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Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common
cancer, with its incidence rising steeply. Immunosuppression is a well-
established risk factor for cSCC, and this risk factor highlights the critical
role of the immune system in regulating cSCC development and progres-
sion. Further highlighting the nature of cSCC as an immunological disor-
der, substantial evidence demonstrates a tight association between cSCC risk
and age-related immunosenescence. Besides the proven efficacy of immune
checkpoint blockade therapy for advanced cSCC,novel immunotherapy that
targets cSCC precursor lesions has shown efficacy for cSCC prevention.
Furthermore, the appreciation of the interplay between keratinocytes, com-
mensal papillomaviruses, and the immune system has revealed the possibility
for the development of a preventive cSCC vaccine. cSCC shares fundamen-
tal aspects of its origin and pathogenesis with mucosal SCCs. Therefore, ad-
vances in the field of cSCC immunoprevention will inform our approach to
the management of mucosal SCCs and potentially other epithelial cancers.
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INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) is caused by a malignant proliferation of ker-
atinocytes originating from the epidermis and adnexal structures, including pilosebaceous units
and eccrine glands, which clinically presents as an indurated crusted lesion (1, 2). cSCC is the
second most common cancer in humans and represents nearly one-third of all nonmelanoma skin
cancers (NMSCs), which are associated with significant morbidity, mortality, and economic bur-
den (3–8).

Although previous estimates of lifetime incidence of cSCC (7–11%) (6, 9) are lower than those
of basal cell carcinoma (BCC) (28–33%) (10), cSCC cases have been disproportionately increasing
in recent years (11). The ratio of cSCC to BCC in the Medicare population increased fourfold
from 1992 to 2012 (12). The national incidence rates of cSCC tripled for men and increased by
fivefold for women between 1989 and 2017; these rates are estimated to keep growing at a rate of
23% for males and 29% for females in the coming years (13), highlighting the need for improved
prevention and treatment of cSCC.

Despite having well-characterized risk factors, cSCC remains a substantial health challenge.
Unlike most other NMSCs, 4% of patients with cSCC experience local recurrence or metasta-
sis after complete excision of the primary tumor (14, 15). Particularly in solid organ transplant
recipients (SOTRs) undergoing systemic immunosuppression, cSCC has a metastatic rate of up
to 8% in comparison with 1% in the general population (8, 9) and has a mortality rate simi-
lar to that of melanoma with a 3-year mortality rate of 46% (6, 7, 16, 17). In addition, localized
cSCC is associated with significant morbidity, including pain, ulceration, and disfigurement (6, 7,
16, 17).

For effective diagnosis and treatment, it is important to consider the histopathologic diversity
of cSCC. In contrast to BCC, which despite its numerous subtypes has limited differences in
clinical behavior or metastasis risk, cSCC has a more heterogeneous presentation. cSCC lesions
can range from indolent neoplasms with low metastatic potential to highly aggressive and invasive
tumors and histopathologic variants extending from keratoacanthoma with good prognosis to
poorly differentiated cSCCwith poor prognosis (18–21). Thus, it is critical to distinguish between
these variants clinically and histologically to accurately treat high-risk tumors early and reduce risk
for recurrence and metastasis (22, 23).

Recent advances in understanding the immunobiology of cSCC have created novel opportuni-
ties for preventative and therapeutic interventions. Investigating the dramatic differences in cSCC
risk between immunosuppressed and immunocompetent patients has revealed the critical role of
the immune system in controlling the malignant transformation in keratinocytes (24).The greater
incidence of cSCC in SOTRs accompanied by worse prognosis due to the iatrogenic immuno-
suppression in these patients highlights this role (25, 26). cSCC serves as a unique cancer model
for studying immunoprevention and immunotherapy. In contrast to internal cancers (e.g., breast
cancer) that appear as a singular lesion and take years to decades to develop, several independent
primary cSCCs can arise rapidly in a single patient (13, 27). In fact, the cSCC disease burden
largely relates to the appearance of multiple primary lesions in high-risk patients (14, 28, 29). Evi-
dence demonstrates that a subsequent cSCC risk is exponentially greater in patients with a history
of cSCC in the past, highlighting the critical need for preventive strategies, such as vaccines, for
cSCC (13, 27, 30).

