chromosome; chromothripsis
involves clustered rearrangements, whereas chromoanasynthesis involves clustered copy number
gains. In chromoplexies, multiple chromosomes are involved in chains of translocations (107). Of
these three types, chromothripsis is the most well studied.

Compatible with the notion that chromothripsis can generate driver mutations, chromothripsis
has affected cancer genes (107) and tends to occur early in cancer development (108). Moreover,
chromothripsis may produce a relatively large proportion of driver mutations: Chromothripsis is
estimated to occur in 5% of all samples from 11 tumor types (98) and in up to 39% of glioblastoma
samples (108). However, identification of novel drivers from chromothripsis events is hindered
by our inability to estimate the background frequency of chromothripsis. Accurate background
frequency estimation would require detection of chromothripsis in single cells immediately after
it occurs, as chromothripsis affects so many genes that every instance is expected to provide some
selective disadvantage or advantage (107).

Mutations in Noncoding Regions

Attempts to find driver SNVs have focused on coding regions, where the majority of driver SNVs
are believed to occur (109). However, driver mutations have also been identified in regulatory
regions. This is not surprising, given that mutations in regulatory regions are known to contribute
to other disease processes (110, 111) and that many known cancer genes are regulators of gene
expression (29, 80). Moreover, mutations in noncoding regions are abundant: 99% of somatic
SNVs were present in noncoding regions (19). Questions remain about the most effective ways of
recognizing noncoding driver mutations and how often they occur.

Highly recurrent regulatory region driver mutations have been identified at two hot spots
in the promoter of TERT, which encodes the catalytic subunit of reverse transcriptase. These
mutations were first reported by two simultaneously published studies: One used linkage analysis
and sequencing of a melanoma-prone family (112), whereas the other systematically investigated
noncoding somatic mutations in whole-genome sequencing data (109). Mutations were present
at these hot spots in 71% of melanomas (109) and have since been found in at least seven other
cancer types (113–118). That these mutations act as drivers was supported by several lines of
evidence: (a) mutations were not present at any other sites in the TERT promoter, suggesting
mutation frequency at the hot spots is above the background frequency; (b) mutation at either of
the two hot spots generated an ETS transcription factor binding site, suggesting a mechanism
through which the mutations may cause TERT expression to be increased; (c) mutations at the
hot spots were mutually exclusive, suggesting they contributed selective advantage in redundant
ways; (d ) expression of a luciferase construct was greater when cloned downstream of the mutant
than the wild-type promoter sequence, demonstrating a functional effect of the mutations; and
(e) oncogenic activity of overexpressed telomerase had already been characterized.

However, driver mutations in regulatory regions remain difficult to recognize if they are rare
relative to the background mutation frequency, are not located near known cancer genes, alter
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regulatory elements in ways with unpredictable functional consequences, or are located in un-
characterized regions. The proportion of the genome devoid of characterization has been greatly
reduced by projects such as the Encyclopedia of DNA Elements (ENCODE), which aims to iden-
tify all functional elements in the human genome (119). Functional annotation is now available for
the regions in which 62% of noncoding SNVs were found (120). However, annotation data from
large-scale experiments cannot replace functional testing of particular mutations. Only 36% to
49% of transcription factor binding sites identified by chromatin immunoprecipitation sequenc-
ing actually contributed to promoter activity in a given cell line when tested using luciferase assays
(121).

Despite the significant proportion of the genome lacking functional annotation, annotations
remain useful when prioritizing mutations for functional testing. ENCODE data and transcription
factor binding site motifs from sources such as JASPAR (122) have been incorporated into a
database, RegulomeDB, designed to help identify and interpret variants in regulatory regions (120).
Another tool specifically for predicting transcription factor binding at mutated DNA sequences
(123) was used in a study that systematically searched for driver mutations within 2 kb up and
downstream of all transcription start sites (124), identifying a candidate driver mutation in the
promoter of a RAS family gene.

More recently, data from the 1000 Genomes Project (125) were used to classify the functional
importance of regulatory elements on the basis of conservation between individuals. Through this
analysis, 102 classes of selectively constrained, and thus functionally important, noncoding regions
were identified (19). In the most constrained of these, the ultrasensitive and sensitive regions, the
fraction of variants that occurred only rarely was similar to that in coding regions, suggesting that
mutations in ultrasensitive and sensitive regions may be nearly as functionally damaging as those
in coding sequence. The ultrasensitive and sensitive regions occupied ∼0.02% and ∼0.4% of
the genome, respectively, a significant fraction considering coding regions represent only ∼1.1%
(126). Ultrasensitive and sensitive regions cover a small enough portion of the genome that they
could feasibly be included along with the exome for targeted sequencing studies (19), facilitating
discovery of candidate driver mutations in those regions.

