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Abstract

The kinetics of drug binding and unbinding is assuming an increasingly cru-
cial role in the long, costly process of bringing a new medicine to patients.
For example, the time a drug spends in contact with its biological target is
known as residence time (the inverse of the kinetic constant of the drug-
target unbinding, 1/koff). Recent reports suggest that residence time could
predict drug efficacy in vivo, perhaps even more effectively than conven-
tional thermodynamic parameters (free energy, enthalpy, entropy). There
are many experimental and computational methods for predicting drug-
target residence time at an early stage of drug discovery programs. Here,
we review and discuss the methodological approaches to estimating drug
binding kinetics and residence time.We first introduce the theoretical back-
ground of drug binding kinetics from a physicochemical standpoint. We
then analyze the recent literature in the field, starting from the experimental
methodologies and applications thereof and moving to theoretical and com-
putational approaches to the kinetics of drug binding and unbinding. We
acknowledge the central role of molecular dynamics and related methods,
which comprise a great number of the computational methods and appli-
cations reviewed here. However, we also consider kinetic Monte Carlo. We
conclude with the outlook that drug (un)binding kinetics may soon become
a go/no go step in the discovery and development of new medicines.
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1. INTRODUCTION

In chemistry, kinetics is the study of the rates of chemical reactions. It deals with the quantita-
tive description of how fast a chemical reaction occurs. Chemical kinetics aims to identify the
factors affecting these rates and understand the key aspects of reaction pathways. Reactions and
associated kinetics can occur through single-step mechanisms or very complex multistep mecha-
nisms, which may take place in biological systems. For instance, multistep chemical mechanisms
can usually be observed in enzymatic reactions. Kinetic studies in this context aim to evaluate the
rates of variation of substrate concentration and determine the rates that are constant for all the
steps.

Recently, kinetics has gained the interest of the drug discovery community due to reports that it
is possible to predict the efficacy of a new drug in vivo and in humans by measuring the unbinding
kinetics (1–4). From amechanistic standpoint, the process of a drug binding to its biological target
may be considered a multistep reaction mechanism. The eventual on and off rates (macroscopic
kon and koff, respectively; see Figure 1) may be influenced by microscopic rate constants associated
with binding and unbinding, target protein conformational changes and/or isomerization, and so
on. In particular, the overall duration of a receptor-ligand complex will be influenced by both the
rate of ligand association (kon) and the rate of binary complex dissociation (koff). The time a drug
spends in contact with its biological target (usually referred to as the residence time, i.e., 1/koff)
is now considered a key parameter for optimization because there is some evidence that it can
predict drug efficacy in vivo (2, 5–8).

Here, we consider the kinetics of drug binding and unbinding, focusing on residence time de-
termination and computational prediction because of its increasingly large role in drug discovery
programs (2, 6, 9). We first describe the theoretical background of kinetics in chemical reactions
from a classical physicochemical standpoint. We then briefly review the main experimental tech-
niques used to determine the (un)binding kinetics, and their key applications.We then discuss the
many recent computational approaches to estimating and predicting the binding kinetics, but with
a focus on residence time and its role in drug optimization.Molecular dynamics (MD) simulations
and related methods are particularly relevant here because MD has emerged as one of the most
suitable theoretical frameworks for developing computational approaches to kinetics (10–12).We
will also discuss kinetic Monte Carlo (MC) as applied to biological and pharmacological systems.
We conclude by arguing that the time has come for drug discovery to include a systematic op-
timization of the kinetics of binding and unbinding. This may help in predicting drug efficacy
in vivo, thus reducing attrition rate in the long, costly process of bringing a new medicine to
patients.
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Figure 1

Schematic representation of protein-ligand binding mechanisms and associated kinetic constants. (a) The
drug binding to its biological target is described by a single, one-step process characterized by the
association and dissociation rate constants k1(kon) and k−1 (koff). (b) A more general portrayal of the
drug-binding process, where the target may undergo protein conformational changes and/or isomerization.
In this case, a multistep mechanism is involved, and the on and off rates become a more complex function of
the microscopic constants k1, k−1, k2, and k−2.
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2. THEORETICAL BACKGROUND

The characterization of rate processes is of ubiquitous importance and has been handled by many
theoretical works. An extremely good and extensive, although not recent, review of the different
theoretical approaches can be found in the work of Hänggi et al. (13).

The theory of rate processes considers the frequency, and thus the corresponding probability,
with which a system moves between two or more states, described by suitable combinations of the
degrees of freedom of the system. Modeling these interconversions becomes relevant when they
take place over a long timescale when compared to the dynamic timescales that characterize the
states of local stability, that is, when the energetic separating barriers are of significant amplitude.
For instance, in the case of atomistic systems described at the classical level, their direct simulation
via advanced simulation techniques, such as MD, is limited in cases where the involved energetic
barriers are so high as to make a statistically significant sampling of the transitions impractical or
even infeasible.

2.1. Transition State Theory

Theoretical models of rate processes have historically focused on the prediction of kinetic rates
based on the height of the separating energy barriers. Seminal works by van’t Hoff (14) and Arrhe-
nius (15) identified a linear correlation between the logarithm of reaction rates k and the inverse
temperature β = (kBT )−1, where kB is Boltzmann’s constant and T the absolute temperature. The
relationship therefore has the general form k = ν exp(−βEB), where Eb is the height of the barrier
to overcome to escape a local stability energy basin and ν is a proportionality constant. Intuitively,
it soon became clear that leaving the metastable state could be due to noise-assisted hopping
events. However, a more quantitative description was made possible only by the development of
theories describing fluctuations, such as Brownian motion. The idea of overcoming an energetic
barrier was further clarified and formalized in the 1920s by Farkas (16), who characterized the
rate of escape from a metastable state via the flux of particles that pass through the bottleneck
separating products from reactants. At the same time, simple differential models involving the
concentration of reactants (R) and products (P) as well as the kinetic rates were developed for the

description of first- (R → P, dcR
dt = −k cR) and second-order (R1 + R2 → P,

dcR1
dt = −kbim cR1 cR2 )

reactions (17–19).Here, the kinetic rates are the fundamental parameters describing the time evo-
lution of the concentration of the species. In the 1930s, the nature of the proportionality constant
ν was further clarified, leading to the Eyring-Polany expression for the rate constant (20):

k = κ

kBT
h

Zact

Za
exp (−βEb) ≡ κkTST, 1.

where h is Planck’s constant. Eyring derived this expression in the case of a nonlinear decompos-
ing molecule comprising n atoms, with the rate expressed in terms of quantities that are available
from the underlying potential surface.The partition function of themetastable reactants’ state (Za)
and that of the activated complex (Zact) were derived by quantum statistical mechanics consider-
ations. The concept of the activated complex is intrinsic to the kinetic theory and had already
been hypothesized by Arrhenius (15). It is often used interchangeably with that of the transi-
tion state. However, the transition state represents only the highest energy configuration(s) of
the system during the reaction. In contrast, the activated complex includes several configurations
near the transition state that the system can undergo during the transformation from products to
reactants. Importantly, although several key ingredients of the original proportionality constant
are elucidated in Equation 1, a further constant, κ, still remains. This is the transmission coef-
ficient and it accounts for those reactive trajectories that recross the transition state and return
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Figure 2

Double-well potential energy function along a generic reaction coordinate x. Two metastable states are
found, A and C, characterized by the angular frequencies ωa and ωc, respectively. The rate for the A to C
transition kA→C is related to the height of the activation energy Eb separating the two energy wells through
the transition state B.

without ending in the products state. Consequently, its value is always between 0 and 1. When κ

is assumed to be 1, which is a common assumption, the transition state theory (TST) rate kTST is
recovered. Most of the successive work in this area focused on studying the complex behavior of
the transmission coefficient in different kinds of systems and situations.

It is possible to provide some numerical answers to the question of this behavior bymeans of the
reactive flux formalism, in which dynamical corrections are calculated from dynamical trajectories
initiated at the transition state (21, 22).

2.2. Kramers Rate Theory

To better illustrate the framework within which the TST and more advanced theories were later
derived, we shall here consider the underlying assumptions and mathematical formalisms in more
detail.

Let us consider twomacrostates A and C of local stability, as shown in Figure 2. For instance, A
can collect the microstates where the reactants are not bound while C contains those correspond-
ing to the formed product. Let us also assume that x is a one-dimensional collective variable, that
is, a combination of degrees of freedom of the system, able to correctly represent the progress of
the considered process, including whether the system belongs to the different states of interest.
Then, the time evolution of the process is represented by that of the reaction coordinate x(t).

