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Abstract

Histomorphology has been a mainstay of cancer diagnosis in anatomic
pathology for many years. DNA methylation profiling is an additional
emerging tool that will serve as an adjunct to increase accuracy of patholog-
ical diagnosis. Genome-wide interrogation of DNA methylation signatures,
in conjunction with machine learning methods, has allowed for the creation
of clinical-grade classifiers, most prominently in central nervous system and
soft tissue tumors. Tumor DNA methylation profiling has led to the identi-
fication of new entities and the consolidation of morphologically disparate
cancers into biologically coherent entities, and it will progressively become
mainstream in the future. In addition, DNA methylation patterns in circu-
lating tumor DNA hold great promise for minimally invasive cancer detec-
tion and classification. Despite practical challenges that accompany any new
technology, methylation profiling is here to stay and will become increas-
ingly utilized as a cancer diagnostic tool across a range of tumor types.
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INTRODUCTION

The goal of histological and molecular cancer pathology is to subdivide cancer into clinically rel-
evant categories to guide treatment and assess prognosis. Currently, standard classification meth-
ods include light microscopy, immunohistochemistry, fluorescence in situ hybridization (FISH),
DNA/RNA sequencing, and a very limited amount of DNA methylation testing. Although whole
exome/genome sequencing, whole transcriptome sequencing, and whole methylome sequencing
methods exist and could potentially be used to classify cancer in a routine clinical setting, these
methods are technically difficult, require substantial resources, and produce a tremendous amount
of data that can be challenging to analyze. Recent technological advances have made large-scale
DNAmethylation testing possible, permitting characterization of a portion of the cancer methyl-
ome in preanalytically, analytically, and postanalytically manageable ways.

Methylation of the cytosine component of DNA in cytosine-phosphate-guanine (CpG)
dinucleotides (a 5′ cytosine followed by a 3′ guanine) is a crucial biological mechanism. CpG
dinucleotides are overrepresented in gene promoters (1) and their methylation can silence the
respective genes (2). In addition, CpG dinucleotides are located in other parts of the genome
and are also subject to methylation (3). CpG methylation is an epigenetic feature, a phenomenon
defined as “a stably heritable phenotype resulting from changes in a chromosome without
alterations in the DNA sequence” (4, p. 781). De novo DNA methylation is mediated primarily
by DNMT3A and DNMT3B (5) and maintained by DNMT1 through DNA replication (6, 7),
which is the basis of the heritability and clinical utility of DNA methylation. DNA methylation is
a highly stable molecular feature that can be reliably detected in tissue, including cancer (8–10).

Cancer has a complex methylation profile that, when compared with nonneoplastic tissues,
is characterized by overall DNA hypomethylation (11) but by DNA hypermethylation at CpG
islands. Promoter CpG island hypermethylation and gene body demethylation correlate with
gene silencing (12–14). However, the effect of DNA methylation on cancer gene expression has
substantial complexity that does not fit in a simple model (15). Patterns of DNA methylation
are tissue specific (16), a phenomenon that extends to cancer. This property gives rise to tumor-
specific DNA methylation profiles, which are the basis of DNA methylation as a tool for cancer
classification (17).

Although sampling of tumor tissue is required for clinical-grade cancer classification, the pres-
ence of circulating cancer DNA (18), in combination with cancer-specific molecular profiles,
makes blood an attractive source for cancer detection, diagnosis, and classification. The use of
DNA methylation signatures in blood and other bodily fluids provides some advantages over the
detection of somatically acquired cancer-specific single nucleotide variants for cancer detection
or classification. A DNA methylation signature that is based on thousands of CpG sites can re-
main robust even when not all the features are detected. In contrast, an approach that relies on
the presence of cancer DNA mutations is likely to suffer from low sensitivity due to the generally
low number of somatic mutations in cancer.New highly sensitive DNAmethylation interrogation
technologies make a minimally invasive approach to cancer classification a viable strategy.

In this review we describe DNA methylation interrogation technologies, examine current
knowledge of their use to classify cancer, and comment on their promise and limitations. The
focus is not on the methylation status of specific genes but rather on the concept of DNAmethyl-
ation patterns as differentiators between distinct cancer classes. In the rest of this article we refer
to DNA methylation as methylation.

ANALYSIS OF METHYLATION STATUS

A common method of methylation analysis is based on bisulfite conversion of DNA, a method
that converts unmethylated cytosine to uracil but leaves methylated cytosine intact (19–21).
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Determination of methylation patterns from bisulfite-treated DNA can be accomplished in many
ways including, but not limited to, methylation-specific polymerase chain reaction (MSP) (22),
methylation-sensitive single nucleotide primer extension (Ms-SNuPE) (23), pyrosequencing
(24), methylation-specific restriction endonuclease analysis (25), and whole genome bisulfite
sequencing (WGBS) (26). We describe a small selection of these methods with a focus on
BeadChip technology, which has been successfully used for research and clinical applications.

In MSP, primer design is exploited to determine methylation status.Whether an amplification
product is made depends on if the template DNA anneals with a labeled primer designed to bind
an initially methylated sequence or a labeled primer designed to bind an initially unmethylated
sequence. The methylation status of the locus can be determined by the presence or absence of a
polymerase chain reaction product (22).

Ms-SNuPE is an alternate technique based on designing primers that anneal one nucleotide
short of the locus of interest on the template DNA. A labeled single nucleotide added in the
subsequent nucleotide extension reaction allows for the determination of the methylation status.
For example, if a thymine or adenine is added, it can be deduced that this locus was unmethylated,
while cytosine or guanine would be added if the opposite were true (23).

The creation of arrays using the principles of bisulfite conversion along with hybridization
to an array of probes allowed for large-scale interrogation of methylation. Commonly used ar-
rays include Illumina’s GoldenGate, 27K, 450K, and 850K (Illumina Methylation EPIC) Bead-
Chip arrays, which have been iteratively designed to interrogate an increasing number of mostly
CpGmethylation sites. The GoldenGate interrogates 1,536 CpG sites while the 27K interrogates
27,578 CpG sites in promoter regions (27, 28). Promoters constitute 41% and 25.8% of the in-
terrogated sites in the 450K and 850K, respectively. The rest of the sites are divided between gene
body, intergenic, and 3′ untranslated regions (29, 30). The 27K and 450K use Infinium I technol-
ogy, while the 850K also uses Infinium II technology (29). The formalin-fixed, paraffin-embedded
(FFPE) DNA requirement adequate for classification purposes has been reported to be as low as
50 ng (31).

The signal produced by BeadChip arrays is fluorescence. Similar to MSP, Infinium I consists
of beads covered by M or U probes that are, respectively, specific for methylated or unmethylated
versions of a locus. A single nucleotide extension and release of light from the fluorescent molecule
associated with that nucleotide is possible only if the probe and the locus on the template DNA
anneal. The intensity of the fluorescence produced in association with the paired M and U probes
can then be used to evaluate the methylation status (Figure 1a). Infinium II does not contain U
andMprobes. Instead, similar toMs-SNuPE, Infinium II relies on probes that bind one nucleotide
short of the locus of interest.The color of the fluorophore attached to the nucleotide added during
single nucleotide extension is used to determine if the locus is methylated or not (Figure 1b).

