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Abstract

Photolyase is a flavin photoenzyme that repairs two DNA base damage prod-
ucts induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and
6-4 photoproducts. With femtosecond spectroscopy and site-directed muta-
genesis, investigators have recently made significant advances in our under-
standing of UV-damaged DNA repair, and the entire enzymatic dynamics
can now be mapped out in real time. For dimer repair, six elementary steps
have been characterized, including three electron transfer reactions and two
bond-breaking processes, and their reaction times have been determined. A
unique electron-tunneling pathway was identified, and the critical residues
in modulating the repair function at the active site were determined. The
dynamic synergy between the elementary reactions for maintaining high
repair efficiency was elucidated, and the biological nature of the flavin ac-
tive state was uncovered. For 6-4 photoproduct repair, a proton-coupled
electron transfer repair mechanism has been revealed. The elucidation of
electron transfer mechanisms and two repair photocycles is significant and
provides a molecular basis for future practical applications, such as in rational
drug design for curing skin cancer.
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1. INTRODUCTION

The detrimental effect of ultraviolet (UV) radiation in sunlight is that it can cause DNA damage
by inducing the formation of a cyclobutane pyrimidine dimer (CPD; ∼80% of the total damage)
or a pyrimidine-pyrimidone (6-4) photoproduct (6-4PP; ∼20%) (Figure 1a) (1, 2). In a CPD,
the two nearby thymine bases in the same DNA strand covalently connect to form a cyclobutane
ring. Conversely, a 6-4PP has a complicated chemical structure in which the oxygen and hydrogen
atoms in one base migrate to another base, and the two bases are covalently linked. Both UV pho-
toproducts can lead to toxic mutagenesis, cell apoptosis, and even skin cancer (3, 4). Photolyases, a
class of flavoproteins and photoenzymes in nature, repair those DNA lesions upon the absorption
of blue light (Figure 1b) (5–7). Two types of photolyases with similar primary sequences and
folding architectures (Figure 1c,d ) specifically repair the two photoproducts, respectively. Both
photolyases contain two noncovalently bound chromophores: One is a fully reduced flavin adenine
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Figure 1
(a) Chemical structures of two UV-induced DNA photolesions. (b) Absorption spectra of four redox states of flavin adenine
dinucleotide (FAD) and their corresponding structures. (c) Complex X-ray structure of Anacystis nidulans photolyase and DNA with an
antenna molecule [8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF) or methenyltetrahydrofolate (MTHF) in Escherichia coli
cyclobutane pyrimidine dimer (CPD) photolyase; cyan], a catalytic cofactor (FADH−; green), and a repaired photoproduct of the
thymine dimer ( yellow). (d ) Complex X-ray structure of Drosophila melanogaster (6-4) photolyase and DNA with a light-harvesting
antenna chromophore (8-HDF; cyan), a catalytic cofactor (FADH−; green), and a (6-4) photoproduct (6-4PP; yellow). Both the thymine
dimer and 6-4PP are flipped out of the DNA and inserted into the active site.
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dinucleotide (FADH−) molecule as the active cofactor (Figure 1b) (8, 9), and the other is either
folate or 5-deazariboflavin as an antenna pigment (10, 11).

Photolyases have been extensively characterized both biochemically and structurally (7, 12,
13). Various biochemical studies were well reviewed by Sancar (7) in 2003, and recent structural
characterizations have been summarized by Essen (12). Significant advances in the past decade have
been made by solving the complex structures of photolyases with substrates (14–19). The earlier
structure had an unusual U-shape folded configuration of the FADH− cofactor at the bottom
of the active sites (20), and recent complex structures demonstrated that the adenine moiety
lies between the isoalloxazine ring and the substrates at van der Waals distances and that the
photolesions flip out of the double-stranded DNA and intrude into the active sites of photolyases
with bent DNA structures (14, 19) (Figure 1b). Stuchebrukhov and colleagues (21) predicted
such a complex configuration early on by using computational simulations before determining
the X-ray structures. The repair mechanism of CPD lesions had been proposed and examined
in the past few decades (7, 22, 23), but a critical understanding of the enzymatic dynamics of
the entire repair process was lacking. In an early attempt in 1997, Michel-Beyerle and colleagues
(24) used 100-ps temporal resolution to beautifully observe electron injection from the excited
cofactor to the substrate. In 2003, MacFarlane & Stanley (25) used 850-fs resolution to clearly show
the formation of the repaired thymine product. However, the overall repair dynamics remained
unknown, and the entire mechanism still was not determined. For a 6-4PP lesion, several repair
mechanisms by photolyase were hypothesized and examined (19, 26–29) but remained elusive
because of experimental difficulty and reaction complexity.

In 2005, a major advance involved the direct observation of a cyclic electron transfer (ET) cat-
alytic reaction for CPD repair with femtosecond-resolved spectroscopy (30). In the past 10 years,
significant breakthroughs have been reported, and the dynamics of damaged DNA repair by pho-
tolyases have been revealed in real time (31–39). We have mapped out the entire dynamic evolution
of the repair process from the initial reactants, to various intermediates, and to final products, with
more than six elementary steps in the catalytic complex reaction at the most fundamental level.
This review summarizes recent discoveries in CPD repair, including the characterization of the
initial nonequilibrium electron injection, the sequential dimer splitting, the electron tunneling
pathways with intervening adenine mediation, the dynamic synergy for high repair efficiency, and
finally the nature of the functional state. For 6-4PP repair, a unique proton-coupled ET mech-
anism involves an initial photon from blue light, a following electron from the cofactor, and a
subsequent proton from the enzyme photolyase to synergistically repair the 6-4PP photolesion
(38). Also included are rapid advances in recent quantum mechanical calculations of various repair
mechanisms (21, 40–44); as such exciting efforts have also been recently reviewed (45, 46), includ-
ing a review article published in this journal in 2014 (46), they are not repeated here. Rather, this
review focuses on recent significant experimental findings.