This characterization of genome-wide selective constraints enabled the development of Fun-
Seq, a tool for identifying candidate driver mutations in both coding and noncoding regions (19).
Mutations considered more likely to be drivers were those existing in more selectively constrained
regions, interrupting transcription factor binding sites, or affecting central hubs in interaction
networks. When applied to 88 samples from three cancer types, FunSeq identified 98 candidate
driver mutations in regulatory regions.

As even more regulatory region driver mutations are identified, frequently affected transcription
factor binding sites may be identified, providing insights into which transcription factors play key
roles in preventing or mediating oncogenesis. Such analysis was performed on breast cancer
associated SNPs (127) but has yet to be done using candidate driver mutations.

Driver Mutations Affecting RNA Stability or Translation

The expression of genes into protein products can be regulated posttranscriptionally, through
alterations in mRNA stability or rates of translation. Mutations in noncoding regions affecting
RNA stability and translation have also been implicated in cancer. mRNA stability is influenced
by the length of the 3′ UTR; longer 3′ UTRs are associated with lower mRNA stability as they are
more likely to include microRNA (miRNA) binding sites and adenylate/uridylate-rich elements
(AREs) (128). AREs decrease mRNA stability by accelerating poly(A) tail shortening (129), whereas
miRNA binding can target mRNA for degradation or stall translation (130). Mutations may occur
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in AREs and miRNA binding sites themselves or may alter polyadenylation site usage (128).
Driver mutations that increase mRNA stability by disrupting an ARE (40, 41) or creating a new
polyadenylation site (42) have been identified in oncogenes. Similarly, translocations can separate
an oncogene’s open reading frame from its 3′ UTR, preventing suppression by miRNAs that bind
the 3′ UTR (131). Conversely, some variants in tumor-suppressor UTRs decrease RNA stability
by disrupting polyadenylation signals to lengthen UTRs (132, 133).

Dysregulation of the expression of miRNA and other noncoding RNAs has been implicated
in cancer development (130, 134). Most omics-scale studies of miRNA dysregulation in cancer
assess global miRNA expression levels, such that the underlying cause of altered expression may
be unknown. miRNA genes that may drive cancer are thus usually detected not by the presence of
mutation, but rather by anticorrelation of their expression with the expression of predicted targets
already known to be cancer genes. This evidence is often supported by functional validation that
the miRNA, when dysregulated, can promote a cancer-related phenotype. Numerous miRNAs
have been designated oncogenes and tumor suppressors, collectively termed oncomirs.

However, driver genes are traditionally defined as genes that harbor driver mutations. Genes
that are not directly affected by mutation but are differentially expressed are typically considered
downstream targets of other driver genes, not driver genes themselves. Several cancer genes do
regulate miRNA expression (134). In order for oncomirs to fit the traditional driver definition,
mutations would need to be found that directly dysregulate them. Somatic SNVs in miRNA genes
are rare, and many of those that have been identified are of unclear functional significance (135).
The scarcity of somatic SNVs in miRNAs may be in part due to the small size of the mature
miRNAs, and in part because miRNAs appear more tolerant of SNVs than are protein-coding
genes (134).

miRNA genes are more commonly affected by structural variation than by SNVs, as miRNA
genes tend to cluster at fragile sites. One study estimated 52.5% of miRNA genes are located in
fragile sites (136), and another showed that in some cancer types up to 86% of miRNA genes have
CNAs in more than 15% of samples (137). However this evidence does not provide insight into
which CNAs affecting miRNAs are driver mutations, or whether altered expression of miRNA
genes, rather than other genes included in regions of CNA, provides the selective advantage.

In many cases of miRNA dysregulation, the miRNA gene is neither affected by SNVs nor in a
region of CNA. In some such cases, differential miRNA expression results from altered posttran-
scriptional processing (138). In other cases, the promoter of the miRNA gene is epigenetically
modified, resulting in altered levels of transcription (139, 140). Underlying these observations may
be genetic changes, such as mutations in genes encoding the miRNA processing enzymes DICER1
(141) and DROSHA (142), or environmental conditions, such as oxygen levels in tissues (143) and
dietary intake (144). Given the diversity of mechanisms of dysregulation, it may be most practical
to expand the definition of a driver gene to a gene whose mutation or dysregulation contributes a
selective growth advantage. Indeed, it has been suggested that genes containing driver mutations
be considered mut-drivers and genes aberrantly expressed in a way that confers a selective growth
advantage be considered epi-drivers (see the sidebar, Driver Epigenetic Changes Versus Driver
Mutations) (5).