After single nucleotide extension, the chip is scanned to measure the intensity and specific
fluorescence color emitted in association with each bead. Data are stored in paired intensity data
files (i.e., in IDAT format), which separately contain green and red fluorescent signals in addition
to fluorescence intensity. An IDAT file pair is approximately 20 megabytes in size for the 450K
array and approximately 30 megabytes for the 850K array.

The IDAT data can be processed in various ways.Most recent studies that have used BeadChip
arrays have calculated beta values (methylated probe intensity divided by the sum of methylated
and unmethylated probe intensities) for each locus (32).The data are then filtered to exclude extra-
neous or contaminating measurements, probes with low signal quality, cross-hybridizing probes,
and probes known to harbor high frequencies of single-nucleotide polymorphisms. To create a
classifier, probes with a high degree of variation across the samples to be classified are prioritized.
For example, the top 10,000 to 30,000 most differentially methylated probes among a cohort of
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Figure 1

Comparison of Infinium I and II technologies. In Infinium I, the sequence of the DNA probe attached to U
(“unmethylated”) or M (“methylated”) beads is reflective of the specific sequence of the interrogated DNA
in its unmethylated or methylated form, respectively. A fluorescent signal is produced by the nucleotide
added after the methylated/unmethylated site of interest. (a, i) In this particular example, the nucleotide at
the 3′ end of the DNA probe is an adenine (A) that binds with a complementary thymine (T), indicating that
the initially extracted interrogated DNA must have contained an unmethylated cytosine (C) that was
converted to a uracil by bisulfite (subsequent polymerase chain reaction replaced the uracil with a thymine).
Because of this 3′ match, a further nucleotide with an attached fluorophore can be added. (a, ii) An initially
methylated version of the same extracted interrogated DNA would not have been usable as a template for
further nucleotide additions. (a, iii) An initially methylated version of the same locus as the prior example
would have a 3′ mismatch with the M probe because only interrogated DNA with an initially methylated
cytosine (and therefore unconvertable by bisulfite) could have matched. No further 3′ nucleotides can be
added. However, the same extracted initially methylated interrogated DNA can match with the 3′ guanine
(G) of the M probe, making the addition of another nucleotide possible with subsequent production of a
fluorescent signal (a, iv). For Infinium I, any fluorescence is considered a signal, and the specific color does
not matter. (b) In Infinium II, there is only one type of bead (no U or M beads), and a fluorescent signal is
produced by the nucleotide at the methylated/unmethylated site. As such, the specific nucleotide that is
added and the corresponding fluorescent signal color do matter. In this example, the addition of an adenine
suggests an unmethylated site that will fluoresce red (b, i), while the addition of a guanine suggests a
methylated site that will fluoresce green (b, ii). Figure adapted with permission from Illumina, Inc.

samples are considered for further analysis. BeadChip data can also be visualized by dimension
reduction methods such as t-distributed stochastic neighbor embedding (t-SNE) (33) and uni-
form manifold approximation and projection (UMAP) (34), which are used to generate genome-
wide copy number plots (35), to determine promoter methylation status in O6-methyl-guanine-
DNA methyltransferase (MGMT) (36), and to detect certain fusions such as tandem duplication
in KIAA1549-BRAF (37).

Most classifiers have been generated using the random forest classifier, a machine learning
method that relies on the creation of many trees that consist of randomly selected features. The
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output decisions of all the trees are tallied, and the final class is defined as the most frequently
voted output (38). The output is a calibrated score that reflects the confidence of a call. The cutoff
for what is an acceptable score varies. Recent classifiers have defined the threshold as at least 0.9
(39, 40), although for the central nervous system (CNS) classifier a 0.84 cutoff provides the best
balance between sensitivity and specificity (35, 39) and has been used in a clinical setting (35, 41)
(Figure 2).

WGBS is the most comprehensive approach to methylation but is expensive and produces an
extremely large amount of data that are challenging to analyze (26, 27).WGBS has so far not been
used for cancer classification purposes.

The above methods depend on bisulfite conversion, which is inherently destructive to DNA.
Affinity capture-based DNA immunoprecipitation does not need bisulfite conversion. This
method immunoprecipitates, amplifies, and sequences strands of DNA that contain methylated
cytosines. Due to the absence of bisulfite conversion, this method allows for DNA inputs as low as
1 ng,making it ideal for interrogation of circulating cell-free DNA (cfDNA) methylation. A major
limitation of this method is that it does not have single-nucleotide resolution. Instead, it allows for
the identification of at least 100 base pairs of DNA with methylation (42). Methylation-sensitive
enzymatic cleavage of DNA is another bisulfite-independent method (43). These methods are
currently being studied for clinical methylation applications.

TUMOR METHYLATION DETECTION IN BLOOD

Detecting cancer in circulating blood is, as a procedure, minimally invasive and therefore highly
desirable in the clinical setting. Complex nonspecific clinical workups can be avoided through the
use of a blood-based marker that can identify not only the presence of cancer but also the specific
cancer type (44). This would allow for a simple algorithm of requesting additional confirmatory
studies such as imaging and a biopsy.

A recent study tested cfDNA from female cancer patients and healthy donors (45). A pancancer
panel of APC, FOXA1, and RASSF1A gene promoters was used to detect, but not classify, breast,
colorectal, and lung cancer and achieved 72% sensitivity and 74% specificity. A cancer-specific
panel was also designed. The gene promoter, corresponding cancer, and sensitivity and specificity
of each promoter for the detection of that cancer by interrogating cfDNA methylation were as
follows: SCGB3A1 for breast cancer with sensitivity 16.8% and specificity 80%, SEPT9 for colo-
rectal cancer (CRC) with sensitivity 11.1% and specificity 98.9%, and SOX17 for lung cancer
with sensitivity 39.4% and specificity 85.1% (45). The same group performed an equivalent study
on male cancer patients and healthy donors (46). A pancancer panel of FOXA1, RARbeta2, and
RASSF1A promoters to detect, but not classify, prostate cancer, CRC, and lung cancer achieved
64% sensitivity and 70% specificity. From the set of genes interrogated in this study, only the
SEPT9 and SOX17 promoters were found to be methylated in all three cancers. The sensitivity of
each methylated gene to detect the presence of a particular cancer was quite low, ranging from 8%
for the detection of CRC by the methylated SEPT9 promoter to 29% for the detection of lung
cancer and prostate cancer by the methylated SOX17 promoter. However, specificity of methyl-
ated SEPT9 and SOX17 promoters for the detection of the three cancers was very high, ranging
from 93% to 100%. The authors also discovered that APC/RASSF1A promoter methylation is an
independent predictor of worse disease-specific mortality in lung cancer (46).