2. DYNAMICS AND MECHANISMS OF DIMER REPAIR

DNA repair by photolyases can include three photoinduced processes: photoinitiation, photore-
duction, and photorepair. The first process involves light harvesting, with the second chromophore
acting as an antenna pigment to enhance light absorption, especially under dim-light conditions.
The excitation energy is efficiently transferred into the catalytic cofactor. In the second process,
the cofactor is photoreduced in vitro from neutral semiquinone FADH• to anionic hydroquinone
FADH−. Purification of photolyase under aerobic conditions gives FAD and FADH• due to oxy-
gen, and FADH• needs to be converted to FADH− in vitro. The in vivo cofactor is in the FADH−

state (8); thus, the second step is not necessarily occurring in the biological cell because of the low
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oxygen concentration (9). The third process involves catalytic repair with the cofactor FADH−

either by direct excitation with blue light or through resonance energy transfer from the antenna
molecule. This section summarizes the dynamics of all three photoinduced processes with an
emphasis on the photorepair of biological function.

2.1. Photoinitiation and Resonance Energy Transfer

Photolyases contain the second chromophore of either methenyltetrahydrofolate (MTHF) or
8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF) for light harvesting (10, 11), with some
also containing flavin mononucleotide (FMN) and FAD as a photoantenna (47, 48). Unlike the
nucleotide-like chromophores (e.g., FAD, FMN, and 8-HDF) deeply buried in the N-terminal
α/β domain, the photoantenna MTHF is located in a shallow cleft between the α-helical and α/β
domains and partially sticks out at the enzyme’s surface (Figure 2a). In Escherichia coli photolyase,
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Figure 2
(a) X-ray crystal structure of Escherichia coli photolyase containing an antenna chromophore, methenyltetrahydrofolate (MTHF; cyan),
and a catalytic cofactor (FADH−; green) with a center-to-center distance of 16.8 Å. (b–d ) Femtosecond fluorescence and absorption
transients at three redox states: (b) flavin adenine dinucleotide (FAD), (c) FADH•, and (d ) FADH−. The fluorescence transients (λfl)
reflect the quenching dynamics of the energy donor MTHF∗, and the absorption signals (λpr) mainly reflect the formation and decay
dynamics of the energy acceptor FADH−∗

. (Insets) The spectral overlaps of the MTHF emission spectrum (Em) with the flavin
absorption spectra (Abs) at the three redox states and the orientation factors (κ2) from the experimental results.
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the distance separation between the antenna MTHF and the cofactor flavin is 16.8 Å, and the
mechanism of energy transfer over such a long distance is of the Förster type via a long-range
dipole-dipole interaction. MTHF has a much larger extinction coefficient than does FADH−,
and such energy transfer increases the overall DNA repair efficiency. Early time-resolved studies
reported the quenching dynamics of the excited MTHF in photolyase (49–51). However, because
of the difficulty in measuring the MTHF lifetime in the binding site of photolyase without the
cofactor acceptor, the energy transfer efficiency cannot be accurately calculated and could be er-
roneously estimated (51). We recently screened mutations at the active site and obtained a N341A
mutant of E. coli photolyase so that the flavin cofactor is released from the active site but the MTHF
in the binding site is not affected. With the accurate determination of the excited MTHF lifetime
(2.6 ns), we systematically measured the transfer dynamics in three flavin states of oxidized FAD
(20 ps), neutral semiquinone FADH• (18 ps), and fully reduced anionic hydroquinone FADH−

(170 ps) (Figure 2b–d) (52). Not only were the dynamics of the excited donor MTHF character-
ized, but, more importantly, the product formation of the excited acceptor through the excitation
transfer from MTHF∗ was observed for all three flavin states, confirming the resonance energy
transfer mechanism, including the recently proposed intermolecular coulombic decay mechanism
(53). The resulting energy transfer efficiency to the functional cofactor FADH− is as high as 94%.

All three kinds of energy transfer dynamics follow single exponential behavior, reflecting a
relatively rigid configuration of the energy donor and acceptor (the orientation factor, κ2) and
a constant spectral overlap integral (J) (54), indicating the negligible time-resolved fluorescence
Stokes shifts of the excited MTHF at the binding site (55). With the determined resonance energy
transfer rates and calculated spectral integrals, we obtained κ2 = 1.53, 1.26, and 2.84 for FAD,
FADH•, and FADH−, respectively (Figure 2b–d), and found the optimum structural alignment
for the functional state FADH− over the course of evolution with the largest orientation factor,
although the functional state has the smallest spectral overlap integral (Figure 2d ). Significantly,
the theoretical orientation factors (1.58, 1.29, and 2.23, respectively) from quantum chemical
calculations of the donor and acceptor structures and the transition dipole moments agree perfectly
with the obtained experimental values (Figure 2b–d) (52), further ascertaining the resonance
energy transfer mechanism. Similar theoretical studies have reported a large orientation factor of
1.82 for Anacystis nidulans photolyase with an 8-HDF antenna chromophore (56), and the X-ray
structure gave an estimated value of 1.60 (57). Thus, under physiological conditions, photolyases
adopt the optimized orientation of their photopigments to efficiently convert solar energy to repair
damaged DNA.

