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Abstract

Thousands of tons of neonicotinoids are widely used around the world
as broad-spectrum systemic insecticides and veterinary drugs. Researchers
originally thought that neonicotinoids exhibited low mammalian toxicity.
However, following their widespread use, it became increasingly evident that
neonicotinoids could have various toxic effects on vertebrates and inverte-
brates. The primary focus of this review is to summarize the research progress
associated with oxidative stress as a plausible mechanism for neonicotinoid-
induced toxicity as well as neonicotinoid metabolism. This review summa-
rizes the research conducted over the past decade into the production of
reactive oxygen species, reactive nitrogen species, and oxidative stress as a
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result of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of
neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against
neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review
sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to non-
target species.

INTRODUCTION

As a systemic seed or in-furrow treatment to protect seedling crops from piercing-sucking and
chewing insects, neonicotinoids are now registered and approved for use on hundreds of field crops
in over 120 different countries (1-3). Furthermore, neonicotinoids such as imidacloprid (IMI) and
nitenpyram (NIT) are also used for flea control on cats and dogs (4, 5). After more than 20 years of
use, neonicotinoids currently dominate the insecticide market, with global annual sales in excess
of $3.5 billion. The annual worldwide production of the active substance in neonicotinoids was
estimated to be approximately 20,000 tons in 2010. These impressive figures can be attributed to
their broad pest spectrum, the variety of application methods, and the relatively low associated
risk to nontarget species (6, 7). The main regions of neonicotinoid use are Latin America, Asia,
North America (75% of total use), and Europe (11% of total use) (8). IMI, thiamethoxam (TMX),
thiacloprid (THI), NIT, acetamiprid (ACE), clothianidin (CLO), and dinotefuran (DIN) are the
most commonly used neonicotinoids worldwide (7). TMX, IMI, and CLO accounted for almost
85% of the total neonicotinoid sales in crop protection in 2012 (8). IMI was one of the most widely
used and was applied for over 140 agricultural crops, with approximately 14,000 tons of it produced
annually in China alone (9-11). Sulfoxaflor (SUL), cycloxaprid (CYC), paichongding (IPP), and
imidaclothiz are newly developed neonicotinoid-like insecticides (12-19). In recent years, SUL has
been approved for use in China and the United States (7, 20). IPP and CYC are cis-neonicotinoids,
which have been developed and tested in China and may soon be available on the Chinese market
(21-24). The chemical structures of these systemic pesticides are presented in Figure 1.

Compounds are widely classified as neurotoxicants if they can disrupt normal cholinergic sig-
naling, such as the nicotinic cholinergic agonist nicotine (25). Neonicotinoids are regarded as
neurotoxicants because they act as agonists against nicotinic acetylcholine receptors (nAChRs)
in insects and mammals (25). Compared to organophosphate pesticides (once widely used pesti-
cides), neonicotinoids are thought to have reduced toxicity due to their presumed selectivity for
insects over vertebrate nicotinic cholinergic receptors. Neonicotinoids selectively bind to insect
nicotinic receptors with reduced action on the vertebrate nicotinic receptors (26, 27). Therefore,
neonicotinoids might have lower neurotoxicity profiles for birds, fish, and mammals. However,
recent studies suggest that the neurotoxicity induced by neonicotinoids should be given more
attention (28). The fast-growing use of neonicotinoids in recent years has seen a concurrent dra-
matic increase in the number of acute neonicotinoid poisoning cases reported worldwide, such
as in Taiwan (29). Alarmingly, reports of severe human toxicity attributed to neonicotinoids are
emerging. THI, IMI, and ACE poisoning resulted from deliberate ingestion in humans, mani-
festing with neurotoxicities, such as status epilepticus, convulsions, and hypotension (28, 30-32).
The absence of an effective antidote raises concern in this regard (31).

In spite of the original belief that neonicotinoids have low mammalian toxicity, there is in-
creasing evidence that neonicotinoids could also cause a variety of toxic effects on animals and
humans, such as neurotoxicity, immunotoxicity, hepatotoxicity, nephrotoxicity, and reproductive
cytotoxic effects on vertebrates and invertebrates (25, 33-39).
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Figure 1

Chemical structures of some of the most important neonicotinoid insecticides. Neonicotinoids, agonists at nicotinic acetylcholine
receptors, possess either a nitromethylene (CH-NO,), nitroimine (N-NO3), or cyanoimine (N-CN) group. Moreover, neonicotinoids,
except sulfoximine insecticides, have at least one amine nitrogen. Imidacloprid is the first representative of the neonicotinoid
insecticides (first-generation chloropyridyls). Other neonicotinoids include thiacloprid, acetamiprid, nitenpyram, paichongding, and
cycloxaprid (first-generation chloropyridyls); imidaclothiz, thiamethoxam, and clothianidin (second-generation chlorothiazoles);
dinotefuran (third-generation furanyls); and sulfoxaflor (fourth-generation sulfoximines).

Neonicotinoids such as IMI could change the concentrations of some kinds of hormones in
animals. For example, when researchers exposed red munia (a small bird, commonly known as
the strawberry finch) to IMI through the diet, plasma levels of triiodothyronine, thyroxine, and
. . . .o T 33-HSD:
thyroid-stimulating hormone changed significantly, indicating that low-dose IMI exposure could 3 B-hydroxysteroid
affect thyroid homeostasis and reproduction (40). Concentrations of IMI of 45 and 90 mg/kg body dehydrogenase
weight (b.w.) resulted in significant decreases in 3f-hydroxysteroid dehydrogenase (33-HSD) 17B-HSD:
and 173-HSD enzymatic activity and testosterone concentrations in the testis and plasma (41). 17 B-hydroxysteroid
When rats were treated with various concentrations of IMI for 90 days, the relative testosterone  dehydrogenase

concentrations were lower in the treated groups than in the controls (42).
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Neonicotinoids have been shown to induce reproductive toxicity in vertebrates. When rats
were administered with 0.5, 2, and 8 mg/kg b.w. IMI for 90 days, researchers observed signifi-
cant deteriorations in sperm motility in the highest group, epididymal sperm concentration in the
middle and the highest groups, and abnormality in sperm morphology in the highest group (33).
Najafi et al. (43) reported that IMI (112 and 225 mg/kg b.w.) exposure induced a histologically
adverse effect on testicular tissue, spermatogenesis, and sperm viability and velocity. CLO treat-
ment, at concentrations of 2, 8, and 24 mg/kg b.w., induced significant decreases in the weights
of the epididymis, right cauda epididymis, and seminal vesicles of adult rats (44). At a concentra-
tion of 32 mg/kg b.w., CLO also significantly decreased the absolute weights of the right cauda
epididymis and seminal vesicles, the epididymal sperm concentration, and the testosterone level
when compared to the control group (45). A recent study documented that daily doses of CLO
(10, 50, and 250 mg/kg b.w./day) for 4 weeks degenerated the seminiferous epithelia under an
unpredictable chronic stress procedure dose dependently, suggesting that even low concentrations
of CLO could become harmful under stress conditions, such as fasting (46). In a related bird study,
CLO (1 and 50 mg/kg b.w.) affected the reproduction of the male quail through the fragmentation
of germ cells and the inhibition or delay of embryonic development (47). In a study to examine the
effect of ACE (30 mg/kg b.w.) on the reproductive function of male mice, ACE exposure resulted
in damage to the seminiferous tubules and Leydig cells and the degeneration of the mitochondria
and endoplasmic reticulum of Leydig cells (48). Furthermore, high-dose dietary exposure of SUL
caused primarily limb contractures and reduced neonatal survival in rats (49).

