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Abstract

Lung cancer heterogeneity plays an important role in the development of
drug resistance. Comprehensive molecular characterizations of lung cancer
can describe hereditary and somatic gene changes, mutation, and hetero-
geneity. We discuss heterogeneity specificity, characterization, and roles of
PIK3CD, TP53, and KRAS, as well as target-driven therapies and strategies
applied in clinical trials based on a proposed precise self-validation system.
The system is a specifically selected strategy of treatment for patients with
cancer gene mutations and heterogeneity based on gene sequencing, follow-
ing validation of the strategies in the patient’s own cancer cells or in patient-
derived xenografts using their own cancer cells isolated during surgery or
biopsies. These results will be more precise if the drugs used in the strate-
gies are selected through protein structure–guided compound screening or
a DNA-encoded chemical library before validation in the patient’s own can-
cer cells. Thus, a deeper understanding of heterogeneity mechanisms and
improved validation of the therapeutic strategy will result in more precise
treatments for patients.
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Precise
self-validation
system: a system to
screen and optimize
therapeutic strategies
for targeted-drug
efficacy and specificity
using the patient’s own
cancer cells for that
individual’s treatment

INTRODUCTION

Precision medicine aims to identify and develop highly selective drugs and therapies directed at
disease-specific targets as an approach to drug discovery and development (1). One suggested strat-
egy for precision medicine is to discover drugs for patients with targetable alterations of gene fu-
sions (crizotinib for ALK fusion proteins), mutations (vemurafenib for the BRAF V600E mutation),
methylation and acetylation, aberrations and variants, or protein overexpression (trastuzumab for
HER2 proteins). Another strategy is to combine drugs based on gene sequencing, gene inter-
actions and networks, or functional mechanisms. The efficacy, toxicity, and selection of drug
combinations are highly dependent on tumor heterogeneity, as per the principle of combination
design (2). The effects of therapeutic strategies are associated with the heterogeneity between
intra- and intertumors, primary tumor and metastasis, tumor cells and circulating tumor cells, and
inter-single cells. The forms and specificities of gene mutations may identify optimal therapies in
precision medicine (3).

Lung cancer is the leading cause of cancer-related death and has a high incidence coupled
with a 5-year survival rate of less than 17% (4). Small-cell lung carcinomas (SCLCs) account for
20% of lung cancers, whereas the remaining 80% are non-small-cell lung carcinomas (NSCLCs)
that include adenocarcinoma (AD), squamous cell carcinoma (SCC), and large-cell carcinoma.
We initially described five critical elements to ensure appropriate clinical application of precision
medicine (5). We propose using tumor heterogeneity to understand the association between gene
mutations and patient phenotypes, precise measurements, specific biomarkers, target-based drugs,
and regulation of clinical performance. Systems heterogeneity demonstrates the full picture of het-
erogeneity with multidimensional functions by integrating gene or protein expression, epigenetics,
sequencing, phosphorylation, transcription, pathways, and interactions (6). From a mutation per-
spective, targeting one mutation may be an alternative treatment strategy for all tumors with that
mutation (see the sidebar titled A New Strategy: Precise Self-Validation System). The present
review illustrates molecular evidence and mechanisms of heterogeneity and heterogeneity-based
therapeutic strategies with a focus on lung cancer and other cancers that are similar to lung cancer.
We discuss roles of hereditary and somatic gene changes when considering therapeutic strategies
from multiple angles as well as genomic instability in potential mechanisms of gene mutations and
heterogeneity. We also address influences of the targeted molecule subunit phosphatidylinositol
3-kinase catalytic subunit alpha (PIK3CD), the tumor suppressor gene TP53, and the carcinogenic
driver KRAS in determining the therapeutic design. We introduce a new therapeutic strategy of a
precise self-validation system using the patient’s own cells to screen proposed strategies to tailor
them to the individual.

HEREDITARY GENE CHANGES AND HETEROGENEITY

Genetic heterogeneity, as an influential factor in drug therapy, is highly dependent on hered-
itary gene changes and components in many cancers. Screening for lung cancer susceptibility

A NEW STRATEGY: PRECISE SELF-VALIDATION SYSTEM

Therapies for lung cancer are entering a new era of therapeutic strategies with a complete package of solutions
to treat cancer cells based on gene changes, mutations, and heterogeneity. This precise self-validation system
integrates the identification of target gene mutations and heterogeneity with nonspecific therapy, the first-line
strategy of target therapy, strategies against drug resistance, the proposed strategy without validation, self-cancer
cell validation, and PDX after protein structure–guided or DNA-encoded chemical library–based drug screening.
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loci has demonstrated that heterogeneity was reduced in patients with similar clinical character-
istics (e.g., age at onset and pattern of inheritance), based on the homogeneity and heterogeneity
scores (7). A study of over 30,000 patients with lung cancer emphasized that hereditary gene
changes play important roles in lung cancer histological subtypes and histology-specific germ-line
susceptibility to lung cancer risks (8). The integration of 515,922 genotyped single-nucleotide
polymorphisms with histopathology showed that the activity of telomerase reverse transcriptases
on chromosome 5p15.33 could increase the risk of AD. A comprehensive molecular characteri-
zation of cancer will benefit the identification of subtype-specific biomarkers for early diagnosis
and therapy. Researchers detected numerous hereditary gene changes in patients with chronic
obstructive pulmonary disease with a high risk of developing lung cancer. They are considered as
specific biomarkers to monitor the transition from chronic lung diseases to cancer (9–11).