2.2. Photoreduction and Intraprotein Electron Transfer

In the past few decades, the photoreduction of FADH• in photolyases has received significant
attention (58–62), although this photoinduced process is not biologically relevant in vivo. Such
studies are important because we need to understand the mechanism of photoreduction in vitro.
Photolyases are also excellent model systems for studying the dynamics of intraprotein ET with
multiple electron tunneling pathways and for understanding the initial signaling state induced by
electron flow in cryptochromes, which are homologous photoreceptors involved in the synchro-
nization of biological clocks (33, 63–71). Extensive characterizations with various site-directed
mutations have identified all possible electron donors in photolyases and determined their ET
timescales (Figure 3) (60, 62). The excited FADH• behaves as an electron sink to draw electron
flow from a series of encircling aromatic molecules from the active site in the center to the protein
surface (Figure 3a). The dominant electron flow follows the conserved tryptophan triad across the
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Figure 3
(a) Electron transfer (ET) networks in a photolyase with all tunneling distances shown. The flavin moiety of flavin adenine dinucleotide
(FAD; red ) behaves as an electron sink to draw electron flow from a series of aromatic molecules. The adenine moiety, W384, and
W382 (light purple) have direct ET with flavin in the first layer, whereas W316 and W359 (blue) form the second layer, having direct
ET with W382. In the third layer, W306 ( purple) is exposed to the protein surface. All other aromatic residues of tryptophan and
tyrosine ( gray) near the ET networks are also shown. (b) Dynamics and timescales of all elementary ET steps for the neutral
semiquinoid state (black) and the oxidized state ( gray). Note that some ET channels may not be active in the semiquinoid state. (c) The
derived reduction potentials of all involved species (black for semiquinone and gray for oxidized). (d ) Two-dimensional plot of the
Franck-Condon (energy) parts of ET rates relative to the free energy (�G0) and reorganization energy (λ) for all electron tunneling
steps with an electronic coupling constant of β = 1.4 Å−1. The charge-recombination steps with the flavin moiety at both redox states
fall in the Marcus inverted ET region (−�G0 > λ), and all other ET reactions fall in the Marcus normal region (−�G0 ≤ λ). The
shaded circles group the same ET processes in the two redox states for comparison of their driving forces and reorganization energies.

different layers of donors with multiple tunneling steps. Figure 3b also shows the photoreduction
of oxidized FAD in E. coli photolyase, providing mechanistic insight into the ET dynamics for the
photoreceptor (and magnetoreceptor) cryptochrome, a similar chemical and structural motif that
exists around the flavin (72–74). We identified 12 elementary ET steps and six ET reaction pairs
and derived a series of reduction potentials for the same aromatic residues (Figure 3c) and lo-
cal reorganization energies (Figure 3d ). These forward ET dynamics occur ultrafast, in less than
150 ps, and the reverse electron flow from the flavin is slow, on the order of nanoseconds, to ensure
a high reduction efficiency. The photolyase exhibits a distinct reduction-potential gradient along
the same aromatic residues with favorable reorganization energies to drive highly unidirectional
electron flow toward the active-site center of FADH• or FAD from the protein surface.

All these ET dynamics on the picosecond timescale in photolyases follow stretched exponen-
tial behavior and are strongly coupled with local protein and solvent relaxations (33, 34, 38, 75,
76). We have carefully measured the active-site solvation dynamics by following the fluorescence
temporal evolution for both CPD and 6-4PP photolyases, and the local relaxations also occur on
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Figure 4
(a,b, top panels) Close-up view of the flavin active site of (a) cyclobutane pyrimidine dimer (CPD) photolyase and (b) the (6-4) photolyase
with the neighboring polar/charged residues and trapped-water molecules within 8 Å from one snapshot of 1-ns molecular dynamics
simulations for each site. (Bottom panels) Corresponding surface maps of the molecular dynamics snapshots, showing the local
topography, chemical property [negative charged residue (red ) and positive charged residue (blue)], and trapped-water molecules at
these sites. (c,d, upper panels) Three-dimensional representation of femtosecond-resolved emission spectra of (c) Escherichia coli
photolyase and (d ) Arabidopsis thaliana (6-4) photolyase along time (picosecond) and emission energy (wave number in cm−1)
coordinates. The intensity is scaled by the color coding. (Lower panels) Snapshots of femtosecond-resolved spectra at three typical delay
times for the two sites with their corresponding steady-state emission spectra. For comparison and clarity, the steady-state emission
peaks are marked by the gray dotted lines to show the spectral peak and shape evolutions.

a similar picosecond timescale (Figure 4) (55), analogous to the hydration (solvation) dynamics
at the surfaces, interfaces, and binding pockets of many proteins (77–82). The derived relaxation
correlation functions of the active sites can be represented by multiple exponential decays, from a
few to hundreds of picoseconds (55). With the Sumi-Marcus two-dimensional ET theory (75) or
other theoretical models (83–85), detailed analyses of ultrafast protein ET provide deep insights
into the local reorganization energies (inner versus outer or solute versus solvent) and the coupling
(or modulation) of the ET tunneling process with protein fluctuations. Such stretched nonequilib-
rium behaviors are general to ultrafast dynamical processes occurring in proteins. When the ET
dynamics are much faster than local protein fluctuations, single exponential behaviors are observed
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again, as demonstrated by the recent observation in flavodoxin (86). The local environment seems
to be frozen on the ET time window, and only its electrostatics contributes to the ET dynamics.