The immunotoxic effects of neonicotinoids have received enormous interest as their general
use has increased rapidly worldwide, and some of the principal findings in this regard are summa-
rized below. Duzguner & Erdogan (50) reported in rats that exposure to 10 uM IMI upregulated
mRNA transcription of the inflammatory cytokines tumor necrosis factor-oc (INF-cx), IL-6, and
IL-1$3 2.5-5.2-fold in both the brain and the liver. Similarly, a rat study by the same group reported
that after exposure to IMI (1 mg/kg b.w.) for 30 days, chronic inflammation was observed with an
increase in proinflammatory cytokines such as TNF-o, IL-1f, IL-6, IL-12, and interferon-y in
the liver and brain, indicating IMI induced proinflammatory cytokine production in the liver and
central nervous system of nontarget organisms (51). When IMI (2.5, 5, and 10 mg/kg b.w.) was
administered to mice over 28 days, a high dose of IMI specifically suppressed the cell-mediated
immune response, including decreasing the response of delayed-type hypersensitivity and decreas-
ing the stimulation index of T lymphocytes to phytohemagglutinin. These results suggest that
IMI has immunosuppressive effects at doses > 5 mg/kg b.w., and long-term IMI-exposure could be
detrimental to the immune system (52). Gawade etal. (53) reported that IMI (10, 30, and 90 mg/kg
b.w.) caused age-dependent adverse effects on the developing immunity of canine pups, which led
to a compromised immune system when the pups were exposed to IMI in utero through dams,
followed by exposure through lactation through weaning and subsequently by oral administration
to young animals until puberty. Low doses (about 8.8 mg/kg b.w.) and high-exposure doses of
IMI (about 53.4 mg/kg b.w.) have been shown to depress the T cell immune response and cellular
immune response in adult partridges, respectively (54, 55). Mohany et al. (56) reported signifi-
cant increases in the total leukocyte count, total immunoglobulins (Igs) (especially IgGs), and the
hemagglutination of antibodies, as well as significant decreases in phagocytic activity, chemokine
expression, and chemotaxis, after rats were subjected to 28 days of IMI exposure (0.21 mg/kg b.w.).
Immunotoxicity has also been observed in TMX-treated animals. When mice were administered
with TMX (43.5 and 87.1 mg/kg b.w.) for 28 days, they had hemosiderosis or extramedullary
hematopoiesis along with mild congestion and depletion of lymphocytes in the spleen in both
dosage groups. Significant dose-dependent decreases in the total leukocyte count and lymphocyte
count were also noted (57). Similarly, in a study to evaluate the immunotoxicological potential of
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ACE (27.5, 55, and 110 mg/kg b.w.) for 90 days in rats, administration of ACE was shown to sig-
nificantly decrease the stimulation index of lymphocyte proliferation to B cell mitogen. Moreover,
when rats were treated with 110 mg/kg of ACE, the nitrite production of macrophages, which is
important for efficient inflammatory macrophage response, was suppressed (58).

Multiorgan toxicity induced by neonicotinoids has also been reported. For example, mice
exposed to IMI (10 mg/kg b.w.) over 28 days displayed prominent histopathological alterations
in the spleen and liver (52). In a 90-day oral toxicity study of IMI (5, 10, and 20 mg/kg b.w.) in
female rats, a dose of 20 mg/kg b.w. led to significant increases in the relative body weights of
liver, kidney, and adrenal glands and resulted in mild pathological changes in the brain, liver, and
kidneys (59). When laying chickens were exposed to IMI (139 mg/kg b.w.), the activity of liver
function enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and
alkaline phosphatase (ALP) significantly increased followed by histopathological changes in the
liver and kidneys (60). IMI-exposed rats had increased ALT, AST, and ALP activities and severe
histopathological lesions in the liver, spleen, and thymus (56). When rats were given 80 mg/kg
b.w. IMI daily by oral gavage for 28 days, significant histological changes such as swollen nuclei,
varied size and shape of mitochondria, disrupted chromatin, and rough endoplasmic reticulum
in the liver were noted (61). After rats were exposed to IMI (9 and 45 mg/kg b.w. for 4 weeks),
significant increases in the levels of liver AST and plasma levels of AST, ALT, and ALP were
observed (62). After oral administration of IMI (10 and 20 mg/kg b.w.) to rats for 60 days, the
rats administered with the higher dosage showed marked dilation and congestion of the central
vein, and a degeneration of hepatocytes was also observed (63). Yardimci et al. (39) recently
documented that after exposure to 170 mg/kg b.w. IMI for 12 and 24 h, male and female rats
displayed prooxidative and neurotoxic effects, predominantly in the kidneys of male rats after
24 h of exposure. Their results indicate that sex-, tissue-, and duration-specific effects of IMI in
relation to its toxicity should be considered. In quail, only 0.62 mg/kg b.w. IMI lead to notable
liver histological changes (64). Yeh et al. (32) reported that in humans, the ingestion of alcohol
with an IMI-containing insecticide led to acute multiple organ failure, including oliguric kidney
injury and acute lung injury within hours of ingestion.

Although TMX is not mutagenic either in vitro or in vivo, it has been reported to lead to an
increased incidence of liver tumors in mice fed concentrations in the range of 500 to 2,500 mg/kg
b.w. (TMX/diet) for 18 months (65). Similarly, THI poisoning can result in multiorgan toxicities
including acute kidney injury and has actually caused fatal human toxicity when ingested heavily
(31). In fish, NIT exposure induced DNA damage in zebrafish livers (66).

Oxidative stress, reactive oxygen species (ROS), and reactive nitrogen species (RNS) may play
important roles in the induction of neonicotinoid-induced damage to lipids, DNA, and proteins
in vertebrates and invertebrates. For this reason, the influence of oxidative stress, ROS, and
RIS on neonicotinoid-associated neurotoxicity, immunotoxicity, hepatotoxicity, nephrotoxicity,
and reproductive cytotoxic effects has been investigated (33, 50, 51, 56, 66-68). To date, several
reviews on neonicotinoids have been published, including those that have focused on the insect
resistance of neonicotinoids (8), the risk of neonicotinoids to ecosystem function and service (69),
the impact of neonicotinoids on bees (70), the effects of neonicotinoids on vertebrate wildlife (71),
enzyme-linked immunosorbent assays for the analyses of neonicotinoids (72), and the ecotoxicity of
neonicotinoids to bees (73). In recent years, the toxicity and toxic mechanisms of neonicotinoids
on nontarget organisms have attracted more and more attention, and some articles about the
important role of oxidative stress in the various toxicities of neonicotinoids have been published.
Therefore, it is prudent at this point to review the recent progress in research focused on the toxic
mechanism of neonicotinoids. The scope of this review is primarily intended to summarize the
evidence associated with neonicotinoid-induced toxicity and oxidative stress. The studies related
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to toxicity of neonicotinoids and oxidative stress in in vivo and in vitro conditions, respectively, are
summarized in Table 1 and 2. The metabolic pathways, metabolizing enzymes, influential factors
in the metabolism of neonicotinoids, and toxicity of neonicotinoid metabolites are also reviewed.
In the future, as the application of neonicotinoids continues on an upward trend worldwide,
neonicotinoids may pose a threat to more than just insects, and their toxicities to vertebrates
and invertebrates should be investigated further. This review collates evidence reported over
the past 10 years, which indicates that levels of oxidative stress, ROS or RNS generation, and
antioxidase might correlate closely with various types of toxicity associated with neonicotinoids.
Furthermore, information on the metabolism of neonicotinoids is summarized with a view to
probing effective strategies for the application of antioxidants to inhibit neonicotinoid-induced
toxicity.

OXIDATIVE STRESS AND TOXICITY

Generation of Oxidative Stress, Reactive Oxygen Species,
and Reactive Nitrogen Species

Oxidative stress occurs as a result of inadequate antioxidant defense or overproduction of free
radicals and is initiated by ROS such as the hydroxyl radical (HO®), superoxide anion (O,°"), and
perhydroxyl radical and by RNS including nitric oxide (NO) and peroxynitrite (74-76).

Neonicotinoids may induce oxidative stress leading to ROS or RNS generation and related
toxic effects (51, 67, 68). Recently, Ge et al. (68) reported that high concentrations of IMI (1.25
and 5 mg/L) could induce significant ROS production in zebrafish. Furthermore, even after
7 days of exposure, IMI (5 mg/L) could also lead to significant ROS generation. Similarly, exposure
to NIT increased ROS production with increasing concentrations in the liver of zebrafish (66).
Another study to evaluate the effects of IMI on antioxidant defense systems and digestive systems
in earthworms investigated the ROS levels at different doses of IMI. The results indicated that with
IMI doses of 2 and 4 mg/kg for 14 days, ROS generation was elevated significantly over the entire
exposure period; at 0.66 mg/kg exposure, significant increases of ROS were recorded from day 1
to 7, whereas the low dose of 0.2 mg/kg did not induce ROS production. These results suggest
that the balance of the activity of the antioxidant enzymes and the ROS levels was interrupted
when the concentration of IMI was above 0.66 mg/kg, and the IMI influence led to dose- and
time-dependent ROS generation (77).

