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Abstract

Because the one-electron basis set limit is difficult to reach in correlated post-
Hartree–Fock ab initio calculations, the low-cost route of using methods that
extrapolate to the estimated basis set limit attracts immediate interest. The
situation is somewhat more satisfactory at the Hartree–Fock level because
numerical calculation of the energy is often affordable at nearly converged
basis set levels. Still, extrapolation schemes for the Hartree–Fock energy are
addressed here, although the focus is on the more slowly convergent and
computationally demanding correlation energy. Because they are frequently
based on the gold-standard coupled-cluster theory with single, double, and
perturbative triple excitations [CCSD(T)], correlated calculations are often
affordable only with the smallest basis sets, and hence single-level extrapola-
tions from one raw energy could attain maximum usefulness. This possibility
is examined. Whenever possible, this review uses raw data from second-order
Møller–Plesset perturbation theory, as well as CCSD, CCSD(T), and mul-
tireference configuration interaction methods. Inescapably, the emphasis is
on work done by the author’s research group. Certain issues in need of fur-
ther research or review are pinpointed.
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1. INTRODUCTION

The solution of the time-independent electronic Schrödinger equation (SE) has long been a chal-
lenge of the utmost importance in computational molecular science (1, 2). This is not surprising,
since accurate energies and eigenfunctions are crucial information for spectroscopy, thermochem-
istry, and kinetics, to note only a few fields where it plays a key role.

The oldest and simplest method for solving the SE is the Hartree–Fock (HF) or mean-field
approach, in which the correlated motion of the electrons is ignored. Because the error arising
from this disregard is significant, more sophisticated single-reference (SR) methods have been
proposed. These include variational methods such as configuration interaction (CI) and the per-
turbative second-order Møller–Plesset (MP2) and coupled-cluster (CC) methods, which are per-
haps the most popular. Of relevance is coupled-cluster theory with single, double, and perturbative
triple excitations [CCSD(T)], which is considered the gold standard by quantum chemists because
of its accuracy and affordability even for moderate-sized systems: It often yields results closer to
more correlated CC methods (such as CCSDTQ, which has explicit triple and quadruple exci-
tations) and full configuration interaction (FCI) than the less approximate CCSDT method (3).
Still, SR methods leave out the static (nondynamical) correlation. To recover it, multireference
(MR) methods are needed, such as the one based on the complete active space self-consistent
field (CASSCF or CAS) wave function, with MRCI accounting for the dynamical correlation by
inclusion of single and double electronic excitations (MRCISD). Since integration of the SE with
accuracy at demand is unreachable, extrapolation of the raw energies to target converged values
is key and the focal point of this work.

The outcome of the pointwise solution of the SE for an N-atom species is the potential energy
surface (PES) (4), a function defined in a configuration space of dimensionality τ = 3N − 6.
Scaling as nu

4 per point (where nu is the number of unoccupied orbitals), the cost of the PES easily
becomes unaffordable when combined with that of generating the PES itself, adding up to ∝ nu

4m̄τ

(where m̄ is a typical number of calculations required per dimension). Fortunately, the focus is
often on relative energies, with the important chemical changes occurring in the valence orbitals.
Despite this, conventional post-HF methods have an agonizingly slow rate of convergence with
basis set size. Moreover, basis set superposition error (BSSE), which is inextricably tangled with
the inability to exactly solve the SE, plagues all ab initio calculations. Extrapolation to the one-
electron complete basis set (CBS) limit, or just scaling of the correlation energy (if not the total
energy itself; see 5), can thus be valuable. In fact, besides allowing one to avoid correcting for BSSE,
the utility of such methods is enhanced in combination with fragment-based methods, in which a
large molecule is made tractable by explicitly considering all parts into which it can be fragmented
as a many-body expansion (MBE) (4). Note that if it follows a first split of the SE eigenenergies
into HF- and correlation-type contributions as in modern ab initio theory, this approach assumes
the double many-body expansion (DMBE) form (6, 7). To this end, CBS extrapolation schemes
are here surveyed. For convenience and following common practice in the literature, energies are
given in hartree (Eh), kcal mol−1, or kJ mol−1; 1 Eh = 627.5095 kcal mol−1 = 2,625.4996 kJ mol−1.