Heterogeneity in germ cells can be amplified by the cellular offspring. Germline mutations
are used to develop single or combination therapy and to discover new strategies for early diag-
nosis and precision prevention against cancer (12). With the development of biotechnology, the
comprehensive molecular characterization of cancers associated with hereditary predispositions
can be reevaluated and re-categorized for the precise assessment of disease risk and development
of novel interventions. Numerous cancer susceptibility genes (e.g., BRCA1 and BRCA2, APC,
and TP53) are valuable for clinical diagnosis and therapy, and researchers have identified their
germline mutations in family-based patients with lung cancer. Conversely, gene mutations can be
cancer-causing genetic changes and can be developed or acquired as somatic changes. Hereditary
gene changes and heterogeneity are more sensitive to challenges and susceptible to cancer after a
few exposures to carcinogenic substances, whereas somatic changes and heterogeneity occur after
more frequent and serious exposures (Figure 1a).

Comprehensive molecular characterizations, or profiles of cancer, are critical in the exploration
of hereditary and somatic gene changes in cancer to pierce the armor of lung cancer (13). For ex-
ample, a comprehensive molecular characterization of phaeochromocytomas and paragangliomas
demonstrated pathogenic germline mutations of eight susceptibility genes, including CSDE1 as
a somatically mutated driver gene; HRAS, RET, EPAS1, and NF1 as four known complementary
drivers; and MAML3, BRAF, NGFR, and NF1 as disease fusion genes (14). Such comprehensive
molecular characterizations of hereditary gene changes and heterogeneity have led to a new level of
evidence-based practice of genome medicine in lung cancer. Alterations of hereditary gene muta-
tions are measured by pedigrees, germline mutations, missenses, and mismatch repair deficiencies
in lung cancer (Figure 1b). The comprehensive molecular characterizations of hereditary breast
cancers revealed 42 deleterious germline mutations in 21 genes of 34 patients, including 18% in
BRCA1 or BRCA2, 3% in TP53, 5% DNA mismatch repairs, 1% in CDH1, 6% in the Fanconi ane-
mia pathway, and 9% in others (15). The more alterations of TP53 germline missense they had, the
easier it was to detect the risks of early-onset colorectal cancer and clinical phenotypes of patients
with Li-Fraumeni syndrome (16). The patients with lung cancer also had those hereditary gene
mutations, among which the histopathological subtypes clearly varied (17–19). Currently, there is
a lack of comparisons to define the existence of hereditary heterogeneity and its association with
mutations. One challenge is to identify the hereditary gene mutation and heterogeneity in patients
with cancer, as most real-life cases have no access to family members and pedigrees. The majority
of hereditary genes may also be somatic, as they are measured in patients from only one generation.

SOMATIC GENE CHANGES AND HETEROGENEITY

Somatic gene changes and heterogeneity are other important factors that alter the efficacy of
drug therapy. Clinical studies on the comprehensive molecular characterization of somatic gene
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Figure 1
Molecular categorization of lung cancer originating from hereditary and somatic heterogeneity. (a) Hereditary gene mutation occurs
after a challenge, whereas somatic gene mutation requires multiple and repeated challenges. (b) Hereditary alterations of germline gene
mutations can be cancer risks and can influence sensitivities to therapies. (c) Somatic alterations of molecular differences exist between
disease subtypes. (d ) Gene mutation types, forms, numbers, epigenetics, sequencing, or heterogeneity are associated with specific
subtypes of disease. Molecular categorization of lung cancer ( g) can be defined according to the gene expression profiles (e) and
methylation levels ( f ).

mutations in cancer are increasing in number and introduce new ways to understand the patho-
genesis of lung cancer. George et al. (20) evaluated comprehensive molecular characterizations
of somatic genome alterations in SCLC using mutation rates followed by a correction for ex-
pressed genes, regional clustering of mutations, genes with likely damaging mutations, biological
relevance established in SCLC mouse models, and genes with likely therapeutic relevance. They
found that the biallelic inactivation of TP53 and RB1 was altered in more than 90% and 65% of
SCLC and 100% and 93% of SCLC without chromothripsis, respectively. The gene inactivation
included mutations, translocations, homozygous deletions, hemizygous losses, and copy-neutral
losses of heterozygosity and losses at higher ploidy. Linehan et al. (21) applied comprehensive
molecular characterizations to understand and define the molecular categories of papillary renal
cell carcinoma through analysis of whole-exome sequencing, copy number, mRNA, microRNA,
methylation, and proteomics. Those two clinical studies are considered a new milestone and are
practical examples of the use of molecular oncology to define somatic alterations at the molecu-
lar level and to identify the specificities between disease subtypes (Figure 1c). It is important to
screen for all types of somatic gene mutations (Figure 1d) and to integrate the data with clinical
phenotypes, responses to therapy, and histopathology.