Neonicotinoids may present their dangerous effects on animals in the form of NO generation
(48). When rats were injected intravenously with 0.26 mg/kg b.w. IMI, NO levels in the plasma,
brain, and liver increased significantly. Interestingly, the transcription of induced nitric oxide
synthase (iINOS) in the liver increased significantly (6.54-fold), whereas both neuronal nitric
oxide synthase (nNOS) and iNOS transcriptions were found to be downregulated in the brain
(3.55-fold and 6.34-fold, respectively), suggesting that the elevated NO concentration in the
brain might be due to the induction of endothelial nitric oxide synthase (eNOS) transcription
(50). However, this assumption needed further study. When IMI was orally administered to rats
by gavage for 30 days, IMI exposure caused oxidative stress and a significant increase in NO
production in the brain and liver. This further study confirmed that IMI induced the mRNA
transcription of the three isoforms of nitric oxide synthases (INOS, eNOS, and nNOS) in the
brain and two isoforms (iNOS and eNOS) in the liver (51). Zhang et al. (48) postulated that the
toxic effects induced by ACE on the testis of male mice may be mediated by increasing oxidative
stress, such as NO generation. Aydin (78) reported that THI increased the total NOx (NO,
and NOs) levels in polymorphonuclear leukocytes significantly when rats were exposed to THI.
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Table 2

In vitro neonicotinoid-related oxidative stress studies

Length of
Cell type incubation Dose Objective Results and conclusion References
CHOxg; cells 24 and 48 IMI (0.97- 500 M) Examine the IMI presented potential 93
h cytotoxicity and genotoxic effects on
genotoxicity of CHOk; cells with
abamectin, significant inhibition of
chlorfenapyr, and the activity of GST,
IMI GPx, and GR.
Bovine 2,24, THI (30, 60, 120, 240, Assess the potential THI decreased and 84
peripheral and/or and 480 pg/mL) genotoxicity of THI increased the
lymphocytes 48 h expression of bovine
GSTM3 at the lowest
and highest dose,
respectively.
Supernatant 10 min IMI (2, 5, 10, 20 and Evaluate the effect of IMI inhibited the 37
fraction from 40 mM) IMI on the activity of activity of 8-ALA-D,
the Antioxidants: hepatic 5-ALA-D and and GSH had the best
homogenates dithiothreitol (3 mM), the protective effect antioxidant effect
of liver from ZnCl; (100 mM), of some antioxidants against 5-ALA-D
male Wistar resveratrol (0.001, 0.1, 1, inhibition caused by
rats 5, 10, 100, and IMLI, followed by
1,000 uM), curcumin curcumin and
(0.001, 0.1, 1, 5, 10, 100 resveratrol.
and 1,000 uM), ascorbic
acid (10, 100, and
1,000 uM), or
GSH (10, 100, and
1,000 M)
Human T 24h IMI (0.2, 2, and 20 uM) Assess the genotoxicity | No significant increase 86
lymphocytes of IMI in relation to of intracellular ROS
(Jurkat cell formulation, was noted because of
line) metabolic activation, an insufficient

and exposure level

sensitivity of the ROS
assay at the tested
concentrations of IMI.

Abbreviations: 5-ALA-D, &-aminolevulinate dehydratase; CHO¥, Chinese hamster ovary; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione
S-transferase; GSH, glutathione; GSTM3, glutathione S-transferase M3; IMI, imidacloprid; ROS, reactive oxygen species; THI, thiacloprid.

Furthermore, studies suggest that the progress of NO generation induced by neonicotinoids
might show organ-dependent effects (39, 50).

The results of these studies indicate that the generation of ROS and RNS play important roles

in the oxidative stress and related toxicities induced by neonicotinoids. Currently, it is thought

that the oxidative stress induced by neonicotinoids may be dose dependent. Future research should
identify what factors affect this dose-dependent behavior and quantify the dose threshold for all
neonicotinoids for future risk assessment analyses.

Neonicotinoid-Mediated Oxidative Damage

Oxidative stress induced by neonicotinoids could increase the antioxidant defense system and lead
to the damage of cellular macromolecules, such as DNA, lipids, and proteins (79). Following
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MDA:
malondialdehyde

TBARS:
thiobarbituric acid
reacting substances

HPA: hypothalamic-
pituitary-adrenal

oxidative stress, cell death can occur via apoptotic or necrotic mechanisms. During this process,
DNA damage, enhanced lipid peroxidation, and protein damage may occur (Tables 1 and 2). A
schematic representation of neonicotinoid-induced damage to DNA, lipids, and proteins is shown
in Figure 2.

Damage to lipids. The significantincrease of lipid peroxidation can be attributed to the oxidative
damage of cell membrane lipids. Lipid peroxidation can be measured by monitoring the changes
in malondialdehyde (MDA) and thiobarbituric acid reacting substances (T BARS). As one part of
TBARS, MDA is the most abundant individual aldehyde resulting from lipid peroxidation, and
its level is a marker of lipid oxidation (41, 80).

Neonicotinoids can increase lipid peroxidation significantly. In a study of the acute neuro- and
hepatotoxic effects of IMI on rats, IMI induced significant increases in the MDA content in the
liver and plasma, suggesting that IMI caused oxidative damage in the liver in nontarget organisms
(50). EI-Gendy et al. (67) reported that the oral administration of 15 mg/kg b.w. of IMI in male
mice could elevate MDA levels significantly. Kapoor et al. (81, 82) revealed that in female rats,
only 20 mg/kg b.w./day of IMI produced a significant increase in the MDA content of the liver,
kidneys, and ovaries in a 90-day study of IMI dosages of 5, 10, and 20 mg/kg b.w./day, suggesting
there might be a dose threshold for IMI in leading to oxidative stress in vivo. Lonare et al. (36,
41) studied the effects of IMI on the neurotoxicity and male reproductive processes of rats and
found that MDA production increased significantly when rats received orally administered IMI.
In an evaluation of the effects of IMI on the reproductive system of developing male rats, the
MDA content in the testis of rats increased significantly in all IMI-treated groups compared to
the control group (42). Yardimci et al. (39) observed high oxidative toxicity and a significant
increase of TBARS in the kidneys of male rats after IMI exposure. In research into IMI-induced
immunotoxicity, MDA production increased significantly when rats were orally administered with
IMI (56). IMI showed toxic effects on the hypothalamic-pituitary-adrenal (HPA) axis combined
with a significant increase in the MDA level when 40 mg/kg b.w. of IMI was administered to rats
daily by intragastric intubation for 28 days (83).

Researchers also investigated lipid peroxidation when treating earthworms, fish, and birds with
neonicotinoids. The content of MDA increased significantly when earthworms were treated with
IMI, whereas exposure to low doses did not result in similar MDA increases (77). A recent study
showed that high concentrations of IMI in zebrafish markedly increased the MDA content (68).
However, in a study to test the lethal and sublethal effects of treated seed ingestion by the red-
legged partridge, both doses of IMI did not result in significant changes in TBARS levels in red
blood cells, which may indicate that IMI toxicity may not only be dose dependent but also may
vary between types of species (54).

Recently, Yan et al. (66) documented that NIT increased MDA content in zebrafish livers.
Similarly, THI exposure in rats increased TBARS levels significantly in the spleen, thymus, bone
marrow, polymorphonuclear leukocytes, and plasma (78). To determine the deleterious effects of
CLO on the reproductive functions of developing male rats for 90 days, researchers quantified
the concentration of TBARS in the testis samples and found that administration of CLO up to
32 mg/kg b.w. caused numerical but not statistically significant increases in the TBARS levels
compared to the levels of control rats (45). However, another publication reported that CLO
increased the TBARS levels of testicular tissue significantly at all doses when rats were exposed
to low doses of CLO (44). The reason for the inconsistent results between the similar studies still
remains unclear.

