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Abstract

Proteogenomics refers to the integration of comprehensive genomic, tran-
scriptomic, and proteomic measurements from the same samples with the
goal of fully understanding the regulatory processes converting genotypes
to phenotypes, often with an emphasis on gaining a deeper understanding
of disease processes. Although specific genetic mutations have long been
known to drive the development of multiple cancers, gene mutations alone
do not always predict prognosis or response to targeted therapy. The benefit
of proteogenomics research is that information obtained from proteins and
their corresponding pathways provides insight into therapeutic targets that
can complement genomic information by providing an additional dimension
regarding the underlying mechanisms and pathophysiology of tumors. This
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review describes the novel insights into tumor biology and drug resistance derived from pro-
teogenomic analysis while highlighting the clinical potential of proteogenomic observations and
advances in technique and analysis tools.

INTRODUCTION

As the molecular genetics revolution of the 1990s brought us a more detailed and mechanistic
view underpinning malignancies, the hope of moving from empiric therapies to more targeted
approaches by focusing on specific driver mutations began to flourish and motivate multiple clini-
cal trials. While early results in the 1990s were mostly disappointing, the emergence of imatinib as
a successful targeted therapy for chronic myeloid leukemia highlighted the importance of identify-
ing the appropriate clinical subpopulation for precision medicine (1, 2). It could be argued that the
success of imatinib in early clinical trials hinged on the availability of an easily detected molec-
ular marker, the Philadelphia chromosome, for the identification of patients with the signature
BCR-ABLI fusion (1). In a similar fashion, the selection of HER2-amplified breast cancer patients
for trastuzumab therapy and estrogen receptor (ER)-positive patients for tamoxifen therapy repre-
sented an extension of the concept to solid tumors (3). In the two decades since these foundational
applications, the use of genomics and/or transcriptomics to select the most appropriate targeted
therapy has ushered in the era of precision oncology.

Early attempts at implementing precision oncology were bolstered by the efforts of The Can-
cer Genome Atlas (TTCGA) and other large consortia focused on cataloging somatic mutations,
copy number variations (CNAs), DNA methylation, and comprehensive transcriptomic analyses
of specific tumor types (4). Transcriptomic data were mined to produce prognostic signatures
associated with outcome as a step toward customizing the intensity of therapeutic interventions
to the individual’s likelihood of progression (5). Early examples include the use of MammaPrint
and OncoType DX to stratify breast cancer patients for aggressive therapy. More recently, these
nucleic acid-based analyses have been extended to include comprehensive analyses of proteins
and posttranslational modifications (PTMs) of tumors to create the new field of proteoge-
nomics, which integrates protein-level measurements alongside genomics and transcriptomics,
represented effectively by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the
International Cancer Proteogenome Consortium (ICPC). Beginning in the 2010s, CPTAC inves-
tigators provided in-depth proteogenomic characterization of selected tumor types that had been
either previously analyzed by TCGA or prospectively collected for proteomic analyses (Table 1).
These proteogenomic studies have enabled the tracking of information flow within tumors,
including the identification of pathway-level changes associated with clinical outcomes. In this
review, we summarize the results of these comprehensive proteogenomic analyses, provide new in-
sights resulting from these studies, and highlight their existing and future clinical applications. We
end with a discussion of current challenges limiting the translational benefits of proteogenomics
and the technological advancements under development to address those challenges.

THE PROTEOGENOMIC LANDSCAPE OF SOLID
AND LIQUID TUMORS

Solid Tumors

Research conducted by CPTAC and ICPC investigators has enabled deep proteogenomic
characterization of a series of solid tumors, narrowing the gap between cancer genotype and
phenotype (6). Within this section we present examples, from an ever-growing literature of over
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Table 1 Multiple tumor types that have been profiled through the lens of proteomics

Cancer type

Patient
cohort size

Protein data

type(s)

Biological insights

PMID

Year

Reference

ALL

N=27

Global

CTCF and cohesion under expression in
ETV6/RUNX1-positive, hyperdiploid
pediatric ALL

30944321

2019

42

AML

Global, phospho

Development of KSEA using AML model

23532336

2013

31

Global, phospho

Phosphoproteomic signature predicting FL'T3
inhibitor response

24247654

2014

33

Global, phospho

CD marker evaluation identified importance of
increased MEK and PKC pathway activity for
AML differentiation

29626197

2018

32

Global, phospho

Phosphoproteomic signature of pacritinib
sensitivity uncovered important pathways
downstream of IRAK1

29743719

2018

34

Global

Plasma membrane proteomics identified 50
leukemia-enriched proteins, which enabled
characterization of functionally distinct
subclones of AML

30245083

2018

54

Global

Nuclear proteomics revealed S100A4 as a
potential therapeutic target in AML

31611628

2020

55

Global

Comprehensive proteomic and transcriptomic
resource of functionally characterized and
validated AML LSCs, blasts, and healthy
HSPCs

32556243

2020

40

Global, phospho

Phosphoproteomic profiling of wild-type and
mutant FLT3 AML patient samples uncovered
synergy between DNA-PK and FLT3
inhibitors

33067575

2021

36

Global, phospho

Cellular aging influences cytoskeletal
functioning in chemoresistant AML cells,
which may influence mitosis, polarity,
intracellular transport, and adhesion