2. GENERAL CONCEPTS

2.1. Explicit Correlation Versus Complete Basis Set Extrapolation

The need to go beyond HF arises from the correlated motions of the electrons dictated by the
electron–electron repulsion operator. Because this shows a singularity when any two electrons
coalesce (r12 = 0), the exact wave function has a cusp (discontinuous derivative), as implied by the
famous Kato (8) cusp condition, 〈∂�/∂r12〉r12=0 = 1

2�(r12 = 0), which implies that the exact wave
function must be linear in r12 at small interelectronic distances. It turns out that conventional
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correlation methods expand the wave function in terms of Slater determinants built from orbitals,
thus failing to obey this condition; this explains their extremely slow convergence. Although the
purist’s approach to solving the problem is to make the many-electron wave function depend
explicitly on r12 (2, 9), the alternative consists of systematizing the error made by conventional
methods and seeking an extrapolation scheme that allows one to predict the inherent error, which
is the approach highlighted here.

For two-electron atoms, where the first-order wave function of a 1/Z expansion in partial
waves [Legendre polynomials of the cosine of the angle between the electronic vectors r1 and r2,
Pl (cos θ )] behaves, for small r12, as ψ = (1 + κr12)� + O(r2

12), with κ = 1
2 (or 1

4 ) for singlet (or
triplet) states (8, 10) and with� being the unperturbed wave function, Kutzelnigg & Morgan (11)
established that: (a) For natural-parity singlet states [a state’s parity is natural if it equals (−1)L

and unnatural if it equals (−1)(L+1)], the leading contribution to the energy at the second order of
perturbation theory is proportional to (	+ 1

2 )−4 with no odd terms proportional either to (	+ 1
2 )−5

or (	 + 1
2 )−7 and with the term (	 + 1

2 )−6 universally − 5
4 of (	 + 1

2 )−4; (b) for triplet states, the
leading term is proportional to (	 + 1

2 )−6; (c) for unnatural-parity singlet states, the coefficient is
proportional to (	 + 1

2 )−8. They also found the results to remain essentially unaltered when �
is the HF wave function, although the ratio (11) of the (	 + 1

2 )−6 and (	 + 1
2 )−4 coefficients for

natural-parity singlet states is no longer − 5
4 . Moreover, the results were found to generalize to the

MP2 energy of atoms with any number of electrons (11, 12). Such findings followed pioneering
work using perturbation theory by Schwartz (13), who analyzed the partial-wave expansion of
the second-order expression and obtained only the coefficients of powers −4 and −6, since the
(l + 1

2 )−5 term vanishes. Thus, if
El ∝ ∑
m=4 am(l + 1

2 )−m is assumed to be the convergence error
when all terms with l ≥ L are omitted, one has, for large enough L values,


E =
∞∑
l


El ∼
∑
m=4

am

∫ ∞

L+ 1
2

(
l + 1

2

)−m

dl =
∑
m=4

Am−1(L + 1)−m+1, 1.

where A3(L+1)−3 is the leading asymptotic term and A5(L+1)−5 the next one. Use of a one-term
expression may then limit accuracy, since the subset of natural singlet pairs in an MP2 calculation
for the Zn2+ ion contributes only 54.7% of the total correlation energy (12). Schwenke (14)
dissected this issue through MP2 calculations on He and Ne as a function of the maximum
angular momentum using basis sets with converged radial extent and values of l up to 14. While
the form (L + 1)−3 was reached for Ne, higher-order terms were normally important in the range
of l values used in molecular calculations. Additionally, a similar analysis for an open-shell atom
and a small molecule has shown that the actual form may gain even further intricacy (14).