A probabilistic method of cancer classification using cfDNA methylation has also been
described. This relies on CpG clusters with a sufficiently large difference of methylation between
plasma from patients without cancer (obtained from publicly availableWGBS data) and tumors in
The Cancer Genome Atlas (TCGA) database (mostly 450K data from breast cancer, colon cancer,
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Figure 2

Tumor sample processing, BeadChip workflow, and methylation data analysis. The extracted DNA is bisulfite converted and amplified
(uracils are replaced by thymines in this step). After BeadChip hybridization and primer extension, a fluorescent signal is produced and
scanned by a high-resolution scanner. For a given methylation locus, the ratio between the methylated version divided by the sum of
the methylated and unmethylated versions is the beta value. Probes need to be filtered on the basis of the needs of the study. For
classification of cancer by methylation status, the probes that are highly informative need to be kept for further analysis. The 10,000 to
30,000 probes that display the most variable profile across the tumors included in the study are usually sufficient to capture enough of
the variation between the tumors to generate distinct tumor profiles. Unsupervised methods such as t-SNE or UMAP can be used to
visualize the clustering of tumors with a known diagnosis, and the positioning of a new sample can be evaluated. In the context of
expanded tumor cohorts, these methods can also be used to identify new clusters that may constitute new tumor classes. A supervised
classifier can be trained with specimens of known diagnoses. New specimens can then be analyzed by the classifier. The methylation
data can also be used to create copy number plots. The fluorescence intensity of the methylated plus unmethylated probes for a given
CpG site are added and divided by the corresponding intensities of a normal genome. This ratio gives a relative copy number for the
site of interest. The inability to evaluate whole genome gain or loss is a limitation of this approach (35). Abbreviations: CpG, cytosine-
phosphate-guanine; IDAT, intensity data file format; SNP, single-nucleotide polymorphism; t-SNE, t-distributed stochastic neighbor
embedding; UMAP, uniform manifold approximation and projection.
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clear cell renal cancer, papillary renal cancer, hepatocellular carcinoma, lung adenocarcinoma,
and lung squamous carcinoma). The model was trained to classify cfDNA from cancer patients as
originating from one of five cancer sites (breast, colon, kidney, liver, and lung cancer) or noncancer
cfDNA. Critically, this model accounts for cfDNA methylation distributions that can vary on the
basis of various mixtures of noncancer and cancer cfDNA. When using cancer-patient cfDNA
and cfDNA from patients without cancer (from both publicly available and author-performed
WGBS studies), this method’s error rate of classification was 27%. This result was a substantial
improvement from the error rate of classifications achieved by random forest and support vector
machine (SVM) methods, which had error rates of 65% and 60%, respectively (47).

Cell-free methylated DNA immunoprecipitation and high-throughput sequencing data from
blood can be used to distinguish gliomas from extracranial cancers and specimens from healthy
individuals with an area under the curve (AUC) >0.9. This method has been further used to
construct t-SNE methylation profiles, resulting in clusters specific to intracranial tumors [isoci-
trate dehydrogenase (IDH)-mutant and wild-type (WT) glioma, low-grade glial neuronal tumors,
meningioma, and hemangiopericytoma] and metastases of unknown origin primary to the brain
(42, 48).

A recent study investigated the possibility of a pancancer diagnosis from cfDNA using a fo-
cused bisulfite sequencing panel (44). A plasma cohort from 2,482 untreated cancer patients with
more than 50 types of cancers and 4,207 individuals without cancer was separated into training
and validation sets. The validation set had a sensitivity of 43.9% in all stage I–III cancer types,
a sensitivity of 67.3% in the 12 common cancer types at stages I–III, and a specificity of 99.7%.
Most importantly, 96% of cases with a circulating cancer signal received a prediction of site of
origin, and 93% of these predictions were correct (44).

METHYLATION CLASSIFICATION IN SOLID TUMORS

Astrocytic Tumors

Methylation of the MGMT promoter is the first methylation marker known to predict clinical
response to a chemotherapeutic agent. TheMGMT gene codes for MGMT, which is critical for
the repair of alkylated DNA. Functional MGMT can counteract the effects of alkylating agents
(49), and MGMT promoter methylation silences the gene (50) rendering gliomas vulnerable to
alkylating agents (51). Patients with primary gliomas, most prominently anaplastic astrocytoma,
glioblastoma multiforme (GBM), and anaplastic oligodendroglioma, who had MGMT promoter
methylation and were treated with the alkylating agent carmustine or temozolomide had signif-
icantly improved progression-free survival (PFS) and overall survival (OS) compared with their
MGMT promoter unmethylated counterparts (51–53).MGMT promoter methylation is a good
prognostic, but not predictive, marker in IDH-mutant tumors and is chemotherapy response pre-
dictive in IDH-WT high-grade gliomas (51–54).

Analysis of glioblastoma from TCGA led to an interesting and previously unsuspected insight
that linked a specific somatic cancer mutation with widespread changes in methylation. In a study
of 272 GBMs, 9% of cases had a methylated profile that was called a glioma CpG island methyl-
ator phenotype (G-CIMP) (55). It was found that these patients were relatively young and had a
significantly improved survival rate after multivariate analysis and that their G-CIMP tumor status
almost exactly matched the presence of IDH1mutations in codon 132. This finding became even
more clinically relevant upon examination of diffuse lower-grade gliomas (LGGs), most of which
have IDH1 or IDH2 mutations as well as concomitant G-CIMP-positive status. In an expanded
cohort that included LGGs, lower grade was correlated with a higher proportion of G-CIMP sta-
tus, andG-CIMP presence was an independent predictor of survival. Paired primary and recurrent
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gliomas retained their methylation profiles over time, confirming methylation as a stable marker.
This study confirmed that IDH mutation in gliomas is coincident with G-CIMP and that both
biomarkers are associated with an improved prognosis, including in a subset of morphologically
unequivocal glioblastomas (55). Subsequent work determined that IDH1 mutation is associated
with methylome remodeling, including DNA hypermethylation, causing G-CIMP (56).

Adult and pediatric GBMs were further subclassified in a study that included 210 GBMs (57).
The authors used hierarchical unsupervised clustering of methylation in addition to DNA se-
quencing, copy number changes, and gene expression to divide GBMs into IDH-mutated,H3–3A
K27-mutant, H3–3A G34-mutant, mesenchymal, receptor tyrosine kinase (RTK) I, and RTK II
classes. The IDH-mutated group had the best survival, was highly methylated, and was mutually
exclusive with the K27-mutant and G34-mutant groups, which were the most unmethylated. The
RTK I group was characterized by an overrepresentation of PDGFRA amplification; the RTK II
group was characterized by the adult GBM pattern of chromosome 7 gain/chromosome 10 loss,
EGFR amplification, and CDKN2A loss; and the mesenchymal subset had fewer copy number
changes, no distinct mutations, and amethylation profile reminiscent of nonneoplastic brain.K27-
mutant cases had amostly midline location,while the rest of the cases were usually in the cerebrum
(57). Further work has emphasized the clinical outcome overlap between IDH-WT glioblastomas
and lower-grade IDH-WT astrocytoma (58, 59), culminating in the proposal to create a category
of “diffuse astrocytic glioma, IDH-WT,with molecular features of glioblastoma,WHOgrade IV,”
or molecular glioblastoma (60, 61).

A study of 92 choroid plexus tumors (62) identified three methylation groups: a pediatric,
mainly supratentorial, low-risk group 1; an adult, mainly infratentorial, low-risk group 2; and
a pediatric, mainly supratentorial, high-risk group 3. All three groups contained choroid plexus
papillomas and atypical choroid plexus papillomas (aCPPs), but only group 3 contained choroid
plexus carcinomas (CPCs). As expected, CPCs were associated with a relatively short PFS and OS.
All tumor-related deaths were in group 3. Although World Health Organization (WHO) grade
was an independent predictor of PFS/OS and methylation clustering was not, all recurrent aCPPs
were in cluster 3 (62).