If we consider a system in the so-called canonical ensemble, it is coupled to the thermal bath,
which maintains constant the thermodynamic temperature T. The average interaction of the sys-
tem with the countless degrees of freedom of the thermal bath can be, under some assumptions,
modeled as the combination of a white background Gaussian noise and a viscous drag affecting
the motion of all the particles making up the system itself. The evolution equations for such a sys-
tem, comprisingN classical particles of positions, momenta, and masses ri, pi, andmi, respectively,
subjected to a potential energy U are therefore Langevin-like:⎧⎪⎪⎨

⎪⎪⎩
dri
dt

= pi
mi

dpi
dt

= −∇riU − γipi +
√
Dimini (t ),

2.
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where γi and Di are the viscous friction coefficient and the diffusion constant, respectively, ac-
counting for the number of collisions occurring in the unit time. ni ,α are white, that is, δ-
correlated, Gaussian noise terms whose statistical properties are described by the expectation val-
ues below:

〈ni,α (t ) ≥ 0, < ni,α (t1) nj,β (t2)〉 = 2 δi, j δα,βδ (t1 − t2) . 3.

Due to the presence of the noise, Equation 2 is a stochastic differential system whose treatment
needs suitable mathematical tools and whose solutions (i.e., the coordinates and momenta as a
function of time) are stochastic processes.

The Fokker-Planck equation describes the evolution of the probability densityW for positions
and momenta that are the solution of the stochastic dynamical system of Equation 2 (23) and has
the following form:

∂W (r,p)
∂t

=
N∑
i=1

3∑
α=1

{
∂U (r)
∂ri,α

∂W
∂ pi,α

− pi,α
mi

∂W
∂ri,α

+ γiW + γi pi,α
∂W
∂ pi,α

+Dim2
i
∂2W
∂ p2i,α

}
. 4.

The different contributions to the evolution of the system can easily be identified. The first two
addends in the right-hand side of Equation 4 descend from the usual Hamiltonian dynamics, that
is, those described by the Liouville equation. The third and fourth terms are due to the viscous
drag. The final term is caused by the noisy force. If we use the following form of the Einstein-
Smoluchowski relationship to connect the diffusion and the friction coefficients:

γi = Dimi

kBT
, 5.

we observe that Equation 4 admits the Boltzmann distribution as a stationary solution. According
to these dynamics, the average total energy of the system is constant, as the energy injection is
balanced by the noise and energy dissipation via the friction.

In this context, the collective variable x(t) also becomes a random process, whose dynamics is
made mathematically more tractable by a number of simplifications. These simplifications involve
contracting the complete phase space dynamics of the system plus the thermal bath, averaging the
effect of the interactions leading to thermal equilibrium, and then considering the dynamics of a
single collective variable, ruled by a mean force potential, averaging over all the other degrees of
freedom.Rigorously, projecting the entire dynamics in full phase space onto that of much reduced
dimensions originates a non-Markovian dynamics in the reduced space (24, 25). A Markovian de-
scription, such as that provided above, can be recovered under the assumption that the correlation
time of the noise is extremely short.Most of the mathematical derivations presented here rely on a
separation of timescales: The correlation time of noise should be much shorter than the relaxation
time of the system back into every single attraction basin, which should in turn be shorter than
the time of escape from those basins.

In this context, the dynamics of escape is connected to the acquisition of the energy necessary
to reach the top of the barrier, that is, the activated state region.Then, the systemmust lose energy
to become trapped inside the neighboring well C. The timescale needed to acquire this energy
depends on the size of the fluctuations x(t) − <x(t)>, which in turn depends on the strength of the
noise, quantifiable via kBT . In the end, the escape event can be considered frequent if Ebβ � 1,
with Eb being the height of the barrier to be overcome.
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The Kramers derivation relies on the assumption that the dynamics of the collective variable
also follows a Langevin evolution equation, similar to Equation 2:

d2x (t )
dt2

= −dU eff (x)
Mdx

− γ
dx (t )
dt

+
√
Dn (t ) ; −dU eff (x)

Mdx
= F eff (x)

M
; γ = DM

kBT
, 6.

whereM is the effective mass associated with the collective variable; Ueff is the effective potential
ruling the dynamics of the process; and Feff is the corresponding force.

Based on the model and relationships shown in Equation 6, the strength of the interaction
between the reaction coordinate and the remaining degrees of freedom is basically ruled by the
damping rate γ. Under these assumptions, and by means of some involved mathematical deriva-
tions that go beyond the purposes of this review, Kramers (26) derived two main analytical ex-
pressions for the kinetics of the exchange between the A and C states crossing a barrier at the
transition state B.

The first expression holds for moderate-to-strong values for the friction, when the system is
said to be in the spatial-diffusion regime:

kA→C = κ

ωa

2π
exp (−βEb) =

⎡
⎣

√(
γ

2ωb

)2

+ 1 − γ

2ωb

⎤
⎦ ωa

2π
exp (−βEb) →

γ
ωb

ωaωb

2πγ
exp (−βEb) .

7.
Here, ωa and ωb are the angular frequencies corresponding to a local quadratic approximation of
the energy around the minimum of the starting attracting basin, and around the transition state,
respectively. The limit corresponds to the so-called overdamped regime:

U (x) ≈U (xa ) + 1
2
ω2
a (x− xa )2; 8.

U (x) ≈U (xb) − 1
2
ω2
b (x− xb)

2 ≡ Eb +U (xa ) − 1
2
ω2
b (x− xb)

2
. 9.

Interestingly, for a given height of the energy barrier, the rate increases with the steepness of the
barrier itself.

In the alternative case of low damping rate (corresponding to the so-called energy-diffusion
regime), the Kramers treatment leads to the following expression for the escape rate from the
basin A, having a barrier of height Eb:

kA→C = γβI (Eb)
ωa

2π
exp(−βEb). 10.

The derivation used by Kramers envisions the injection of particles into the starting basin A of
the energy landscape. In the case of low friction, each particle does not relax immediately into A
but rather may go back and forth before landing into one basin. In this case, the right-hand side of
Equation 10must bemultiplied by the probability that the landing and thermalizing occur in basin
A and from that point the process of escape takes place. Another relevant aspect of Equation 10 is
the presence of the action variable, which is the following integral calculated on a closed path of
the collective variables (CVs) at energy Eb, that is, at the top of the barrier:

I (Eb) ≡
∮
pdq. 11.

The presence in the equation of the value of the action at the barrier energy implies that, for the
energy-diffusion controlled situation, the anharmonic part of the well also affects the kinetic rate.
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There have been several attempts to find an interpolating expression for intermediate values of
friction. Interestingly, Tiwary & Berne (27) recently used an enhanced sampling technique named
infrequent metadynamics to characterize this intermediate regime, albeit in a numerical fashion.

2.3. Path-Sampling Methods

The above approaches strive to obtain analytical estimates of kinetic rates based on underlying
energy profiles and different environmental conditions. In contrast, path-sampling methods are
an interesting, albeit time- and resource-demanding approach to obtaining numerical estimates
of free-energy profiles and kinetic rates. The development of path-sampling methods was made
possible by the availability of increased computational resources. Here, we will only scratch the
surface of this interesting class of methods, without any claim of completeness.

Path-samplingmethods rely on the idea that rare events per se are not slow, just very infrequent.
Therefore, these methods concentrate the computational effort on the transitional events only.
They do this by collecting representative pathways, which constitute the transition path ensemble
(TPE), where the system moves from different stable macrostates.

If the TPE represents the underlying dynamics well, it can be used to characterize the system’s
dynamics at a macroscopic level by computing rate constants. It can also be used to understand
transitions at a microscopic level. A few examples of transition path methods are transition path
sampling (TPS), transition interface sampling, forward flux sampling, direct forward flux sampling,
and the branched growth sampling. Here, we briefly describe TPS. For a more extended and
detailed view, the reader is referred to other sources (28–30 and references therein).