Therefore, it can be concluded that lipid peroxidation is a common phenomenon in the ox-
idative stress-related toxicity of neonicotinoids in vertebrates and invertebrates. Furthermore,
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Figure 2

Oxidative stress—-mediated mode of action proposed for neonicotinoids. Increased generation of ROS and
RNS, as well as an alteration in the antioxidant status, may induce lipid, protein, and DNA oxidation, leading
to various toxicities and apoptosis via ERK, p38, AKT, Ca’*, and CAR/PXR pathways. Abbreviations:
5-ALA-D, &-aminolevulinate dehydratase; AKT, protein kinase B; AOX, molybdo-flavoenzyme aldehyde
oxidase; CAR, constitutive androstane receptor; CAT, catalase; CYP450, cytochrome P450; eNOS,
endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; GPx, glutathione peroxidase;
GR, glutathione reductase; GSH, glutathione; GST, glutathione S-transferase; iNOS, induced nitric oxide
synthase; IP3, inositol 1,4,5-trisphosphate; IRS-1, insulin receptor substrate-1; MDA, malondialdehyde;
MEK, MAPK/ERK; nNOS, neuronal nitric oxide synthase; PI3K, phosphoinositide 3-kinase; PIP3,
phosphatidylinositol-3,4,5-triphosphate; PKC, protein kinase C; PTEN, phosphatase and tension homolog;
PXR, pregnane X receptor; RNS, reactive nitrogen species; ROS, reactive oxygen species; S6K, ribosomal
S6 kinase; SHIP2, SH2-containing inositol phosphatase 2; SOD, superoxide dismutase; TBARS,
thiobarbituric acid reacting substances.
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PC: protein carbonyl

lipid peroxidation may be dose dependent, and a dose threshold may exist during neonicotinoid-
induced oxidative stress. These observations should be taken into account when considering the
disparities in MDA levels induced by neonicotinoids at different doses, in different tissues, and in
distinct species.

Damage to DNA. The threat of oxidative damage is particularly significant to DNA. DNA
damage can be measured by the alkaline comet assay or the cytokinesis-block micronucleus assay
(34, 68, 84, 85). Furthermore, immunohistoplanimetry has also been used to analyze the frequency
of DNA-fragmented germ cells in testis (47).

Costa et al. (86) revealed that high concentrations of IMI (20 pM) significantly increased the
comet score and the frequency of micronuclei tested in human peripheral blood lymphocytes,
whereas low doses of IMI (0.2 and 2 uM) did not. In a study to evaluate the negative effects of
IMI on nontarget animals using zebrafish as the model animal, DNA damage and oxidative stress
were shown to be dose and time dependent (68). Exposure of earthworms to THI increased DNA
damage significantly according to the calculated comet assay olive tail moments. These results
indicate that THI could be harmful to earthworms and that DNA damage could be used as one of
the molecular biomarkers in the assessment of the risk of THI to the soil ecosystem environment
(34). When researchers investigated DNA damage in bovine peripheral lymphocytes exposed to
30-480 pg/mL THI for 2, 24, and/or 48 h of incubation, THI concentrations of 120-480 pg/mL
increased the frequency of DNA damage significantly, and THI failed to produce micronuclei (84).
Kocaman etal. (85) documented that THI (75, 150, and 300 pg/mL) induced a significant increase
in the cytokinesis-block micronucleus in human peripheral blood lymphocytes atall concentrations
for 24 h; it also did so at 75 and 150 pg/mL for 48-h treatment periods in the absence of the Sy
mix and at all concentrations in the presence of the Sy mix, indicating that THI, its metabolite
(or metabolites), or both may act on DNA with the production of ROS that may cause DNA
single-strand breaks. A study investigating the deleterious effects of CLO on the reproductive
functions related to oxidative stress in mature male quails found that CLO administered at a dose
of 50 mg/kg b.w. significantly increased the fragmented DNA in the seminiferous tubules with the
increase of vacuolization in the seminiferous epithelia and decrease of the number of germ cells
in a dose-dependent manner, suggesting that CLO might inhibit or delay embryo development
(growth retardation) by the fragmentation of sperm DNA through oxidative stress (47). Other
researchers investigating DNA damage in zebrafish found that NIT concentration had an obvious
dose-response relationship with DNA damage and oxidative stress in the exposed zebrafish livers,
which suggests that oxidative damage caused by NI'T may be one of the underlining mechanisms
of NIT-induced cell injury and DNA damage (66).

Like lipid peroxidation, damage to DNA during oxidative stress has also received much at-
tention in terms of neonicotinoid toxicity effects. Additionally, a dose-dependent relationship
between DNA damage and neonicotinoid concentration seems to be a common trend.

Damage to proteins. In addition to lipids and DNA, proteins are also major potential targets for
oxidative damage, which results in the formation of protein carbonyls (PCs) (87). PCs represent
a marker of global protein oxidation, as they are generated by multiple different ROS in blood,
tissues, and cells (88). Although oxidative stress induced by neonicotinoids has been investigated,
protein peroxidation has rarely been studied. One exception is a study conducted into the effects
of ACE on the status of oxidative stress biomarkers, in which protein peroxidation products were
reported when freshwater bivalve mussels Anodonta cygnea were treated with ACE (89).

Wang et al.



Alterations in antioxidant status. Enzymatic antioxidant defense systems play a critical role
in protecting cells from ROS such as O,°~, HO®, and hydrogen peroxide (90). Superoxide dis-
mutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and
glutathione S-transferase (GST) are the primary antioxidant enzymes, and they serve as good
redox biomarkers, as they are the first-line indicators of the antioxidant state through oxida-
tion/reduction processes (90). As the most abundant intracellular antioxidant, glutathione (GSH)
is involved in the protection of cells against oxidative damage and in various detoxification mech-
anisms (91). GSH also acts as a substrate and cosubstrate in many essential enzymatic reactions
involving GPx, GR, and GST, and a decrease in the GSH level usually impairs cells’ response to
oxidants (78).

The alterations of the activities of antioxidant enzymes in oxidative stress are implicated as a
mechanism of neonicotinoid neurotoxicity in vertebrates. After researchers exposed rats to IMI
for 28 days, they observed meningeal congestion and degeneration changes in Purkinje cells in rat
cerebellum, along with significant decreases in brain GSH levels and SOD activities at high doses
of IMI. Furthermore, CAT and GPx activities at both doses of IMI were evident (36). IMI had a
toxic effect on the HPA axis, the GST activity in hypothalamic tissues was perturbed, and pituitary
SOD and CAT activities increased significantly in IMI-exposed rats. Contrarily, a decrease in the
hypothalamic CAT activity was observed (83). Duzguner & Erdogan (50) reported that exposure to
IMI caused inflammation in the brain, and that GPx activity was significantly elevated, indicating
that IMI caused oxidative stress and inflammation in the central nervous system in nontarget
organisms such as rats. Significant changes in the antioxidant enzyme activities were also evident
when rats were exposed to IMI. CAT, SOD, and GPx were altered following IMI exposure,
combined with chronic inflammation in the brain. Notably, significantly depleted antioxidant
brain-GSH levels were detected (51).

Antioxidant enzymes are regarded as important mediators in the immunotoxicity reaction
induced by the presence of neonicotinoids in vertebrates. Birds may still be at a high risk of
poisoning by neonicotinoids through direct sources of exposure to coated seeds in autumn and
winter. In male partridges, a high-exposure dose of IMI induced decreases in the cellular immune
response, GSH levels, and activities of GPx in red blood cells (54). Furthermore, even a low dose
of IMI could increase blood SOD activity and depress the T cell immune response (55). A study
by Aydin (78) revealed that THI exposure in rats resulted in a significant decrease in CAT, GPx,
and GSH levels in the lymphoid organs.

Antioxidant enzymes play a critical role in combating the reproductive toxicity of neonicoti-
noids in vertebrates. A study investigating the toxic effects of IMI on the reproductive system in
male rats found that IMI treatments resulted in significant reproductive toxicity and a significant
decrease in the GSH level, along with decreased activities of CAT, SOD, GPx, and GST (41). In
male rats administered with varying doses of IMI, the levels of testosterone and GSH decreased
significantly in the highest dose group (33). Also, CLO was detrimental to the reproductive organ
system of male rats and resulted in a significant decrease in the level of GSH, suggesting CLO, even
atlow doses, could lead to an antioxidant imbalance in the reproductive organ system in vivo (45).