33349623

2020

29

Global

Early FLT3 inhibitor-resistant cells depend
upon AURKB and undergo metabolic
reprogramming versus late resistant cells that
expand preexisting NRAS mutant subclones

34171263

2021

37

N=252

Global, phospho

Identification of a proteomic subtype of AML
characterized by high expression of
mitochondrial proteins (Mito-AML) and poor
outcome

35245447

2022

28

Global

Gilteritinib found to synergize with venetoclax,
and proteomics revealed increased FLT3
wild-type signaling in specimens with low in
vitro response to the currently used
venetoclax-azacitidine combination

35857899

2022

35

Global, phospho

Orthogonal validation of deep-scale proteome
and phosphoproteome database from
representative AML patients

35895896

2022

30
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Table 1 (Continued)

Patient Protein data
Cancer type | cohort size type(s) Biological insights PMID | Year |Reference
N=38 Global, phospho | Proteomic and phosphoproteomic signatures 35896960 |2022 39
have potential in stratifying patient drug
sensitivities for AML
N=20 Global, phospho | Primary AML phosphoproteomics reveals 35947955 [2022 53
rationale for targeting AKT in the context of
functional p53 to overcome selinexor
resistance
N=11 Global, phospho | AKT-mTORC1-ULKI-dependent autophagy | 35999260 |2022 38
was identified as a dominant resistance
mechanism to on-target FL'T'3 inhibitor
therapy
Bile duct N=262 Global, phospho | TP53 and KRAS contribute to metastasis, 34971568 |2022 67
FGFR?2 fusions activate Rho GTPase pathway,
and SLC16A3 and HKDC1 are potential
prognostic biomarkers
Brain N=218 Global, phospho | Similarities between some craniopharyngioma | 33242424 | 2020 18
pediatric and low-grade glioma with BRAF V600E
mutations
N=99 Global, phospho, | RTKs, PTPN1, and PLCG1 signaling hubs; 33577785 | 2021 17
GBM acetyl, different immune subtypes
metabolomics
Breast N =105 Global, phospho | CDK12, PAK1, PTK2, RIPK2, and TLK2 27251275 | 2016 8
N=122 Global, phospho, | STATI and IFNG potential markers for 33212010 |2020 11
acetyl immunotherapy; Rb protein phosphorylation
correlated with response to CDK4/6
Colorectal N=095 Global HNF4A, SRC, and TOMM34 25043054 | 2014 7
N=110 Global, phospho | Rb phosphorylation and glycolysis dependence | 31031003 | 2019 10
Endometrial | N =95 Global, phospho, | Protein signatures correlated with histologic 32059776 |2020 14
acetyl subtypes; regulation of EMT by QK1
Gastric N=280 Global, phospho, | Four subtypes associated with proliferation, 30645970 2019 | 63
glyco immune response, metabolism, and invasion
HNSCC N=50 Global Polymorphism in APOBECS3 and increased 28878238 | 2017 | 62
expression of A3A has clinical prognostic
relevance
N=108 Global, phospho | Protein expression of EGFR ligands is a more 33417831 | 2021 19
predictive response to EGFR therapy;
HPV-negative HNSCC is immune cold
Kidney N=103 Global, phospho | Hypoxia, glycolysis, EMT, and inflammation 31675502 {2019 13
with downregulation of oxidative
phosphorylation
N=213 Global, phospho, | Molecular features correlated with histologic 36563681 |2023 61
glyco, subtypes
metabolomics
(Continued)
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Table 1 (Continued)

Patient Protein data
Cancer type | cohort size type(s) Biological insights PMID | Year |Reference
Liver N=159 Global, phospho | Three proteomic subgroups; PYCR2 and 31585088 |2019 64
ADHI1A biomarkers; CTNNBI1 and TP53
mutations associated with glycolysis and cell
proliferation
Lung N=110, Global, phospho, | SOS1 in KRAS mutant; PTPN11 in ALK and 32649874 | 2020 15
LUAD acetyl EGFR mutant; STKII mutations with
immune-cold tumors
N=103 Global, phospho | APOBEC signature in younger women; 32649875 (2020 | 65
early-stage EGFR-mutated disease identified
by proteomics
N =108, Global, phospho, | Unique subtypes associated with EMT and 34358469 |2021 16
LSCC acetyl, phosphorylation signatures; immune
ubiquityl signatures
Melanoma N =505 Global, phospho, | Proteomic features not predicted by genome 34323402 2021 | 66
acetyl sequencing alone
Multiple N=5 Global, phospho | CDKG resistance signature that included 35197447 (2022 | 43
myeloma TRIP13 and RRM1; CDKG6 inhibitors
synergistic with immunomodulatory drugs
Ovarian N=174 Global, phospho, | Proteins enriched in cell motility, invasion, and | 27372738 | 2016 | 9
acetyl immune regulation
N=283 Global, phospho | Mitotic and replicative stress 32529193 {2020 12
N=83 Global, glyco Tumor-specific glycosylation 33086064 |2020 | 59
Pancreas N=140 Global, phospho, | Glycoprotein expression and KRAS mutations; | 34534465 | 2021 60
glyco identification of immune-cold PDAC tumors
Prostate N=38 Global MicroRNA target correlations identified at 29563510 | 2018 167
protein, but not messenger RNA, level;
metabolic shifts in the citric acid cycle during
progression
N=17 Global Decreased REST and TP53 leads to 30274982 | 2019 180
neuroendocrine features
N=76 Global, acetyl Five proteomic subtypes; prognostic biomarkers | 30889379 | 2019 181

combining genomic, epigenomic, and
proteomic data outperform single data type

These studies not only provided biological insights but also established common statistical methodologies to systematically process the amassing omics

data sets. Full data sets (with accession numbers) and information of patient cohorts are available online and can be accessed via the provided PMID and
reference numbers. Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CDXK, cyclin-dependent kinase; CTCE, CCCTC-
binding factor; EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; FGFR2, fibroblast growth factor receptor 2; GBM,

glioblastoma multiforme; HNSCC, head and neck squamous cell carcinoma; HPV, human papilloma virus; KSEA, kinase-substrate enrichment analysis;