2.3.1. Transition path sampling. To obtain the TPE, TPS starts from a trajectory
{X0

i , i = 0, 1, . . . ,L} of length L (often obtained from brute-force MD), which connects the start-
ing state A and the final state C in phase space. Let us assume that we have the characteris-
tic function χ (r,p) for states A and C as a function of the coordinates of the system, so that
(r,p) ∈ A ↔ χ (r,p) ≤ χA and (r,p) ∈ C ↔ χ (r,p) ≥ χC. Different trajectories connecting A and
C are then derived from {X0

i } by choosing at random an intermediate frame, say j, and starting
one forward and one backward trajectory of length L−j and j, respectively, with slightly perturbed
momenta. The final joint trajectory is accepted according to a Metropolis-like probability:

Pacc
({
X1
i

}) = �
[
χA − χ

(
X1

1

)]
�

[
χ

(
X1
L

) − χC
]
min

⎡
⎣1,

ρ
(
X1

j

)
ρ

(
X0

j

)
⎤
⎦ , 12.

where ρ(.) is the equilibrium probability distribution in the phase space and �(·) is the Heaviside
step function.

If the rare transitions between the stable states A and C are separated by a single dynamical
bottleneck, the correlation function of state populations in time, C(t), can be defined as the con-
ditional probability of finding the system in the final region C at time t provided it started in A at
time t = 0; that is,

C (t ′ ) = � {χA − χ [X (t = 0)]} � {χ [X (t = t ′ )] − χC}
� [χA − χ (X)]

. 13.

Under certain conditions and for times ranging between the molecular timescale and the reaction
time [see Dellago et al. (29) for more details], this correlation is proportional to the rate constant
from A to C: C(t ) = kA→C t.
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One of the shortcomings of TPS is that it requires knowledge of the state phase density and an
initial reactive trajectory, which may not be realistically achievable. To address this, TPS variants
and more advanced approaches have been developed. These go beyond the scope of the present
work.

3. EXPERIMENTAL APPROACHES TO THE KINETICS
OF DRUG BINDING

Historically, the efficacy of a drug has been evaluated in terms of its affinity toward specific molec-
ular targets.Most of the effort has been directed toward developingmethods and devising practical
strategies to measure thermodynamic parameters, such as the equilibrium dissociation constant,
Kd, and the half-maximal inhibitory concentration, IC50. As a result, according to the specific
problem under consideration, one can now choose from a great number of dedicated and estab-
lished experimental techniques. Recent developments in drug discovery have raised awareness
that characterizing kinetic properties can also be crucial when seeking to identify suitable novel
drug-like molecules. In this context, the optimization of the association and dissociation rates has
been the subject of much recent attention from the drug discovery community. The currently
available methods for measuring these parameters rely on monitoring over time a specific sig-
nal that responds to the binding event. The literature describes several experimental techniques
for determining the binding kinetics. These can be broadly classified into three classes: (a) as-
says that exploit a label for detection, (b) label-free techniques, and (c) assays based on enzyme
activity (Figure 3). Below, we provide a general overview of the methods in these three groups,
and report on how they have been applied to retrieve kinetic information related to ligand-target
systems.

3.1. Labeled Methods

Radio- and spectroscopic labeling are the main options included in this first class. The former in-
volves radiometric ligand binding assays, while methods based on spectroscopic detection rely
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Figure 3

Major classes of experimental methods to measure binding kinetic rates. (a) Sample pipeline followed in indirect radiometric binding
assays. The plot displays a typical target occupancy against time. (b) Time-dependent response curve as obtained in surface plasmon
resonance workflows, with detail about complex formation/disruption on the sensor surface. (c) Schematic representation of a jump-
dilution procedure displayed over the concentration-response curve of an enzymatic assay. Typical progress curves produced are
reported in the inset. Abbreviations: IC50, half-maximal inhibitory concentration; kRU, kilo response unit. Data from References 33,
57, and 75.
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mostly on fluorescence. A radiolabel is essentially the presence of radioactive isotopes in the
molecule that we wish to track. During their decay to a more stable state, these isotopes emit
radiation, which can be detected to monitor the labeled species. In radiometric binding assays,
ligands are typically tagged to follow the time course of their interaction with the molecular tar-
gets. Radioligands can be exploited to perform saturation, competition, and kinetic assays (31).
This allows the determination of the affinity in terms of Kd, the equilibrium inhibitor constant
Ki of an unlabeled ligand, and kinetic rates. The literature contains several implementations of
radiometric assays. These can be broadly divided into direct and indirect strategies (32, 33). In
the direct approach, the concentration of the radioligand bound to the receptor of interest is fol-
lowed over time, allowing for the measurement of its association and dissociation rate constants
kon and koff (31). In indirect approaches, the ligand of interest is unlabeled. Instead, the competitive
binding of a radioligand is exploited to determine the kinetic rates. Two popular implementations
of this strategy are the method devised by Motulsky & Mahan (34) and the delayed association
method (35, 36) (Figure 3a). The former is based on coincubation of the unlabeled compound
and the radioligand with the molecular target before detection. It allows for the estimation of kon
and koff. Notably, this strategy was recently modified in the dual-point competition association as-
say to perform high-throughput kinetic screening studies (37). In the delayed association method,
a saturating concentration of the unlabeled ligand is preincubated with the receptor. The koff can
then be determined by monitoring the target occupancy by the radioligand that is subsequently
added.

The direct approach is the most straightforward. Nevertheless, it requires the labeling of each
ligand under consideration, which is expensive and labor intensive. In addition, not all drugs make
good radioligands.This is also a rather low-throughput approach. In contrast to indirect methods,
the ligands of interest are unlabeled, and only one radiolabeled species is required to carry out the
assay. This makes larger-scale applications feasible, so indirect strategies are typically preferred.
One advantage of radiometric binding assays is that no purification of the molecular target is
necessary; in other words, they can be applied to readily available samples. Therefore, although
alternative strategies are being explored, this has long been the preferred method for studying
ligand binding to G protein–coupled receptors (GPCRs) (33). Indeed, maintaining the receptor
in its native membrane environment avoids the alteration, and even complete loss, of its structure
and function, which is essential for a reliable assay.

Ligands are labeled with fluorescent tags in spectroscopy-based approaches. After absorbing
electromagnetic radiation at a certain wavelength, fluorophore groups emit at characteristic, gen-
erally longer wavelength values. As the radiation source stops, the emission ceases almost im-
mediately. This physical principle is exploited in various assays in which the emitted radiation is
recorded to measure ligand-receptor binding quantities.Notably, by taking advantage of the exist-
ing approaches, both kon and koff can be measured. It is possible to identify two general setups (38)
(Figure 3a). In the first setup, one monitors the change in a fluorescence property upon binding
of the labeled ligand to the molecular target. Parameters such as intensity (39–42) or polariza-
tion (43–46) are usually considered options. The second setup is based on energy transfer. Here,
a group from the protein, intrinsic but most frequently conjugated, acts as the donor and excites
the probe on the ligand. This requires that the donor and the acceptor be in close proximity. The
emission is generally observed only once the ligand has reached the bound state. In fluorescent
resonance energy transfer (FRET), the donor is in turn another fluorescent group present on the
receptor, which can transfer energy via a nonradiative mechanism to the acceptor label on the
ligand (47, 48). The acceptor converts this energy into a fluorescent signal. The analysis can be
distorted by short-lived background fluorescence due to buffer, proteins, chemical compounds,
cell lysate, and so on.
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This can be addressed with a time-resolved variant (TR-FRET), in which the detection is de-
layed to allow for the transient fluorescence to disappear (49–52). The radiation source can be
a luminescent species that is able to emit as the result of a chemical reaction. A typical choice
is the enzyme luciferase, which catalyzes the oxidation of the luciferin molecule with concomi-
tant production of light. This principle is employed in bioluminescence resonance energy trans-
fer (BRET), where the energy transfer takes place between the luminescent donor conjugated to
the receptor and a fluorescent acceptor on the ligand (53–55). Notably, as no excitation source is
involved, BRET is a valid alternative to fluorescent donors when dealing with cells that can be
damaged by excitation light or that are photoresponsive. As with radiolabeling, it can be demand-
ing to tag each compound of interest, so indirect procedures are typically pursued.One strength of
fluorescence-based strategies is that the recorded signal is specific to the binding. Thus, since no
separation between bound and unbound species is involved, no washing and filtration procedures
are necessary, making the assay homogenous and more suitable for high-throughput applications.

3.2. Label-Free Techniques

With the rare exception of ligands with an intrinsic feature that provides the label, a probe must
be joined to the molecule under consideration. As mentioned above, this can be expensive and
labor intensive, so label-free assays can be valuable alternatives when applicable (32, 38).