Several methylation-, gene expression–, mutation-, and heterogeneity-based categories of can-
cer have been generated from the integration of gene mutation types, forms, numbers, epigenetics,
sequencing, heterogeneity, and specificity with clinical informatics (22–24). Mutations of MET,
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a proto-oncogene, receptor tyrosine kinase, were selected as papillary renal cell carcinoma type-
specific alterations, of which 18% were germline and 90% were in the tyrosine kinase domain (21).
However, MET and its ligand hepatocyte growth factor play an important role in the development
of multiple cancers (25). For example, MET-dominated signals contributed to the metastasis of
cancer cells to the lung by stimulating the hyperproduction and overactivation of cytokines and
enzymes. Heterogeneity of MET was found to drive the resistance and treatment failure of MET
inhibition in patients with MET-amplified esophagogastric cancer (26). The heterogeneity in
MET amplification between distinct metastatic lesions and primary tumors led to the failure of
MET inhibition despite the origination of those tumor cells from the same clonal source or their
lack of any MET amplification. Although a comprehensive molecular characterization contributes
greatly to our understanding of the roles of hereditary and somatic gene changes in the evolution
and development of cancer, it would be even more important to explore the effect of hereditary
and somatic gene heterogeneity in cell resistance and responses to drug therapy and to define the
specificities of hereditary and somatic genes corresponding to disease durations, stages, severities,
molecular subgroups, clinical phenotypes, responses to therapy, and prognoses of patients. Hered-
itary and somatic gene changes will provide new clues to understanding pathogeneses, developing
therapy, and improving prevention, as well as improving our understanding of their role in the
development of drug resistance, reoccurrence, and metastases in cancer.

GENOMIC INSTABILITY IN LUNG CANCER

One of the important mechanisms by which hereditary and somatic heterogeneity occurs is
the formation of genome instability, which is defined as higher than normal rates of mutation
and has catastrophic consequences for the development of cancer. Many pathways contribute
to and promote genomic instability, including telomere damage, centrosome amplification, epi-
genetic modifications, and DNA damage from endogenous and exogenous sources. Tubbs &
Nussenzweig (27) recently presented a comprehensive review on the knowledge and understand-
ing of genomic instability, and they emphasized the importance of endogenous sources of mutation
and epigenomic features in the balance of genomic stability and instability during cancer evolu-
tion. DNA repair pathways control and regulate the process of converting single-stranded DNA
breaks to double-stranded DNA breaks through mechanisms of homologous recombination and
nonhomologous end joining. De Bruin et al. (28) initially demonstrated lung cancer evolution
defined by spatial and temporal diversity in genomic instability processes, including cancer evolu-
tion, intratumor heterogeneity of nonsilent mutations, the extent of genomic diversity, regional
heterogeneity of potential driver mutations, and dynamics of the mutational processes. This par-
ticular study identified 1,884 nonsilent and 76,129 silent mutations during the evolution of lung
cancer, among which the spatial intratumor heterogeneity in NSCLCs was composed of 26%
heterogeneous mutations and consisted of 74% ubiquitous mutations in AD. One of the most
important findings was that apolipoprotein B mRNA editing enzyme catalytic–associated muta-
genesis, as an additional genomic instability process, might contribute to tumor progression. This
phenomenon was observed as enzyme-associated mutations in tumors that consistently increased
over time, as evidenced by pronounced intratumoral heterogeneity in copy-number alterations,
translocations, and mutations associated with enzyme cytidine deaminase activity, in contrast to
smoking-related mutations (28).

New therapeutic strategies based on genomic instability could include the prevention of DNA
damage, enhancement of DNA repair, targeting of deficient DNA repair, impairment of centro-
some clustering, or inhibition of telomerase activity (29). It seems that a target gene can dominate
and direct the progression of genomic instability and be selected as a therapeutic pathway. For
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example, KrasLA2 was found to be a key player in tumor progression by repeating DNA copy al-
terations in certain genetic conditions (30). The progression of genomic instability was correlated
with an increased tumor size. Ferguson et al. (29) suggested several therapeutic candidates against
genomic instability (e.g., vitamins D and B, selenium, carotenoids, poly(ADP-ribose) polymerase
inhibitors, resveratrol, and isothiocyanates) that may have direct or indirect effects on the mainte-
nance of genomic stability. The great challenge is to identify hereditary or somatic gene changes
and heterogeneity as well as DNA repair deficiencies in lung cancer, especially among different
subtypes, stages, and severities. Measurements of gene sequencing and epigenetics are still in the
process of being improved. Numerous genes have been identified as driver genes, in which a dele-
tion could shift cancer cells back to normal cells or reduce cancer cell malignancy in preclinical
studies. However, it remains poorly understood how the dysfunction of DNA repair mutation
genes contributes to cancer initiation, progression, organ and tissue specificity, and metastasis in
patients. With improvements in technology, gene editing may have potential for gene correction
and programming repair and has been proposed as the future therapy for cancer (30–33). Komor
et al. (33) recently developed a new method to directly and irreversibly convert the target DNA
base into another without changing the double-stranded DNA breaks or donor template [e.g., from
cytidine to uridine, resulting in a C→T (or G→A) substitution]. Gene editing has been listed as
one of the hopes in clinical and translational medicine in the Cancer Moonshot 2020 program (34).