LSC, leukemic stem cell; LSCC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; PDAC, pancreatic ductal carcinoma; PKC, protein kinase
C; PLCGI, phospholipase C gamma 1; PMID, PubMed ID; PTPN, protein tyrosine phosphatase non-receptor type 1; RRMI, ribonucleotide reductase
catalytic subunit M1; RTK, receptor tyrosine kinase; TRIP13, thyroid hormone receptor interactor 13.

200 publications, that demonstrate the additional dimensions of cancer biology revealed by

proteomic and phosphoproteomic analysis of solid and liquid tumors (Figure 1, Table 1). Novel
insights from proteomics and phosphoproteomics that have potential therapeutic implications are
highlighted. Studies focused on mapping the proteogenomic landscape of colorectal (7), breast

(8), and ovarian (9) cancers were among the early efforts that enabled integration and aggregation
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Figure 1

Chalk talk highlighting the multiomics approach our group has taken to reveal the underlying biology of solid and liquid tumors. New
mechanistic insights and therapeutic targets have emerged from our global and phosphoproteomic profiling of ovarian carcinoma (12)
and AML (37). Abbreviation: AML, acute myeloid leukemia.

of proteomic and phosphoproteomic analyses with corresponding genomic and transcriptomic
data sets.

Zhang et al. (7) performed proteomics on 95 colorectal cancer (CRC) patient samples that
were previously annotated through the TCGA. Integration of CNAs with transcriptomic and pro-
teomic analyses uncovered many hot spots with potential driver alterations that could drive pheno-
typic perturbations. Among these, the 20q amplicon was associated with the largest global changes
at the messenger RNA (mRNA) and protein levels, revealing key driver genes such as HNF44,
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SRC, and TOMM34 that were previously underappreciated in CRC pathogenesis (7). Proteoge-
nomic profiling of 110 prospective CRC samples led to the discovery of additional biomarkers,
Rb phosphorylation, and dependence on glycolysis, which promote tumorigenesis (10).

Proteogenomic characterization of 77 patients with breast cancer provided a more complete
picture of how previously TCGA-annotated CNAs (5q) and mutations (7P53, PIK3CA) manifest
at the protein level (8). In addition to ERBB2, phosphoproteomics identified other highly phos-
phorylated kinases—cyclin-dependent kinase (CDK)12, PAK1, PTK2, RIPK2, and TLK2—that
also contribute to the luminal tumor phenotype. Proteomics captured key protein pathways to
distinguish breast cancer subtypes (particularly the stromal subtype) that are not reflected at the
mRNA level (8). A more recent study integrated multiomics data from 122 treatment-naive pri-
mary breast cancer samples (11). Deconvolution of mRNA and proteomic signatures indicated that
a subset of luminal breast cancers had an overexpression of immune checkpoint and STAT1/IFNG
genes, suggesting that there is potential for the use of immunotherapy within this setting. The
authors also showed that Rb protein status correlated with response to CDK4/6 inhibition (11).
These studies demonstrate that measuring the proteome is essential in overcoming the bottleneck
that limits the translation of genomics to therapeutic strategies.

Proteomic characterization of 174 ovarian high-grade serous carcinoma (HGSC) patient sam-
ples, which had paired TCGA genomic analyses, demonstrated that proteomic utility is maximized
when combined with genomics (9). One of the hallmarks of HGSC is chromosomal instability, as
revealed by extensive CNAs. Proteins enriched in cell motility, invasion, and immune regulation
were associated with CNAs and could be used to predict and stratify overall patient survival (9).
A subsequent study from our laboratory extended proteogenomic analysis on 83 patient samples,
implicating the activation of mitotic kinases and replicative stress as markers of ovarian HGSC
12).

Proteogenomic profiling of 103 clear cell renal cell carcinoma patient samples revised the
current tumor classification to include immune-based subtyping, information that could not be
gleaned from transcriptomics alone (13). Upregulation of proteomic signatures associated with
hypoxia, glycolysis, epithelial-mesenchymal transition (EMT), and inflammation was observed
alongside a stark downregulation in oxidative phosphorylation.

CPTAC studied 95 endometrial carcinomas at genomic, transcriptomic, and proteomic levels
and found distinct protein signatures associated with histologic subtypes (14). They found a novel
regulation of EM'T by QKI1, circular RNA, and ESRP2, which was associated with progressive
disease. Although higher tumor mutation burden (TMB) is associated with better response in
many tumors, their analysis found low levels of antigen-processing machinery (APM) in some
TMB-high tumors, potentially limiting the efficacy of immunotherapy and suggesting that APM
should be considered in future clinical trials.