Largely motivated by the above, modern basis sets (15–21) are commonly built according to
a principal expansion (thus increasing by inclusion of all ∼n2 functions in the next shell), with
each shell contributing an amount of energy ∝ n−4. The popular correlation-consistent basis sets
(cc-pVXZ or VXZ; aug-cc-pVXZ or AVXZ and d-aug-cc-pVXZ or dAVXZ when augmented
with extra diffuse functions; cc-pCVXZ or CVXZ when functions for core-correlation are
included) of the Dunning family (15, 16, 22) are an example. Because the cardinal number
(X = 2 : D, 3 : T , 4 : Q, . . .) can be identified with L + 1, the common X−3 power-law er-
ror (23, 24) arises. Its slow convergence compounds with the time required for MP2, CCSD,
and CCSD(T) calculations, which scale as N 5N 4

b , N 6N 4
b , and N 7N 4

b (25); N is the number of
atoms and Nb the number of basis functions per atom, so that Nb � X 3 for a VXZ basis (24, 26).
Calculations beyond QZ are thus unaffordable for many interesting systems, making the output
raw energies far from safe for extrapolation with many CBS schemes. This contrasts with the
HF energy, which is found numerically and analytically to converge exponentially (27), possibly
∝ exp(−√

L).
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There are then two ways to obtain accurate energies: (a) solution of the SE after explicit in-
troduction of correlation in the wave function (2) via ri j coordinates and (b) exploitation of the
convergence of hierarchized correlation-consistent basis sets toward the CBS limit. Although
this may conceivably become a matter of merely historical interest (28), with standard CCSD(T)
calculations giving way to their explicit correlated counterparts, any analysis of the current lit-
erature or direct comparison of standard versus explicitly correlated methods (generally denoted
by R12) shows such a scenario to be far away, since R12 methods are relatively new, with even
analytical derivatives being largely unavailable (29). Actually, despite a fast convergence (∝ X−7),
R12 methods perform inefficiently with small basis sets (2). Besides, both conventional and R12
methods converge to the same asymptotic energy, with CBS extrapolations doing well and of-
ten outperforming R12 methods in overcoming noncompleteness of the one-electron basis set, a
merit reflected (3) in the number of CBS schemes vying with the more rigorous R12 techniques.
Indeed, to facilitate the CBS extraction process, an extrapolation calculator has recently been
developed (30) for some of the schemes discussed here.

2.2. Correlation Scaling Versus Complete Basis Set Extrapolation

The problem of generating an accurate ab initio PES has been examined by Varandas &
Piecuch (31; see also 32), who suggested predicting it for a larger target basis set from re-
sults of smaller basis set calculations by scaling the correlation energy. To understand this, see
Figure 1, which shows the relation between the basis set and intrinsic, adiabatic, and apparent er-
rors of a calculated property when compared with its experimental value (1); note that the apparent
error includes corrections due to relativistic and nonadiabatic effects. Varandas & Piecuch (31)
have shown that by calculating the PES with bases at hierarchies (m − 1) and m and one point at
hierarchy (m+1), one should be able to predict the entire PES at the (m+1) target level. For this,
the required universal scaling factor should be (a) determined at the chosen (reference) nuclear
geometry over a series of systematically constructed basis sets and (b) applied to the electron cor-
relation energies of the remaining geometries defining the PES, which have been calculated with
smaller basis sets in order to predict the PES corresponding to the larger target basis set. The idea
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Figure 1
Basis set versus intrinsic versus adiabatic versus apparent errors in electronic structure theory (1).
Hierarchical numbers are m − 1, m, . . . ; the experimental value of the calculated property is indicated and
the Born–Oppenheimer plane is shown in gray.
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in this correlation scaling (CS) approach (31) is then similar to that in other approaches offering
large savings in computer effort: scaling of all (total) correlation (SAC) (33) in SR calculations and
scaling of the external correlation (SEC) (34). It should be noted that if more than one channel
exists, a compromise scaling parameter must be sought in SAC or SEC (33, 34), although such a
requirement can be eliminated by first expanding the total energy as a DMBE (thus allowing for
one scaling parameter per distinct n-body fragment, n ≤ N ) in a procedure known as DMBE-
SEC (35) that has been much used in modeling global PESs (see 5 and references therein). The
major difference in CS (31) then lies in not using (31, 32) any empirical data. The CS scheme has
also been extended to an arbitrary number of reference geometries (32, 36) and used with success
for small molecules (31, 32, 36) and even molecules as large as butadiene (37). Although extendable
to large bases, CS is impractical for reaching the CBS limit. Yet their joint use can conceivably be
useful and has actually proven reliable (36, 38). For example, there are regions of configuration
space where the cheaper CCSD(T) method may break down while MRCISD meets no obstacle.
Thus, by CBS extrapolating the two best sets of energies and seeking via CS their smooth merging
at the breakup region, one may achieve a global high-level CCSD(T)-quality PES. This might
well be called a cuckoo-like approach, putting us in mind of the bird that does not bother to build
its own nest but instead mimics the eggs of other birds and takes over their nests.