KEY GENE HETEROGENEITY

Many gene heterogeneities participate in and influence drug efficacy and resistance. Of those,
we address the roles of three different categories, including a targeted molecular subunit of
the key signal regulatory gene, PIK3CD; a tumor suppressor gene, TP53; and a carcinogenic
driver, KRAS, in decisions concerning therapeutic design. PIK3CA, together with a p110 catalytic
subunit, phosphorylates the 3′-position of the inositol ring and contributes to the production
of phosphatidylinositol-3-phosphate, phosphatidylinositol-3,4-bisphosphate, and phosphatidyl-
inositol-3,4,5-trisphosphate. PIK3CD has a C-terminal kinase catalytic, helical, Ras-binding,
adaptor-binding, or N-terminal p85 binding-like domain (35). PIK3CD is one of the lung
cancer–stem cell property-associated signaling pathways that contribute to carcinogenic potential–
associated molecular mechanisms (36). The heterogeneity of PIK3CD between subtypes of lung
cancers and among cancers has an important impact on the development of new therapeutic strate-
gies (37). PIK3CA is crucial for promoting cell division through binding of pleckstrin homology
domain–carrying signaling protein. Lung carcinogenic processes may be initiated whenever gene
changes and mutations in PIK3CD, PIK3R1, or other PIK3 subunits occur and then fail to control
the signaling and production of PIK3 phosphorylation.

PIK3CA heterogeneity among lung cancers is associated with the sensitivity and resistance
of cancer cells to drugs. Lung SCC originates from basal cells and AD from alveolar epithelial
cells, but SCC has a poor survival rate in comparison to AD (38) because mutations occur more
frequently in lung SCC (∼9%) compared with AD (∼3%) (39). PIK3CA mutations, together with
mutations in other genes such as TP53, LKB1, and p63, have been observed in all stages of NSCLC,
and the number of mutations was correlated with the stage, severity, progression, and prognosis
of lung cancer (40). Moreover, the interaction of TP53 as a comutation with PIK3CA and H1047R
resulted in an accelerated onset of lung cancer. The association of PIK3CA with p53 mutations
and expression may be responsible for signaling pathways in lung cancer. The production of
phosphoinositide 3,4,5 trisphosphate, regulated by PIK3CD, plays a crucial role in human onco-
genesis, during which gene changes and mutations in PIK3CD can occur through the interaction
with PIK3R1. PIK3R1 has an inter-Src homology 2 domain located between the nSH2 and cSH2
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domains, a GTPase-activating protein domain, and finally an Src homology 3 domain. For exam-
ple, the E334K and E525K mutations of PIK3CD are generated through the interaction of PIK3R1
nSH2 with PIK3CD C2 and E1021K by PIK3R1 nSH2 and cSH2 with C-lobe in the kinase do-
main of PIK3CD. Multiple mutations in both PIK3CD and PIK3R1 act as key players responsible
for the pathogeneses of diseases and may represent potential new therapeutic strategies (41).

Numerous inhibitors of PI3K pathways act through different mechanisms; for example, wort-
mannin is an irreversible inhibitor that exerts its effect by binding covalently to a lysine residue that
affects phosphate binding in cells (42), and LY294002 is a reversible and ATP-competitive PIK3
modulator (43). There are many obstacles to the clinical application of PIK3 inhibitors owing to
poor specificity, solubility, stability, and pharmacological properties (44–46). Another challenge
is the achievement of a high specificity of PIK3 inhibitors against not only the targeting molecule
but also the different types of organ-specific cancers. For example, everolimus and LY294002, an
mTOR inhibitor and a PIK3 inhibitor respectively, have inhibitory effects in cancer. Mutations
become the predominant factor regulating cancer cell proliferation, with unique and specific ef-
fects that should be precisely identified and targeted. It will also be important to explore how
mutant PIK3CA promotes the proliferation and metastasis of lung cancer cells and how it differs
from other cancers. The specificity of drugs to different domains of PIK3CD is highly anticipated
and is considered one of the greatest challenges in drug discovery and development (37).