Recent advances with targeted inhibitors and immunotherapy have begun to improve survival
for lung adenocarcinoma (LUAD). CPTAC investigators studied 110 paired LUAD tumors with
normal adjacent tissue using multiomics (15). Phosphoproteomics identified targetable kinases for
combination therapy: SOS1 in KRAS-mutant LUAD and PTPNI11 in ALK- and EGFR-mutant
LUAD, the latter of which is being tested in clinical trials. Immunotherapy markers were ex-
plored as well, and an association of STKI11 mutations with immune-cold tumors was noted.
Unlike LUAD, lung squamous cell carcinoma (LSCC) has not benefitted from targeted ther-
apy and remains difficult to treat. Proteogenomic characterization of 108 LSCC samples revealed
unique subtypes associated with EMT and phosphorylation signatures (16). Similar to CRC (10)
and breast cancer (11), Rb protein amount and phosphorylation were suggested as markers for
response to CDK4/6 inhibitors based upon proteomic data, and immune profiling revealed a
spectrum of immune-cold to immune-hot tumors to potentially guide immunotherapy.
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Glioblastoma multiforme (GBM) is the most aggressive brain malignancy and has a very
high mortality. Ninety-nine treatment-naive GBM tumors were analyzed by proteogenomics,
metabolomics, and single-nuclei RNA sequencing (17). Phosphoproteomics identified increased
activity of receptor tyrosine kinases (RTKs), protein tyrosine phosphatase non-receptor type 1
(PTPN1), and phospholipase C gamma 1 (PLCG1) signaling hubs, suggesting a potential ther-
apeutic option. GBM could also be characterized into different immune subtypes, which could
potentially be used in selecting immunotherapy. In contrast to GBM, pediatric brain tumors
are both more rare and diverse. A proteogenomic analysis of 218 pediatric brain tumors was
used to identify unique and common features for this rare disease (18). In particular, proteomics
and phosphoproteomics were able to identify striking similarities between subgroups of cranio-
pharyngioma and low-grade glioma tumors with BRAF V600E mutations, highlighting a potential
therapeutic approach.

Pancreatic ductal carcinoma (PDAC) is a lethal cancer and difficult to treat, due to both the
difficulty in resecting the pancreas and the lack of response to chemotherapy. Multiomic analysis
of 140 PDAC samples and corresponding healthy tissue samples identified distinct glycoprotein
expression associated with some KRAS mutations but not others, revealing a complexity beyond
the simple presence of KRAS mutations. There was also an association of reduced endothelial
cells, increased vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF) in
immune-cold PDAC tumors.

Head and neck squamous cell carcinoma (HNSCC) can be broadly classified into human pa-
pilloma virus (HPV) associated and HPV negative, with the latter having a much worse prognosis.
Multiomic approaches were used to characterize 108 HPV-negative HNSCC tumors and matched
normal adjacent tissue samples (19). Epidermal growth factor receptor (EGFR) is a known tar-
get in HNSCC, but amplification does not always predict response. Huang et al. (19) found that
overexpression of EGFR ligands as measured by proteomics was more predictive of both EGFR
activity and clinical response to EGFR antibodies such as cetuximab, which block ligand binding.
With respect to immunotherapy, HPV-negative HNSCC had low levels of antigen presentation,
leading to immune-cold tumors. Taken together, proteomic analyses have identified novel ther-
apeutic targets, informed downstream validation experiments, and provided a detailed landscape
for solid tumors.

Liquid Tumors

Acute myeloid leukemia (AML) is difficult to treat and has an overall five-year survival rate of
less than 25% (20). Cytotoxic chemotherapy has remained the primary treatment for decades,
with minimal improvement in patient outcomes. Recent attempts to create small-molecule kinase
inhibitors, similar to imatinib (1, 21), have met with limited success, owing to the heterogeneity
of AML (22, 23).

A number of studies have evaluated the genomic landscape of AML with respect to mutational
and drug response profiling (22, 24-26). However, the underlying biology connecting genomic
aberrations with drug response is not easily apparent; proteomic analyses have helped bridge this
gap (27). Proteomic profiling has identified a novel Mito-AML (28) and age-dependent alterations
contributing to chemoresistance (29). Posttranscriptionally regulated proteins have been identi-
fied in genetically defined subsets (e.g., KDM4 isoforms in IDH1/2 mutation—positive patients or
elevated nuclear importins in NPM1-mutated AML patients) (30). These examples underscore
the ability of proteomic data to provide novel mechanistic insights.

Kinase-substrate enrichment analysis (KSEA), which evaluates mass spectrometry (MS)-based
phosphoproteomic data and infers kinase and associated network activity, was originally devel-
oped using AML models (31). KSEA identified phosphatidyl inositol 3 kinase (PI3K), casein
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kinases, CDKs, and p21-activated kinases as the kinases that are most frequently enriched in
AML. Similarly, clustering of differentiation marker expression has been used to infer remodeled
AML kinase-signaling networks during differentiation, identifying increased activity of prosur-
vival pathways regulated by MAP2K1 and protein kinase C (PKC) (32). Based on a study of
primary patient samples, a phospho-signature containing seven validated peptides was found to
predict FLT3 inhibitor response in patients with 78% accuracy (33). Selected reaction monitoring
(SRM) or immunological detection assays of peptide signatures would enable clinical testing of
biopsies. In the future, predictive phospho-signatures could facilitate personalized drug selection
or real-time monitoring to enable early detection of drug resistance.