2.3. Photorepair and Intermolecular Electron Transfer

The enzymatic reaction of UV-damaged DNA repair involves many elementary steps. With
femtosecond temporal resolution and single-residue spatial resolution, the entire evolution of the
repair processes has been mapped out by probing the dynamics from all initial reactants, to various
intermediates, and to the final products. Six elementary processes have been revealed, including
three intermolecular ET reactions and two bond-breaking and -making steps. The electron tun-
neling pathways have been determined, and the high repair efficiency has been evaluated. Only
the fully reduced FADH−, not other flavin redox forms, as the active state for biological repair
function has been elucidated.

2.3.1. Nonequilibrium electron injection and sequential dimer splitting. To successfully
map the catalytic evolution of CPD repair, researchers first followed the changes of the flavin redox
states during the repair reaction (Figure 5a) because these flavin species have different absorption
in the visible-light region (Figure 1b); thus, spectral detection is simpler (30). The thymine-
related species of various intermediates and final products have absorption in the UV region.
Figure 5b shows the stretched nonequilibrium dynamics of electron injection from the excited
FADH−∗ to the substrate CPD in 170 ps with a stretched parameter of 0.71 [with Ae−(t/τ )β and the
average time calculated by (τ/β)�(1/β)] and the electron return from the repaired thymine to the
intermediate FADH• in 560 ps to restore the active-state FADH− and close the entire photocycle.
This observation was significant and showed that the entire enzymatic repair occurs ultrafast, in
less than 1 ns, and the measured turnover in milliseconds to seconds (87) was actually masked by
the recognition process.

It is challenging to identify how the anionic thymine dimer breaks after it accepts one electron.
The dimer splitting was completely solved with the use of systematic measurements in the UV
region (Figure 5c) and knowledge of the overall flavin dynamics (34). The two C5–C5′ and C6–C6′

bonds are broken sequentially. The C5–C5′ bond splits repulsively and ultrafast, in less than a few
picoseconds, and the C6–C6′ bond cleavage takes place in 90 ps after the energy redistribution in
the radical intermediate. We have successfully detected the dynamics of the intermediates T−-T
after the first C–C cleavage and T− after complete dimer splitting and the final product formation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 5
(a) A sequential scheme of cyclobutane pyrimidine dimer (CPD) repair by photolyases. It includes the forward electron transfer
(reaction rate kFET) from FADH−∗

to the thymine dimer upon light excitation and the repair channel, including the splitting of two
bonds of C5–C5′ (reaction rate ksp1) and C6–C6′ (reaction rate ksp2) in the thymine dimer with subsequent electron return (reaction
rate kER) after complete ring splitting. Two nonrepair bifurcation steps, including the lifetime emission (reaction rate kLT) and futile
back electron transfer (reaction rate kBET), are shown as well. (b, top panel ) The fluorescence transients at 550 nm, showing the
dynamics of FADH−∗

with and without the substrate thymine dimer. (Middle panel ) The absorption transient probed at 690 nm,
showing a dominant contribution of FADH−∗

decay with a minor signal from FADH•. The inset shows the drastically different
dynamics with and without the CPD substrate. (Bottom panel ) Absorption transients probed at 625 and 510 nm showing both FADH−∗

and the intermediate FADH• dynamics. (c) Femtosecond-resolved transient absorption dynamics of reactants, various intermediates,
and products probed at the visible and UV regions. (Insets) Transient absorption signals probed at 335, 300, 270, and 266 nm,
respectively. These dynamics are systematically fitted by the total flavin-related species (FADH−∗ + FADH• + FADH−; dashed red
line), thymine dimer intermediate T-T− (dashed dark teal line), repaired thymine anion (dashed dark red line), and final thymine products
(dashed dark yellow line).
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of T after the electron return to the cofactor. Such dynamical splitting processes have been
theoretically calculated in a water environment using ab initio molecular dynamics simulations,
and similar ultrafast sequential breakage of the two C–C bonds has also been observed (88, 89).

2.3.2. Repair photocycle and molecular mechanism. Figure 6 shows the complete photocycle
with the local active-site structure. To our knowledge, CPD photolyase is the first enzyme system
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(a) A close-up view of the relative positions of the catalytic cofactor FADH− and the repaired substrate in Anacystis nidulans photolyase
with the electron tunneling pathways in repair. (b) Complete photocycle of cyclobutane pyrimidine dimer (CPD) repair by photolyase.
All resolved elementary steps of CPD (thymine dimer) repair are shown, illustrating the complete repair photocycle on ultrafast
timescales and the elucidated molecular mechanism.

for which the entire catalytic dynamics and functional evolution were mapped out in real time
at the most fundamental level. Six elementary reactions in the catalytic repair were completely
characterized, and the reaction timescales were determined (30, 34). We observed two consecutive
competitions in these elementary steps that make key contributions to the final repair. The first one
is the forward ET from the excited cofactor flavin (FADH−∗ ) to the substrate thymine dimer (CPD)
in an average time of 250 ps relative to the excited-state deactivation process in 1.3 ns. The second
one is the C6–C6′ bond splitting in 90 ps relative to the futile back ET without repair in 2.4 ns.
The C5–C5′ bond splitting dynamics is ultrafast, within a few picoseconds. The electron return,
which occurs on average in 700 ps after the dimer repair, restores the initial active-state FADH−

and finishes the repair photocycle. The photocycle is through a radical ET mechanism with no
net change in the redox state of the flavin cofactor. The photorepair machinery of the photolyase
utilizes the blue-light photon energy and the released energy from the biotransformation of the
substrate to repair the UV-damaged cyclobutane dimer in DNA through a cyclic ET process of
the flavin cofactor at the active site.