Further methylation studies in various CNS tumor types have expanded findings to include the
discovery of two clinical groups of diffuse leptomeningeal glioneuronal tumors (63), the identifica-
tion of infratentorial IDH-mutated astrocytomas as a glioma class (64), disambiguation of papillary
glioneuronal tumors (65), and prognosis subsets of primary pineal parenchymal tumors (66).

Meningioma

The methylation of meningiomas has been extensively studied for classification as well as
for estimation of prognosis. An initial study showed that unsupervised clustering segregated
meningiomas into two groups with distinct recurrence-free survival (67). A subsequent report
(68) examined 497 meningiomas and 309 other extra-axial skull tumors that might histologically
mimic meningioma variants. It was shown that methylation profiles could indeed distinguish
meningioma from other types of extra-axial tumors and mimickers. Matched primary and recur-
rent meningioma from the same patients had a similar methylation profile, indicating stability
of the methylation profile over time. Two main meningioma methylation clusters were identified
and were further subclassified into six classes. These classes were characterized by incorporating
mutation, copy number, and PFS profiles. This characterization resulted in three benign classes
that were highly enriched for grade I meningiomas, two intermediate prognosis classes that had a
mixture of grade I–III meningiomas, and onemalignant class that was highly enriched for grade III
meningiomas. Grade II meningiomas were scattered in all classes. Mutational and copy number
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profiles were enriched in specific classes, although significant mixing of these profiles was seen.
For example, the two main methylation clusters had NF2 mutations. Comparing PFS by WHO
grade versus PFS by methylation classes suggested that methylation was a better PFS predictor.
The methylation classes were predictive of PFS and disease-specific survival in an independent
meningioma cohort (68). To address the difficulty of predicting meningioma recurrence, the
same study authors developed a methylation-based meningioma 5-year recurrence-free survival
predictor that divided meningiomas into high and low risk. Through the use of one discovery
and three validation cohorts from multiple institutions, the predictor was found to independently
predict recurrence risk when compared with WHO grade, degree of resection, and copy number
alterations burden. On the basis of these findings, a nomogram allowing for a specific 5-year risk
assignment was created (69).

Recent work has identified a distinct methylation profile in clear cell meningiomas and, on the
basis of clinical outcomes, provided justification to consider them as WHO grade II tumors (70).

The abovementioned studies suggest that methylation profiling may be a better predictor of
outcomes than the morphology-based WHO classification. In addition, the substantial genetic
heterogeneity of the methylation classes suggests that the cell precursors may be better reflected
by the methylation profile than by the mutational profile.

Embryonal Central Nervous System Tumors

The medulloblastoma (MB) WNT, SHH, group 3, and group 4 classes were initially identified
using expression profiling (71, 72). An array methylation study (9) recapitulated these four classes
in the majority of 100 frozen MBs. To further test the capacity of methylation to classify MBs, an
SVM classifier was trained using themethylation data of these 100 cases. Application on 130 FFPE
MBs resulted in confident classification in 126 out of 130 cases. Similar to that of the expression-
based classification, the methylation WNT group was found to have a favorable prognosis. In the
non-WNT set, methylation status of theMX11 and IL8 genes was also found to be an indepen-
dent predictor of prognosis (9). In a subsequent study (31), methylation and expression data class
assignment were found to be 95.3% concordant in a set of 107 frozen tissue specimens. A 48-CpG
signature was used to train an SVM classifier on the frozen tissue specimens and was tested on
169 FFPEMBs with 97.6% concordance. An additional 56 specimens with both methylation and
expression data had concordant methylation and expression classes in 94.6% of specimens (31).
Further studies confirmed that methylation is a robust method that can be used for MB classifi-
cation (73–76).

Methylation has been used to further subclassify childhood MBs on the basis of the methyl-
ation profile of 428 primary specimens and a validation set of 276 specimens. The WNT subset
remained unchanged, but the other four classes were segregated into two classes each. This new
methylation-based classification was used to create four risk stratifications for MB patients: favor-
able, standard, high, and very high (77).

A study of 192 atypical teratoid/rhabdoid tumors (ATRTs) identified three epigenetic groups
with distinct demographic, expression, methylation, and SMARCB1 mutation characteristics.
ATRT-TYR was characterized by melanosomal marker overexpression, ATRT-SHH by SHH-
pathway activation, and ATRT-MYC byMYC expression.Notably, ATRT-TYR and ATRT-SHH
were found to be relatively hypermethylated. These clusters were confirmed by WGBS in a sub-
set of cases (78). An unsupervised clustering comparison of the ATRT methylation profile against
the cribriform neuroepithelial tumor (CRINET), a nonrhabdoid entity that also has SMARCB1
loss, revealed that CRINETs classify with ATRT-TYR. However, CRINETs had a significantly
better OS compared with ATRT-TYR, indicating that methylation does not necessarily capture
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all features related to prognosis (79). A recently described pineal entity that arises in adults, has
SMARCB1 loss, and clusters close to ATRT-MYC tumors has been designated as a “desmoplastic
myxoid tumor, SMARCB1-mutant” (80).

Primitive neuroectodermal tumors (PNETs) of the CNS are a heterogeneous group of rare
embryonal tumors with rosettes. A methylation study proved that intraocular medulloepithe-
liomas and CNS embryonal tumors with multilayered rosettes have distinct methylation pro-
files (81). In a subsequent comprehensive methylation analysis (82), unsupervised clustering
and t-SNE were performed in 323 CNS-PNETs. These were compared against reference co-
horts of well-characterized CNS tumors. Sixty-one percent of the CNS-PNETs clustered with a
wide variety of tumor clusters including embryonal tumors with multilayered rosettes (ETMRs),
MYCN-amplified high-grade gliomas, RTK-subgroup high-grade gliomas, IDH-mutant high-
grade gliomas, MBs, and many others. On the basis of the clustering pattern and further copy
number, DNA, and RNA sequencing studies, four new classes were identified: CNS NB-FOXR2,
CNS EFT-CIC, CNS HGNET-MN1, and CNS HGNET-BCOR. This study indicates that the
majority of what are considered CNS-PNETs are in fact a mixture of a plethora of other tumors,
and that the four novel classes, in addition to ETMRs, form a molecular-based classification of
what, on the basis of current knowledge, might constitute true CNS-PNETs. Importantly, this
study included 50 specimens forming various clusters that consisted of a very low number of tu-
mors each, suggesting the existence of molecular classes that are very rare and will need charac-
terization in the future (82).

Ependymal Tumors

Ependymal tumors are mostly pediatric entities that can occur in supratentorial, posterior fossa,
or spinal locations. On the basis of RNA expression, ependymomas (EPNs) of the posterior fossa
were initially demonstrated to consist of two distinct groups: aggressive group A, which is found
in young patients, and group B, which is found in older patients (83). Group A was subsequently
found to have DNA hypermethylation (84). To further define ependymal tumor molecular classes,
500 ependymal tumors were analyzed for methylation, copy number status, and RNA fusion sta-
tus. Unsupervised clustering revealed three molecular classes within each of the spinal, posterior
fossa, and supratentorial compartments. A class of subependymomas was present in each compart-
ment. The remaining subclasses included myxopapillary EPNs and EPNs with frequent 22q loss
in the spine, EPN groups A and B in the posterior fossa, and supratentorial YAP1- and RELA1-
translocated classes. The RELA1-translocated cases had prominent chromothripsis. Compared
with theWHO classification at the time, this molecular classification improved ependymal tumor
prognosis stratification with very poor outcomes associated with group A of the posterior fossa
and RELA-translocated supratentorial EPNs.Additionally, themethylation profile of primary and
recurrent tumors was similar. The molecular classes were confirmed by RNA-expression profiling
in a subset of cases (85). Methylation profiling is now considered the gold standard for subtyping
of ependymal neoplasms, although other methodologies such as L1CAM immunohistochemistry
in supratentorial tumors (86) and H3K27 trimethylation in posterior fossa tumors (87) also play
significant roles.