MS-based proteomic approaches mapped the effects of targeted agents on AML cell lines and
primary samples and identified key pathways affected by drug treatment (33-35) and mutational
status (36) or targetable pathways associated with drug resistance (37, 38). We previously used
computational approaches to integrate proteomic profiling with genomics, transcriptomics, and
small-molecule inhibitor sensitivity data sets to create models that recapitulate patient biology,
which can be leveraged to prioritize treatment strategies 37, 39).

Pluripotent self-renewing leukemic stem cells (LSCs) must be fully characterized to develop
therapies that eradicate residual disease and achieve long-term remissions. MS analyses have re-
vealed LSC-specific changes in oxidative phosphorylation, adhesion molecule composition, and
RINA processing properties (40). Similar findings were uncovered from in-depth proteomic studies
performed on 47 adults and 22 pediatric AML samples taken throughout disease progression (41).
Mitochondrial ribosomal protein and subunits of the respiratory chain complex were enriched at
relapse, suggesting a role for altered energy metabolism.

Proteogenomic analyses on ETV6/RUNXI-positive, hyperdiploid pediatric acute lym-
phoblastic leukemia samples showed underexpression of CCCTC-binding factor (CTCF) and
cohesins, master regulators of chromatin architecture, suggesting a potential mechanism for
dysregulating gene expression (42).

To uncover nongenetic mechanisms of multiple myeloma lenalidomide resistance, global tan-
dem mass tag ('M'T)-based proteomic and phosphoproteomic analyses were performed on paired
pretreatment and relapsed samples. A CDK6-governed resistance signature was uncovered, which
included high-risk factors such as thyroid hormone receptor interactor 13 (TRIP13) and ribonu-
cleotide reductase catalytic subunit M1 (RRM1) and identified synergy between CDK inhibition
and lenalidomide treatment (43). Proteomic analyses performed on liquid tumors have uncovered
numerous classification and response signatures with translational value. Proteomic-based tests
could be leveraged in the future to identify targeted therapies for individual patients, to monitor
drug resistance, and to detect disease recurrence.

PROTEOMIC ANALYSIS OF BLOOD AND BODY FLUIDS

In clinical laboratory testing, blood or body fluids are most widely used to determine disease di-
agnosis and prognosis. One advantage of liquid malignancies is that blood samples can be easily
collected in the clinic, providing viable cells for downstream proteomic applications. This is par-
ticularly useful for longitudinal analyses to understand response and resistance over the course
of treatment. For example, liquid chromatography—tandem mass spectrometry (LC-MS/MS) was
used to identify changes in global and phosphorylated proteins associated with AML relapse in
41 patients due to the availability of serial patient samples. This study demonstrated that relapse
was associated with increased expression of RNA processing proteins and decreased expression of
V-ATPase proteins. Further, there was an increase in phosphorylation events catalyzed by CDKs
and casein kinase 2 (44, 45). Since these pathways can be targeted therapeutically, this may inform
clinical approaches to identify and target resistance pathways.
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The ability to isolate various cell types from blood samples using flow cytometry also enables
proteomic profiling at a subpopulation level. In a recent study, proteomic characterization was
performed to identify specific vulnerabilities of CD34* LSCs that can be leveraged therapeuti-
cally (40). Similar proteomic analyses were performed on subsets of monocytes, identifying over
5,000 proteins potentially associated with disease processes (46). While the analysis of blood sam-
ples is relatively straightforward, analyzing bone marrow biopsies from leukemia patients is still
necessary to understand the full tumor ecosystem, which encompasses communication between
the leukemic cells and neighboring cells of the marrow microenvironment. We have used pre-
and on-treatment AML bone marrow samples to identify early biomarkers that can be harnessed
to circumvent the development of FL'T'3 drug resistance (37).

While proteomic applications have been readily incorporated into studies of drug resistance
within liquid tumors, this application remains a largely uncharted territory in solid tumors, at least
partially due to the invasive nature of collecting a single biopsy or longitudinal samples. Despite
these challenges, MS-based proteomic strategies have been applied to profile many solid tumors
as discussed above (47).

More recently, proteomic approaches have also been developed to analyze extracellular vesi-
cles (EVs) and body fluids for the presence of disease progression and drug resistance markers.
Proteomic profiling of EVs isolated from Ewing sarcoma cell lines compared to healthy human
plasma led to the discovery of the Ewing sarcoma-specific markers CD99 and nerve growth factor
receptor (NGFR) (48). Parallel analyses of EVs in breast cancer identified subtype-specific bio-
logical processes and molecular pathways, including hyperphosphorylated receptors, kinases, and
defined protein signatures that closely reflect the associated clinical pathophysiology (49).

Examination of body fluids such as urine, saliva, tears (50), and plasma via proteomics has sim-
ilarly yielded the identification of disease biomarkers and precision oncology approaches (47).
Cerebrospinal fluid (CSF) surrounds the brain and spinal cord, providing mechanical and im-
munological protection; however, it is not sampled as often as blood in central nervous system
malignancies as its collection is significantly more invasive. In a recent study, 251 CSF samples
from patients with four types of brain malignancies and healthy individuals were analyzed by pro-
teomic analysis. By integrating CSF data with proteomic analyses of corresponding tumor tissue
and primary glioblastoma cells, CSF biomarkers such as chitinase-3-like protein 1 and glial fibril-
lary acidic protein were identified (51). Despite challenges in sample accessibility and collection,
proteomic characterization of a plethora of body fluids has fueled the discovery of new biomarkers
and therapeutic targets.