The free energy profile along the reaction coordinate is shown in Figure 7. The four elementary
ET reactions are involved in repair. The first forward ET from the excited cofactor to the substrate
has a small negative free energy (positive driving force) and is in the Marcus normal region. The
intact back ET has a very large negative free energy and is usually in the Marcus inverted region.
This step cannot compete with the barrierless downhill C5–C5′ bond cleavage; thus, the system
dominantly evolves along the C5–C5′ splitting pathway. After the C5–C5′ bond breakage, the
intermediate with the flavin cofactor has a small negative free energy because of the high energy
of the neutral ground-state diradical, and thus the back ET is in the Marcus normal region again.
After the intermediate passes a small barrier with the C6–C6′ bond breakage, the electron return
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has a large negative free energy, and the ET is in the Marcus inverted region again. With the
determined ET rates, these ET driving forces and related reorganization energies can also be
calculated (36).

2.3.3. Electron tunneling pathways and adenine mediation. For the three electron reactions
of forward ET, back ET, and electron return shown in Figure 7 between the flavin cofactor and the
ground-state thymine dimer, the anionic dimer intermediate, and the anionic repaired thymine,
respectively, a central question is how the electron tunnels between the donor and acceptor and
whether a specific pathway exists (90–92). Two main tunneling schemes have been proposed based
on theoretical calculations (21, 93–95). One model suggests that the electron tunnels through the
intervening adenine moiety to the 5′ side of DNA at a longer distance of approximately 8 Å, with
the unusual U-shape configuration of the cofactor (21, 93). The other model concludes that the
electron would travel directly through space to the 3′ side of DNA at a shorter distance of 4.3 Å
(94, 95). Utilizing the different electron affinities of thymine and uracil, investigators studied the
repair dynamics with different dimer substrates, comprising thymine and (deoxy)uracil (U<>T,
U<>U, T<>U, and T<>T), and probed the reactants, various intermediates, and final products
(Figure 8a–c). All the elementary reaction times of the three ET processes and the C6–C6′ bond
splitting are shown in Figure 8d. Clearly, when the uracil moiety is at the distant 5′ side of DNA,
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the forward ET is faster, even though U<>T and T<>U have a similar reduction potential.
Thus, the electron from the excited flavin cofactor tunnels to the 5′ side of the damaged DNA
through the intervening adenine. After the C5–C5′ bond splitting, the intermediates with thymine
at the 5′ side are stabilized by the methyl group at the C5 position (a tertiary carbon) of thymine,
resulting in a smaller driving force and thus slower back ET in the Marcus normal region, whereas
the other intermediates with uracil at the 5′ side have less stabilization (a secondary carbon at the
C5 position) and thus faster ET in the normal region. After repair, the electron return is in the
Marcus inverted region, and the dynamics were found to be faster with uracil at the 3′ side of
DNA; hence, the electron migrates from the 5′ to 3′ side during dimer splitting owing to a more
polar environment around the 3′ side that solvates the electron and stabilizes the system.

The tunneling pathway to the 5′ side through adenine mediation is further confirmed by the C6–
C6′ bond splitting time. Similar to the back ET of intermediates discussed above, the stabilization
by the methyl group on the tertiary C5 position of thymine at the 5′ side results in a longer C6–C6′

bond cleavage time (90 ps), whereas the uracil intermediate without the stabilization (a secondary
carbon at the C5 position) splits in 35 ps (Figure 8d ), which is almost three times faster than the
thymine intermediate cleavage, demonstrating that the electron ends on the 5′ side. Figure 8e
shows that the local structure and atoms along the adenine-mediated tunneling pathway are all at
van der Waals contacts. Further evidence is provided by the forward ET in 6-4PP repair. Both
CPD and 6-4PP photolyases have a similar structural motif for the adenine-mediated tunneling
pathway to the 5′ side (Figure 8e,f ), and the forward ET dynamics in 6-4PP repair occurs with a
similar average reaction time of 280 ps (also see Section 3). The distance separation of the flavin
cofactor to the 3′ side of damaged DNA in 6-4PP is more than 6.3 Å, and forward ET would
take nanoseconds to reach the 3′ side. Thus, both photolyases use the same strategy to utilize
the critical intervening adenine moiety of the unusual bent configuration of the cofactor flavin
to inject one electron through a superexchange mechanism to initiate damaged DNA repair. A
recent quantum mechanical calculation reported a similar mechanism but involved the adenine
moiety and five water molecules for the electron to tunnel through an adenine-mediated proton
wire to reach the 5′ side (96).