Epigenetic Changes as Drivers of Oncogenesis

Epigenetic changes affect more than just miRNA. Many of the missing driver genes may not have
been recognized as drivers because they are affected not by mutations but rather by epigenetic
changes, such as changes in DNA methylation, histone modification, nucleosome composition, or
nucleosome placement (see the sidebar, Chromatin Structure). Epigenetic changes are abundant
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DRIVER EPIGENETIC CHANGES VERSUS DRIVER MUTATIONS

Epigenetics is the study of changes in gene expression that are not mediated by changes in DNA sequence. Tradi-
tionally only heritable changes were considered epigenetic, but some authors now expand the definition to include
transient changes (194). However, only heritable changes can be selected for on the basis of a growth advantage,
and thus only heritable changes can be drivers. Epigenetic changes that can be inherited across cell division may
thus act as drivers. Mutations are changes in DNA sequence and thus do not include epigenetic changes.

in cancer: DNA hypermethylation, for instance, is present at hundreds of genes in almost all
cancer types (145). In total, 1,009 genes were prone to promoter hypermethylation in at least
one of seven cancer types (146). In colon cancer, more genes contained hypermethylation than
mutations (147). Widespread changes in histone modifications may occur in association with
DNA hypermethylation (148, 149) or independently: In prostate cancer, 84% of cancer-specific
H3K27me3 occurred in regions without CpG islands to be methylated (150). Overall, up to 5%
of promoters had increased H3K27me3. Global levels of H4K16ac and H4K20me3 are reduced
across cancer types, in many cases by more than 50% (151). The scope of epigenetic change in
cancer may be even greater than currently estimated, as new types of DNA (152) and histone
modifications (153) were only recently identified.

To better understand the distribution of changes in the epigenome and their heterogeneity
within and between cancers, the International Cancer Epigenome Project (ICEP) proposes to
systematically map cancer epigenomes (154). This endeavor is complicated by the plasticity of the
epigenome, which differs among cell types, genetic backgrounds, and environmental circumstances
(see the sidebar, Similarities and Differences Between Driver Mutations and Driver Epigenetic
Changes). To minimize the number of non-cancer-related epigenetic changes detected, the ICEP
proposes to purify single cell types prior to epigenome mapping and compare cancer cells to normal
cells of the same type from the same patient. Primary rather than cultured cells are to be used, as the
epigenome may change dramatically in culture. For instance, 1% of CpG islands were methylated
in primary medulloblastomas but 6% of CpG islands were methylated in medulloblastoma cell

CHROMATIN STRUCTURE

Within cells, DNA is packaged into chromatin; the fundamental units of chromatin are nucleosomes. Each nucle-
osome contains 147 bp of DNA wrapped around an octamer of core histone proteins: H2A, H2B, H3, and H4.
Histones may block access of other proteins, including transcription factors, to DNA. Rates of transcription are
thus influenced by factors such as the placement of nucleosomes, the affinity of the DNA and histones for each
other within the nucleosome, and the presence of protein binding sites on DNA and histones.

Nucleosome-remodeling factors can insert, remove, or slide nucleosomes along DNA. Nucleosomes themselves
may contain variant histone proteins associated with different levels of transcriptional activity. Histones may be
posttranslationally modified by addition of chemical groups at numerous sites. Histone modifications are indicated
by the histone, the modified residue, the type of group added, and the number of groups added. For example,
H3K27me3 indicates trimethylation of lysine 27 of histone 3. DNA itself may also be chemically modified. The
most well-studied modification is methylation of cytosine that precedes guanine (i.e., a CpG dinucleotide). Clusters
of CpG dinucleotides are termed CpG islands; methylation of CpG islands is associated with gene silencing.
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SIMILARITIES AND DIFFERENCES BETWEEN DRIVER MUTATIONS AND DRIVER
EPIGENETIC CHANGES

Similarities between driver mutations and driver epigenetic changes:
� Both are much less frequent than passengers.
� Some of each type are cancer type specific; some are not.
� Some of each type occur frequently; most occur rarely.
� Both may activate a gene in one cancer type and inactivate the same gene in a different cancer type.
� Both may be detected through effects on gene expression.
� Both may be identified by frequency-based approaches.
� Both may by produced by mechanisms related to environmental factors.
� Both require functional testing to confirm driver activity.
� Cancer cells may require drivers of either type for survival.
� Both tend to occur in a mutually exclusive manner with other drivers affecting the same allele.
� Both may be the “second hit” inactivating a tumor-suppressor gene.
� Both may be acquired prior to cancer development.
� Both may affect alternative splicing.
� Both may directly or indirectly affect mutation rates and genome stability.