In this review, recent advances in understanding cSCC epidemiology, biology, pathogenesis,
clinical presentation, prevention, and therapeutics are summarized. Particularly, emerging thera-
peutic strategies that focus on cSCC immunobiology are highlighted.
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EPIDEMIOLOGY

The non-Hispanic White population in the United States has an estimated 14–20% lifetime risk
of developing cSCC (10, 31). There are approximately 1 million new cases of cSCC per year in the
United States (12, 32). However, cSCC incidence differs among the reported nationwide studies.
In addition, cSCC exclusion from the national tumor registries has resulted in an underreporting
of cases. Thus, the true cSCC incidence rate is unclear (33, 34). In terms of health care burden
and costs, it is estimated that 5 million adults are treated for skin cancer annually, with average
treatment costs exceeding $8.1 billion each year ($4.8 billion for NMSCs) (35). A recent nation-
wide epidemiologic cohort study in the Netherlands found a substantial increase in the incidence
of the first cSCC from 1989 to 2017 (40.0 to 107.6 per 100,000 person-years), which was partic-
ularly high among female patients (13.9 to 68.7 per 100,000 person-years) (13). Thus, the rising
incidence of cSCC, particularly the development of multiple cSCCs per patient, highlights the
substantial burden of cSCC and its impact on health care.

Numerous risk factors for cSCC have been identified, including ultraviolet (UV) radiation, im-
munosuppression, and previous history of cSCC, as well as ionizing radiation, old age, genoder-
matoses (e.g., xeroderma pigmentosum), arsenic, polycyclic aromatic hydrocarbons, pharmacolog-
ical treatment with voriconazole, fair skin (Fitzpatrick skin type I, II, and III; albinism), chronic
ulcer, burn wound (Marjolin ulcer) and chronic scar, and preexisting chronic dermatoses, such
as dystrophic epidermolysis bullosa, epidermodysplasia verruciformis, and erosive lichen planus
(36). A tumor diameter >2 cm, poorly differentiated tumor histology, perineural and lymphovas-
cular invasion, extension into the subcutaneous tissue, and bone invasion are tumor-intrinsic risk
factors associated with cSCC recurrence and metastasis (37–39). Although the mechanisms un-
derlying each of these risk factors are not yet fully understood, each is thought to contribute to
cSCC development and progression, which are often multifactorial.

UV radiation, specifically UVB (280–315 nm) and UVA (315–400 nm), is associated with the
highest risk for developing skin cancer overall (40). Despite accounting for 2% of UV rays in the
sunlight, UVB is primarily responsible for UV-related skin cancers (41). Through inducing DNA
damage and mutations in tumor suppressor genes, such as TP53 (42, 43), UVB is responsible for
both tumor initiation and promotion, whereas UVA radiation causes skin aging and indirect DNA
damage (40, 44). The effects of increased UV exposure are even more pronounced in individuals
with lighter skin color, as well as in those with increased sun exposure and history of sunburns in
childhood (45, 46).

In contrast to the dominance of BCC in immunocompetent patients, cSCC is the most pre-
dominant skin cancer in immunosuppressed SOTRs, with a 65–250-fold greater incidence and
higher mortality rate in SOTRs compared with the general population (25). In the United States
and western Europe, the incidence of cSCC dramatically increases with time in SOTRs, from
10–27% at 10 years to 40–60% at 20 years posttransplant (47). Risk of cSCC development also
correlates with the degree of immunosuppression. For instance, patients with heart and lung trans-
plants have a higher risk of cSCC compared with liver transplant patients due to their more inten-
sive immunosuppression regimens (47, 48). SOTRs are also more likely to have aggressive cSCCs
(8% risk for metastasis) (49). The 5-year overall survival rate due to aggressive cSCCs in SOTRs
is 23%, while the 5-year disease-specific survival rate is 30.5% (26). Additionally, 66% of SOTRs
will develop a second cSCC within 5 years of their first cSCC diagnosis (30). The risk of new
cSCCs in SOTRs is markedly amplified to more than 75% within 2 years after the second cSCC
diagnosis (27). Noniatrogenic immunosuppression in human immunodeficiency virus (HIV) pa-
tients and cell-mediated immunodeficiency in lymphoproliferative disorders also lead to increased
risk of aggressive cSCC development (50).
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A notable difference in age distribution exists between BCC and cSCC, and cSCC is more
commonly found in older patients. A 19-year single-center study found that the most frequently
observed age group for cSCC included those aged 80 to 89 years old (41.8%), as opposed to 70 to
79 years old for BCC (44.1%) (51). Similarly, a population-based study inMinnesota over 10 years
showed a median age at incident diagnosis of 72.0 years in cSCC patients and 63.8 years in BCC
patients (11). In another study in Australia, between 2011 and 2014, it was demonstrated that the
BCC-to-cSCC ratio reduced by age from 11.4 for women and 8.01 for men in the 40–44-year-old
age group to 2.5 for women and 2.25 for men in the 70–74-year-old age group (52).