The most widespread choice is surface plasmon resonance (SPR), which has long been used
to characterize the binding kinetics of small molecules of pharmaceutical interest (56). The in-
strument essentially comprises a sensor surface that forms the floor of a flow cell, through which
there is a continuous flow of an aqueous solution. The sensor is covered by a thin gold film,
on which the receptor molecules are immobilized. When the mass lying over the sensor surface
varies, a real-time change in the refractive index is observed. Thus, as the immobilized targets
bind the ligand molecules, an increase in the refractive index is detected. A typical SPR workflow
(Figure 3b) starts with the association phase, in which a sample containing the ligand is injected
into the instrument. As the pulse of the compound continues, the detected signal increases, until a
steady state is reached.This step is followed by a dissociation phase, during which sample injection
stops and is replaced by a continuous flow of buffer. As a consequence, ligand dissociation from
the surface-bound complex takes place, and a decrease in the signal is observed. Time-dependent
response unit (RU) curves can be built from the recorded data, from which both affinity and ki-
netic properties can be obtained. Specifically, kon and koff can be derived from the association and
dissociation portions of the curve, while multiple detections at increasing ligand concentrations
can be recorded to measure the Kd from the RU observed at the steady states (56).

In a standard SPR setup, purified soluble proteins are typically required for the immobilization
on the gold film.The applicability of this technique depends strongly on those two aspects, namely,
purification and immobilization (9, 32, 38).With regard to immobilization, there are many meth-
ods to achieve the stable binding of the receptors on the gold film (57, 58). However, it is essential
to bear in mind that the procedure might compromise the structure, conformation, or binding site
accessibility (32). The purification aspect is more crucial for membrane-bound receptors. Indeed,
SPR assays have been extensively applied to successfully characterize targets such as proteases
(59, 60), phosphatases (61), and kinases (62). Conversely, when it comes to GPCRs and mem-
brane proteins more generally, the receptor native functionality should be ensured by solutions
such as solubilizing detergents (63–66) or reconstituted high-density lipoprotein particles (67–69).
Finally, since ligands are typically analyzed in series, throughput is typically confined (9, 38).

In addition to SPR, other label-free alternatives, such as the surface acoustic wave method (70),
have been considered to measure on and off rates. One appealing option is isothermal titration
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calorimetry (ITC) (56). ITC has historically been a routine technique for characterizing thermo-
dynamic properties related to ligand-receptor binding. In ITC, the heat produced by the binding
reaction is detected by determining the thermal power necessary to maintain a zero-temperature
difference between two cells, one containing the sample and one acting as a reference. Peaks of
thermal energy are measured at increasing time intervals to produce a thermogram, which is then
converted to a binding isotherm plot to measure relevant quantities such as Kd, the change in en-
thalpy, and the stoichiometry of the reaction (56). Interestingly, several declinations of ITC, such as
kinITC (71) andMuITC (72), have been devised and explored in recent years to extend the analysis
to include kinetics. The literature contains successful applications of these approaches to protein-
ligand binding, where both association and dissociation rates were determined (71, 72). These
efforts demonstrate the real potential of calorimetry-based methods to achieve a comprehensive
characterization of both the thermodynamics and kinetics of the ligand-receptor binding process.

3.3. Assays Based on Enzyme Activity

While effective, the above approaches require either dedicated instruments (e.g., SPR hardware)
or demanding setups (e.g., radiometric and fluorescence-based methods). Therefore, researchers
are exploring more practical ways to gather useful kinetic quantities. Techniques based on en-
zyme activity (32, 73) represent one example. Here, the idea is to take established assays, which
were designed to determine the activity of a specific enzyme, and use them to retrieve kinetic
information. Typically, these assays are based on monitoring substrate consumption or product
formation due to the enzymatic reaction (74), which usually involves parameters such as spectro-
scopic absorbance increase or decrease, respectively. One straightforward application to kinetics
is Copeland’s jump-dilution assay, which measures koff values and thus the residence times of small
molecule ligands (75). In this assay, the target is incubated with an excess of inhibitor, for which
a regular dose-response relationship can be determined. Usually, a ligand concentration equal
to tenfold the IC50 is used, which corresponds to achieving approximately 90% inhibition. Af-
ter an elapsed time necessary to reach equilibrium, a proper quantity of activity assay buffer is
added to achieve a 100-fold dilution (Figure 3c). Immediately after the dilution event, recording
of the receptor activity as a function of time begins. Thus, a plot of the enzyme activity against
time, known as a progress curve, is obtained (Figure 3c). The result is typically a linear func-
tion, whose slope provides information about whether the inhibitor’s inactivation mechanism is
reversible or irreversible. Moreover, the curvature of the initial portion of the curve depends on
the compound’s residence time (75). In the dilution conditions, no significant rebinding events
are expected; thus the dissociation constant can be determined from the mathematical function
describing the progress curve. The short assay development time is a strength of this approach.
However, the analysis of the progress curve is effective, and particularly reliable, when used to
characterize compounds with slow dissociation rates (73, 75, 76).

4. COMPUTATIONAL APPROACHES TO DRUG BINDING KINETICS

In drug discovery, the ultimate goal of molecular simulations is to reliably model the behavior of
biomolecules displaying pharmaceutical relevance. The structural and dynamical features of these
key species can then be extracted by determining the thermodynamic and kinetic properties to
comprehensively characterize the system of interest. In recent decades, this effort has focused on
thermodynamics, with the main goals being to estimate quantities such as equilibrium popula-
tions and energetics. Very recently, there has been growing interest in kinetics for drug discovery
(1–3). While existing experimental methods are routinely used to measure kinetic quantities (see
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Section 3) (32, 33, 38), these methods do not provide any mechanistic interpretation of the un-
derlying process at the atomic level.

MD simulations can capture all the configurations of a system over time at atomic-level detail.
In principle, they are therefore well suited to reconstructing the kinetics of biomolecular pro-
cesses. Given a suitable potential energy function, molecular systems are evolved in time within
an MD framework by integrating Newton’s equations of motion for all of the atoms in the model
(77). From the coordinates and velocities of each atom associated with a specific configuration
of the system, it is possible to take a step forward in time, thus sampling the phase space in a
deterministic fashion. This procedure involves the calculation of forces acting between pairs of
atoms of the system. The time span over which we carry out the integration is called the timestep.
Then, by repeating this procedure for a series of timesteps, we obtain many configurations of the
system as a function of time. This is called an MD trajectory. Unfortunately, the processes that
we are most interested in characterizing, that is, protein-ligand (un)binding, are slow and infre-
quent. These events take place on timescales that are difficult to access with conventional MD
simulations (hereafter referred to as “plain MD”) on current hardware architectures. They are
therefore said to be rare. Thus, despite the advances in computer power that enabled the first
successes with this method, other methods have been introduced. Below, we review how these
methods and plain MD have been used to estimate the kinetics of protein-ligand (un)binding
(Figure 4).

4.1. Direct Estimation of Rate Constant via Brute-Force Sampling

In principle, plain MD allows a straightforward determination of kinetic observables. A comment
is required here on the so-called MD thermostats, and their use in MD simulations for kinet-
ics studies. As a matter of fact, MD is often used to perform a simulation under the conditions
of the canonical ensemble, where the interaction of a system with a thermal bath is accounted
for by suitable algorithms that keep constant its temperature. These algorithms are called ther-
mostats.While a basic requisite for a thermostat is to preserve the correct statistics of occupation
of the visited microstates, which should tend to the Boltzmann distribution for simulations that
are sufficiently long, the preservation of kinetics is not equally obvious. In brief, thermostat algo-
rithms based on particle velocities randomization, especially when strong coupling is used, affect
the kinetics of the simulation. In contrast, algorithms that operate by scaling the velocities yield
transport properties that are statistically indistinguishable from those of the microcanonical en-
semble, provided they envision a coupling to the kinetic energy of the entire system.We refer the
interested reader, for instance, to the work of Basconi & Shirts (78) for extended discussion about
this issue.With the due attention paid to these aspects, rate constants can be determined by simply
counting the number of transitions from one stable state to another, divided by the effective time
spent by the system in the first state (and vice versa; see Figure 2) (79). The mean residence time,
which is the average time the system remains in the initial well, is then defined as the inverse of
the rate constant. The mean first passage time is the time after which the system enters the second
state, provided that it started from the former. Under the assumption of instantaneous transitions
(leaving one state corresponds to entering the other without visiting any other metastable state),
the mean residence time is equal to the mean first passage time (79).