The antioxidant system plays a protective role in preventing liver and kidney damage when
animals are administered with neonicotinoids. When rats were administered with IMI, GSH
concentration decreased significantly, and significant histological changesin the liver were revealed
(61). The total GSH level decreased in the livers of male rats after 12 h of IMI exposure, but total
GSH increased in the kidneys of male rats after 24 h of exposure, and the GST activity in female
rats increased after 24 h of exposure (39). EI-Gendy et al. (67) revealed that the oral administration
of IMI to rats elevated the activities of antioxidant enzymes in the liver, including CAT, SOD,
GPx and GST, significantly and decreased the level of GSH significantly. In zebrafish exposed to
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various IMI doses, IMI led to DNA damage in the liver in a dose- and time-dependent manner.
Noticeable increases in SOD and GST activities during early exposure were observed, followed
by decreases in their activities later, indicating that IMI can induce oxidative stress and DNA
damage in zebrafish livers (68). Yan et al. (66) documented that when zebrafish were exposed to
NIT, NIT induced DNA damage in the exposed zebrafish livers and dramatically inhibited SOD
and CAT activities at most exposure times, with significantly increased GST activities observed
for all treatment groups.

Interestingly, antioxidant enzymes show a threshold effect when animals are treated with neon-
icotinoids. After female rats were exposed to IMI, dosages of 5 and 10 mg/kg b.w./day did not
produce changes in antioxidant enzyme levels in the liver, brain, kidney, or ovaries, whereas the
highest dose of 20 mg/kg b.w./day induced significant changes in the SOD, CAT, GPx, and GSH
levels in the liver and ovaries. These results support the existence of a threshold effect with regard
to antioxidant enzymes in combating the oxidative stress induced by IMI (81, 82).

A misbalance in the enzymatic antioxidant defense systems was noted when researchers ad-
ministered neonicotinoids to invertebrate animals. An investigation into the effects of IMI on the
antioxidant defense and digestive systems in the earthworm found that doses of 0.66 and 2 mg/kg
increased SOD activity significantly, whereas the highest dose of 4 mg/kg inhibited SOD activity
markedly with prolonged exposure, and IMI dosages of between 0.2 and 4 mg/kg increased the
activities of CAT and guaiacol peroxidase irregularly (77). Sublethal toxic doses of IMI (21.84 and
61.15 pg/snail) led to significant increases in the CAT and GST activities of treated snails, along
with decreased acetylcholinesterase (AChE) activity (92). IMI also increased GST activity when
administered through 5 pg/g dry food in juvenile Porcellio scaber (commonly known as woodlouse)
and decreased GST activity significantly at 25 pg/g dry food in adults (9). Another recent study
showed that the activities of GST, CAT, and SOD in earthworms were inhibited following ex-
posure to THI (34). ACE also altered the status of oxidative stress biomarkers in A. cygneas, as
attested to by the decrease in SOD activity and the GSH content in the gills and especially in the
digestive gland (89).

A recent in vitro study suggested that antioxidant enzymes are involved in the genotoxicity of
neonicotinoids. Exposure to 0.97-500 uM IMI presented potential genotoxic effects on Chinese
hamster ovary (CHOk;) cells, with significant inhibition of GST, GPx, and GR activity (93).
Sauer et al. (37) revealed that in rat liver tissues, IMI inhibited the activity of d-aminolevulinate
dehydratase (5-ALA-D), and GSH had the best antioxidant effect against IMI-induced §-ALA-
D inhibition, followed by curcumin (CUR) and resveratrol. Recently, an in vitro study found
that THI exposure to bovine peripheral lymphocytes increased the frequency of DNA damage,
led to unstable chromosome aberrations, and decreased the expression of bovine glutathione S-
transferase M3 (GSTM3), even at low dosage levels. Furthermore, mRNA expression of GSTM3
increased at the higher concentrations of THI (84).

A misbalance of antioxidant status can be involved in the toxicities induced by neonicotinoids
in vivo and in vitro. Furthermore, studies indicate that antioxidant enzymes as redox biomarkers
are sensitive and may be considered as good biomarkers of the toxic effects of neonicotinoids.

Stress-Mediated Biological Response

Oxidative stress plays important roles in many biological responses and cell signaling pathways.
Thus, significant changes in gene expression and the stimulation or inhibition of signal transduc-
tion usually results in many toxicological effects. The role of neonicotinoid-mediated oxidative
stress in the induction of apoptosis and the respective cell signaling pathways has been studied

widely in vivo (Table 1).
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Apoptosis and cell signaling. ROS production results in oxidative stress, which can lead to
apoptosis (94). Oxidative stress usually stimulates various cell signaling pathways involved in cell
apoptosis (95). Apoptosis in cells can be detected by terminal deoxynucleotidyl transferase dUTP
nick-end labeling staining (96).

Investigations by Bal et al. (33, 42) revealed that when adult male rats were treated with
IMI by oral gavage over a three-month period, apoptosis, along with oxidative stress, increased
significantly in germ cells of the seminiferous tubules in the highest dose group when compared
to the controls. This indicates that the adverse effect of IMI on the reproduction system in male
rats appears to be due to the induction of oxidative stress in testis.

As nuclear receptors, the constitutive androstane receptors (CARs) and the pregnane X recep-
tors (PXRs) are involved in the regulation of phase I-III metabolic enzymes responsible for the
clearance of xenobiotics (97, 98). Furthermore, activation of the CAR/PXR signaling pathway has
broad functions that include controlling liver regeneration and proliferation, inducing multiple
detoxification enzymes, and regulating some antioxidant defenses, such as several GST mem-
bers in vertebrates (99, 100). Additionally, oxidative stress could also induce CAR activity (99).
LeBaron etal. (101) documented that the carcinogenic potential of SUL in rodents might be due
to CAR/PXR nuclear receptor activation with subsequent hepatocellular proliferation. Consider-
ing that oxidative stress induced by neonicotinoids occurred in the liver, these authors suggested
that a close relationship exists between the oxidative stress and liver carcinogenesis induced by
neonicotinoids.

The p38 mitogen-activated protein kinase (MAPK) is phosphorylated in response to oxidative
stress, which could block proliferation or promote apoptosis (102). When adult Kunming male
mice were administered with ACE for 35 days, the p38 MAPK signaling pathway was activated
in the testes of mice by increasing the concentration of the phospho-p38 protein, suggesting
oxidative stress might be involved in the detrimental effects of ACE on testicular function (48).

Extracellular signal-regulated kinase (ERK p44/p42), belonging to the MAPK family, responds
to a diverse array of extracellular stimuli, including neurotransmitters, hormones, growth factors,
and several types of stress such as oxidative stress (103-105). Only 100 uM IMI and the metabolite
of IMI, desnitro-IMI (DNIMI, 1 uM), induced significant induction of phospho-ERK (p44/p42)
when mouse neuroblastoma N1E-115 cells were incubated with IMI (0.1-1,000 uM) and DNIMI
(1 uM) for 30 min (105). Furthermore, DNIMI-induced ERK (p44/p42) activation in N1E-115
cells was not inhibited by the protein kinase A—selective inhibitor (2 M) but was inhibited by the
inhibitors of protein kinase C (PKC) and MAPK/ERK (MEK), respectively, indicating PKC and
MEK might be involved in the activation of the ERK signaling pathway (105).