Novel methods in single-cell MS-based profiling (52) and subcellular or EV proteomic
evaluation (53-56) are also uncovering new biology and pathways for therapeutic targeting. Com-
putational workflows such as SCeptre (Single Cell proteomics readout of expression) have enabled
the normalization of global single-cell MS data from up to 1,000 cells. These new single-cell
techniques can be deployed on bulk or enriched populations of cells, enabling the exploration of
leukemia cell heterogeneity (52). Proteomics performed on subcellular isolates from AML cells
such as plasma membrane (54), the nucleus (53, 55), and EVs (56) have enabled leukemia subclone
tracking by identifying 50 leukemia-enriched plasma membrane proteins (54), helped to identify
novel therapeutic targets such as the nuclear protein S100A4, and supported the evaluation of drug
combinations such as the combination of the nuclear export inhibitor selinexor with the MDM?2
inhibitor nutlin-3a or the AKT inhibitor MK-2206 (53, 55).

Recently, several studies successfully harnessed the power of comparative spatial proteomics
as a discovery tool to unravel disease mechanisms in solid tumors. While spatial proteomics
approaches are difficult to implement in liquid tumors, this approach can be used for func-
tional identification of rare tumors, tumor-infiltrating immune cells, and dissection of cellular
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mechanisms (57). As an example, integration of spatial proteomics with traditional phospho-
proteomics uncovered that fibroblast growth factor receptor 2 beta (FGFR2p) stimulated by its
ligand fibroblast growth factor 10 (FGF10) activates mammalian target of rapamycin (mTOR)-
dependent signaling and ULKI1 in recycling endosomes, resulting in suppression of autophagy
and cell survival (58). Going forward, the improvement of single-cell proteomics along with
spatial proteomics can significantly deepen our understanding of disease biology, particularly
when combined with drug response and clinical outcome data.

MASS SPECTROMETRY TECHNOLOGIES AND ADVANCES

Large-scale proteomic tumor characterization typically utilizes LC-MS/MS-based platforms with
offline fractionation/concatenation for comprehensive quantitative analysis of proteins and PTMs
(7-19, 59-67). Isobaric labeling significantly improves analysis throughput by barcoding individ-
ual samples for multiplexed MS analysis, and by implementing a common reference strategy, it
also allows samples in a large cohort to be effectively quantified (8, 9). The CPTAC and ICPC
studies quickly improved from the earlier 4-plex iTRAQ (68) (isobaric tags for relative and abso-
lute quantitation) analysis to 11-plex TMT (69) (tandem mass tag) or 16-plex TMT (70) analysis.
Further improvements are expected based on the new 18-plex TMT (71) and other even higher
multiplexing (72) methods. Besides isobaric labeling and data-dependent acquisition-based work-
flows, with significant recent technical advances, data-independent acquisition (DIA) (73) is also
becoming a viable alternative for comprehensive, single-shot analysis of proteins and PTMs such
as phosphorylation and glycosylation (61). A comparison of the most relevant analysis methods
and their relative strengths and weaknesses is shown in Figure 2.

After the initial proof-of-concept proteogenomic studies (7, 62), simultaneous analysis of pro-
teins and phosphorylation became the baseline to gain critical insights into signaling network
activities in cancer. In addition to increasing throughput, isobaric labeling also enables integrated
protein and PTM analysis (i.e., from exactly the same sample) while significantly reducing the
sample input requirement for individual samples. The latter has important implications for the
effective utilization of size-limited clinical samples because comprehensive analysis of PTMs,
generally present at substoichiometric levels, requires enrichment from large amounts of sample.
More PTMs can be added to a basic integrated workflow (74) where 5% of TMT-labeled peptides
are used for analysis of unmodified peptides and 95 % of peptides are subjected to phosphopeptide
enrichment using immobilized metal affinity chromatography (IMAC). For example, the enrich-
ment of ubiquityl peptides (75) and tyrosine-phosphorylated peptides (76) using antibody-based
methods can be added before IMAC; acetyl peptides (11, 14, 16, 17) and glycosylated peptides (60)
can be enriched from IMAC flow-through using antibody- and chromatography-based methods,
respectively. Additionally, analysis of the immunopeptidome (77) may be added to the beginning
of this integrated workflow for cancer types harboring significant mutations. Discoveries made
on protein and PTM abundance changes can be confirmed in additional cohorts using targeted
proteomics methods (78) such as SRM (79) and parallel reaction monitoring (80-82).

The proteomics workflows mentioned above enable deep protein and PTM analysis; how-
ever, they necessitate bulk sample processing, which precludes investigating the role of different
cell populations and tumor heterogeneity in disease (83, 84). Recent technological improvements
have enabled extension of MS-based proteomics to spatially resolved (85-93), cell type—resolved
(91, 94, 95), and single-cell (52, 96-100) measurements. Cell types or regions of interest can be
isolated using cell sorting (101-103) or laser capture microdissection (104, 105) and collected into
microwell plates for further processing or coupled directly to recently developed chip-based plat-
forms (106-108). The samples are then prepared with optimized protocols aimed at minimizing
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Radar plots comparing the analytical figures of merit for proteomics modes. (#) Targeted approaches include selected reaction
monitoring (SRM) and internal standard triggered—parallel reaction monitoring (IS-PRM). (§) Discovery/global approaches include
tandem mass tag with serial posttranslational modification enrichment (TMT-PTM) and data-independent acquisition (DIA).