Additional predisposing risk factors, such as genodermatoses and human papillomavirus
(HPV), are discussed in subsequent sections. Understanding the underlying molecular pathways
behind genetic and viral causes of cSCC is an emerging area of focus within the field, given the
potential for preventative and therapeutic innovations.

BIOLOGY AND PATHOGENESIS

The skin is composed primarily of the epidermis, adnexal structures, dermis, and subcutaneous
tissue (Figure 1). The epidermis is stratified and its layers, from outermost to innermost, are the
stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale
(basal layer), which is the mitotically active layer of the epidermis (53). Stem and transiently am-
plifying cells lie in the basal layer, and these cells differentiate and give rise to the keratinocytes
in upper differentiated layers of the epidermis. Likewise, most hair follicle stem cells reside in a
niche known as the bulge region (54). Thus, given their potential for self-renewal and multilin-
eage differentiation, both the basal layer and the hair follicle bulge have been described as potential
cells of origin for keratinocyte carcinomas, including cSCC and BCC (55, 56). Of note, combined
single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from
cSCCs have revealed four tumor cell subpopulations, with three recapitulating normal epidermal
states and a tumor-specific keratinocyte population residing within a fibrovascular niche (57). Var-
ious features of potential immunosuppression have also been noted, including regulatory T cell
colocalization with CD8+ T cells in tumor stroma (57). The cSCC immune landscape is further
compromised in SOTRs. Gene expression and single-cell T cell receptor sequencing have shown
reduced tumor-infiltrating cytotoxic CD8+ T and naive T lymphocytes in cSCCs of SOTRs,
while regulatory T cells maintain similar numbers in tumors of immunocompetent and immuno-
suppressed patients (58).

The extracellular matrix (ECM) plays an important role in cSCC development. Consisting of
various structural proteins and other macromolecules that provide structural scaffolding to the
skin, the ECM has been shown to interact with cSCC cells (59). For instance, laminin 332 is an
ECM protein found in the basement membrane zone (BMZ) and is critical for maintaining skin
integrity. Along with its ligation partner, α6β4 integrin, laminin 332 was found to be required for
human cSCC tumorigenesis in a murine xenograft model (60). In addition, small interfering RNA
(siRNA)-mediated depletion of collagen VII, which comprises anchoring fibrils in the BMZ to the
dermis, promotes migration, invasion, disorganized differentiation, and epithelial-mesenchymal
transition of cSCC cells in a 3D organotypic skin model (61). Other mechanisms involved in
the epithelial-mesenchymal transition of malignant keratinocytes include the loss of E-cadherin,
desmogleins, and catenins, which are keratinocyte adhesion molecules, and activation of matrix
metalloproteinases (MMPs), which result in ECM degradation and remodeling of cytoskeletal
filaments (62). Cytokines such as transforming growth factor beta (TGF-β), transcription factors
including Snail 1 and Snail 2, and microRNAs such as miR-21 and miR-205, which are involved
in posttranscriptional regulation of gene expression, also play pivotal roles in cSCC progression
(62, 63).
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Figure 1

The skin with its resident immune cells. The epidermis and hair follicle primarily consist of keratinocytes
and are infiltrated by Langerhans cells, which are tissue-resident antigen-presenting cells, as well as TRM
cells and melanocytes. cSCC-initiating cells are thought to exist in the bulge region of hair follicles and in
the basal layer of the epidermis. In the dermis, fibroblasts predominate and are responsible for the synthesis
and development of the extracellular matrix, including collagen to provide structural support to the skin.
Macrophages, Tregs, TRM cells, recirculating CD4+ and CD8+ T cells, γδ T cells, dendritic cells, NK cells,
and mast cells are also found in normal skin. The subcutaneous tissue consists of the fat layer, composed of
adipocytes, as well as the muscle layer below, primarily composed of smooth myocytes. Abbreviations: cSCC,
cutaneous squamous cell carcinoma; ILC2, group 2 innate lymphoid cell; NK cell, natural killer cell; Treg,
regulatory T cell; TRM cell, tissue-resident memory T cell.