Ca’* plays a crucial role in numerous cellular processes, Ca?* cell homeostasis being one of
many essential functions (106). Cellular proliferation, apoptotic processes, induction of oxidative
stress, and physiological functions such as signal transduction are all part of the complex Ca?*
homeostasis process (107). A primary neurotoxic action of neonicotinoids is the alteration of
AChE activity, resulting in overstimulation of nAChRs, which in turn leads to cholinergic effects
and neurotransmission alteration (83). The Ca?* influx that occurs owing to nAChR activation is
subsequently amplified by the recruitment of intracellular Ca** stores (108). Ca?* excitotoxicity
could lead to the release of ROS (109). In IMI-exposed rats, plasma Ca’* levels were 7.72 mg/dL
on average in the controls, compared to 8.34 mg/dL in the IMI-exposed rats (50). Similarly, in a
study to investigate Ca’* mobilization and oxidative stress after chronic exposure to IMI in rats,
an obvious increase in the Ca** level (8.62 mg/dL) was noted when the rats were treated with
IMI (1 mg/kg b.w.) compared to the controls (8.19 mg/dL) (51). A study into the potential role of
oxidative stress in the numerous biological and pathological processes induced by IMI in rats found
that IMI caused significant elevation of the Ca?* levels in hypothalamic and pituitary tissues but not

www.annualyeviews.org o Mechanism of Neonicotinoid Toxicity

CAR: constitutive
androstane receptor

PXR: pregnane X
receptor

MAPK:
mitogen-activated
protein kinase

ERK: extracellular
signal-regulated kinase

DNIMI:

desnitro-IMI

PKC: protein

kinase C

MEK:
mitogen-activated
protein
kinase/extracellular
signal-regulated kinase

491



NAC:
N-acetyl-L-cysteine

AKT: protein
kinase B

S6K: ribosomal S6
kinase

492

in adrenal tissues. This indicates that IMI acted on the central nervous system as an agonist with the
nAChRs, causing significant elevation of the Ca’* levels, and that the toxic effects of IMI present
a tissue-specific response (83). DNIMI, an IMI metabolite, could also activate nicotinic receptors
via an intracellular Ca?*-dependent mechanism (105). Furthermore, a rise in intracellular Ca’*
may impair the activation of insulin receptor substrate-1 (110-112). Based on the fact that IMI
could increase oxidative stress and intracellular Ca?*, oxidative stress induced by neonicotinoids
might be involved in the control of Ca’* homeostasis. However, a known thiolic antioxidant,
N-acetyl-L-cysteine (NAC), showed a partial therapeutic potency against IMI toxicity, although
it could not decrease the hypothalamic and pituitary Ca’* content significantly, suggesting that
NAC could not decrease intracellular Ca’* concentrations by decreasing oxidative stress (83).

Protein kinase B (AKT) is one of the major regulators of insulin signaling, and ribosomal S6
kinase (S6K) is the downstream target of AK'T and is a feedback inhibitor of insulin signaling (113,
114). The AKT signal pathway can be depressed by oxidative stress (115). Kim etal. (111) reported
on adipocytes (3T3-L1), hepatocytes (HepG2), and myotubes (C2C12) exposed to IMI (10 and
20 uM) for 4-6 days followed by treatment with insulin. The highest dosage of IMI reduced
the glucose uptake stimulated by insulin in all the cell culture models, and treatment with IMI
reduced the phosphorylation of AK'T and S6K. These results indicate that IMI could induce insulin
resistance by affecting the insulin signaling cascade, particularly upstream of AK'T, in adipocytes,
the liver, and muscle. Considering this, IMI exposure may contribute to the development of type 2
diabetes. Furthermore, these authors hypothesized that phosphoinositide 3-kinase, phosphatase
and tension homolog, or SH2-containing inositol phosphatase 2 and phosphatidylinositol-3,4,5-
triphosphate were involved in mediating the AK'T signal pathway (111).

The signaling pathways, including the ERK, p38, AKT, Ca**, and CAR/PXR pathways, have
been shown to be involved in the toxicity and apoptosis induced by neonicotinoids. These path-
ways were suggested to be closely correlated with the oxidative stress induced by neonicotinoids,
indicating that more attention needs to be given to the signaling pathways in terms of research
into the oxidative stress and toxicity induced by neonicotinoids.

Prevention of Neonicotinoid-Mediated Oxidative Stress

Vitamin C may protect against the neonicotinoid-induced oxidative stress (61, 67). As an important
antioxidant, vitamin C can directly and rapidly scavenge free radicals, inhibit their formation, or
both (116). The protective effect of vitamin C (200 mg/kg b.w.) might ameliorate oxidative damage
induced by IMI (14.976 mg/kg b.w.) by decreasing MDA levels and altering the antioxidant defense
system in mice liver. Furthermore, the protective effect of pretreatment with vitamin C against
IMI-induced oxidative stress in mice liver is better than that of posttreatment (Figure 3) (67).
Cotreatment with vitamin C (10 mg/kg b.w. orally) protected against the liver damage induced by
IMI (80 mg/kg b.w. orally for 28 days) and increased GSH concentration significantly (61). Another
study showed that vitamin C (0.08 mg/kg b.w.) could restore the histological changes in the liver
and testis of quail caused by IMI exposure (0.62 mg/kg b.w.) (64). However, vitamin C treatment
at 10, 100, and 1,000 M was not able to protect against IMI-induced neurotoxicity in rats, as it
could not restore the hepatic 5-ALA-D inhibition caused by IMI (20 mM) and therefore could
not decrease the accumulation of the neurotoxic substrate (§-aminolevulinic acid) of the enzyme
5-ALA-D (37). Low concentrations of resveratrol, a phytoalexin found in grapes and in foods such
as peanuts, blueberries, and red wines, were effective at partially restoring enzyme activity and
protecting cells from the oxidative effects of pesticides (37, 117, 118). In a study conducted by
Sauer etal. 37), resveratrol (0.1, 1, 5, and 10 pM) restored the §-ALA-D activity inhibited by IMI.
CURis also an antioxidant agent that can be isolated from ground rhizomes of Curcurma longa Linn.
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Figure 3

The preventive effects of different compounds including antioxidants and free-radical scavengers on
neonicotinoid-induced oxidative stress. Use of different antioxidants such as vitamin C, vitamin E,
resveratrol, CUR, GSH, TQ, and NAC significantly decreased MDA levels and improved the total
antioxidant status, thus leading to the prevention of apoptosis and combating toxicity induced by
neonicotinoids. Additionally, NAC significantly increased or decreased CAT activity in different tissues.
Vitamin C could decrease MDA content and increase the reduction of GSH concentration. Resveratrol and
GSH restored 5-ALA-D activity, whereas vitamin C was not able to restore the inhibition of 5-ALA-D
induced by IMI. CUR and TQ restored the altered activity of the antioxidant system with a decrease in
MDA concentration. Vitamin E decreased MDA and NO concentrations and increased the activity of
antioxidant enzymes. NAC increased the activity of antioxidant enzymes, decreased the MDA levels of the
pituitary and adrenal glands, and decreased the Ca’* level. Abbreviations: 5-ALA-D, -aminolevulinate
dehydratase; AChE, acetylcholinesterase; CAT, catalase; CUR, curcumin; GPx, glutathione peroxidase;
GSH, glutathione; GST, glutathione S-transferase; IMI, imidacloprid; MDA, malondialdehyde; NAC,
N-acetyl-L-cysteine; ROS, reactive oxygen species; SH, thiols content; SOD, superoxide dismutase; TQ,
thymoquinone.

(turmeric) (119). CUR administered with IMI improved spontaneous locomotor activity and pain
threshold values and prevented brain damage in rats, along with restoring the altered activity of
the antioxidant system (36). Furthermore, CUR minimized the IMI-induced reproductive toxicity
and histopathological changes in rat testis and led to significant restoration of ROS generation
and MDA concentration. Moreover, increases of the GSH levels and the activities of CAT, GST,
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SOD, and GPx in the testis were observed following coadministration of CUR in IMI-treated rats
(41). A recent study showed that CUR could protect against IMI-induced neurotoxicity in rats,
as CUR exhibits an antioxidant effect against the inhibition of hepatic 6-ALA-D caused by IMI
and may therefore decrease the accumulation of §-aminolevulinic acid of the enzyme 5-ALA-D
(37). Compared to CUR, GSH (100 and 1,000 M) had better antioxidant potency against the
inhibition of IMI-induced §-ALA-D (37). Thymoquinone (T'Q) is an abundant component of
black seed (Nigella sativa) oil extract and exerts antioxidant and anti-inflammatory properties (120,
121). TQ ameliorated IMI-induced immunotoxicity in rats and enhanced immune efficiency by
decreasing oxidative stress, such as serum MDA levels (56). Zhang et al. (48) documented that
vitamin E significantly protected male reproductive function against the increases of MDA and
NO concentrations in the testes and against decreases in the activity of CAT, GPx, and SOD
induced by the presence of ACE. As a known thiolic antioxidant, NAC could be a precursor for
GSH synthesis as a cysteine supplier and could stimulate cytosolic enzyme activities involved in the
GSH cycle (122). Researchers have reported protective effects of NAC (2 g/L) against oxidative
stress and cholinergic transmission alteration in the HPA axis of male rats following subchronic
exposure of IMI, and NAC could significantly restore the activity of hypothalamic and pituitary
AChE. Additionally, NAC could aid in the restoration of hypothalamic, pituitary, and adrenal
MDA levels and SOD and CAT activities, mainly in the adrenal gland, as well as hypothalamic
and pituitary GST activity and total thiols content (83).