(¢) Spatial and single-cell approaches. Protein coverage refers to the number of proteins that can be quantified in an experiment.
Dynamic range is defined as the concentration range of proteins that can be accurately quantified. Reproducibility is the coefficient of
variance of replicate analyses. Ease of implementation indicates how accessible the methodology is to general practitioners. Sample
throughput is the number of patient samples that can be analyzed per unit time. Input requirement is defined as the amount of
specimen needed for analysis with single-cell methods having the smallest sample requirement.

sample losses to surfaces and optimizing digestion kinetics at low sample concentrations, for exam-
ple, nanoliter droplet processing (109, 110), advanced microfluidic devices (111), and microplate
approaches (99, 112).

After preparation, samples can be analyzed by either label-free quantification (LFQ) or iso-
baric labeling quantification approaches. For isobaric labeling, employing a carrier approach,
which involves leveraging a TMT channel with significantly higher loading of peptides with sim-
ilar composition to the study samples, has greatly improved sensitivity (100, 113), albeit at the
cost of deteriorated quantitation (114-116). LFQ provides more accurate quantification; how-
ever, without sample multiplexing, less material is available for analysis, which requires further
workflow customization (98, 99, 117, 118). The maturation of DIA algorithms (119-121) and
analysis pipelines has resulted in significant improvements in peptide identification efficiency and
reduced missingness even when the signal is limited (111, 122). Another emerging technology that

466 Foshi et al.



promises to significantly improve LFQ sensitivity is the integration of ion mobility separations
between the LC and the MS (99, 123-125).

Currently, applications in the spatial and single-cell domains have been largely limited to
global proteomics measurements, but efforts aimed at the miniaturization of PTM enrichment
are well underway (126, 127). Perhaps even more exciting, advances in nanodroplet processing
platforms when combined with ion mobility have produced the first demonstration of proteomics
and transcriptomics from the same single cell, opening the possibility of single-cell proteogenomic
measurements (128).

COMPUTATIONAL DATA INTEGRATION AND BIOINFORMATIC
CHALLENGES

The integration and interpretation of proteogenomic measurements, and ultimately, the test of
their value, comes from the development of novel computational approaches. Data integration
is first challenged by the fact that data exist on varying scales—genetic mutations are often as-
signed as discrete types of calls depending on the type of change in the DNA sequence (129, 130),
while transcript measurements represent absolute changes in the mRINA relative to the length
of the transcript and the depth of sequencing (131), and protein measurements are log ratio val-
ues representing the amount of sample measured relative to a standard control (132). Methods to
overcome these challenges depend on the type of analysis at hand: Namely, nonnegative matrix
factorization helps identify clusters of samples that behave similarly across scales (133-135) using
all types of omic data, differential expression analyses can be performed between experimental
conditions, and overlap between those features compared. Even after normalization, omic mea-
surements do not agree as often as expected, as genetic mutations can fail to confer changes in
expression (136, 137), changes in RNA expression may not result in actual protein changes (137,
138), and PTMs can be altered without changes in protein levels (139). As such, it is necessary
to evaluate all omics measurements in an integrated fashion. These integrated approaches map
omics measurements or changes to published data by mapping changes directly to the transcrip-
tomic (140), proteomic (141), or phosphoproteomic networks (142, 143) or by comparing changes
to lists of genes that represent pathways (144) or signatures of response. These approaches have
enabled the study of proteogenomics in cancer to identify findings that are greater than the sum
of their parts—an integrative and aggregative approach.

Despite these advancements in computational analysis tools, proteomics introduces a unique
computational challenge to precision medicine. Most precision medicine-based approaches rely
on large patient cohorts to identify mutated genes that signify a change in prognosis or treat-
ment response. In gene expression studies, this approach has expanded beyond single genes to
identify signatures or groups of transcripts that can be used to infer patient response (145, 146).
In proteomics, however, identification of signatures or biomarkers is stymied by (#) the relative
quantitative nature of MS, requiring shared reference samples (147, 148); (b) increased difficulty
of detection for some proteins/peptides, resulting in potential biomarkers being missed (149); and
(¢) diversity in sample processing that causes large batch effects between downstream analyses.
Experimental techniques such as sample pooling, common reference samples, and MS undersam-
pling can lessen the impact of missingness in these data sets caused by absent peptides/proteins
(150-152), but many bioinformatic challenges remain due to the numerous steps required for data
processing and optimization.

Batch effects in any high-throughput computational workflow stem from the numerous steps
in the data analysis pipeline, each of which can be done by a handful of tools that each give differ-
ent results. These steps, summarized in Figure 3, include (#) peak selection (153), () searching
databases for peptide matches (154, 155), (c) mapping peptides to proteins, (d) filtering for false
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discovery, and (¢) imputation of missing data (156-159). Since each step can be applied with dif-
ferent parameters, or with entirely different databases, the pooling of data across patient cohorts
needed for precision medicine requires accurate accounting of the tools and data utilized.