Differences between driver mutations and driver epigenetic changes:
� The epigenome differs between cell types; the genome typically does not. Consequently, epigenetic changes

detected in cancer versus normal samples are more likely than genetic changes to be false positives resulting
from cell type differences.

� The process of culturing cells affects the epigenome much more than the genome. Cultured cells are thus less
useful for cancer-specific epigenome change discovery than cancer-specific mutation discovery.

� Sites prone to epigenetic changes differ from sites prone to mutations; background frequency estimation thus
differs.

� Epigenetic changes can be reversed more easily than genetic changes. Reversal of epigenetic changes can be
used to reveal what impacts epigenetic changes had on gene expression.

� Genetic changes restricted to particular loci can be induced more easily than epigenetic changes restricted to
particular loci, allowing easier investigation of the effects of a single genetic change than of a single epigenetic
change.

� Driver epigenetic changes may tend to be acquired before driver mutations.
� Mutations may allow proteins to function in novel ways (i.e., have neomorphic activity), whereas epigenetic

changes typically affect gene expression and so increase or decrease levels of normal activities (exceptions are
discussed in the main text).

lines (155). Perhaps as a consequence of these differences, epigenome studies based on cell lines
have had low validation rates in primary samples (156).

As was the case for somatic mutations, the majority of cancer-specific epigenetic changes are
likely to be passengers: Most genes prone to repressive hypermethylation are already repressed
in precancerous tissue, such that hypermethylation may have no further effect (146). Indeed,
hypermethylation affecting cancer genes, even frequently, does not necessarily drive cancer: APC
is frequently hypermethylated in gastric cancer, but the hypermethylation occurs only in an inactive
alternative promoter (157).
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A first step in identifying epigenetic changes likely to be drivers is to identify which cancer-
specific epigenetic changes affect gene expression (158); this approach has identified tumor sup-
pressors silenced by hypermethylation and oncogenes activated by hypomethylation (159). An
approach was recently developed for identifying groups of genes related to particular cell phe-
notypes whose expression correlated with epigenetic changes (160). Functional testing of genes
within those groups led to the identification of GLI1 as an epigenetically dysregulated driver (160).
Functional testing often includes a demonstration that hypermethylation causes rather than just
correlates with transcriptional repression. For instance, restoration of VHL expression following
treatment with demethylating agents supported that hypermethylation was a cause of repression,
and therefore that hypermethylation may act as a driver through VHL repression (161). How-
ever, demethylating agents affect methylation throughout the epigenome; evidence regarding the
function of methylation and other epigenetic marks at particular genomic loci remains largely cor-
relational. Causal evidence may be obtained by altering an epigenetic mark at only the genomic
locus of interest, as has recently been done using transcription activator–like effector (TALE)
proteins (162–164). TALEs can be designed to bind at specific locations in the genome, and, if
coupled to chromatin modifiers, can recruit chromatin modifiers to those locations.

However, differentially expressed genes affected by epigenetic changes may or may not ac-
tually provide selective advantages to cancer cells. Epigenetic changes that do provide selective
advantages are expected to occur significantly more frequently than expected from the background
frequency of epigenetic change at that locus. The background frequency of CpG methylation is
related to the sequence of surrounding DNA (165), the presence of histone modifications (166),
the proximity of binding sites for certain histone-modifying proteins (167), and the proximity
of LINE and SINE retrotransposons (168). Methylation-prone sites have been predicted on the
basis of these features (168, 169).