METABOLISM OF NEONICOTINOIDS

Metabolic Pathways

The metabolism of IMI has been documented in animals (35, 123, 124). The main IMI metabolites
identified in mammals are 4-hydroxy-IMI, 5-hydroxy-IMI, 6-hydroxy-IMI (6-hydroxy nicotinic
acid), 6-chloronicotinic acid (6-CNA), 2-imidazolidone, olefin, guanidine (DNIMI), and urea
derivatives (123, 125, 126) (Figure 4). T'wo pathways have been identified by which IMI is metab-
olized by human cytochrome P450 (CYP450) isozymes: One is via imidazolidine hydroxylation
and desaturation to give 5-hydroxyimidacloprid and the olefins, respectively, and the other is
via nitroimine reduction and cleavage to yield the nitrosoimine (IMI-NO), DNIMI, and urea
derivatives (124).

The metabolism of TMX and of CLO are closely related, with CLO serving as a principal
intermediate in a major pathway for TMX in mammals. DIN and CLO differ only in that the
tetrahydrofuranylmethyl moiety replaces the chlorothiazolylmethyl substituent, leading to many
common metabolites and several unique to each compound (127, 128). The metabolic pathway of
DIN is quite complex. DIN could be readily metabolized by N-demethylation, nitro reduction,
tetrahydrofuran hydroxylations, and N-methylene hydroxylation and amine cleavage, indicating
the intermediates during the metabolism process might be active as nicotinic agonists and iNOS
inhibitors (127). CYC s transformed to the oxidation products assigned as isomers of hydroxyl ad-
dition at the 6-, 7-, 10-, or 11-position, and CYC is also metabolized to (nitromethylene)imidazole
(NMI) followed by small amounts of the CYC-diol (OH),-CYC, nitroso-CYC, and amino-CYC

(Figure 5) (11).

Metabolizing Enzymes

Researchers have documented that various enzymes are involved in the metabolism process
of neonicotinoids. One study revealed that IMI was extensively metabolized oxidatively by
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Metabolic pathways of IMI and effects of IMI on the metabolizing enzymes (35, 123-125, 129-132). Abbreviations: 6-CNA,
6-chloronicotinic acid; AOX, molybdo-flavoenzyme aldehyde oxidase; CYP450, cytochrome P450; DNIMI, desnitro-IMI; IMI,
imidacloprid; IMI-NO, nitrosoimine.

cytochromes such as CYP3A4 and CYP2C19, whereas flavin monooxygenase isozymes (FMO1,

FMO3, and FMO5) were not (124). Another study documented that IMI could be metabolized

by human CYP3A4 with NADPH by imidazolidine hydroxylation and dehydrogenation to give

5-hydroxy-IMI and olefins, respectively, and by nitroimine reduction and cleavage to yield the

IMI-NO, DNIMI, and urea derivatives (129). However, human CYP450 isozymes differ in selec-

tivity for IMI imidazolidine oxidation versus nitroimine reduction (124). Further studies showed  paro. flavin
that IMI could be metabolized via aerobic nitroreduction by the molybdo-flavoenzyme aldehyde  monooxygenase
oxidase (AOX) (130, 131). Rabbit liver AOX is capable of reducing IMI to both IMI-NO and 5 y. molybdo-
aminoguanidine metabolite (NNH;). The addition of GSH (10 mM) for 10-min incubations with flavoenzyme aldehyde
the electron donor substrate N-methylnicotinamide almost completely blocks the covalent binding  oxidase

of PHJIMI-NO to the partially purified AOX protein, indicating that rabbit AOX metabolically  NN,:
activates IMI-NO, forming both an irreversible inhibitor and a reactive intermediate that can  aminoguanidine
bind covalently to protein (131). However, the understanding of the mechanism and toxicologi- ~ metabolite

cal relevance of IMI-NO inactivation of AOX is still limited. In vivo studies revealed that when
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AOX-deficient DBA/2 mice were treated intraperitoneally with IMI (10 mg/kg b.w.), metabolism
via CYP oxidation reactions was not appreciably affected, whereas the AOX-generated ni-
trosoguanidine metabolite (NNO) decreased by 30% with tungsten, 56% with hydralazine, and
86% in the AOX-deficient mice. The other IMI nitroreduction metabolite, DNIMI, decreased
by 55%, 65%, and 81% with tungsten, hydralazine, and in the AOX-deficient mice, respectively,
suggesting that the function of CYP oxidation reactions was not dependent on AOX and that AOX
is the most important mouse IMI hepatic nitroreductase in vivo (132). AOX also reduces CLO to
CLO-NNO and CLO-NNH, and reduces DIN to DIN-NNO and DIN-NNH, but does not
reduce TMX to TMX-NNO or TMX-NNH, (133).

The metabolism of TMX, CLO, and DIN probably involves CYP450 enzymes for the NCHj,
NCH,;, and OCH, hydroxylations, AOX or CYP450 enzymes for the NNO; reduction, and GST
for dechlorination (127). In the metabolism of TMX, TMX and desmethyl-TMX with CYP450
yield more formaldehyde (HCHO) than the other neonicotinoids such as CLO, DIN, ACE, NIT,
and IMI. Furthermore, mouse CYP450 enzymes are more active than the rat or human equivalents
in converting TMX or desmethyl-TMX to HCHO, which might be an alternative hypothesis for
TMX hepatotoxicity (Figure 6) (128). Human CYP3A4 converts TMX to a more potent inhibitor
of PH]IMI binding to the Drosophila nAChR, and the AOX system coupled with the Drosophila
receptor strongly inactivates CLO, DIN, IMI, desmethyl-TMX, and TMX with some inactivation
of NIT and nithiazine (134).

CYP450 pathways were largely involved in CYC metabolism in mice, and the tentatively
assigned metabolites of CYC are five monohydroxy derivatives and a dihydroxy, nitroso, and
amino modification (11).
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Other Factors Affecting the Metabolism of Neonicotinoids

The metabolism of neonicotinoids might be closely related to sex. In a study to investigate the ef-
fects of the metabolism modulators piperonyl butoxide (100 mg/kg b.w.) and menadione (25 mg/kg
b.w.) on the toxicity of IMI (170 mg/kg b.w.), Arslan etal. (135) revealed that the CYP450-mediated
metabolism of IMI and the genotoxicity of IMI is sex related.

TMX causes a significant increase in liver cancer in mice, but notrats, in chronic dietary feeding
studies, suggesting that the species differences might exist in the toxicity of neonicotinoids (128,
136). Comparisons of the metabolism of TMX in rats and mice revealed that the concentrations of
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the two metabolites, CGA265307 and CGA330050, were 140- and 15-fold lower for CGA265307
and CGA330050, respectively, in rats than in mice following either a single oral dose or dietary
administration of TMX for up to 50 weeks, indicating that metabolism differences might play a
critical role in the toxicity of neonicotinoids in different species (136). Large species differences
are observed in the IMI nitroreductive activity of liver cytosol, and rabbit and monkey give the
highest levels of total metabolite formation. Human, mouse, cow, and rat also metabolize IMI
rapidly whereas dog, cat, and chicken liver cytosols do not reduce IMI at appreciable rates (130).
However, the rates of biokinetics, excretion, distribution, and metabolism of CLO were not
markedly influenced by dose level and sex when male and female rats were exposed to CLO (5
and 250 mg/kg b.w.) (137).

With the tested temperatures (28, 30, and 33.5°C), THI(1, 5, 10, 15, and 20 mg/L) was shown
to have no effects on early life stage parameters of zebrafish, except on the heart rate, which was
probably due to an increased metabolism upon exposure to THI (138).

Toxicity of Neonicotinoids and Their Metabolites

Some metabolites of neonicotinoids have an equal or greater toxicity than their parent compounds,
such as CLO, a metabolite of TMX (7). The main metabolites of IMI, such as 6-CNA and 2-
imidazolidone, contributed drastically to the overall toxicity of IMI because of the noncovalent
interactions of 6-CNA and 2-imidazolidone with biopolymers (125, 139). Although IMI shows
an excellent safety profile, its metabolite DNIMI is over 300 times more potent than IMI to
mammalian nAChRs [vertebrate 432 50% inhibitory concentration (ICsp) = 8.2 nM for DNIMI
and 2,600 nM for IMI] and displays higher toxicity to mammals associated with agonist action at
the nAChR in the brain than that of IMI (105, 132).