Many tools have been developed to enable provenance across methodological variables.
These tools break down into five categories, independently colored in Figure 3, and include
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(#) standardized data repositories with open application programming interfaces for data retrieval
such as PRIDE (160), ProteomeXchange (161), Figshare (https://figshare.com/), and Synapse
(https://www.synapse.org/); (b) open-source code repositories such as GitHub, GitLab, or Bit-
bucket that enable sharing of methods; (c) continuous integration tools that automate container
building and check for quality; (d) container registries that store versioned images to run the tools
such as Docker Hub and BioContainers; and () scientific workflow repositories that enable storage
of the precise steps that run the necessary tools in the necessary order using languages such as the
common workflow language (162), Nextflow (163), and the workflow description language (163).
With these tools in place, scientists need only the standardized parameter files and the workflow
language/container tools installed on their machine to run analyses. Proteomics analysis frame-
works have only scratched the surface of scientific workflow development (164, 165), but as these
methods become more popular, larger cohorts can be harmonized for precision medicine analyses
(166).

CONCLUSIONS AND FUTURE DIRECTIONS

MS analyses of primary tumors have clearly been instrumental in major discoveries that have
impacted our understanding of cancer biology, diagnostic precision, prognostication, and devel-
opment of new therapeutic strategies (Figure 1, Table 1). Proteogenomics data have identified
features of tumors that were undiscernible through genetic or transcriptomic analyses, and inte-
gration of all data types has led to additional discoveries, following the analytical process outlined
in Figure 4. Key biological insights that have been consistently observed following the applica-
tion of proteogenomics to multiple tumor types include () the addition of phosphoproteomics,
which provided a more detailed characterization of downstream signaling pathways beyond the
driving mutation, identifying potential alternative therapeutic targets (8, 11, 14, 15, 17, 19, 36,
37); (b) stratification of tumors into immune-hot and immune-cold subtypes, which provided in-
sights into factors that potentially modify the response to immunotherapy (16, 17, 43, 60, 63); and
(¢) identification of consistently discordant mRNA-protein pairs, which implicated translational
regulation and protein degradation as important components of cancer biology (7-17, 167).

To further evolve the field of proteogenomics, more advances will be needed in several key
areas.

Scaling Down: Miniaturizing Inputs

It will be important to harness and develop new technologies that facilitate testing of smaller
amounts of input material (168). This is critical for several important reasons. First, primary tu-
mors are often difficult to obtain and material is limited, especially in disease relapse stages for
which there is a critical dearth of knowledge. Second, tumors are highly heterogeneous, and it
is important to study each cellular component. Fractionation of these cell subpopulations often
yields scarce numbers of cells for analysis. Finally, the capacity to study biology at a single-cell or

near-single-cell level is pushing new frontiers in nucleic acid sequencing and promises to do the
same for proteomics (including PTMs) (126, 169, 170) and/or metabolomics (171-173).

Scaling Up: Multiplexing

As noted above, the capacity for multiplexing samples has and continues to improve (71, 174-176).
This has come with great benefits for reducing costs and minimizing batch effects. In addition to
the intratumoral heterogeneity noted above, there is also extreme heterogeneity across patients. As
such, it is critical to develop multiplexing techniques and economies of scale to enable proteomic
analysis of larger numbers of patient tumors. In this way, identification of proteomic patterns of
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Leveraging proteogenomics in precision medicine. (76p) Sample procurement requires proper processing of
clinical samples. (Right) Selection of mass spectrometry technology requires balancing trade-offs from each
technology. (Left) Mapping proteogenomic measurements to clinical outcomes requires assembling diverse
bioinformatic tools.

tumor groups with less common clinical or genetic profiles, which collectively encompass large
proportions of tumors, will be enabled. In addition, the breadth of PTM analytes that are mea-
sured by MS has increased dramatically (77, 177, 178), and it will be important to continue this
trajectory to better understand the biology and clinical ramifications of these important protein
modifications.

Dynamic Measurements

Nearly all proteomic data collection to date has been performed at static, baseline conditions.
While this is a critical first step toward establishing the proteomic landscape of each tumor, it is
also clear that tumors respond to therapeutic stress in diverse ways. Hence, it will only be through
longitudinal and dose-dependent testing of dynamic changes that occur after patients have been
treated with therapeutic regimens that we will be able to fully harness proteogenomic data for
diagnostic, prognostic, and therapeutic deliverables (179). It may be possible to obtain some of this
dynamic information through short-term, ex vivo exposure of primary tumor specimens to panels
of agents, which will offer information on larger numbers of potential therapeutics than would
be clinically feasible. The increasing sensitivity and throughput of MS proteomics approaches
discussed above will be critical to accomplishing this goal.
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Translating the Work

The proteogenomic analysis of diverse tumor types has yielded a wealth of findings, many of
which point to potential new therapeutic strategies and/or new mechanistic insights that should
be further pursued. Proteogenomics itself may also offer new diagnostic platforms to help guide
when and where therapies are deployed. Continued progress in these areas will be essential for
the ultimate fulfillment of the translational promise of proteogenomics.

Collectively, a great deal has been accomplished and learned through proteogenomic analyses
of primary tumors. Through continued efforts along the same lines as well as expansion into the
areas noted above, the future looks bright for proteogenomics to continue having a major impact
on our knowledge of tumor biology and clinical care of patients with cancer.
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