The spectrum of cSCC lesions can appear at varying stages, presenting as early as precancerous
actinic keratoses (AKs) and as late as metastatic SCC (Figure 2). AKs are common skin lesions
that have an increased risk for malignant progression to cSCC and are associated with an increased
number of UV-driven mutations (64). Histologically, AKs are characterized as intraepidermal
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Figure 2

The molecular alterations associated with cancer progression from AK to invasive cSCC. Schematic depicting the spectrum of
morphologies of AK-cSCC lesions, with relevant changes in gene expression and mutation patterns. Abbreviations: A, adenine; AK,
actinic keratosis; Bcl-2, B cell lymphoma 2; C, cytosine; cSCC, cutaneous squamous cell carcinoma; cSCCIS, cutaneous squamous cell
carcinoma in situ; MMP, matrix metalloproteinase; PKC, protein kinase C; SFK, Src-family tyrosine kinase; Srcasm, Src-activating and
signaling molecule; T, thymine; TGF-β, transforming growth factor beta; UV, ultraviolet; VEGF, vascular endothelial growth factor.

neoplasms containing enlarged keratinocytes with atypical nuclei (5). UVB-induced inactivation
of TP53, the most commonly mutated gene in AKs, is largely responsible for AK development
(65). If the classic multistep model of carcinogenesis were to be applied to the progression of AK
to cSCC (66), mutations in a tumor suppressor gene (i.e., TP53) would lead to the development
of a precursor lesion (i.e., AK), associated with genetic instability and/or loss of cell cycle control
(55). The major mutated genes in AKs such as TP53, NOTCH1, and NOTCH2, which are com-
monly mutated in cSCC, indicate the shared origin of AKs and cSCCs (67). In contrast, immune
factor alterations including TGF-β signaling pathway mutations, which are more predominantly
detected in cSCCs, highlight the role of immune dysregulation in the transition of AK to cSCC
(67). Established genetic alterations in the formation of AKs result in increased oncogenic signals
[e.g., Ras, Fyn/Src-family tyrosine kinases (SFKs), B cell lymphoma 2 (Bcl-2)] and decreased
function of tumor suppressors [e.g., p53, Src-activating and signaling molecule (Srcasm)], which
ultimately lead to the mutated keratinocytes spanning the entire epidermal thickness, as the AK
progresses to cSCC (55). Although AK and cSCC are molecularly linked, it is important to note
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that an individual AK rarely progresses to cSCC (68). Instead, the presence of AKs highlights the
field cancerization of the sun-damaged skin and its propensity to developing de novo cSCCs (69).

Notch signaling plays a critical tumor suppressive role in cSCC development, which is blocked
by inactivating UV mutations involving NOTCH1 and NOTCH2 genes in human AK and cSCC
(67, 70). In epidermal keratinocytes, Notch signaling upregulates factors involved in differenti-
ation, including retinoic acid and interferon regulatory factor 6 (71, 72). Retinoic acid has been
shown to be protective against cSCC in mice (73), further supporting the tumor suppressive role
of Notch signaling in cSCC. Notch signaling also inhibits Rho-associated kinases 1 and 2, as
well as myotonic dystrophy kinase-related CDC42-binding kinase α in keratinocytes, which are
implicated in neoplastic progression (74). Furthermore, loss of Notch proteins in keratinocytes
generates a tumor-promoting microenvironment in the skin (75). p53 is thought to also induce
Notch-mediated differentiation in keratinocytes,which activates cell cycle inhibitors (i.e., p21) and
represses the inducers of immature stem/progenitor cells (i.e., p63) (76–79). Specifically for cuta-
neous squamous cell carcinoma in situ (cSCCIS), NEURL1 ubiquitin ligase, which marks Notch
ligands for degradation, is upregulated (80). This suggests that UV-induced increase of NEURL1
levels may result in downregulation of Notch and cancer progression (80). Collectively, aberra-
tions in the Notch signaling pathway represent an early event in malignant transformation of
keratinocytes in AK-cSCC spectrum lesions.