Tumor suppressor genes (e.g., TP53, BRAC1/BRAC2, PTEN, RB1, and APC) play important
roles in DNA damage and repair, mutations, and carcinogenesis, among which the methylation
profiles are correlated with the clinical prognoses of patients with lung cancer (47). Many genes in
single or multiple signaling pathways function as tumor suppressors (e.g., FBXW2 dominates the
β-TrCP-FBXW2-SKP2 axis as a tumor suppressor in lung cancer) (48). There is great potential
for tumor suppressor gene–targeted drug discovery and development in lung cancer, although
many challenges remain, such as the targeting accuracy and stability, genotoxicity, and biological
biomarkers. TP53 mutations are considered a unique feature of cancers and exhibit a high preva-
lence and sensitivity, although TP53 mutations with an extremely low frequency have also been
detected in normal tissue (49). TP53 gene changes can shift cell phenotypes toward cancerous
characteristics, increase genomic heterogeneity, and desensitize drug therapy. Patients with lung
cancer and TP53 gene changes have poor prognoses, high levels of heterogeneity, and different
pathological types and clinical stage characteristics (27). Intervening with TP53 may represent a
new and efficient strategy for drug therapy, even though TP53 poses difficulties as a direct and
druggable target owing to toxicity. The small hydrophobic pocket of MDM2 proto-oncogene that
binds TP53 can stabilize and upregulate p53 downstream transcriptional targets (e.g., p21WAF1,
BAX, and BBC3), leading to cell proliferation, which can be terminated by specific binding to
that pocket. The combination of small-molecule inhibitors of the MDM2-p53 binding interac-
tion with chemotherapy, such as cisplatin, inhibited cancer cell growth (50). More than 95% of
cells sensitive to combination therapy have TP53 mutations, and combination therapy is more
efficient than monotherapy. Combination therapies have led to an additive or synergistic effect
in a p53-dependent manner compared with cisplatin alone, but there is no indication that the
combination was more efficient than a MDM2-p53 binding inhibitor in increasing p53 activation,
proliferation, and p21WAF1 protein and/or caspase-3/7 activity. Numerous TP53 regulators
are undergoing clinical trials as drug candidates (e.g., APR-246, MK-1775, ALT-801, Kevetrin,
SGT-53, Alisertib, AT9283, ENMD-2076, and AMG900).

KRAS acts as one of the most commonly mutated oncogenes and major oncogenic drivers
in cancers, and KRAS heterogeneity plays an important role in the resistance of cancer cells
to targeted drugs (51). KRAS mutation exists in approximately 30% of patients with lung AD.
Mitogen-activated protein kinase signaling is critical for KRAS-induced lung carcinogenesis, and
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MEK inhibition can prevent the growth of KRAS-driven lung cancers. The interaction between
mutated genes of tumor suppressors (e.g., p53 or LKB1) and carcinogenic drivers (e.g., KRAS) can
modulate drug responses to target drugs and immune checkpoint inhibitors in lung cancer. MEK
inhibitors alter ATP-binding proteomes of KRAS mutant lung cancer cells and heterogeneous
drug-induced pathway signatures presented among lung cancer cell types (52). Each cell type
has the specificity and heterogeneity of kinome responses and adaptive types of MEK inhibition,
among which decreased mitotic kinases and increased autophagy-associated kinases are more
common and homogenous. Signaling pathways have diverse coexisting KRAS mutation–oriented
adaptive responses (e.g., glycolysis or gluconeogenesis). The interaction of KRAS with other driver
genes makes adaptive ATP-binding proteome and kinome responses to therapy more diverse and
varied, probably due to the comutated tumor suppressors. These findings indicate that therapeutic
strategies targeting mutations in carcinogenic driver genes should include drugs to target tumor
suppressor genes as a co-targeting strategy.

PATIENT-SPECIFIC IN VIVO EVALUATIONS

Researchers can transplant normal human cells into immunodeficient mice to form humanized
tissues and organs (53, 54). Human cancer cells are then seeded into animals to exert pathological
characteristics of human cancer cells as humanized cancer animal models (55). Ambrogio et al.
(56) recently measured the combination efficacy of dasatinib with demcizumab, an anti-delta-like
canonical Notch ligand 4 antibody, to target the discoidin domain receptor 1 to interfere with
Notch signaling in an orthotopic model of patient-derived xenografts (PDX) with lung cancer cells
derived from patients with concomitant KRAS mutations and TP53 deletions. The combination
therapy showed better efficacy for reducing tumor volume through increased apoptosis and necro-
sis, better maintenance of a long-lasting response to the combination, and increased prolongation
of the reemergence of tumor growth, when compared with the standard chemotherapy protocol.
This result is due to a precise targeting of the discoidin domain receptor 1/Notch1 signaling
needed in tumor progression and survival. This is an example of a clinical application–driven
preclinical trial for the evaluation of therapeutic strategies and provides the potential for target
drug screening before clinical therapy, although the results from those three patients should be
further confirmed in larger cohorts. PDX-generated paired chemosensitive and chemoresistant
cancers as a model of acquired chemoresistance are developed to evaluate the combination effi-
cacy of cisplatin and etoposide in SCLC (57). SLFN11, a factor implicated in DNA damage repair
deficiency, is inhibited by the deposition of H3K27me3, a histone modification induced by EZH2
within the gene body of SLFN11. It would be more helpful to have a target-driven sensitive and
resistant PDX model for screening before clinical application. Cancer severity–driven PDX mod-
els are categorized according to genetic and transcriptomic features of the donors for preclinical
screening of drug sensitivity (58). Researchers isolated cells from lung or liver cancer tissues of
patients during tumor resection and seeded them in immune-deficient mice to profile genomic
characteristics and screen-selected target drugs in an auto-PDX model to guide clinical therapies
(59). However, the time frame needed for model development is too long to be compatible with
the urgent need for clinical decision making; the success and stability of model development must
be more applicable, repeatable, and treatable; and gene heterogeneity between cells contributes
to variations in model sensitivities.