Epigenetic changes can be produced by multiple mechanisms, each with different background
frequencies. For instance, some samples show exceptionally high rates of hypermethylation (CpG
island methylator phenotypes, or CIMP), likely due to defects in epigenetic control mechanisms
(170). Moreover, the mechanism of CIMP may differ between cancer types, as the affected genes
and associated genetic changes differ across cancer types (171). Estimating background frequencies
specific to different mechanisms for each type of epigenetic change could aid in attempts to
distinguish drivers on the basis of epigenetic change frequency: Changes observed frequently at
sites not prone to change are more likely to be drivers. However, not all changes at sites that are
prone to change are passengers. For instance, polycomb-regulated genes are prone to methylation
(167) and are enriched for regulators of differentiation, some of which are cancer genes (172).

Some driver epigenetic changes may be identified by their necessity for cancer cell survival.
For instance, De Carvalho et al. (173) identified methylation differences between colon adenocar-
cinoma and normal colon tissue and investigated which of the cancer-specific methylation events
were retained in a colon cancer cell line after genetic disruption of DNA methyltransferase genes.
Methylation-prone sites were underrepresented in the sites of retained methylation, supporting
that methylation was retained at those sites for other reasons, such as necessity for survival. Six
genes repressed by the retained methylation were functionally tested; all decreased cancer cell
viability when reexpressed, consistent with tumor-suppressor activity.

Further evidence that a particular epigenetic change is a driver is that it occurs in a mutually
exclusive manner with other genetic or epigenetic changes of the same allele, as has been noted for
hypermethylation of BRCA1 (57) and CDKN2A (46). Similarly, a significant fraction of partially
methylated domains showed methylation of one allele and inactivating histone modifications of
the other allele (174). This mutual exclusivity is consistent with the notion that either DNA
methylation or certain histone modifications can be sufficient to inactivate a tumor-suppressor
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allele, and thus that either can act as a driver alteration. Tools for allele-specific epigenome
analysis have been developed (175).

Epigenetic changes also become more convincing candidate drivers if they can be shown to
occur at early stages of cancer development. Numerous instances of this have been noted: For
example, H4 monoacetylation and trimethylation losses are present even at the benign papilloma
stage (151), and DNA hypermethylation associated with Wilms’ tumor development was found
in both neoplastic and nonneoplastic kidney cells of Wilms’ tumor patients (176). Epigenetic
silencing of MGMT, MLH1, BRCA1, CHFR, FANCF, and WRN is also likely to occur early, as
silencing of these genes is associated with mutator phenotypes that may generate other drivers
(171). Indeed, hypermethylation of MLH1 was present in endometrial hyperplasia, a precursor
of endometrial carcinoma (177). The epigenetic progenitor model of cancer goes so far as to
suggest that cancer development in general begins with the acquisition of epigenetic changes in a
progenitor population, prior to gain of cancer-initiating mutations (159).

Epigenetic changes are not limited to affecting gene expression; they may also affect alternative
splicing (178, 179) and have been associated with increased C-to-T mutation, retrotransposition,
microsatellite instability, destabilization of repeats, telomeric recombination, and genome insta-
bility (reviewed in 171). Thus, epigenetic changes not associated with differential gene expression
may still drive cancer development by other means. In different cancer types, different types of
epigenetic changes tend to be drivers. For instance, mouse models with decreased levels of methyla-
tion had fewer colon macroadenomas (180, 181) but greater incidence of hepatocellular carcinoma
(181) and T cell lymphoma (182). The hepatocellular carcinomas and T cell lymphomas showed
loss of heterozygosity and chromosomal instability. This evidence is consistent with the notion that
hepatocellular carcinoma and T cell lymphoma tend to be driven by hypomethylation-mediated
genome instability, whereas colon cancer tends to be driven by hypermethylation-mediated gene
silencing.

Epigenome Modifiers as Driver Genes

Driver epigenetic changes may result from mutations in genes involved in chromatin structure
and DNA modification. The scope of mutations in epigenome modifiers has only recently become
appreciated. Across cancers from 13 sites, the proportion of samples with protein-altering muta-
tions in candidate driver chromatin regulatory factors ranged from less than 10% to more than
80% (183). In rhabdoid cancers, mutations in a subunit of the SWI/SNF nucleosome-remodeling
complex are present in almost all samples (184). Across five other cancer types the frequency of
SWI/SNF mutations ranged from 36% to 75% (185). Of acute myeloid leukemias, 44% had at
least one nonsynonymous mutation in a DNA methylation–related gene and 30% had at least
one nonsynonymous mutation in a chromatin-modifying gene (186). Currently at least 34 of
183 known chromatin regulatory factors have been identified as candidate drivers, a significantly
greater proportion than expected by chance (183). Epigenome modifiers may also represent a
large fraction of the drivers that have yet to be recognized: A survey of 11 cancer types found that
regions of somatic CNA without known oncogenes were enriched for epigenetic regulators (98).