Various genetic alterations are associated with the progression of AK to cSCC, which is his-
tologically marked by large, atypical keratinocytes invading into the dermis. Although the classic
model of carcinogenesis requires several genetic alterations in driver oncogenes to elicit neoplastic
progression, 3D models of the human epidermis have shown that as few as two proto-oncogene
mutations are sufficient to drive the progression from AK to cSCC (60, 81). Genetic mutations
resulting in malignant progression include oncogenes (Ras, Fyn/SFKs, c-Myc, Bcl-2, STAT-3,
β-1 integrin, and MMPs) and tumor suppressors (p53, Srcasm, Notch, protein kinase C δ, and
E-cadherin) (55). Relative to AKs, primary and metastatic cSCCs demonstrate increased genomic
instability, resulting in chromosomal translocations, isochromosomes, gene deletions, and amplifi-
cations (55).With regard to susceptibility loci for cSCC, a recent genome-wide meta-analysis has
identified 8 new single-nucleotide polymorphisms (SNPs) and corroborated 14 previously iden-
tified SNPs associated with cSCC (82–85). Further activating mutations in vascular endothelial
growth factor,MMP2,MMP7,MMP12, and downregulated E-cadherin and P-cadherin highlight
the epithelial-mesenchymal transition observed in the metastatic stage of cSCC (55).

CLINICAL PRESENTATION

An AK presents as an erythematous, rough papule with scale and little to no induration on sun-
exposed skin (Figure 3) (86). Although AKs are usually asymptomatic, they may be mildly painful
and are more readily diagnosed on examination with palpation. Some variants of AKs are pig-
mented, cutaneous horn, atrophic, Bowenoid, and lichen planus-like lesions (87). Pigmented AKs
range from being pink or skin-colored to brown. cSCCIS represents another precursor lesion as
part of the progression from AK to invasive cSCC (Figure 3) (88). cSCCIS appears as an erythe-
matous scaly plaque, with the possibility of pigmentation, and may also present as hyperparaker-
atosis leading to the formation of a cutaneous horn. cSCC similarly forms on sun-exposed skin as
persistent, solitary firm papules or erythematous nodules with significant scale, and the propensity
for spontaneous bleeding (Figure 3). Other features of cSCC include induration, varying degrees
of hyperkeratosis, ulceration, and tenderness. Rarely, cSCCs may manifest as multiple in-transit
metastases as well. Low- to moderate-risk cSCC variants include keratoacanthomas, verrucous
carcinomas, and clear cell cSCCs, and higher-risk variants include acantholytic, spindle cell, and
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Figure 3

Clinical representation of cSCC and its precursor lesions. Abbreviations: AK, actinic keratosis; cSCC,
cutaneous squamous cell carcinoma; cSCCIS, cutaneous squamous cell carcinoma in situ.

adenosquamous carcinomas (55). In addition, high-risk features of primary cSCCs include poor
differentiation, perineural invasion, diameter >2 cm, depth >4 mm, history of local recurrence,
and location (anogenital, ear, lip, or scar) (89).

KEY ASSOCIATIONS

Immunosuppression is highly linked to increased cSCC incidence. In SOTRs, the pathogenesis
of cSCCs is related to a combination of factors. As part of their disease management, SOTRs
are chronically immunosuppressed. The impaired cell-mediated immunity in the skin increases
the risk for carcinogenesis by inhibition of antigen-presenting cells, T cell dysregulation, and in-
creased inhibitorymediators such as interleukin 10 (90).The pathogenesis of cSCC in SOTRsmay
also relate to non-immune-mediated mechanisms including hypersensitization to UV-induced
damage, resulting in suppression of p53-mediated cell death (90). Recent evidence suggests that
calcineurin inhibitors such as cyclosporine used for immunosuppression can directly promote
cSCC development through the calcineurin/nuclear factor of activated T cell pathway inhibition,
which induces transcription factor 3 and finally leads to p53 suppression in keratinocytes (90–92).
Another immunosuppressive drug, azathioprine, which induces selective UVA photosensitivity, is
found to cause a unique mutational signature in cSCCs of immunosuppressed patients relative to
those who are immunocompetent (93). Furthermore, it has been shown that CD8+ T cells ex-
pressing high levels of CD57, an immunosenescence marker, are correlated with increased cSCC
in SOTRs (94). Immunosuppression also increases the risk for viral proliferation in the skin rela-
tive to the general population, including HPV. Approximately 90% of cSCCs in SOTRs contain
HPV DNA, relative to 11–32% in immunocompetent skin samples (95).