2.3. Intramolecular and Intermolecular Energies

Perhaps not surprisingly, noncovalent intermolecular interactions form the core of a promising
area of research in which the use of CBS extrapolation schemes can be most relevant (39). Because
such interactions are typically much weaker than intramolecular ones, the ability to apply highly
accurate methods is key. Examples include advanced quantum chemical studies of base stacking
and base pairing in the chemistry of RNA and DNA (40, 41) and the accurate description of
the activation barrier in the thioldisulfide exchange reaction, since disulfide bonds are abundant
in proteins (42). Since the systems of interest are generally of larger size than when studying a
simple molecule, the use of high levels of correlation or even large basis sets is prohibited, with
CBS being the only route to accuracy. Another important issue in this context is size consistency,
which must be satisfied particularly with weak van der Waals (vdW) interactions: While MP
and CC methods are size-consistent, MRCI is not (1). There is also BSSE, which manifests for
finite basis sets as a spurious attraction even in the absence of interaction and plagues all ab initio
molecular orbital (MO) calculations, seriously contaminating the interaction energy. While the
popular counterpoise (CP) (43) technique (or variants thereof ), which consists of calculating the
monomer energies with the full dimer basis, is commonly employed to remedy the problem, full
elimination of BSSE is elusive in the case of many-fragment systems (44–46). In contrast, BSSE
must vanish in the limit of a complete basis, and hence CBS extrapolation should in principle
render CP unnecessary (47, 48). This was, to the best of our knowledge, first demonstrated by the
author via highly accurate calculations (47, 48) for He2, and has been much utilized to calculate
PESs ever since (42, 49–57). Similar findings were later reported (58–63), in particular by Mentel
& Baerends (61), who noted that CP-corrected bond energies deviate more from the basis set
limit numbers than do uncorrected ones. With this applying at HF, CASSCF, and, even more
strongly, correlated levels including FCI, the answer to the question, “can the CP correction for
BSSE be justified?” is simply no (61).