CNS Tumor Classifier

The abovementioned efforts culminated in the creation of a broad functionally and clinically im-
pactful CNS tumor classifier that combined methylation profiles of a very large reference cohort
with a sophisticated machine learning approach. In this work (39), a CNS neoplasm classifier
was developed using the 450K array and a 2,801-specimen reference cohort to initially create
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methylation class categories via the random forest classifier. This resulted in 82 distinct neoplasm
classes, many of which did not fit into well-known WHO categories, and 9 control tissue classes
(Figure 3). A validation cohort of 1,104 specimens was used to test the classifier. Investigators
scored each case for the impact of the methylation classifier by comparing the standard pathology
(premethylation testing) diagnosis with the final integrated (postmethylation testing) diagnosis.
Eighty-eight percent of cases had a match score of a least 0.9. Of these, 86% of cases had concor-
dant morphology and methylation class, including a subset assigned to a molecular subgroup that
could not be assigned by morphology; 13% of cases received a revised diagnosis on the basis of the
methylation profile (Figure 4); and the remaining 1% of cases could not be reconciled. The cases
scoring less than 0.9 consisted of a mixture that could constitute yet-undescribed subsets of CNS
tumor entities (39). The utility of the classifier is now evident and is reflected in the revisedWHO
classification of CNS neoplasms, in which methylation profiles are considered in many entities.
Indeed, it is likely that some entities in the next WHO classification iteration will rely solely on
the methylation classifier for diagnosis.

This CNS classifier has been increasingly used at a variety of institutions. In one medical cen-
ter (88), 56% of adult brain tumors had a calibrated score of at least 0.84. Twenty-five percent of
the diagnoses were confirmed and 48% were refined, while 25% of the patients were given a new
diagnosis. In 2% of cases, the methylation score was noncontributory. Notable findings included
the observation that 41% of glial tumors with a high score but without high-grade features were
classified as high-grade tumors by methylation. Other clinically impactful results included reclas-
sifications of MB to diffuse leptomeningeal glioneuronal tumor and of anaplastic ependymoma to
pleomorphic xanthoastrocytoma (88). In a second medical center, (41) 66% of adult and pediatric
brain tumors had a score of at least 0.9. In this high-score set, 62% of diagnoses were confirmed,
20% of diagnoses were refined, and a new diagnosis was given for 15% of the patients, with a
WHO grade change in 71% of these cases. Approximately 2% of cases had a high score but the
classifier output was disregarded because it was thought to be misleading. A large subset of these
disregarded reclassifications was in retrospect found to be more consistent with the clinical course
of the methylation class as opposed to the original diagnosis (41). The reasons for the classifica-
tion variations between institutions are complex and, at a minimum, likely include the differences
of specimen types usually analyzed by these institutions. Refinement and enrichment of the CNS
classifier is ongoing. As an example, rosette-forming glioneuronal tumors were recently found to
form a distinct methylation cluster (89).

Sarcoma

Sarcomas are diagnostically difficult neoplasms because of their rarity and the subsequent dearth
of diagnostic experience by most pathologists. In addition, only approximately 20% of sarcomas
have a characteristic translocation (90). This is reflected by the significant number of sarcoma
methylation classifier studies in the past decade.

In the earliest effort to classify sarcomas by methylation, 80 primary sarcomas of eight his-
tologies and two adipose tissue samples were analyzed. Unsupervised clustering resulted in four
main subgroups: a synovial sarcoma cluster, a myxoid/round cell sarcoma cluster, and two clus-
ters consisting of a mixture of sarcomas. A random forest classifier had an accuracy of only 70%.
Using a partitioning around medoids algorithm, the investigators identified eight clusters, two of
which (myxofibrosarcomas and undifferentiated pleomorphic sarcomas) were combined to pro-
duce seven final clusters. Using these seven clusters, a random forest model was found to have an
accuracy of 82% (91).

In a rhabdomyosarcoma study (92), methylation analysis was performed on 53 cases. Unsuper-
vised clustering produced two alveolar sarcoma and two embryonal rhabdomyosarcoma clusters.
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a Reference cohort (91 classes) b t-SNE dimensionality reduction (2,801 samples)
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Figure 3

An annotated t-distributed stochastic neighbor embedding (t-SNE) visualization of central nervous system (CNS) tumor methylation
data and World Health Organization (WHO) entity relationship with methylation classes (39). t-SNE is only one way of classifying
tumor methylation data and is distinct from score-based supervised methods such as the commonly used random forest classifier.
(a) This t-SNE visualization contains a reference set of 82 CNS tumor classes and 9 control tissues. The tumor classes have been
separated by histology and molecular subtype. The relation of known WHO entities with the methylation classes varies from
equivalent to not recognized by the WHO (lower left). (b) This dimensionality reduction method depends on unsupervised clustering
and can cluster distinct tumor classes in a way that can be appreciated by the naked eye. Although a two-dimensional version is shown
here, a three-dimensional version can also be constructed and manually manipulated to further analyze the relationship between
clusters. This type of visualization can be used to identify new cancer methylation clusters with a distinct molecular profile. For such
new molecular cancer entities, a score-based supervised classification approach would generate a no-match output. However, a method
such as t-SNE allows for a visual identification of the cluster, further analysis of the molecular profile, and eventual inclusion into the
supervised classification method so that this new cancer can be classified in the future. Note that due to space constraints, bold numbers
in panel b are abbreviations for certain categories; they are defined in the key. Figure adapted with permission from Reference 39;
copyright 2018 Springer Nature.
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Establishing new diagnosis in 129 cases
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Figure 4

Subset of the central nervous system methylation classifier validation cohort.One hundred and twenty-nine
of 977 cases (13%) with a high calibrated score resulted in a new diagnosis when methylation classification
was considered. These revised diagnoses, including upgrading and downgrading of histological diagnoses,
were in some cases highly clinically impactful. Figure adapted with permission from Reference 39; copyright
2018 Springer Nature.

These clusters correlated with distinct copy number and DNA mutation profiles. Most impor-
tantly, the two embryonal rhabdomyosarcoma clusters had a remarkably different OS.