Due to the association of cutaneotropic HPVs with cSCC in SOTRs, a causative role for HPVs
in cSCC development has been proposed. According to this so-called hit-and-run hypothesis,
HPV acts as a cofactor in facilitating UV-driven tumorigenesis in cSCC (96, 97). As such, β-
HPVs initiate the development of cSCC but are not necessary later in the process of carcinogen-
esis (98). In immunocompetent individuals, high-risk α-HPVs are associated with cervical, anal,
and oropharyngeal SCCs (99).While β-HPV types predominate in cSCCs of immunosuppressed
SOTRs, their relationship with cSCC in healthy individuals is less characterized (98). Thus, im-
munosuppressed patients are thought to experience the hit-and-run mechanism of UV plus β-
HPV exposure in driving oncogenic mutations and cSCC development. Recently, we proposed an

108 Chang • Azin • Demehri



alternative hypothesis positing that T cell immunity against commensal papillomaviruses cross-
protects the skin from cSCC development in an immunocompetent host. The loss of anti-HPV
immunity rather than the oncogenic effect of HPVs accounts for the increased risk for cSCCs in
immunosuppressed patients.This new emerging understanding of cSCC immunology is discussed
in the section titled Frontier of Cancer Immunoprevention.

Germline mutations are associated with increased risk for cSCC development, namely xe-
roderma pigmentosum (XP). XP is a rare autosomal recessive disorder usually detected at the
age of 1–2 years old, in which patients are highly photosensitive as a result of a defect in the
nucleotide excision repair (NER) pathway (100, 101). UV light and environmental mutagens
can cause helix-distorting DNA lesions including pyrimidine dimers that are typically repaired
through the NER pathway (102). However, patients with XP are unable to reconcile UV-induced
mutagenesis, severely predisposing them to UV mutations and cSCC (102). Interestingly, defects
in cell-mediated immunity, fibroblast hyperactivation, and natural killer cell dysfunction have been
also reported to contribute to skin cancer risk in XP (103).

Epidermodysplasia verruciformis (EV) is another genodermatosis associated with increased
cSCC risk (104). EV is an autosomal recessive skin disorder caused by inactivating mutations in
TMC6 (encoding EVER1) or TMC8 (encoding EVER2) genes (105). Loss of these genes results
in hyperproliferation of β-HPVs, which leads to a confluent pattern of wart development and
pityriasis versicolor–like lesions on the skin starting in childhood, which is thought to be due to a
defect of keratinocyte-intrinsic immunity to β-HPV (104). Risks for cSCC and other NMSCs are
elevated in EV patients as young as 20 to 30 years old (104).

Epidermolysis bullosa (EB) is a rare inherited bullous disorder characterized by blister for-
mation and skin fragility caused by a defect at various compartments of the BMZ in response to
minor mechanical trauma (106). Patients with recessive dystrophic EB are prone to cSCC, which
is the main cause of mortality among them. Defects in genes responsible for skin wound healing
result in chronic erosive wounds, fibrosis, and cSCC development.

PREVENTION AND TREATMENT

Primary prevention for the development of AKs and cSCCs typically focuses on minimizing UV
exposure (107). Counseling patients on sun-protective behaviors, including applying sunscreen,
wearing long-sleeved clothing, and avoiding indoor tanning, is important particularly in patients
at increased risk for cSCCs. In addition, chemoprevention for cSCCs has been widely explored,
with several promising agents demonstrating efficacy in preliminary studies. These agents in-
clude vitamin B3 (nicotinamide), acitretin (vitamin-A derivative), difluoromethylornithine, and
nonsteroidal anti-inflammatory drugs (108–112).

Secondary prevention primarily focuses on treating existent precursor AK lesions. Mainstay
treatments for AKs include cryotherapy and field therapy, including topical 5-fluorouracil (5-FU),
ingenol mebutate, and diclofenac as well as photodynamic therapy (PDT), which may be particu-
larly advantageous for more diffuse areas of actinic damage (108, 113, 114). Despite the efficacy of
cryotherapy and field therapies for AK treatment, only topical 5-FU has shown efficacy in reduc-
ing the risk of new cSCC development on the face and ears within 1 year after treatment (115).
However, this protective effect is completely lost by 2 years after therapy (115). Of note, topical
5-FU in combination with calcipotriol is a novel immunotherapy for the treatment of AKs (see
the next section for details) (114, 116).

For the most invasive, high-risk cSCCs, surgical excision is necessary, and this can include
either conventional wide local excision or Mohs micrographic surgery, depending on the tumor
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features and the anatomical location (117). Adjuvant radiation therapy may also be considered
in cSCC cases with perineural invasion or high metastatic risk. For cSCCIS and low-risk cSCC,
nonsurgical treatment options include electrodesiccation and curettage, PDT, topical imiquimod,
and 5-FU (118).