2.4. Composite Schemes

The extrapolation schemes here discussed differ from other popular ones such as Gn, CBS-Q,
and their variants (1). These have various prescriptions and often assume basis set additivity or
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use mixed methodologies, while adding empirical corrections of various types such as uniform
scaling of force constants and energy corrections based on the number of electrons. Whether
they can be considered to be ab initio is then a subtle question. Conversely, the CBS procedures
here discussed perform explicit extrapolations of ab initio energies without empiricism. Unless
indicated otherwise, they use also a single set of extrapolation parameters for all systems, and hence
are called global extrapolation schemes to contrast with system-dependent ones that use a different
set of parameters for each system (64). Thus, in principle, global schemes allow CBS extrapolations
from arbitrary steps of the hierarchical staircase. Note that the so-called Wn chemistries (65) rely
on the extrapolation of the HF and correlation energies (and even include relativistic corrections),
thus sharing techniques similar to the ones here surveyed. They have been quite successful, making
predictions of an accuracy often higher than that of experimental counterparts. So, not surprisingly,
more recent schemes use R12 methods to accelerate basis set convergence (66). Note that even
CCSD calculations with a TZ basis are often rather expensive for interactions with large molecules.
Methods akin to the focal-point approach (67) [used in G2 theory (68) and in our own work (48,
50)] may thus be very useful, although they are not discussed here.

3. SOME GUIDELINES AND PROCEDURES FOR COMPLETE
BASIS SET EXTRAPOLATION

CBS extrapolation has been much discussed in papers (14, 23, 24, 26, 27, 29, 69–93), review
articles (2, 94), and books (1) and is not recapitulated here except where relevant for the present
review. Due to distinct asymptotic dependences, we focus on schemes that split the total energy
into HF and correlation components, which are then separately extrapolated:

EX (R) = EHF
X (R) + Ecor

X (R), 2.

where cor stands for correlation, R stands for the molecular geometry (omitted hereinafter), and
all other symbols have the meaning assigned above. Since the only long-range HF contributions
arise from electrostatic and induction interactions, the partition in Equation 2 is traceable to the
HF-dispersion model (95), which is in turn homologous to the first-order exchange-perturbation
plus damped dispersion model (96) and even to DMBE theory (6, 7).

3.1. Hartree–Fock-Type Energy

To treat the HF energy, one of two approaches is usually followed. The first, utilized in early
days (97) to extrapolate the energy from correlated wave functions, uses the protocol

EHF
X = EHF

∞ + A exp(−β̃X ), 3.

where EHF
∞ , A, and β̃ are parameters to be determined from raw energies calculated for at least

three cardinal numbers. If these numbers are sequential (X − 1, X , and X + 1), one gets (87)

EHF
∞ = EHF

X −1 +
(
EHF

X −1 − EHF
X

)2

EHF
X −1 − 2EHF

X + EHF
X +1

. 4.

Halkier et al. (72) observed that β̃ in Equation 3 has an approximately constant value for their test
set of main group species, with β̃ = 1.63 performing well in dual-level extrapolations with small
correlation-consistent bases. This not only reduced the number of calculations to two but also gave
deviations from the numerical limits smaller than those obtained from three-point extrapolations.
Rather than an algebraic average, Williams et al. (87) suggested that β̃ be chosen so as to minimize
the maximum absolute deviation (MAD) for a training set with analytical solutions from dual-
level extrapolations. Other exponentially decaying functions that were employed to extrapolate
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the total energy may also be useful for extrapolating the HF part alone, in particular a mixed
Gaussian/exponential form (70). With three linear parameters, this widely used form has been
found to perform more accurately than Equation 3 for the H+H2 reaction (70) and for transition
metal diatomics (87).

Following work by Jensen (80), Karton & Martin (81) proposed the dual-level scheme:

EHF
X = EHF

∞ + A(X + 1) exp(−b
√

X ), 5.

where b = 9. Equation 5 shows a root-mean-square deviation (RMSD) of only 0.1 mEh with the
AVQZ and AV5Z basis sets, and 10 µEh with the (AV5Z, AV6Z) pair. Unfortunately, it does
not perform well even with (T , Q). This led to testing of alternative expressions (81), including
Equation 6 below, which is commonly used for the correlation energy with β optimized from a
set of test systems. This gives RMSDs of 3.54 (72), 5.34, 8.74, 9.43, and 8.18, respectively, for
cardinal number pairs (D, T ), (T , Q), (Q, 5), (5, 6), and (6, 7).