Biologically relevant events occur at much longer timescales than typical MD timesteps, so
the sampling is very computationally demanding. To reliably estimate the rate constants, many
transitions from the two states must be collected. This requirement is not usually met in dynamic
docking simulations, which aim to flexibly investigate protein-ligand binding, without achieving a
rigorous determination of the thermodynamics and kinetics. Dynamic docking is thus suitable for
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Figure 4

Schematic representation of the major computational approaches that allow the determination of protein-ligand binding kinetics.
(a) Determination of kon from the number of spontaneous binding events (B) over repeated runs of plain molecular dynamics (MD)
simulations. (b) In Markov state models, kinetic rates are computed after constructing the transition probability matrix of the accessible
microstates. (c) In multiscale approaches, the protein-ligand diffusive encounter modeled via Brownian dynamics (BD) is combined with
an MD regime, which is applied once the partners are in close contact. (d) Free-energy surface (FES)-based biased approaches take
advantage of a reconstructed FES to retrieve kinetics from biased simulations. (e) Kinetic information can also be obtained directly
from biased simulations without necessarily passing for a converged FES.

industrial settings. Dynamic docking is based on MD. It investigates bimolecular recognition and
binding, taking into account the full conformational flexibility of the molecular species. It thus
overcomes the major limitations of conventional structure-based drug design methods, which are
based on rigid molecular docking (80, 81). On the one hand, it is nowadays affordable to observe
spontaneous binding events.This is because kon values typically range from103 M−1 s−1 to 109 M−1

s−1, with the latter corresponding to the rate limit of free diffusion. On the other hand, due to the
long-lasting nature of protein-ligand interactions (koff spans from about 1 s−1 to around 10−7 s−1),
it is currently infeasible to use plain MD to witness unbinding for drug-like molecules. However,
instead of characterizing both rate constants, it is often sufficient to estimate either the on rate
or off rate, depending on the specific problem one wishes to address. For example, rather than
counting the transitions, it is a common choice to estimate the kon from the frequency of binding
over a series of repeated simulations (Figure 4a). Because of its reliance upon computational
power alone, this strategy is usually referred to as brute-force sampling.

This approach has been followed since the earliest attempts at characterizing spontaneous
protein-ligand binding via plain MD. The first examples were presented by the D.E. Shaw re-
search group (82), which observed the association of dasatinib and PP1 to the Src kinase through
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simulations in the low microsecond regime. A direct calculation of association rates was carried
out by taking into account the frequency of binding and the concentration of ligands in the sim-
ulation box. Thus, kon values of approximately 1.9 s−1 mM−1 and 4.3 s−1 mM−1 were estimated
for dasatinib and PP1, respectively. Interestingly, in addition to reproducing the crystallographic
pose, which was an impressive breakthrough at that time, the location of water molecules in the
bound state was also correctly modeled.This procedure was extended to the β2 and β1 adrenergic
receptors in the presence of known agonists and antagonists (83). For example, simulations of the
β2 receptor with alprenolol, summing to approximately 60 μs, resulted in 12 full binding events.
The direct calculation of the association rate constant was complicated by the tendency of the
ligand to partition into the membrane. Taking this into account, a kon of 3.1 × 107 s−1 M−1 was
estimated, which is very close to the value of 1.0 × 107 s−1 M−1 reported in previous experiments.

Binding of the transition state analog DADMe-imucillin-H to purine nucleoside phosphory-
lase was also explored via brute-force MD (84). In 14 runs, which together aggregated to 13 μs
of production, 11 binding events were recorded. All the trajectories were then parsed with a pur-
posely developed machine learning algorithm. By integrating the available experimental data with
details from the simulation setup, the expected mean first time to observe a binding event (i.e., a
surrogate of the on rate) was estimated to be 246 ns. The same parameter was directly computed
from the MD trajectories, resulting in a predicted value of 216 ns, which compared well with the
expected value.

As previously mentioned, estimating the koff for drug-like molecules through plain MD is not
currently feasible.However, for small fragments, the weaker interactions established with the pro-
tein allow several unbinding events to be achieved within reasonable timescales. In this case, if
enough statistics can be acquired, the dissociation rate constant can be obtained by fitting a sin-
gle exponential (as required by a first-order kinetics) to the residence time correlation function,
which can in turn be obtained by integrating the probability distribution p(tunb) of the observed
unbinding times (85):

C(t ) =
∞∫
t

p (tunb) dτ. 14.

In this context, the spontaneous unbinding from the FK506 binding protein was explored for a
series of fragment-like compounds, including dimethyl sulfoxide and chemicals of comparable size
(86). Fifty independent MD simulations, lasting up to 20 ns, were initiated with the ligands in the
bound state. Dissociation was expected within short simulation times, given the low affinity mea-
sured in the millimolar range. Several unbinding events were recorded, and a first-order kinetics
was recognized for all the species.Mean residence times were computed for each ligand by apply-
ing a single exponential fit to the residence time correlation function, obtaining values consistent
within ligands of a similar size.

4.2. Markov State Models and Adaptive Sampling Approaches

Instead of producing a few long trajectories that may capture only a few occurrences of the
processes under investigation, plain MD can be exploited with a purely statistical approach
(Figure 4b); that is, information from a greater number of shorter trajectories can be aggregated
to construct a Markov state model (MSM) (87–90). The advantage is that several MD simulations
can be run in parallel. Thus, while it is still crucial to adequately sample the entire configurational
space (i.e., through brute-force sampling), it becomes much more manageable with this approach.
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Briefly, to construct an MSM, one determines a transition probability matrix of the n sampled
microstates. First, these microstates are defined based on geometric criteria through a clustering
procedure on the sampled configurations. In the subsequent state decomposition phase, each con-
figuration is assigned to the corresponding microstate. Thus, each trajectory is converted from a
series of structures over time into a series of microstates over time, obtaining what are called
the discrete trajectories. Discretization of the state space is a feature specific to MSM not shared
by other methods that rely on fragmented trajectories (e.g., milestoning). Subsequently, jumps
of fixed length are performed over each discrete trajectory and the transitions observed in the
microstate space are stored in an n × n count matrix (C). The size of the jumps, or lag time τ ,
is a multiple of the frequency at which trajectories are saved. The lag time defines the highest
timescale resolution allowed to the model. Finally, C is converted into a transition probability
matrix P. Through diagonalization of P, the scalar values λi for which the equation

Pvi = λivi 15.

has nontrivial solutions vi can be determined. These eigenvectors vi describe specific transitions
of the system (including binding and unbinding). The timescales ti at which such motions occur
can be recovered from the corresponding eigenvalues λi according to:

ti = − τ

ln λi
. 16.

The serine protease trypsin and reversible competitive inhibitor benzamidine provide a suitable
test case for using MSMs to study binding processes. The protein is of modest size; the ligand
displays low structural complexity; and experimental binding rates kon = 0.29 × 108 M−1 s−1 and
koff = 0.06× 104 s−1 (91) can be used to validate the predictions. In the first work reported by Buch
et al. (92), 187 full binding events were observed in 500 plain MD runs, corresponding to nearly
50 μs of simulations. First, simpler models were constructed to recognize relevant metastable
states and rate-limiting transitions. Then, a finer variant, built from the ligand Cartesian coordi-
nates, was constructed to determine binding affinity and kinetic rates. Through a simple two-state
model and assuming first-order kinetics, kon = 1.5 × 108 M−1 s−1 and koff = 9.5 × 104 s−1 were
estimated.

The trajectories from Buch et al. (92) were subsequently integrated with additional plain MD
(93), thus obtaining 543 runs, corresponding to approximately 150 μs. An MSM was first con-
structed based on distances between trypsin residues. It was further refined according to a cutoff
distance of 6 Å between benzamidine and the binding site. This allowed protein conformational
states to be distinguished from the advance of the binding process, resulting in a kinetic network
comprising six unbound, four associated, and seven bound states. Binding rates were calculated
from the mean first passage times, resulting in kon = 6.4 × 107 M−1 s−1, which compared well
with experiments. In contrast, koff = 131 × 102 s−1 was overestimated by approximately two or-
ders of magnitude.