2.3.4. Dynamic synergy and high repair efficiency. The overall repair efficiency of a wild-type
E. coli photolyase is as high as 0.82 (97). The entire repair process contains at least seven elementary
reactions with two competitive bifurcations (Figure 7). The first branching is the forward ET
against the deactivation process, leading to a quantum yield �FET of 0.85. The second branching
is the C6–C6′ bond splitting competing with the futile back ET without repair, resulting in a
quantum yield �SP2 of 0.96. The overall repair efficiency (�T) is the product of the two quantum
yields. The central question is how the enzyme optimizes those elementary steps at the active site
to reach the maximum repair efficiency. Investigators have studied five critical residues (N378,
M345, E274, R266, and R342) having hydrogen bonds with the cofactor or substrate at the active
site (Figure 9a) by using site-directed mutagenesis (39). N378 was mutated to serine or cysteine,
and the other four residues were mutated one at a time using an alanine scan. Similar to the studies
of the wild type (Section 2.3.1) and different substrates (Section 2.3.3), the repair dynamics of each
mutant were completely mapped out in real time (Figure 9b), and the reaction times of the five
elementary steps are shown in Figure 9c, along with the corresponding two branching ratios
and the overall repair quantum yields from the steady-state measurements. All mutations led to
a lower repair quantum yield than that of the wide type. All mutations also altered the reduction
potentials of either the flavin cofactor or the substrate and also the local reorganization energies
(Figure 9d ), resulting in the modulations of all three ET dynamics. For the mutations around the
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substrate, the C6–C6′ bond cleavage time was also varied by different stabilizations of the splitting
transition state.

Thus, to maximize the repair efficiency, the wild-type enzyme possesses an active site that
is relatively rigid, both structurally and electrostatically, to avoid the ultrafast deactivation of
the excited cofactor from the butterfly bending motion (98–100) and to lengthen the excited-
state lifetime (98). It has a favorable redox environment that leads to an appropriate FET, not
so slow that it results in a lower �FET and not so fast that it causes rapid back ET that leads
to a lower �SP2. After charge separation, the reaction evolves along the trajectory of ultrafast
downhill C5–C5′ bond splitting and thus eliminates the first intact charge-recombination channel
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without dimer splitting. After C5–C5′ bond breaking, the reaction encounters a small barrier
for the C6–C6′ bond splitting, and the reaction bifurcates. The second charge-recombination
channel that leads to the reclosure of the dimer ring competes with productive C6–C6′ bond
cleavage and results in loss of the repair yield. The redox property at the active site is optimized
to synergistically balance the FET and BET processes relative to the excited-state deactivation
and the dimer splitting, respectively, to achieve the maximum outcome. After the complete dimer
splitting, the third charge-recombination channel, an electron return to restore the active flavin
cofactor and complete the repair photocycle, should not be too slow in order to avoid any new
damage of the repaired DNA by the extra electron (101). Thus, as shown here, any mutation
modulates the active-site reduction potentials and ET reorganization energies but always breaks
the dedicated synergy of the four main elementary reactions in two competitions, leading to low
repair efficiency. Such dynamical synergy is essential and is also the key reason why the enduring
biomimetic syntheses gave the best chemical system with the highest repair efficiency of only less
than 0.4 (102–104).

2.3.5. Electron shuttling and functional state. Photolyases adopt the anionic hydroquinone
FADH− as the functional state in vivo, an unusual redox state in flavoenzymes, with a unique bent
configuration at the active site. In principle, the substrate thymine dimer can accept one electron
to be reduced or donate one electron to be oxidized, and then the ionic dimer subsequently splits
into two bases (105, 106). The flavin cofactor has two anionic states of semiquinone FAD•− and
hydroquinone FADH− that could donate one electron to the substrate and two neutral states
of oxidized FAD and semiquinone FADH• that can accept one electron from the substrate. For
the anionic flavin, the critical question is why photolyases utilize FADH−, not FAD•−, as the
active state. For the neutral state, the excited flavin reacts with the neighboring aromatic residues
(tryptophan or tyrosine) through ET (see Section 2.2) to obtain one electron and is reduced on
the ultrafast timescale (60, 62, 63). One challenging question is whether the neutral flavins can
accept one electron from the substrate if the active site becomes inert by mutations of aromatic
residues.

For the two anionic states, cyclic ET dynamics between the isoalloxazine ring and adenine
moiety were observed, and the adenine behaves as an electron acceptor (Figure 10a–c). For
FAD•−, the forward ET takes 12 ps, and the back ET is even faster, in 2 ps. But for FADH−,
the forward ET is slow (in 2 ns), and the back ET is much faster (in 25 ps). Thus, the electron in