Systemic therapies for advanced cSCC include platinum-based chemotherapies, capecitabine,
and epidermal growth factor receptor inhibitors (cetuximab, panitumumab), all of which have
modest efficacy (119–121). Recently, the first immune checkpoint inhibitor (ICI) targeting PD-
1 (programmed cell death protein 1), cemiplimab (48), was approved for use in advanced and
metastatic cSCC, with treatment response in approximately 50% of the patients (122). Other im-
munotherapeutics including anti-PD-L1 (anti–programmed death ligand 1) antibodies may also
show high efficacy for cSCC treatment given the large tumor mutational burden and lymphocytic
infiltration in cSCC (123). In particular, ICI response is shown to associate with high expression
levels of PD-L1 and the presence of interferon-γ gene signature in cSCC (124).

FRONTIER OF CANCER IMMUNOPREVENTION

Recent advances in our understanding of cSCC tumorigenesis suggest that cSCC is a highly
immune-regulated disease. As has been widely established, immunosuppression or immune dys-
regulation confers significant risk for cSCC development. In SOTRs, HIV/AIDS, and chronic
lymphocytic leukemia patients with suppressed immunity, preventing and treating cSCCs remain
challenging (125). The cSCC burden is markedly higher in these high-risk populations, especially
when compared with melanoma and BCC. Although increased age is associated with greater risk
of skin cancer overall, particularly due to increased UV-induced mutations, evidence suggests that
aging may confer an additional risk for cSCC development. This is highlighted by the fact that
BCC, with the highest mutation rate among all cancers [65 mutations/Mb (126)], has an ear-
lier age of onset compared with cSCC, which has a lower mutational burden [50 mutations/Mb
(93)]. Thus, the age-associated increase in the risk of cSCC likely points to the importance of
immunosenescence in addition to cumulative UV damage as drivers of cSCC development with
age (127).

New evidence suggests an increasingly important role of immunosenescence, the gradual de-
terioration of the immune system with age, in cSCC pathogenesis. Healthy, older individuals with
age-related declines in immunity have been found to be substantially more permissive to cSCC
development. This has been demonstrated by a comprehensive, single-site study over 19 years,
in which patients with cSCC were more likely to present later than those with BCC (mean age
70.8 years for BCC and 79.9 years for cSCC), with the most frequent age group being 70–
79-year-olds for BCC and 80–89-year-olds for cSCC (51). Similarly, a population-based study
in Minnesota over 10 years found a disproportionate increase in cSCC later in life relative to
BCC (11).

The case for the contribution of age-associated immunosenescence to cSCC risk is also sup-
ported by evidence observed in pediatric patients, who do not experience the biological effects
associated with aging. A recent multicenter retrospective case-control study of pediatric patients
from 1995 to 2015 sought to investigate risk factors in children and young adults with NMSCs
(128). The study authors demonstrated that pediatric patients with prior chemotherapy and ra-
diation therapy primarily developed BCCs, while children experiencing immunosuppression (i.e.,
transplant recipients) almost exclusively developed cSCCs.Thus, this study’s findings are reflective
of the age-related immunocompetency that is inversely associated with cSCC risk.

Considering cSCC as a disease of immune dysregulation rather than simply immunosuppres-
sion allows for the development of novel therapeutic strategies for cSCC prevention. Studying the
role of the immune system in controlling the early stages of cSCC development in experimental
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Topical calcipotriol plus 5-fluorouracil immunotherapy induces a potent tumor-directed immunity against
AKs. Application of topical calcipotriol plus 5-fluorouracil induces TSLP cytokine expression by the
keratinocytes, which activates CD4+ T cell immunity against AKs. HLA class II and MICB induction on the
transformed keratinocytes leads to the direct activation of CD4+ T cells against AKs. In addition, CD8+
T cells and NK cells can recognize NKG2D ligands expressed on the premalignant keratinocytes, which can
further suppress skin cancer development. Abbreviations: AK, actinic keratosis; HLA, human leukocyte
antigen; MICB, MHC class I polypeptide-related sequence B; NK cell, natural killer cell; TSLP, thymic
stromal lymphopoietin.

models (116) has led to the development of a novel topical immunotherapy with proven efficacy
in eliminating AKs (114). Specifically, we have discovered the high potency of antitumor CD4+