A subsequent study investigated an unusual group of intracranial tumors (93).When compared
with the methylation profile of well-defined CNS tumors and sarcomas by unsupervised cluster-
ing, a group of 22 mostly pediatric intracranial tumors formed a distinct cluster. The morphology
of these 22 cases was not specific, and various diagnoses had been previously assigned. Surpris-
ingly, 21 of 22 cases were found to have DICER1 mutations. Germline testing was possible in
five patients, two of whom had a germline DICER1 mutation. In addition, two embryonal rhab-
domyosarcomas of the uterus were found to cluster with this DICER1-mutated group. Findings
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suggested that these tumors are part of a greater DICER1-mutated intra- and extracranial group
of sarcomas that includes some germline DICER1-mutant cases. The new entity name “spindle
cell sarcoma with rhabdomyosarcoma-like features, DICER1 mutant” was proposed by the au-
thors. This study emphasized the power of methylation to unify histologically disparate groups
and identify them as a distinct molecular group.

In the first large-scale angiosarcoma methylation investigation, 36 primary and secondary (UV
and radiation-induced) angiosarcomas were studied. Unsupervised clustering resulted in A and
B clusters, each of which separated in two additional subclusters. Cluster A consisted almost en-
tirely of secondary cases, had significantly more chromosomal instability, and had improved OS
compared with cluster B. Cluster B contained a mixture of primary and secondary cases but con-
tained almost all the primary cases.Cluster B1 was also found to consist of sevenMGMT promoter
methylated cases, raising the possibility that MGMT promoter methylation status could be used
to predict response to agents such as temozolomide (94).

Methylation profiling was also applied to uterine tumors. Unsupervised hierarchical clustering
and t-SNE of various epithelial and mesenchymal uterine tumors was performed. Most of the
distinct diagnoses clustered in corresponding distinct clusters. Carcinosarcomas clustered with
endometrial carcinomas, implying a common origin. In addition, low- and high-grade endometrial
stromal sarcomas formed distinct clusters, with the high-grade cluster containing YWHAE- and
BCOR-rearranged subclusters, consistent with and expanding earlier findings (95).

To classify three disparate sarcoma groups by methylation, methylation profiles of 10 Ewing
sarcomas, 11 synovial sarcomas, and 15 osteosarcomas were examined. Methylation in each his-
tology was found to be distinct upon unsupervised hierarchical clustering. The methylation data
were used to train a random forest classifier, which was tested on publicly available methylation
profiles of the same three histologies. Most of the validation cases were classified into their previ-
ously identified histology, including 10 out of 10 synovial sarcomas, 85 out of 86 osteosarcomas,
and 14 out of 15 Ewing sarcomas. The single misclassified osteosarcoma had a relatively high ex-
pression of EWSR1 and ETV1 but no EWSR1-ETV1 translocation, suggesting that this neoplasm
may be related to Ewing sarcoma through a non-EWSR1-ETV1 translocation mechanism. The
authors also used the classifier on two challenging cases, one of which was confidently classified
as osteosarcoma while the other could not be classified (96). A unique group of undifferentiated
round cell sarcomas (URCSs) with EWSR1-NFATc2 fusion that have a distinct methylation cluster
when compared with Ewing and other sarcomas has also been discovered. This pattern suggests
that URCSs with EWSR1-NFATc2 could be an entity distinct from classic Ewing sarcomas (97).

An expansive study (98) created a reference set of 18 indisputably diagnosed sarcoma types and
10 nonneoplastic reactive soft tissues to attempt classification of 30 small blue round cell tumors
(SBRCTs). The way each SBRCT visually best fit within the reference t-SNE clusters was used
to assign a histology. Almost half (14 out of 30) of the SBRCTs clustered with Ewing sarcoma; six
cases clustered with SBRCTs with CIC alteration; and the remaining cases clustered with SBRCTs
with BCOR alteration, synovial sarcomas, malignant rhabdoid tumors, mesenchymal chondrosar-
comas, and classic adamantinomas. Additional studies including immunohistochemistry, FISH,
sequencing, and copy number studies confirmed that 25 out of 30 SBRCTs had been correctly
classified by t-SNE.

Methylation has also been used as evidence to potentially consolidate soft tissue entities. For
example, intra- and extracranial desmoplastic small round cell tumors have been found to occupy
almost coincident clusters in a t-SNE, suggesting a single or two very closely related entities (99).

When considered together, these investigations strongly suggested that a comprehensive
soft tissue methylation classifier similar to the one for the CNS would be possible. To achieve
this, a reference cohort of 1,077 tumors consisting of 62 methylation cancer classes and
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54 histological diagnoses in addition to three nonneoplastic control classes was used. Prominent
findings by unsupervised analysis included the consolidation of histologies into single clusters,
such as a cluster that consisted of undifferentiated sarcomas, myxofibrosarcomas, and a subset of
pleomorphic liposarcomas. In addition, two methylation classes were suggestive of sarcomas that
are not currently included in theWHO classification. Validation was performed on 428 sarcomas.
Sixty-one percent of cases had concordant morphology and methylation class while 14% of cases
were discrepant and other molecular data were used to assist in diagnosis resolution. Of these
discrepant cases, 49% were revised in favor of the methylation classification, 44% could not be
resolved, and 7% did not receive a revised diagnosis despite a high confidence score. Twenty-five
percent of the validation set could not be confidently classified despite a generally satisfactory
tissue neoplastic content, possibly indicating additional sarcoma methylation classes that were
not reflected in the training set. This study is the second major effort to develop a clinically useful
methylation classifier and provides strong evidence for clinical applicability (40).

Peripheral Nerve Sheath Tumors

In a study of 171 peripheral nerve sheath tumors, numerous distinct methylation profiles were
detected. Most importantly, the clinically aggressive malignant peripheral nerve sheath tumors
(MPNSTs) were found to have a distinct methylation profile compared with benign neoplasms
such as schwannoma, nerve sheath myxoma, ganglioneuroma, and subtypes of neurofibroma. An
exceptional class was the atypical neurofibroma and low-grade MPNST, which had an identical
methylation profile distinct from other tumors; this finding suggests that these two tumors are
closely related, a possibility that is consistent with their excellent prognosis (100). Seven tumors
that were thought to be conventional sporadic MPNSTs but had no immunohistochemical loss
of NF1 clustered in an unexpected fashion. Subsequent histological review, in conjunction with
the clinical course that was known for some of the patients, resulted in a revised histological diag-
nosis of these seven tumors to three schwannomas, one solitary fibrous tumor, one biphenotypic
sinonasal sarcoma, one benign tumor not further classified, and one malignant tumor not further
classified (101).

Colorectal and Endometrial Adenocarcinoma

CRC serves as a prototype for methylation-based classification of cancer. In sporadic CRC, the
highly methylated CpG island methylator phenotype (CIMP) is distinct from CRC with loss of
heterozygosity (102) and is associated with mismatch repair deficiency, hypermutation, BRAF
mutation, and MLH1 promoter hypermethylation (103–106). Methylation of the MLH1 pro-
moter was discovered to be associated withMLH1 silencing (107). CRC methylation classes were
subsequently refined to CIMP-high with high methylation, methylated MLH1 promoter, and
BRAF mutation; CIMP-low with KRAS mutation enrichment; and non-CIMP (104). In addi-
tion to BRAF V600E mutation, MLH1 promoter methylation is a useful marker to distinguish
microsatellite instability-high (MSI-H) sporadic CRC (methylated pMLH1, BRAFmutant) from
MSI-H Lynch syndrome–related CRC (unmethylated MLH1 promoter, BRAF wild type) (108).
In conjunction with sequencing codon V600 in BRAF,MLH1 promoter methylation is routinely
used to determine whether a microsatellite unstable, MLH1-deficient CRC adenocarcinoma is
sporadic or possibly Lynch syndrome related. Additional germline testing of mismatch repair
genes is required to diagnose Lynch syndrome (109).MLH1 promoter hypermethylated,MLH1
silenced, microsatellite unstable, hypermutated endometrial cancers—a similar population of
CIMP—is a distinct subset that also needs to be worked up for the possibility of Lynch syndrome
(110–112).
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Kidney Neoplasms