An interesting feature of MSMs is the possibility of identifying the microstates for which ad-
ditional sampling is required, thus guiding an exhaustive exploration of the configurational space.
This procedure, termed adaptive sampling (94–97), allows the quality of the model to be pro-
gressively improved. However, human supervision is typically required to carry out resampling.
To overcome this requirement, Doerr & De Fabritiis (94) devised an automatic, iterative, and
on-the-fly approach to efficiently determine where best to sample from. Testing on the trypsin-
benzamidine system, the kinetic rates kon = 4.4 × 108 M−1 s−1 and koff = 2.8 × 104 s−1 were
computed (94). Notably, with less than 1 μs gathered, this approach obtained the same accuracy
as results from 8-μs-long aggregated trajectories and conventional MSMs.
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Methodologies relying on adaptivity ensure the occurrence of infrequent events while opti-
mizing the computational effort. Indeed, this capability of guiding the dynamics toward relevant
regions of the phase space is a more general idea, not exclusive to MSM. Common to the dif-
ferent approaches is nevertheless the aggregation of large trajectory pools obtained via unbiased
sampling to achieve a statistical interpretation of biological phenomena.Within this context, adap-
tive multilevel splitting (98) has recently found application in protein-ligand binding. Specifically,
branching points fromwhich additional simulations can be launched are adaptively identified from
parent trajectories that start in the bound state. As a result, an ensemble of reactive paths leading
to protein-ligand dissociation is obtained and the average reactive path time can be computed.
By testing on the prototypical trypsin-benzamidine system, the mean first passage time could be
estimated by considering the time spent in nonreactive trajectory loops and in reactive paths (99).

Another guided dynamics framework proposed by Dickson & Brooks (100) depends on the
assignment of specific weights to an ensemble of unbiased trajectories. Such a weighted ensemble
algorithm (WExplore) generates the pool of trajectories through a series of merging and cloning
operations according to a hierarchical scheme (100). On the one hand, unlike MSM, the method
is not settled onMarkovian assumptions.On the other hand, it shares withMSM the possibility of
interpreting the MD trajectories through a conformational space network, which can be further
visualized and analyzed. Within this strategy, the unbinding rate is estimated from the sum of
the weighted passage times associated with the collection of all reactive trajectories. The method
has gradually found application at increasing levels of complexity, comprising the binding of low-
affinity ligands (101), the trypsin-benzamidine system (102), and the dissociation process of a drug-
like molecule from the soluble epoxide hydrolase protein (103). Notably, in the latter case, an
experimental residence time of 11 minutes was accessed by aggregating only 6 μs of simulation.
Moreover, the approach has also found extension in the enhanced sampling field (104).

4.3. Brownian Dynamics and Multiscale Modeling

When performing MD, each atom of the system is evolved in time according to Newton’s second
law of motion, producing atomic-scale resolution trajectories. More generally, however, the dy-
namics of a solute immersed in a solvent can be described by the Langevin equation of Equation 2
(105). In Langevin dynamics, the solvent is not explicitly included, but hydrodynamic effects on
the solute are modeled through γ , which is the friction coefficient describing the medium viscos-
ity, and R(t), a random force that acts by agitating the body in a stochastic manner. In the limit of
γ = 0, and with no random forces acting on the solute molecules, Newton’s equations of motion
are recovered. Conversely, in the limit of infinite γ , a diffusive regime is envisaged, whereby the
motion of the solute particles is slow, and the inertial memory is rapidly lost. This leads to the
approximate Langevin equation for overdamped regimes, or Brownian dynamics (BD) (106):

∂x
∂t

= −∂U (x)
γ ∂x

+ R (t )
γ

. 17.

The BD formalism reduces per se the computational burden, as only the solute is described at the
atomistic level, while the solvent is treated through appropriate implicit models of solvation (107).
Moreover, in BD molecular simulations, the solute molecules are generally modeled as rigid bod-
ies, where only translations and rotations are allowed. As a result, by neglecting internal degrees
of freedom, larger timesteps are allowed and the simulation performance improves significantly.

An example of BD simulations is provided by Sung et al. (108) in their investigation of the
binding of the natural substrate sialic acid and the inhibitor oseltamivir to the neuraminidase gly-
coprotein. By taking advantage of a massive number (to the order of 108) of BD runs, second-order
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association rates were computed from the rotational and translational diffusion constants and from
the fraction of simulations leading to productive complexes (109). In particular, following the pi-
oneering work by Northrup et al. (109), two dividing surfaces are introduced in the simulation
domain centered on the receptor: a b-surface separating the inner region of anisotropic interac-
tions from the isotropic outer region, and a q-surface where trajectories are interrupted. Thus, the
effective on rate can be factorized as:

kon = kD (b) p 18.

where kD(b) is the diffusion-limited rate constant at which the ligand encounters the b-surface
irrespective of subsequent binding,while p accounts for the probability commitment of trajectories
hitting the b-surface to bind rather than escape to infinite separation (q-surface),which is related to
the intrinsic rate constant of binding (110). The former quantity can be estimated analytically by
relying on continuum theories (111) or by considering forces and hydrodynamic interactions.The
latter quantity must be extracted from BD trajectories. Following this approach, the computed
kon = 5.17 × 106 M−1 s−1 for oseltamivir compared well with the reference experimental kon =
2.52 × 106 M−1 s−1.

BD allows more statistics associated with slow processes to be collected.However, there is gen-
erally also a loss of resolution of smaller-scale events, such as local rearrangements of the solutes.
One interesting variation of BD is its inclusion in a multiscale framework to recover relevant ki-
netic quantities, while maintaining an atomistic resolution in relevant regions of the simulation
domain. Multiscale modeling is a more general concept in science, whereby problems are solved
by integrating information obtained at multiple scales (112, 113). Similarly, recently developed
multiscale methods combine the use of MD and BD (114, 115) (Figure 4c). In the context of
binding processes, the general idea is to use less demanding BD to treat the diffusive encounter
of the involved species, while switching to MD to model their behavior once they are in close
proximity.

Zeller et al. (116) combinedMD and BD in a multiscale approach to study the association with
binding of the inhibitors oseltamivir and zanamivir to H1N1 neuraminidase. TheMD regime was
limited to a cone protruding up to 32 Å outside of the binding site entrance. A spherical surface at
12 Å, fromwhich theMD runs were launched,was defined as the protein-ligand encounter surface
(ES). Additionally, BD simulations (b-surface) began from a spherical shell set at 60 Å around
the protein. The q-surface was set at 100 Å. Roughly 1,200 MD runs, for approximately 85 μs
(50.0 μs for oseltamivir and 35.7 μs for zanamivir), were started from the ES, while two sets of 106

BD trajectories were executed. By considering the Smoluchowski diffusion-limited rate constant
and integrating the BD and MD regimes in the estimation of p, kon values were computed in
reasonable agreement with experiments for both inhibitors. Interestingly,MD-based information
enters Equation 18 as the probability that trajectories started at the ES will not escape the MD
region within 2 μs of sampling. From this standpoint, the atomistic portion of simulative endeavor
is reminiscent of a brute-force sampling strategy.

Conversely, the Simulation Enabled Estimation of Kinetic Rates (SEEKR) package developed
by the Amaro group (117) combines MD, BD, and milestoning theory in an integrated multiscale
approach. In milestoning, the dynamics involved in a complex process are broken down into tran-
sition events between predetermined intermediates along a reaction coordinate (118, 119). These
transition events are called milestones. Multiple simulations are run at each milestone to gather
proper statistics and obtain stationary flux distributions (q) across each milestone, while making
optimal use of computational resources (120). Indeed, besides the speedup intrinsically provided
by multiscaling, the striking advantage in efficiency of this method is the possibility of running
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the different milestones in parallel. Then, SEEKR assesses the diffusion-limited rate constant by
considering forces and hydrodynamic interactions, while p is obtained by combining MD and BD
fluxes through

p =
∑
z

qz, 19.

where z is the index of a milestone representing a bound state. Through this multiscale imple-
mentation, the association pathway of the trypsin-benzamidine system was broken down into 10
milestones placed at increasing radial distances, 1–14 Å, from the binding pocket. BD was used
from the outermost milestone to farther regions as set, comprising 106 simulations, while the MD
regime was applied to the innermost milestones, summing to approximately 19 μs. By combining
the obtained data, kon = 2.1 × 107 M−1 s−1 and koff = 83 s−1 were computed; these were in very
good agreement with the experimentally measured kon = 2.9 × 107 M−1 s−1 and koff = 600 s−1.