The reasons why many epigenome modifiers were not identified as drivers until recently are
similar to the reasons why other driver genes continue to be overlooked. First, despite the fre-
quency of mutation in the group as a whole, mutation of individual epigenome modifiers tends to
be rare (183), which can make them difficult to recognize using frequency-based methods. Mu-
tations in individual epigenome modifiers may be rare because they tend to act in pathways. For
instance, mutations in 12 genes affecting H3K27me3 tend to occur in a mutually exclusive fashion,
suggesting that H3K27me3-related activity constitutes a driver pathway (171). However, some
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cancer types appear to be driven by increased H3K27me3, whereas others appear to be driven
by decreased H3K27me3. Thus, driver mutations in genes affecting H3K27me3 may increase or
decrease activity depending on the cancer type (171). This cancer type sensitivity, though not spe-
cific to epigenetic modifiers, has complicated the identification and characterization of epigenetic
drivers.

A second reason why epigenetic regulators were only recently recognized as drivers is the dif-
ficulty of connecting their activity with phenotypes providing a growth advantage. Mouse models
have confirmed that mutations in certain epigenetic modifiers can increase cancer incidence (187),
and mutations in certain epigenetic regulators have been correlated with specific gene expression
profiles (188, 189). However, identifying which, if any, of the many differentially expressed genes
mediate cancer development remains a substantial challenge. Moreover, because the cofactors
for epigenetic modification are energy metabolites (144), mutations in epigenetic modifiers may
also contribute to cancer development through effects on energy and resource use. For instance,
mutations in IDH1 and IDH2 result in the production of (R)-2-hydroxyglutarate rather than the
tricarboxylic acid cycle intermediate 2-oxoglutarate (190). (R)-2-Hydroxyglutarate is a cofactor
used by DNA methylases and histone demethylases but also may alter mitochondrial function,
cellular redox balance, or transcription factor activity in ways that may drive cancer (reviewed in
190). Some chromatin modifiers may have multiple mechanisms through which they may drive
cancer development: EZH2-mediated increases in H3K27me3 are implicated in B cell lymphoma
development (188), but methyltransferase-deficient EZH2 can still confer a growth advantage to
natural killer/T cell lymphoma cells (191). Moreover, the oncogenic activity of EZH2 in non-
Hodgkin lymphoma (192) may be through a different mechanism than the tumor-suppressor
activity of EZH2 in myeloid malignancies (193).

CONCLUSIONS AND FUTURE DIRECTIONS

Cancer drivers include a diverse array of genetic and epigenetic changes. Moreover, there is het-
erogeneity between and within cancer types and cancer samples regarding which genes, mutations,
and epigenetic changes tend to be drivers. Nonetheless, characteristics have been found that en-
able drivers to be distinguished from passengers. Frequency-based and function-based methods
for distinguishing drivers from passengers have been applied to high-throughput sequencing data,
helping to populate lists of cancer genes. Drivers that remain to be recognized may be predom-
inantly driver genes within regions of CNA, driver mutations in noncoding regions, and driver
epigenetic changes.

Although the discovery of cancer genes is plateauing, some likely remain to be identified (5).
Another ongoing endeavor is matching known cancer genes with the cancer types and subtypes
in which they tend to acquire driver mutations. Moreover, studies of intra- and interpatient
heterogeneity and precision oncogenomics projects have necessitated the development of methods
for identifying candidate drivers from single-sample data. Bioinformatic methods may predict
which mutations in a single sample affect function, but inferring whether or not a functional
impact promotes cancer development relies on an understanding of the cellular functions of
gene products and the genetic and epigenetic contexts that allow mutations to act as drivers.
Such an understanding is built from both surveying mutations occurring in different contexts and
functionally testing candidate drivers.

The rate at which candidate drivers have been identified far exceeds the rate at which they
have been functionally tested. Future work may focus on improving the accuracy and accessibil-
ity of high-throughput methods of functional testing, improving the sensitivity of detection of
small effects, and developing faster ways to test mutations in multiple genetic backgrounds and
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microenvironments. Overall there is much room to expand our understanding of the mechanisms
by which newly identified drivers promote cancer development. Our ability to both detect drivers
and understand their mechanisms of action will be essential for the effective development and
deployment of targeted therapeutics.
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