One of the main metabolites of CYC, NMI, was much more toxic than CYC because the in
vitro binding affinity to the nAChRs of the three species studied (house fly, honeybee, and mouse)
is 15-40-fold greater for NMI than CYC, determined by competitive inhibition of [*H]NMI
binding (11).

Another study revealed that the toxicity profile for X11719474, the primary metabolite of SUL,
was limited to liver effects via the same mode of action as the parent, and overall, X11719474
was significantly less toxic than the parent according to genetic, acute, short-term rat and dog
reproductive and developmental toxicity studies (140).

Critical analysis of the available toxicity results showed that the nitro-substituted compounds
(CLO, DIN, IMI and its metabolites, TMX, and NIT) appeared to be the most toxic to bees, and
the cyano-substituted neonicotinoids (ACE and THI) seemed to exhibit a much lower toxicity
(73). However, ACE displayed slightly higher toxicity than IMI in a study to assess the influence
of IMI and ACE on soil microbial activities according to their ICsg value and the thermodynamic
parameters (141).

TMX is hepatotoxic and hepatocarcinogenic in mice but not rats, and its metabolite, desmethyl-
TMX, is also hepatotoxic, whereas CLO is neither hepatotoxic nor hepatocarcinogenic (128).
Green et al. (65) documented that the metabolite CGA330050 {3-(2-chloro-thiazol-5-ylmethyl)-
[1,3,5] oxadiazinan-4-ylidene-N-nitroamine, 500 and 1,000 mg/kg diet} of TMX induced liver
cancer in mice at a rate similar to TMX, suggesting that TMX is hepatotoxic and hepatocarcino-
genic as a result of its metabolism to CGA330050. Furthermore, another metabolite, CGA265307
[N-(2-chloro-thiazol-5-ylmethyl)-N'-nitroguanidine] exacerbated the toxicity of CGA330050 in
TMX-treated mice. A recent study revealed that mice yielded significantly more HCHO from
TMX and desmethyl-TMX compared to rats or humans, suggesting that the production of HCHO
and potentially N-methylols might be the candidate hepatotoxicants and hepatocarcinogens (128).
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Considering the close relationships among the oxidative stress factors, CYP450, and iNOS and the
fact that CGA265307 and desmethyl-CLO exacerbated the hepatic toxicity by inhibiting iNOS
(128, 142), oxidative stress might be involved in TMX-induced toxicity.

In summary, the metabolites of neonicotinoids are numerous, and CYP450 and cytosolic en-
zymes play critical roles in their metabolism. Hormones from different species correlate with the
metabolism of some neonicotinoids. The metabolites of neonicotinoids show different toxicities,
with some exhibiting equal or greater toxicity than that of their parent compounds. The toxi-
city of neonicotinoids is attributed primarily to their action as nicotinic agonists, directly or as
metabolites. Oxidative stress may be generated during the metabolism of neonicotinoids.

CONCLUSION

Thousands of tons of neonicotinoids are widely used as insecticides and veterinary drugs world-
wide. Following significant increases in the use of neonicotinoids for the protection of crops,
ornamentals and trees in horticulture, tree nurseries, agriculture, and forestry, the related toxicity
effects on animals and humans are a growing cause for concern. Therefore, it is necessary to in-
vestigate the toxic effects and the toxicological mechanism of neonicotinoids to protect nontarget
species, including humans, from injury.

Neonicotinoids show their toxicity as agonists at nAChRs in insects and mammals alike. How-
ever, oxidative stress may also be one toxicological mechanism for neonicotinoids, based on more
than 10 years of studies. Interestingly, oxidative stress occurs in various species of animals, such as
rats, mice, quail, and earthworms due to neonicotinoid-related toxicology. Various compounds,
including free-radical scavengers, can efficiently combat neonicotinoid-induced damage, suggest-
ing that the toxic effects of neonicotinoids might closely correlate with metabolism and oxidative
stress. Most studies of oxidative stress induced by neonicotinoids (mainly IMI) have been carried
out on in vitro models or in vivo animal studies (Tables 1 and 2). The studies of IMI, CLO,
ACE, THI, NIT, and TMX clearly identified that oxidative stress played a critical role in their
various toxicities, suggesting that oxidative stress might be one potential mechanism for other
neonicotinoids, such as DIN, SUL, CYC, IPP, and imidaclothiz. However, the roles of oxidative
stress in the toxic effects induced by other neonicotinoids are worthy of further investigation using
in vitro models and in vivo studies because their use worldwide is growing fast.

Neonicotinoids were once believed to have low mammalian toxicity, including neurotoxicity.
However, some studies identified that neonicotinoids showed a variety of potential toxic effects on
animals and even humans, including hepatotoxicity, nephrotoxicity, and reproductive cytotoxicity
(25, 33, 34, 36-39, 81). Interestingly, all these toxic effects were found to have some relationship
with oxidative stress, indicating that oxidative stress might be one common phenomenon in toxicity
induced by neonicotinoids. However, the relationship between the agonists of nAChRs and the
generation of oxidative stress still remains unclear. Researchers knew oxidative stress might occur
during the metabolism of drugs. However, a recent study revealed that IMI could induce oxidative
stress in cells with few metabolic enzymes, such as CHOk; cells (93), suggesting that the generation
of oxidative stress might be independent of the metabolism of neonicotinoids in vitro. It is still not
clear whether the generation of oxidative stress is a secondary effect or whether it has nothing to
do with the agonists of nAChRs induced by neonicotinoids; this is worthy of further investigation.

The research summarized here indicates that IMI displays sex-, tissue-, and duration-specific
effects in its toxicity (39). Similarly, the genotoxicity of IMI is sex related, as hormones control
the CYP450-mediated metabolism of IMI (135). Furthermore, species differences should also be
taken into account because of their different metabolism, such as in the case of TMX, which
causes a significant increase in instances of liver cancer in mice, but not rats, in dietary feeding
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studies (136). Therefore, it might not be suitable to infer the toxicity of neonicotinoids between
different species or even different sexes. Considering that the degree of injury to cells might have
a direct relationship with levels of oxidative stress (143, 144), it could be useful to assess the
levels of oxidative stress and its mechanism of generation when studying the toxicity of various
neonicotinoids.

nAChRs facilitate neurotransmission in the central and peripheral nervous systems (145). The
mechanism of the toxicity of neonicotinoids is complex, but the major biochemical effects of neon-
icotinoids are mediated through their agonist activity on nAChRs (35). However, the ability of
neonicotinoids to activate nAChRs does not seem to be the sole trigger for apoptosis or the var-
ious toxicities observed. ROS, RNS, oxidative stress, Ca’* levels, and various signaling pathways
also play critical roles in cellular apoptosis. However, few studies have examined the role of the
agonists of nAChRs in neonicotinoid-induced oxidative stress, ROS generation, Ca’* levels, and
signaling pathways in vitro or in vivo. Although researchers have documented that neonicotinoids
activate the ERK cascade through a primary action on nAChRs, the involvement of intracellular
Ca’* mobilization, possibly mediated by inositol 1,4,5-trisphosphate (105), and the relationship
between Ca’* level, the oxidative stress, and the signal integration pathways induced by neon-
icotinoids deserve further investigation to allow us to effectively understand the toxic effects of
neonicotinoids.

To protect against neonicotinoid-induced oxidative stress, a variety of compounds have been
evaluated for their antioxidative effects, including vitamin C, vitamin E, CUR, NAC, GSH, resver-
atrol, and TQ. These efforts underscore the urgency of finding a good antidote for neonicotinoids
as a consequence of their increasing use worldwide. Further understanding of the role of oxida-
tive stress as well as the metabolism of neonicotinoids in neonicotinoid-induced toxicity will shed
new light on the use of antioxidants and scavengers of ROS or RNS. As thousands of tons of
neonicotinoids continue to be applied worldwide, the search for highly effective antioxidants and
efficient detoxification enzymes is of high priority to reduce the various toxic effects induced by
neonicotinoids and circumvent future issues.
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