The strategies discussed above rely on MD and BD to implement multiscale frameworks for
the study of molecular kinetics. While such construction was a natural choice in view of a gain in
efficiency, alternative combinations of methods can also be envisaged. For instance, a multiscale
scheme including a nonclassical description was recently introduced (121). In this scheme, while
biased MD simulations based on transition path sampling formalisms are employed to model
the protein-ligand dissociation (see below) (122), the energetic and kinetic characterization can
be subsequently refined through aQM/MM-basedmethod (123).Notably, including the quantum
level allows taking into account polarization effects,which are typically neglected in common force
fields (124). In the application to study the binding process of imatinib to the Src kinase, a free-
energy correction on relevant stations along the association pathway could be estimated, allowing
in turn the determination of a dissociation rate in better agreement with experiments (121).

4.4. Free-Energy Surface–Based Biased Approaches

Despite the unquestionable power of MD in predicting kinetic parameters and providing atomic-
level insights into molecular mechanisms, the sampling of slow processes is still a key challenge.
Another class of MD-based methods has therefore been introduced to improve the exploration
of the configurational space at a fully atomistic level, while keeping the computational effort as
contained as possible (125). These methods are often referred to as biased MD, meaning that the
observation of rare events is encouraged by introducing external forces [e.g., umbrella sampling
(US) or metadynamics (MetaD)] that act on selected reaction coordinates (or CVs) or by using
altered statistical ensembles [e.g., parallel tempering or scaled MD (sMD)] (77). These methods
were devised to characterize thermodynamic features, essentially by reconstructing free-energy
profiles (Figure 4d).Nevertheless, they are increasingly being used to retrieve kinetic information.
This can be achieved by using a reconstructed free-energy surface (FES) or by directly taking
advantage of the accelerated sampling of the slow event. In the latter case, specific frameworks are
devised to extract kinetic quantities directly from the biased rates.These will be covered in the next
paragraph. Conversely, once a free-energy profile has been obtained, one can attempt to directly
calculate the kinetic rates by resorting to the arguments of TST or evolutions thereof. One such
application, based on US (126, 127), focused on the dynamics of tetramethylammonium through
the gorge of acetylcholinesterase, which gives access to the active site. Seven US windows spaced
at 0.6 Å were placed along the distance between the protein center of mass and the ligand nitrogen
atom in order to describe the advancement along the gorge and the final occupation of the binding
site. Through 1 ns of sampling per window, a surprisingly low energy barrier of approximately 8–
10 kJ mol−1 was found. Assuming a high friction regime and applying the Kramers modified TST

160 Bernetti et al.



PC70CH07_Cavalli ARjats.cls May 17, 2019 15:39

(105), the corresponding rate was directly calculated from the determined energy difference and
the squared frequency of crossing the barrier,which was in turn calculated by the second derivative
of the FES in the initial well. Conversely, the Kramer’s transmission coefficient was scaled down
to 0.17 in agreement with overdamped protein reactions (128). This allowed an incoming rate of
108 s−1 to be determined for the ligand, which is consistent with the fast reaction rate determined
experimentally for acetylcholinesterase.

To the best of our knowledge, the previous example is the only report to date where kinetics
information was recovered from a FES using a TST-like procedure.This strategy is widely used in
several other contexts, such as the calculation of ion-water exchange rates (129, 130).However, it is
generally understood that the complexity of protein-ligand processes mostly prevents such a direct
approach. This is especially true when more than two basins are found in the FES. In these cases,
it can be more convenient to exploit the FES to retrieve kinetic information by constructing a
kinetic model, which is essentially an interpretation of the system dynamics in terms of its kinetic
properties. In particular, the FES can be broken down according to a discrete-state scheme by
subdividing the continuous reaction coordinate space into a grid of discrete bins (131). To this
end, each reaction coordinate is partitioned into a series of blocks of fixed size, which define the
side of the bin along that direction. Each bin is then assigned the corresponding free-energy value
according to the previously reconstructed FES. Finally, assuming a Markovian diffusive behavior
in the bin space, a matrix of transition rates is built. Specifically, the rates for transitions between
each bin and its first and second nearest neighbors are computed from the free-energy difference
between the bins and the diffusion matrix in the reaction coordinate space. The latter is obtained
through a maximum likelihood procedure based on shorter, not necessarily converged, plain MD
simulations.Once themodel is constructed, a kineticMonteCarlo (kMC) algorithm (132, 133) can
be used to carry out dynamics in the bin space and from there to determine kinetic rates between
states of interest at a different resolution level. Notably, the framework allows the identification
of major kinetic attractors and the corresponding interconversion rates, thus providing a more
comprehensive interpretation of the entire system dynamics. The whole procedure bears some
resemblance to the discrete-state kinetics obtained through MSM in the context of plain MD,
although here the rates are extracted by the features of the FES and the diffusion matrix.

The approach was applied to the binding process of a short peptide substrate associating with
wild-type HIV-1 protease (134). 1.6 μs of bias-exchange metadynamics were executed (135), with
7 CVs providing a geometrical description of the process.Only 4 CVs were chosen for the binning
procedure, as the remaining correlated to these. The diffusion matrix was determined from a
10-ns-long unbiased MD simulation. The model allowed the design of a kinetic network of the
major intermediates, with kon = 1.26 × 106 M−1 s−1 and koff = 57.1 s−1 computed. This is in line
with experimental values for a close analog of the ligand.

In principle, FES-based biased methods can comprehensively describe the process under in-
vestigation, both qualitatively (by characterizing the relevant transition states) and quantitatively
(provided that suitable approaches, such as TST, are available to derive kinetic rates from the
FES). We note that kMC per se is not able to derive kinetic rates. Rather, it uses them as input
to provide the global dynamics of the system, possibly at a coarser level of resolution. Specifically,
kMC propagates the system from state to state according to the given rates by generating random
first-escape times that obey the following exponential distribution:

pi j (t ) = ki jexp
(−ki jt) , 20.

where i is the starting state and j spans each of the possible arrival states, that is, all the escape
paths.
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Methods based on reconstructing the FES have two major drawbacks. First, achieving a con-
verged FES is not trivial, especially if several CVs are required to characterize the rare event.
FES-based biased methods are therefore computationally intensive, although not as demanding
as plain MD approaches. Second, and strictly related to the previous point, it is often difficult to
devise the relevant CVs a priori. This can potentially introduce severe errors into the FES, which
mostly affect the estimation of barriers. Moreover, the reduced representation of the phenom-
ena in terms of collective variables will seriously affect the transmission coefficient, reducing the
applicability of bare TST. Noteworthy, concerning this point, we mention an accurate but com-
putationally expensive strategy to alleviate this behavior based on path CVs (136) and partial path
transition interface sampling (PPTIS) (137). In the resulting procedure, called transition state-
PPTIS (TS-PPTIS) (122), the free-energy profile is first characterized via metadynamics, while
the diffusive barriers are subsequently refined by performing a series of unbiased MD simulations
started around the transition states identified in the previous step (121, 138). In light of these con-
siderations, alternative methods that can recover kinetic observables without the demanding and
potentially error-prone FES are gaining increasing interest.

4.5. Biased Rates Approaches and Time-Rescaling Strategies

The introduction of external biases can be directly exploited to boost the dynamics of molecular
systems. Transitions along slower degrees of freedom are facilitated, and rare events can be ob-
served with increased probability, but the simulation time inevitably loses its physical meaning.
This improved capability in exploring the configurational space can effectively be exploited to re-
trieve relevant kinetic information, as long as there is an appropriate strategy to rescale the biased
rates (Figure 4e).

This idea has been successfully used to extend MetaD beyond the usual thermodynamic char-
acterization (139). The devised procedure is based on two key elements. First, no bias must be
released in the transition state regions. This requirement is met as long as the transition over this
region is faster than the Gaussian deposition stride. As such, the procedure is mostly suited for
systems characterized by rare but fast transitions. Because of the lowered frequency of bias in-
troduction, the name infrequent metadynamics was coined. Secondly, basin-to-basin progressions
need to be effectively monitored to assess that passage over a transition state has taken place. This
is achieved by following the simulation time evolution of an acceleration factor, which undergoes
noticeable kinks in response to transitions between minima.Notably, although there is no need to
know the locations of energy minima in advance, it is nevertheless essential that the chosen CVs
are able to effectively distinguish between stable basins. Within this framework, because no bias
is added to the transition regions, the system can evolve according to a state-to-state sequence
that preserves the unbiased dynamics. Therefore, by rescaling the MetaD simulation time with
the acceleration factor, the true time can be recovered. Taking advantage of this procedure, the
unbinding time is thus calculated as the average of the observed unbinding times after rescaling.
Finally, taking the reciprocal of this unbinding time, the dissociation rate is obtained.