PRECISE SELF-VALIDATION SYSTEM

The therapeutic strategy of precision medicine for lung cancer remains a new opportunity and
challenge, even though target-based therapies have been initiated and progressed in lung cancer
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Figure 2
Content of the precise self-validation system. Patients with lung cancer usually receive nonspecific therapies such as chemotherapy and
radiotherapy (a). Target gene inhibitors, such as the epidermal growth factor receptor inhibitor, are the first-line strategy of target
therapy (b), and the new generation of target inhibitors are a strategy against the occurrence of drug resistance (c). Combination therapy
would be considered in clinical practice if the new generation of monotherapy failed as the proposed strategy without validation
(d ). The precise self-validation system demonstrates that highly selected strategies integrated with clinical phenotypes and informatics
against target mutations (e) and heterogeneity will be applied to the patient after their own cancer cells ( f ) are used to validate
numerous proposed strategies based on patient gene sequencing ( g) or in patient-derived xenografts (PDX) with their own cancer cells
that have been isolated and preserved during surgery or biopsies (l ). It will be more precise if the drugs used in the strategies can be
screened and selected by protein structure–guided compound screening through simulation (h) or the use of a DNA-encoded chemical
library (i ) before validation in the patient’s own cancer cells, to optimize hit and lead ( j). The precise self-validation system can also be
used when the proposed strategy of combination therapy fails (k).

[e.g., the discovery and development of epidermal growth factor receptor (EGFR) inhibition].
After chemotherapy fails (Figure 2a), the first-line target therapy strategy (e.g., gefitinib, erlotinib,
and afatinib) should be to measure EGFR mutations in patients with lung cancer and then treat
with EGFR inhibitors if the mutation is present (Figure 2b). The strategy against drug resistance
is the application of new generations of target drugs following the development of resistance to
the first generation of target therapy (Figure 2c). For example, osimertinib as a third generation
of EGFR inhibitor has better effects on T790M secondary mutations (60). Clinical trials have
demonstrated that combination therapy has advantages toward several resistance mechanisms
other than the T790M mutation. Those strategies were designed and proposed based on the
target gene mutations measured by next-generation sequencing, but they were applied without
further validation (Figure 2d). Such strategies are highly dependent on clinical experience and
individual understanding of target therapy, personalized medicine, and precision medicine.

The complexity of lung cancer (e.g., spatial and temporal tumor heterogeneity and clonal
selection or evolution) makes therapeutic strategies more difficult than we anticipated. Cancer
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cell epigenetics, evolution, stem cells, and epithelial-mesenchymal transition play critical roles in
the heterogeneity of the initiation and progression through the interaction between permanent
genetic mutations and dynamic epigenetic alterations (61). The epigenetic cross talk can main-
tain gene transcription initiation in normal cells through a mechanism controlled by elongating
RNA polymerase II with SetD2, H3K36me3, Dnmt3b, and DNA methylation (62). Subsequently,
Dnmt3b-controlled methylation protects a compromised gene body caused by spurious RNA poly-
merase II entry and cryptic transcription initiation. In addition, intratumor microenvironments
and metabolism influence gene mutations and heterogeneity during evolution and contribute to the
responses of lung cancer cells to therapy (63, 64). Therefore, a new therapeutic strategy named the
precise self-validation system is proposed based on clinical practice and molecular knowledge, as
illustrated in Figure 2. Clinical phenotypes (e.g., patient symptoms, signs, biochemical measures,
imaging, and responses to therapy) as the first priority are translated from descriptive information
into digital data, which can be integrated with omics-based data as an important part of clinical
bioinformatics (22, 23) (Figure 2e). Cancer cells are isolated and harvested from lung tumors of
patients with lung cancer during surgery or biopsies and are restored as alive cells. In contrast
to other strategies, those alive cells can be recovered and cultured as an in vitro screening and
validation system (Figure 2f ). Clinicians can propose numerous specific therapeutic strategies
for that particular patient with lung cancer based on bioinformatics analyses of gene changes
and heterogeneity measured immediately after tumor resection or biopsies. Proposed strategies
of target-based single or combination therapies are then validated in the patient’s own alive cells
(Figure 2g). This procedure will enable the treatment of patients with proposed strategies based on
their own gene sequencing and own cell validating rather than strategies generated from guesses,
thoughts, opinions, and experience (Figure 2d). One of the practical challenges in such processes
is the limited number of isolated cancer cells from human tissues, which are insufficient for use
for the validation of many proposed strategies.