In clear renal cell carcinoma (cRCC), there is a correlation between higher methylation and in-
creasing stage/grade (113). Similarly, hypermethylation correlates with poor survival in cRCC,
chromophobe renal cell carcinoma (chromophobe RCC), and type 1 and type 2 papillary RCC
(pRCC) (114). A CIMP group with a particularly bad prognosis was identified in pRCC type 2
(115). The clinical significance of methylation-based RCC groupings was confirmed in further
work, which showed that methylation status is a prognosis stratifier (116). A separate study iden-
tified a 172-CpG-site methylation-based prognosis predictor for nonmetastatic cRCC (117).

Histology-based methylation classifiers have so far been limited to the identification of genes
differentially methylated in cRCC, pRCC, chromophobe carcinoma, and oncocytoma (118);
methylation features distinguishing cRCC and chromophobe RCC (119); and the identification
of two distinct RCC epiclusters, one of which contains cRCC, pRCC, mucinous/spindle cell car-
cinomas, and translocation RCC, and the other of which contains oncocytoma and chromophobe
RCC (120).

Although there is currently no mature kidney cancer classifier, the abovementioned evidence
suggests that methylation might be a way to identify diagnostic and prognostic molecular classes
and possibly disambiguate eosinophilic renal tumors (121) and diagnoses of exclusion such as
unclassified RCCs (122).

Thyroid Neoplasms

Methylation of TIMP3, SLC5A8, and DAPK promoters has been associated with extrathyroidal
invasion, lymph node metastases, multifocality, and advanced tumor stage in papillary thyroid
carcinoma (PTC), classical PTC, and tall-cell PTC. BRAFmutation status was significantly asso-
ciated with TIMP3, SLC5A8, and DAPKmethylation (123). Subsequent studies discovered meth-
ylation clusters of thyroid tumors, including robust clustering of PTC (124, 125), and identified
a 21-methylation probe set that could distinguish poor and good prognoses in well-differentiated
thyroid cancers with a sensitivity of 63% and a specificity of 92% (125). Further work
developed a six-CpG classifier that could distinguish benign and malignant thyroid lesions with
a 94.3% and 82.4% sensitivity and specificity, respectively, with equivalent findings in additional
data sets, and 86.7% sensitivity and 89.5% specificity in fine needle thyroid aspirates (126).

Other Neoplasms

Methylation has also been used to determine whether primary lung squamous cell carcinomas
(LUSCs) can be distinguished from head and neck squamous carcinomas (HNSCs) metastatic
to the lung, a common dilemma in surgical pathology. A study (127) used methylation data of
528 primaryHNSCs, 354LUSCs, and 74 normal lung tissues. In t-SNEplots, normal lung formed
distinct clusters while HNSCs and LUSCs formed substantially overlapping clusters. From the
training set, the 2,000 most variable CpG sites were chosen, and random forest, artificial neu-
ral network, and support network machine classifiers were developed. The classifiers were tested
against an independent validation data set; the neural network classifier had the best performance
with 96.4% correct classification and an AUC of 0.99.Notably, the training set consisted of frozen
tissue but, surprisingly, FFPE specimens were assigned to the correct class with an accuracy that
was higher than that of frozen samples.

Unsupervised clustering of various other tumors has revealed methylation subgroups includ-
ing CIMP clusters in urothelial bladder cancer (128) and cervical cancer (129); distinct histology
profiles in testicular germ cell tumors (130) and uterine carcinosarcomas (131); distinct DNA
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mutation groups in prostate cancer (132), cholangiocarcinoma (133), hepatocellular carcinoma
(134), and cauda equina paraganglioma (135); and clinical outcome subsets in ovarian cancer
(136) and uveal melanoma (137). Expansion of these observations has the potential to lead to
further development of methylation classifiers.

The Current Methylation Classifier Status, Benefits, Caveats,
and Publicly Available Data

A key feature of a cancer classifier is the ability to capture a tumor entity’s biological milieu, which
ideally also corresponds to clinical characteristics, natural history, and therapy response. Histori-
cally, cancer classification and diagnosis by pathologists has been achieved by visual inspection of
tissue characteristics following hematoxylin and eosin staining and immunohistochemistry. These
methods are based on morphology and are subject to well-described interobserver variability. Ad-
ditional adjunct methods such as FISH and nucleic acid sequencing can be helpful to identify al-
terations specific to individual tumor entities. While helpful in many instances, DNA alterations
have generally not proven to be specific enough to develop comprehensive classifiers of cancer.
RNA is used for determination of specific fusions, some of which are pathognomonic for specific
entities or which can be used to refine the differential diagnosis. RNA expression has been sug-
gested as a useful tool for cancer classification, but the lability of RNA is a limiting factor (8).
Advantages of methylation as a classifier include its stability and its robust measurability in FFPE
tissues, the most common form of tissue processing utilized for diagnostic purposes (8, 138).

Early attempts at using methylation for cancer classification utilized a small number of meth-
ylation markers and were modestly successful in creating classifiers. The development of practical
methylation arrays made it possible to interrogate thousands of methylation sites, some of which
have a profile that can differentiate between different classes of cancer. Specifically, the advent of
450K has been particularly impactful because it seems to capture the minimum number of meth-
ylation sites needed to create strong classifiers. On the basis of the success of recently developed
methylation classifiers, it can be stated that methylation is a biological process that reflects, to a
significant degree, multiple facets of cancer including morphology, DNA mutation status, RNA
expression, and, by implication, clinical behavior and therapy response.

The use of methylation as a classifier of cancer has generated new and interesting questions.
In the initial description of the CNS tumor classifier, implementation of methylation profiling
resulted in a new diagnosis in 12% of cases. Some of these reclassified tumors underwent an in-
crease or a decrease in WHO grade, including clinically significant reclassifications such as from
glioblastoma to pleomorphic xanthoastrocytoma and from pilocytic astrocytoma to glioblastoma
(Figure 4) (39). We have observed such clinically significant reclassifications, which are often
consistent with other molecular characteristics of the case and, critically, the known clinical be-
havior of the tested tumor. The existence of such cases suggests that morphology can sometimes
be limiting and that the methylation profile may provide a better representation of biological be-
havior. It must be emphasized that amending a diagnosis can have a major impact on treatment
and therefore should entail careful consideration of the specifics of the case. Furthermore, despite
its strengths, methylation must not be used blindly. The morphological and standard molecular
characteristics still need to be considered for each case, and the best diagnosis is nearly always
one that integrates all of the relevant data. The enduring need for the standard morphology, im-
munohistochemistry, and FISH approach is reflected by a very small number of cases that have
an unequivocal histological diagnosis but, possibly erroneously, classify in a substantially different
or ambiguous methylation class (39, 40). Other issues that are occasionally encountered include
specimens with a low tumor content, which can result in a methylation pattern similar to that
of the contaminating nonneoplastic cells. In addition, old tissue specimens may yield suboptimal
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Integration: histological and/or molecular reevaluation

Pathological diagnosis

Array hybridization

Automated report generation

Methylation profiling

Tumor macrodissection

Figure 5

Integration of methylation classifiers in diagnostic workflow. Methylation can be viewed as another method
of diagnosis refinement. Unlike the output of methods such as fluorescence in situ hybridization or
immunohistochemistry, the output of methylation classifiers is a specific diagnosis. This can direct the
pathologist toward a reevaluation of the case. Figure adapted with permission from Reference 39; copyright
2018 Springer Nature.