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 9
(a) The local structure at the active site of the cyclobutane pyrimidine dimer (CPD) Anacystis nidulans photolyase with five critical
residues ( green), the cofactor flavin (orange), and the thymine dimer substrate (blue). The residues in brackets are for Escherichia coli
photolyase. (b) Transient absorption signals of three mutants (R226A, N378S, and M345A) probed by a wide range of wavelengths,
from the visible to UV region, at 400-nm excitation. (Top panel ) Absorption transients probed at 800 nm for the detection of the
excited-state flavin (FADH−∗) and at 620 nm mainly for the intermediate flavin (FADH•). Shown in the inset is the deconvolution of
the FADH−∗ and FADH• contributions of the N378S mutant, with the latter from two channels (dashed lines). (Middle and bottom
panels) Absorption signals probed at 300 nm and 266 nm with distinct dynamic patterns for each mutant. The insets show the
deconvolution of the transient signals with the detection of initial reactants, subsequent intermediates, and final products for (middle
panel ) M345A and (bottom panel ) R226A. (c, upper panel ) The reaction times for five elementary reactions involved in repair: the
deactivation lifetime (LT), forward electron transfer (FET), back electron transfer (BET), the second C6–C6′ bond splitting (SP2), and
electron return (ER) after repair. The C5–C5′ bond splitting is ultrafast for all mutants, within 10 ps, and is not shown here. The
dashed lines link two sets of competing channels responsible for the repair efficiency. (Bottom panel ) The corresponding quantum yields
of �FET and �SP2 for the two sets of competing channels and the resulting total quantum yield of �T (�FET × �SP2). (d )
Two-dimensional contour plot of the ET dynamics relative to the free energy (�G0) and reorganization energy (λ) for FET ( filled
circles), BET (open squares), and ER (open diamonds). The first two are in the ET normal region, and the last one is in the inverted region.
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Figure 10
(a) Femtosecond-resolved absorption signals of a photolyase at the FAD•− redox state. The transient at 650 nm shows the dynamics of
FAD•−∗, and the transient at 348 nm mainly reflects the intermediate signal of FAD by intramolecular electron transfer (ET).
(b) Femtosecond-resolved absorption signals of a photolyase at the FADH− redox state. The transient at 800 nm shows the dynamics of
FADH−∗, and the transient at 270 nm mainly reflects the intermediate signal of FADH• by intramolecular ET. (c) Reaction times and
mechanisms of cyclic ET between the lumiflavin (Lf) and adenine (Ade) moieties of the flavin cofactor in all four redox states. For
clarity, all dot symbols (•) representing radicals have been removed. (d ) Two-dimensional contour plot of the ET times relative to the
free energy (�G0) and reorganization energy (λ) for all electron tunneling steps. All forward ET reactions are in the Marcus normal
region (−�G0 ≤ λ), whereas all back ET steps are in the Marcus inverted region (−�G0 > λ).

FADH− can tunnel further to the substrate in 250 ps, not to the adenine in 2 ns, but in FAD•−,
the electron quickly shuttles between the isoalloxazine ring and adenine moiety within 12 ps,
eliminating further tunneling to the substrate. Thus, as the electron donor, the active state of the
cofactor flavin has to be FADH−, and only FADH− can function as the active state. For neutral
flavins in an inert environment, the cyclic ET dynamics between the isoalloxazine ring and
adenine moiety still occur on the picosecond timescale, but the adenine acts as an electron donor
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(Figure 10c). For FAD and FADH•, the electron shuttles within 100 and 135 ps, respectively,
preventing further tunneling from the substrate. Figure 10d shows the reorganization energies
of these four cyclic ET reactions. Thus, the intramolecular ET dynamics in the four redox states
with the bent cofactor configuration reveal the molecular origin of the active state in photolyases.
To repair damaged DNA in photolyases, the ET must be from the anionic flavin cofactor, and
the intramolecular ET dynamics unambiguously reveal only FADH− as the active state rather
than FAD•− because of the intrinsically slower ET (2 ns) in the former and the faster ET
in the latter (12 ps), allowing a feasible, relatively fast, ET (250 ps) to the damaged DNA substrate
from FADH−, with the intervening adenine moiety in the middle to mediate such initial electron
tunneling for repair (37).

3. DYNAMICS AND MECHANISMS OF 6-4 PHOTOLESION REPAIR

Understanding 6-4PP repair had been elusive because of the experimental difficulty of substrate
synthesis and enzyme instability and the complexity of repair. Recent significant efforts have been
made, including the X-ray structure (19) and femtosecond-resolved dynamical studies (38). A ma-
jor discovery was that the initial ET induced proton transfer from the nearby amino acid histidine
to the 6-4PP substrate, and the repair mechanism involved cyclic proton-coupled ET (38). Over-
all, the initial electron transfer, similar to that in CPD repair, tunnels along the adenine-mediated
pathway to the 5′ side of DNA in 225 ps with a stretched parameter of 0.8 (Figure 11a). After
charge separation, the reaction bifurcates: One pathway is the futile back ET to the original state
without repair, in 50 ps, with a branching of 0.9, and the other one proceeds to proton transfer with
the histidine in 425 ps, with a branching of 0.1, as shown in Figure 11b by the detection of both
the dynamics and the population ratio of the radical intermediate FADH•. A series of mutations
of the histidine to other residues at the active site results in the complete loss of repair owing to
the lack of a proton donor. Cyclic ET still occurs without any repair, as shown in Figure 11c,d
by the complete return of the FADH• signal to zero. Proton transfer was further confirmed by the
reaction in deuterium water; the transfer slows down because of heavy D+ transfer from the deuter-
ated histidine, and the resulting repair branching decreases to 0.05, also shown in Figure 11c,d
by the FADH• signal. The 6-4PP intermediate was also observed (Figure 11d ). However, many
reaction details and related intermediates, especially after the proton transfer, need to be exam-
ined further. On the theoretical side, significant efforts have recently been made and various repair
models have been proposed to explain the complicated repair process (41–44); even a two-photon
repair mechanism was proposed (43), and an experimental observation was recently claimed (107).
Our observations favor the one-photon repair process, and such a two-photon repair process seems
unlikely.