We recently demonstrated a new strategy for drug discovery and selection based on protein
structure–guided discovery of functional mutations among cancer types to identify spatial clusters
within which variants have the potentially desired function and to select target drugs for precision
medication as a new potential protocol for cancer therapy (65). It is critical to understand the
impact of mutations on protein structures and map variants within clusters of protein, categorize
mutation-drug clusters, and prioritize clusters enriched in mutations from patient samples. The
functions and efficacies of selected drug clusters from simulations of variants and drug interac-
tions are further validated in cells with and without mutations. This philosophy is adapted for
the precise self-validation system to achieve high-throughput screening of chemical binding to
mutation variants through computational tools and to select optimal leads of chemical backbones,
from which the category of target drugs can be indicated before screening the patient’s alive
cells (Figure 2h). DNA-encoded chemical library technologies are used in drug discovery for hit
and lead generation in the pharmaceutical process to allow the simultaneous screening of very
large sets of compounds of up to billions of molecules (66, 67). One optimal approach will be to
screen the lead of the chemical backbone through the library before the test in human alive cells
(Figure 2i). However, this technique still seems far from implementation into clinical practice due
to the need for a wide variety of capabilities in aqueous synthetic chemistry, oligonucleotide conju-
gation, large-scale molecular biological transformations, selection methodologies, and the analysis
of large chemistry spaces. Compounds identified by either protein structure–guided screening or
DNA-encoded chemical libraries are validated and optimized in the patient’s own alive cells
to ensure patient-specific efficacy (Figure 2j). Cancer cells isolated from the patient can also
be applied for self-cell rescreening if the patient fails to respond to the combination therapy
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(Figure 2k) and for the development of patient-specific PDX models to further validate the
efficacy of target drugs in the in vivo system (Figure 2l).

MONITORING HETEROGENEITY

The efficacy of targeting drugs and precise strategies declines with the development of drug resis-
tance. Heterogeneity is one of the critical factors and mechanisms responsible for drug resistance.
One of the challenges in personalized clinical medicine and targeted therapies is to monitor the
existence and occurrence of cancer heterogeneity, the heterogeneity-specific and associated effi-
cacy and toxicity of targeted drugs in clinical trials, and the failure of the combination strategy, due
to the lack of disease- and biology-specific biomarkers (68). The signature of RAS/RAF mutations
predicts the sensitivity to the EGFR inhibitor cetuximab by analyzing the integration of molecular
profiles with drug sensitivity patterns (58). Numerous inflammatory factors in the tumor microen-
vironment can be potential biomarkers to influence or reflect gene changes and heterogeneity in
lung cancer (63). The variations in the immune microenvironment among lung cancer subtypes
may contribute to the development of heterogeneity and drug resistance during the evolution of
immune cells, cytokines, and cancer cells. The heterogeneity of epithelial cell genes during the
progression of chronic lung diseases was featured as a procarcinogenic driver of the transit from
chronic lung diseases into lung cancer (10). Epithelial osteopontin and mucins can act as impor-
tant drivers and biomarkers in lung cancer evolution and heterogeneity (69, 70), although both
may lack disease specificity and biological links with gene changes and heterogeneity as disease-
specific biomarkers (71). Single-cell sequencing can be a powerful approach to detect intratumor
heterogeneity and can screen mutation- and heterogeneity-specific biomarkers by integrating with
single-cell imaging, biology, and system biology (72–74). Cancer stem cells, as one determining
factor, contribute to intratumor heterogeneity, epigenetic modifications, and/or interactions with
the tumor microenvironment (75). Droplet-based single-cell transcriptome sequencing methods
are applied to define heterogeneity and accuracy. Single-cell copy-number variations reflect ge-
nomic alterations of chromosome conformation as important sources of functional heterogeneity
and combinatorial cellular indexing (76).

In conclusion, the heterogeneity of lung cancer plays an important role in the development
of drug resistance and the reoccurrence of the tumor. Genetic heterogeneity depends highly
on hereditary gene changes and components of clinical familial characteristics, contributing to
lung cancer susceptibility to drug therapy. Comprehensive molecular characterizations or profiles
of lung cancer can describe hereditary and somatic gene changes, mutations, and heterogeneity
by measuring mutation rates, expressed genes, regional clustering, and genes that are likely to
develop damaging mutations. An imbalance between genomic stability and instability can be
caused by endogenous sources of mutations and epigenomic features during the evolution of
cancer. Heterogeneity specificity, characterization, and roles of PIK3CD, TP53, and KRAS have
potential to uncover the mechanism and discover new therapy. The precise self-validation system
first proposed in the present review can be applied for optimizing the increasing number of target-
driven therapies and strategies in clinical trials to combat the large quantity and uncertainty of gene
heterogeneity. Therapeutic strategies for lung cancer with detected mutations and heterogeneity
usually include a nonspecific therapy, the first-line target therapy strategy, the strategy against
drug resistance, and the proposed strategy with validation. The system demonstrates that highly
selected strategies against target mutations and heterogeneity can be used for the particular patient
after several proposed strategies based on patient gene sequencing are validated in the patient’s own
alive cells or in PDX with their own cancer cells isolated and preserved during surgery or biopsies.
It will be more precise if the drugs within the strategies can be screened and selected by protein
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structure–guided compound screening through simulation or a DNA-encoded chemical library
prior to validation in the patient’s own cancer cells. There is an urgent need for heterogeneity-
specific biomarkers to monitor the efficacy of the strategies. Thus, the better our understanding of
heterogeneity mechanisms and the better the validation of therapeutic strategies, the more precise
the medication will be, leading to the best possible prognosis for the patient.