T cell immunity induced by thymic stromal lymphopoietin (TSLP) cytokine in blocking skin can-
cer development (116). The combination of topical calcipotriol, a low-calcemic vitamin D analog
that inducesTSLP expression by keratinocytes (129),with 5-FU results in a potent tumor-directed
immunity against AKs (Figure 4) (114). We conducted a randomized double-blind clinical trial
demonstrating that the combination of topical calcipotriol synergizes with 5-FU to induce robust
T cell–mediated immunity and markedly reduce the number of AKs relative to 5-FU-treated con-
trols (87.8% versus 26.3 mean reduction) (114). Further analysis of AK samples from the subjects
treated with calcipotriol plus 5-FU revealed the induction of CD4+ and CD8+ TRM cell (tissue-
resident memory T cell) formation in the skin lesions, which persisted for more than 3 years
posttreatment (130). This immunity and TRM cell induction correspond to a significantly lower
risk of cSCC development in the group treated with calcipotriol plus 5-FU compared with the
group treated with Vaseline plus 5-FU within 3 years of treatment [7% versus 28% in control
group, hazard ratio 0.215 (95% confidence interval: 0.048–0.972)]. Importantly, calcipotriol plus
5-FU did not reduce the risk of BCC in subjects, highlighting the specific regulation of cSCC
development by the immune system.
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Immunity against skin-resident commensal HPVs protects the skin from cSCC. Commensal HPVs cause cutaneous warts in the
absence of a competent immune response in the skin. In immunocompetent individuals, immune cells including TRM cells block the
development of warts and the expansion of UV-induced malignant clones by recognizing HPV antigens in conjunction with
immunogenic factors released by the proliferating keratinocytes. Accordingly, malignant keratinocytes lose HPV gene expression to
evade antiviral immunity and progress to invasive cSCC. Abbreviations: cSCC, cutaneous squamous cell carcinoma; HPV, human
papillomavirus; TRM cell, tissue-resident memory T cell; UV, ultraviolet.

With regard to secondary prevention, our work has also uncovered a critical role for cuta-
neotropic viruses in immunity against cSCC development, highlighting the potential for a novel
cSCC vaccine. To understand the role of commensal HPVs in cSCC pathogenesis, we colonized
mice with murine papillomavirus type 1 (MmuPV1) (97). Confluent warts caused by papillo-
mavirus infection were observed in immunodeficient mice; however, immunocompetent mice
demonstrated no skin lesions. Mice with both natural anti-MmuPV1 immunity following col-
onization and acquired immunity from T cell transfer or MmuPV1 vaccination were found to
be protected from chemical and UV-induced skin carcinogenesis in a CD8+ T cell–dependent
manner.When trying to determine if β-HPVs were similarly protective in human skin, we found
a significant reduction in viral activity in human skin cancer cells relative to normal adjacent skin
and discovered β-HPV-specific CD8+ T cells in sun-exposed normal human skin (97). Thus, we
propose that the loss of immunity against skin-resident commensal HPVs, which cross-protect
the skin against cSCC, is the primary reason for dramatically increased risk of cSCC upon im-
munosuppression (Figure 5). Consequently, a T cell–directed commensal HPV vaccine, which
can restore anti-HPV immunity in the skin, will provide an effective strategy for cSCC immuno-
prevention.

Our novel findings suggest that developing cutaneotropic HPV vaccines and other immune-
based therapeutics against cSCC precursor lesions will most directly deliver cSCC prevention in
immunosuppressed patients and in older, high-risk populations with compromised immunity and
immunosenescence. These results also suggest that the aforementioned hit-and-run hypothesis
(96), in which β-HPVs serve solely to augment UV mutagenesis and cSCC promotion, may be
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overly simplistic by failing to capture the inherent role of immunity in regulating the interac-
tions between commensal virome and epithelial cells. Anti-HPVT cell immunity has a significant
impact on cSCC development and β-HPV load/activity in the cancer cells. Currently licensed
vaccines against HPV are B cell directed and primarily cover high-risk α-HPVs; thus, they are
distinct from our proposed β-HPV vaccine (131). Advancements in boosting tumor-infiltrating T
lymphocytes in established cancers by the use of tumor-associated and neoantigen vaccines can
guide the development of an effective commensal HPV vaccine for cSCC immunoprevention
(132).

As cSCC remains a significant public health challenge, employing immunologic strategies and
reframing our understanding of how the immune system contributes to cSCC development are
critical for the prevention and treatment of this disease.Ultimately, the advancement in the field of
cSCC immunoprevention will inform novel strategies for the prevention of mucosal SCCs, other
epithelial cancers, and beyond.
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