A catalytic photocycle for the repair of the thymine (6-4) photoproduct based on these recent
findings is given in Figure 12. In this scheme (Figure 12b), the primary reactions are the initial
ET (I to II) and the subsequent proton transfers (II to III). The ET-induced proton transfer
from a histidine residue in photolyase to the 6-4PP is a key step in the repair photocycle, acting
similar to the dividing line in the transition state and making the subsequent reactions downhill,
without the possibility of back reaction. This critical step competes with the back ET, resulting
in an overall repair quantum yield of ∼0.1, which is probably the maximum value that could be
achieved, for such a structurally and chemically challenging reaction, through slowing down the
back ET and speeding up the proton transfer process. The successive elementary steps naturally
proceed to an intramolecular proton transfer from the –OH group on C5 of the 5′ base to N3 at
the 3′ base (108) to form a transient zwitterion and then the oxygen atom attack of the C4 position
at the 3′ base to form a transient oxetane-type structure (III). A transient H2O formation model
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Figure 11
Femtosecond-resolved dynamics of flavin species involved in the repair of damaged DNA by a (6-4) photolyase enzyme. (a) Normalized
signals detected by both fluorescence (gated around the emission peak of 550 nm) and absorption (probed at 800 nm) methods without
(red ) and with (blue) the substrate in the active site, showing the same lifetime and forward electron transfer decays. (b) Transient
absorption signal probed at 640 nm with both FADH−∗ (blue) and FADH• ( green) detection. The total FADH• signal is from the two
contributions of the initially formed FADH• signal and the branched FADH• signal in the repair channel. (Inset) The flat signal in tens
of picoseconds, reflecting an apparent fast rise signal. (c) Transient absorption signals probed at 640 nm of the H364N mutant in H2O
( green line) and wild-type (WT) enzymes in D2O (dark red line) compared with the WT in H2O (light red line). The corresponding
relative steady-state quantum yield measurements are shown in the inset. (d ) Transient absorption signals probed at 315 nm from the
WT, including three contributions of overall flavin species (blue line), 6-4PP ( yellow line), and a captured intermediate ( purple line),
shown in the inset. The H364N mutant signals decay to zero with a futile electron transfer cycle.

that was previously prevalent (19, 109), which proposes direct breakage of the C–O bond at the
5′ base after the initial proton transfer, seems unlikely because it necessitates a series of proton
transfer reactions, including the protonation of the carbonyl group at the 3′ base, but there are no
potential proton donors in the proximity of this carbonyl group. In addition, any interruption in
such a complicated scheme proposed by the H2O model would be expected to give rise to damaged
DNA at a significant rate, which is not observed in the repair reaction by (6-4) photolyase (26,
27). In contrast, the scheme emerging from our studies in which the simple transient oxetane
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(a) A close-up view showing the relative positions of the catalytic cofactor FADH−, the conserved histidine residue, and the
pyrimidine-pyrimidone (6-4) photoproduct (6-4PP) substrate [H364 in Arabidopsis thaliana and H365 in Drosophila melanogaster (6-4)
photolyase]. (b) The repair photocycle of 6-4PP by (6-4) photolyase. The resolved elementary steps include forward electron transfer in
225 ps (I to II), back electron transfer in 50 ps without any repair (II to I), and parallel, catalytic proton transfer between the enzyme
(H364) and the substrate (II to III), induced by the initial electron transfer, in 425 ps. This proton transfer is the determinant step in
repair and determines the overall repair quantum yield. The subsequent repair reactions involve a series of atom arrangements with
bond breaking and making (III to IV), and final proton and electron returns (to the H364 residue and flavin cofactor, respectively) to
convert the 6-4PP to two thymine bases on timescales longer than 10 ns (IV to V).

formation facilitates oxygen atom transfer from the 5′ to 3′ base followed by C6–C4 bond splitting
(IV) would be less prone to a mutagenic side reaction. In this scheme, following an oxygen atom
transfer and C–C bond cleavage, the proton returns to the essential histidine residue and the
electron returns to FADH• to restore the enzyme to its active form and the 6-4PP to two thymine
bases (V).

4. CONCLUDING REMARKS

This review summarizes the experimental advances made in the past decade on our understanding
of the fascinating photorepair machinery, photolyases, for restoring two major forms of UV-
induced DNA damage, CPD and 6-4PP. With femtosecond temporal resolution and site-directed
mutagenesis, we can completely map out the entire enzymatic evolution in real time from the initial
reactants, to various intermediates, and to the final products; thus, we can reveal the molecular
mechanisms and repair photocycles at the most fundamental level. For the dimer repair, there are
six elementary reactions, including three ET steps and two bond-breaking and -making processes
in the catalytic process, and all actual reaction times have been determined. A unique electron
tunneling pathway has been identified in photolyases with intervening adenine mediation, along
with the critical residues at the active site in modulating the repair function, revealing the dynamic
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synergy between the elementary reactions in optimizing the repair efficiency, and the nature of the
functional state. To our knowledge, photolyases are the first enzyme system in which the entire
catalytic evolution is completely characterized in real time, with each elementary step determined
with the actual reaction time. For 6-4 photoproduct repair, there is a cyclic proton-coupled ET
mechanism, and such challenging repair requires three particles (a photon, an electron, and a
proton) to synergistically reverse the peculiar 6-4 photodamage. More studies are needed to resolve
the details for a complete understanding of the entire repair process. The elucidation of two repair
photocycles is significant and provides a molecular basis for practical applications (110), such as
for the rational design of drugs to cure skin cancer. By integrating femtosecond spectroscopy and
molecular biology, we can now tackle more complex biological systems, especially photomachinery
in nature, and reveal biological dynamics and mechanisms in unprecedented detail.
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