SUMMARY POINTS

1. Lung cancer is one of the leading causes of mortality and morbidity with a poor prognosis.

2. Hereditary and somatic gene changes, mutations, and heterogeneity contribute to the
mechanisms by which drug resistance develops in lung cancer.

3. Therapeutic strategies vary widely owing to the heterogeneity of tumor suppressor genes,
procarcinogenic genes, and known or unknown driver genes.

4. Comprehensive molecular characterizations of lung cancer subtypes provide a better
chance of identifying target gene mutations and heterogeneity.

5. Genomic instability is an important mechanism of gene mutation and heterogeneity.

6. A precise self-validation system is an important approach to integrate genome medicine
with clinical therapy.

FUTURE ISSUES

1. It is important to have a complete list of lung cancer gene mutation alterations and
heterogeneity alterations with a clear link to their functions and sensitivities.

2. In addition to a pathological category, a new molecular category of lung cancer should
be developed and applied for clinical therapies.

3. Comprehensive molecular characterizations of lung cancer should be further explored
according to their severity, stage, duration, therapy, carcinogenesis, and prognosis.

4. Germline lung cancer risks should attract more attention from clinical scientists for
translation into clinical practice (e.g., precision medicine and prevention).

5. The precise self-validation system must be further evaluated, validated, and promoted to
improve our understanding of gene changes, mutations, and heterogeneity.

6. The precise self-validation system should be programmed and automated with a learn-
ing function and become an intelligent assistant for decision making during clinical
applications.
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58. Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, et al. 2017. Molecular dissection of
colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors.
Nat. Commun. 8:14262

59. Gu Q, Zhang B, Sun H, Xu Q, Tan Y, et al. 2015. Genomic characterization of a large panel of
patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development. Oncotarget
6(24):20160–76

60. Lee DH. 2017. Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success,
paved with failures. Pharmacol. Ther. 174:1–21

61. Dong N, Shi L, Wang DC, Chen C, Wang X. 2016. Role of epigenetics in lung cancer heterogeneity and
clinical implication. Semin. Cell Dev. Biol. 64:18–25

62. Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, et al. 2017. Intragenic DNA methylation prevents
spurious transcription initiation. Nature 543(7643):72–77

63. Wang L, Zhu B, Zhang M, Wang X. 2016. Roles of immune microenvironment heterogeneity in therapy-
associated biomarkers in lung cancer. Semin. Cell Dev. Biol. 64:90–97

64. Wu D, Zhuo L, Wang X. 2016. Metabolic reprogramming of carcinoma-associated fibroblasts and its
impact on metabolic heterogeneity of tumors. Semin. Cell Dev. Biol. 64:125–31

65. Approach to screen
target drugs through
protein-structure-
guided discovery based
on gene function and
mutation.

65. Niu B, Scott AD, Sengupta S, Bailey MH, Batra P, et al. 2016. Protein-structure-guided discovery
of functional mutations across 19 cancer types. Nat. Genet. 48(8):827–37

66. Importance of
DNA-encoded
chemistry in drug
discovery and
development against
precise targets.

66. Goodnow RA Jr., Dumelin CE, Keefe AD. 2017. DNA-encoded chemistry: enabling the deeper
sampling of chemical space. Nat. Rev. Drug Discov. 16(2):131–47

67. Franzini RM, Neri D, Scheuermann J. 2014. DNA-encoded chemical libraries: advancing beyond con-
ventional small-molecule libraries. Acc. Chem. Res. 47(4):1247–55

68. Wu D, Wang DC, Cheng Y, Qian M, Zhang M, et al. 2017. Roles of tumor heterogeneity in the devel-
opment of drug resistance: a call for precision therapy. Semin. Cancer Biol. 42:13–19

www.annualreviews.org • Lung Cancer Heterogeneity 545



PA58CH26-Wang2 ARI 18 November 2017 11:30

69. Shi L, Wang X. 2016. Role of osteopontin in lung cancer evolution and heterogeneity. Semin. Cell. Dev.
Biol. 64:40–47

70. Xu M, Wang DC, Wang X, Zhang Y. 2016. Correlation between mucin biology and tumor heterogeneity
in lung cancer. Semin. Cell. Dev. Biol. 64:73–78

71. Wang X, Ward PA. 2012. Opportunities and challenges of disease biomarkers: a new section in the Journal
of Translational Medicine. J. Transl. Med. 10:220

72. Niu F, Wang DC, Lu J, Wu W, Wang X. 2016. Potentials of single-cell biology in identification and
validation of disease biomarkers. J. Cell Mol. Med. 20(9):1789–95

73. Wang J, Song Y. 2017. Single cell sequencing: a distinct new field. Clin. Transl. Med. 6(1):10
74. Qian M, Wang DC, Chen H, Cheng Y. 2016. Detection of single cell heterogeneity in cancer. Semin.

Cell Dev. Biol. 64:143–49
75. Prasetyanti PR, Medema JP. 2017. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol.

Cancer 16(1):41
76. Zhang K. 2017. Stratifying tissue heterogeneity with scalable single-cell assays. Nat. Methods 14(3):238–39

546 Wang et al.