The procedure has been tested on the archetypal trypsin-benzamidine system (140). By repro-
ducing 21 unbinding events using path CVs to guide sampling, a total simulation time of 5 μs was
gathered, corresponding to approximately 3 s of real-time evolution. The direct computation of
koff = 9.1 s−1 was in fair agreement with the experimental value. Using the computed koff together
with the free-energy difference of binding from previous works, an indirect calculation of kon =
1.18 × 107 M−1 s−1 was pursued. Notably, the authors showed that 12 independent runs would
suffice to obtain estimates of an equal level of accuracy. The protocol was subsequently applied to
an inhibitor scaffold unbinding from its target p38 MAP kinase (141). Two sets of two CVs were

162 Bernetti et al.



PC70CH07_Cavalli ARjats.cls May 17, 2019 15:39

used, specifically the ligand-pocket distance and ligand solvation in the first case, and the path CVs
as the second set. From 17 and 10 independent runs for the two sets, respectively, which together
summed up to approximately 7 μs, koff = 0.02 s−1 and koff = 0.04 s−1 were determined, in good
agreement with the experimental koff = 0.14 s−1. Notably, the consensus between the computed
values highlighted how path CVs provided good estimations, despite not explicitly taking into
account the ligand solvation.

In the optimization phase of a typical drug discovery pipeline, one is typically interested in
identifying compounds with improved properties. Given the increasingly recognized relevance of
kinetics, a common scenario involves identifying compounds with longer residence times. Here,
simpler methods are desired, with fewer tunable parameters. To this end, a prioritization strategy
is often sufficient to guide the optimization procedure. Accurate predictions of absolute values
are not strictly necessary. In this context, a strategy based on MetaD has been proposed (142).
The procedure allows a set of analog compounds to be discriminated according to their residence
times toward a biomolecular target. A series of independent MetaD simulations is performed for
each compound, starting from the bound complex and extending until the ligand achieves the fully
solvated state. The average simulation time taken by each species is then computed.

Notably, in contrast to the common practice of using geometric criteria, the unbound state is
defined in an energy-based manner. When the ligand is free to move in the solvent, no accumu-
lation of deposited energy is expected to take place and the average value of the biased potential
accumulated does not change much. Thus, this condition is set to assess that dissociation has oc-
curred. To allow for this scheme to hold, the original implementation of MetaD is used, in which
Gaussians of constant height are deposited at fixed time intervals. This allows for a proportional
relation between the total bias deposited and the simulation time necessary to achieve full un-
binding. The methodology was tested on a set of 10 arylpyrazole analogs inhibiting the CDK8
protein. For each compound, 14 independent runs were carried out, in which the dissociation
event took place within a few tens of nanoseconds. The seven CVs were geometrical parameters
that described rototranslational and conformational degrees of freedom of the ligand. Notably,
these CVs are general enough to be adapted easily to other complexes. As a result, the compounds
were successfully discriminated in three classes according to short, medium, and long residence
times as observed in the experiments.

A different protocol to prioritize ligands according to their residence times is based on sMD
but is similarly implemented (143). This biased method relies on the scaling of the entire potential
energy surface, resulting in a smoothed profile in which energy barriers are lowered and transi-
tions between energy minima are facilitated (144–146). However, at the scaling factor typically
used (on the order of 0.4–0.5), protein structural stability can be compromised. Therefore, to pre-
vent unfolding, gentle positional restraints are used on all backbone-heavy atoms, except for the
residues in the binding pocket (143). A notable advantage of sMD is that one does not have to set
a reaction coordinate to guide unbinding, because the potential scaling acts indistinctly on the en-
tire system. The correlation with experimental dissociation rates can then be assessed by fitting to
a simple linear function, after rescaling the computed unbinding times for the λ factor used. In the
first published application, the pharmaceutically relevant targets HSP90 protein, GRP78 protein,
and adenosine A2A receptor were considered (143). For each one, a different set comprising four
known inhibitors was considered. By applying a scaling factor of 0.4, a total of 108, 84, and 80 runs
were performed for HSP90, GRP78, and A2A, respectively, ranging from a few nanoseconds in
the case of the fastest ligands to nearly 100 ns for the slowest. For all three targets, the inhibitors
were ranked correctly in agreement with available experimental off rates. A subsequent study fo-
cused on a set of chemically unrelated activators of the glucokinase protein (147). In addition to
being a further successful validation against a more heterogeneous class of ligands, the practical
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effect of using a less aggressive scaling factor was investigated. This methodology is one of the
modules of a commercial software named BiKi (short for binding kinetics) (148). It is currently
used by pharmaceutical companies to prioritize compounds for chemical synthesis campaigns on
the basis of residence time predictions.

We conclude this section by mentioning a further strategy to rank drug candidates by their
computed residence time. This approach is based on random accelerated MD (RAMD), a form
of biased dynamics without the definition of CVs. RAMD used mild random forces to promote
the egress of ligands from their binding sites (149). When used to calculate relative residence
times, this approach is known as τ-RAMD.With this strategy, Kokh et al. (150) recently correctly
ranked the residence time of a large (70 compounds) set of diverse drug-like molecules bound to
the HSP90 protein. This strategy obtained a good correlation (R2 = 0.86) between computed and
experimental residence times. It also highlighted salient features of the unbinding process that
affected dissociation rates.

5. CONCLUSIONS

Lack of efficacy is one of the major factors behind the attrition rate in drug discovery. Despite
remarkable in vitro affinity for a biological target, a drug is often unable to exert pharmacological
and therapeutic effects in vivo. Besides the well-known issues related to absorption-distribution-
metabolism-excretion (ADME), if a drug does not bind its biological target long enough, its ef-
ficacy in vivo may be compromised, and the probability of side effects increases. Therefore, the
kinetics of drug-target binding and unbinding has emerged as a new in vitro parameter that may
help predict drug efficacy in vivo. Several drug discovery programs have introduced residence time
(the inverse of koff) optimization as a new step in their pipelines. The optimization of residence
times can have a positive impact on the highly costly developmental steps.

In the past few years,measurements of kinetic parameters have been increasingly implemented
in the early stages of drug discovery. Here, we defined the three major categories of experimental
techniques for these measurements and discussed their pros and cons in terms of drug discovery.
We also presented in silico computational methods, which are increasingly used to assist the en-
tire drug discovery process. We noted that there are currently no well-established computational
methods for routinely predicting the kinetics of drug (un)binding. On the one side, there are fast
methodologies for ranking compounds, although the accurate determination of absolute residence
time values may require large training sets and robust correlations based on available experimental
data. Still, these methodologies can be helpful in discerning fast from slow binders and in prior-
itizing compounds for chemical synthesis campaigns. On the other side, there are more accurate
approaches for predicting the kinetics of drug binding. However, these approaches may require
weeks or months of calculations and human labor to determine absolute residence time values
for one single compound. Despite their high level of accuracy, these approaches are incompatible
with drug discovery programs, which require a reasonable tradeoff between speed and accuracy.

In light of these considerations, we propose a combination of different sampling methods to
estimate residence time. Fast approaches can be used for the initial ranking. They can be run
in a few days or weeks to prioritize compounds for the subsequent stages of drug discovery.
Additionally, these methodologies can point to relevant reaction coordinates (or path-related col-
lective variables), which may then be used in more accurate approaches to identify minimum
free-energy paths and calculate potentials of mean force. Thus, for a given objective, researchers
can use the available arsenal of enhanced sampling methods to find the right compromise be-
tween speed and accuracy in the estimation, prediction, and eventually, accurate absolute calcula-
tion of the kinetics of drug binding/unbinding. This latter objective may still be affected by the
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potentials used. However, there has been remarkable progress in recent years so that the goal
of absolute thermodynamic and kinetic calculations for drug discovery now appears to be within
reach.
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