DNA quality that can confound accurate classification. On the basis of current capabilities and
limitations, cancer methylation classifiers can be viewed as adjuncts to morphology, immunohis-
tochemistry, and FISH studies (Figure 5).

The utility of methylation profiles to diagnose and classify cancers has been spearheaded by
a series of studies focusing on CNS tumors (39) and soft tissue tumors (40). These studies have
granularly subclassified various CNS tumor categories including MB (31), ependymoma (85), and
CNS-PNET neoplasms (82). These have resulted in the segregation of tumors with similar mor-
phology to distinct molecularly defined categories. The reverse is also true. As one example, soft
tissue tumors with different histologic appearances have been shown to be molecularly identical,
leading to the convergence of previously disparate entities into one (40).

Another novel aspect of methylation classifiers is the use of machine learning. Random forest
is the classification machine learning method used in recent studies (39, 40), although what consti-
tutes the best machine learning classifier method is still an open question. Recent data suggest that
the elastic net method and the ridge-penalized multinomial logistic regression–calibrated SVM
method with linear kernels achieve the highest AUC and minimize misclassification error (139).
Additional studies and community consensus will be required to determine the best classification
machine learning method.

An important aspect of classifiers is the representativeness of the training set. The methylation
classification of a cancer class that was not included in the training set will likely result in no match
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or a low-confidence match. The currently available studies have used an empirical minimum of
eight (39) or seven (40) cases to define a methylation group. What constitutes an ideal minimum
to define a molecular class remains to be seen, but there is no doubt that to achieve a complete
view of the methylation classifier, a great number of tumors will have to be collected and tested.
This will require interinstitutional and international collaboration with ever-expanding numbers
of specimens and iteratively updated classifiers.

The most popular forms of methylation interrogation require an initial bisulfite conversion
step. This chemical treatment is highly destructive to DNA and explains the substantial DNA
requirement (140). Methods such as methylated DNA immunoprecipitation do not need DNA
bisulfite conversion although they have different limitations including the inability to interrogate
single CpG sites (42).These newermethods are not yet used inmajormethylation classifier studies
but are likely to play a role in the development of future classifiers.

Inherent to the novelty of genome-wide methylation classifiers is the fact that current methyl-
ation interrogation technology requires instruments that most large and almost all small medical
centers lack. Additional limiting factors for methylation classifiers include cost and lack of com-
munity acceptance as a standard of care in diagnostics. However, it is likely that additional classi-
fiers will be developed for a variety of organ systems, increasing the interest and relevance of this
technology, with eventual incorporation of methylation classification into diagnostic algorithms
and guidelines. A possible model is a hybrid one, where only some institutions have the required
machines and expertise. For next-generation DNA and RNA sequencing, such a hybrid model
already exists in the form of large academic centers and private companies.

Efforts to use cfDNA methylation for classification have yielded modest results, likely because
of the minute amount of tumor cfDNA and technical limitations in terms of interrogating enough
methylation sites. However, new technologies are making large-scale interrogations possible and
free of DNA-damaging bisulfite conversion (42). A blood-based clinical grade cancer classifier
does not currently exist, although substantial inroads into the use of cfDNAmethylation for cancer
detection are being made (44).

TCGA and the Gene ExpressionOmnibus (GEO) databases contain the largest publicly acces-
sible methylation data sets and have been used extensively to build methylation classifiers. TCGA
contains a static set of GoldenGate, 27K, and 450K data for many cancers (141). Similarly, the
GEO database contains cancer methylation data with new data sets uploaded directly by users as
the data become available (142).

THE FUTURE OF METHYLATION AND OTHER CANCER CLASSIFIERS

The discovery of increasingly rare cancer classes and improvement of classification methods may
require community acceptance of frequently updated, online-accessible classification schemes and
algorithms.We anticipate the development of multiple organ-based methylation cancer classifiers
and, ultimately, a pancancer classifier.To cover the entirety of the potentially discriminatorymeth-
ylation sites, comprehensive approaches that will be practical in the future, such as WGBS, will
provide a complete understanding of the methylome and its capacity to classify cancer. Similarly,
blood-based pancancer classifiers are poised to become possible. A potential model would be to
perform blood sampling from patients with symptoms suspicious for cancer. Depending on the
robustness of the classifier, biopsy of the tumor itself may or may not be required.However, much
work and necessary improvements in detection and standardization will be required before tumors
can be reliably diagnosed using such a minimally invasive approach.

The integration of methylation profiling into the diagnostic pathology of CNS tumors has
shown the potential for improved diagnostic accuracy as well as stratification of tumor subtypes
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in clinically relevant ways. Among the attributes of methylation profiling, the ability to capture
the substantial morphologic and genetic heterogeneity in primary CNS tumors remains its most
robust and demonstrated feature. This is particularly valuable in histologically ambiguous tumor
types that may harbor potentially targetable alterations. The recent implementation of the first
clinical-grade methylation classifiers (39, 40) may herald a similar paradigm shift for neoplastic
entities involving additional organ systems.

Although methylation is a biomarker that has great practical benefits, it is likely that as tech-
nology and data analysis methods improve, the use of additional genome-wide platforms will add
further utility to cancer classification. In this regard, gene expression profiles show promise, and
while they are outside the scope of this review, we believe it likely that such additional platforms
will be utilized for cancer classification in the future. Finally, it is worth noting that pathologists
have been central figures in the creation of these methylation classifiers, where the optimal clinical
utility of methylation profiles requires integration of methylation data with established diagnostic
methods with which anatomic pathologists are intimately familiar.

Development of a robust cancer classifier depends on training on a diverse and well-
characterized set of neoplastic entities against which unknown samples will be compared. Expe-
rience to date suggests that methylation classifiers will be increasingly used to confirm and refine
histomorphology-based diagnoses, identify clinically relevant subtypes, serve as quality control
and teaching tools, and play a critical role in identifying new neoplastic entities.

SUMMARY POINTS

1. DNA methylation is a stable biomarker and is a mark of cell-of-origin in cancer.

2. Large-scale profiling has revealed complex and specific DNA methylation profiles in
cancer.

3. DNA methylation in combination with machine learning has been successfully used to
identify new cancer classes and to consolidate histologically disparate cancers.

4. Clinically useful central nervous system tumor and sarcomaDNAmethylation classifiers
are the first of their kind and are likely to be followed by many others.

5. Methods of cancer detection and classification from blood are currently emerging.

6. As DNA methylation interrogation becomes increasingly powerful and expansive, pan-
cancer DNA methylation classifiers will become possible.

7. DNA methylation profiling will likely be adopted in cancer diagnostic criteria and will
become a standard procedure performed at major centers.
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