Equation 3 also performs reliably for the CASSCF energy (82). In fact, being system specific
and accounting for only the nondynamical correlation, the CASSCF energy is shown in Section 8
to share similar protocols with HF. Often, both are affordable with large basis sets, with the values
obtained being assumed to represent the converged result without significant error (76). It turns
out that, when used to extrapolate the CASSCF energy from the three highest affordable bases,
Equation 3 tends to predict energies that are too low when the exact results are known (82). Given
the problematic nature of a fit of three points with three parameters, a test with the four largest
bases was done (82). While this was also mostly unsuccessful, it was found (82) that an average of
the highest-X raw energy with the triple-level CBS one gave striking agreement with predictions
from Equation 5.

3.2. Correlation Energy

As noted above, the use of CBS extrapolations of the correlation energy is supported by the
energy’s dependence on the partial wave quantum number in two-electron atoms and on second-
order pair energies in many-electron atoms (see 11–13, 98, 99, to mention only some pioneering
work). Thus,

Ecor
X = Ecor

∞ + Acor

Xβ
, 6.

with all parameters having the usual meaning (24). Theoretically, one expects β = 3, leading to
the so-called X3 protocol. However, recent work suggests that the exponent may vary with the
system and the different contributions of the energy (14). Aiming at a rule of potential interest
for moderate-sized systems, Truhlar (71) directed attention to extrapolations from small bases
(X = D, T ) and valence-only limits. By minimizing the RMSD in fits to the estimated basis set
limits (24) for Ne, HF, and H2O, optimal exponents of βMP2 = 2.2 and βCCSD = βCCSD(T) = 2.4
were recommended (33) for MP2, CCSD, and CCSD(T) energies. These were later reevaluated
with a larger test set (73), and the protocol was applied (39) to binding energies in noncovalent
interactions. Most recently, the idea of allowing β �= 3 has been reinforced (91). This topic is
revisited in Section 4.3.

Bakowies (84) suggested the use of variable-exponent inverse power laws and used β to
quantify deviations from the asymptotic convergence behavior. Both analytical examples (for
other asymptotic expansions, see 23, 26, 77–79) and numerical extrapolations to either large
but finite or CBS targets were also analyzed (84). He noted that the deviations from asymptotic
convergence are most significant for small bases but are still noticeable even when the bases
are as large as V5Z or V6Z. By defining exponents βopt(X , X + 1, X + N ) that are optimal for
a set of molecules, Bakowies (84) suggested picking β so as to minimize the RMSD between
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extrapolated and explicitly correlated EX +N energies. Instead of a single exponent, the use of
specific exponents for specific extrapolations is advocated, a procedure related to the one used by
Schwenke (79) but with analytical rather than numerical scaling.

The most popular asymptotic dual-level law is (23, 26, 75, 82, 85, 100, 101)

Ecor
X = Ecor

∞ + A3

(X + α)3
, 7.

where the offset angular momentum is determined from some additional criterion (82, 85). On
the basis of Equation 1, Klopper (77) suggested the use of distinct one-term expansions for the
singlet and triplet pairs, thus accounting for the expected X−3 and X−5 dependences. Although use
of multiple monomial terms in inverse powers of X may then come to mind, the procedure gets
cumbersome and not necessarily more accurate. Of course, the parameterization of a multiple-
monomial expansion requires as many calculations of a given raw energy using bases of distinct
cardinal numbers as there are expansion terms. To alleviate the burden, we have suggested a
uniform singlet- and triplet-pair extrapolation (USTE) (82) scheme in which the total correlation is
not decomposed, for three reasons. First, the decomposition is unnecessary for accurate results (82).
Second, it cannot be implemented for open-shell CCSD calculations (79) (the wave function is not
a spin eigenfunction in practical implementations of CCSD theory), nor is it commonly available
in CC codes. Third, such a decomposition is extraneous to MRCI: A single excitation out of
the reference space can be counted as either a singlet pair or a triplet pair depending on the spin
coupling of the N −1 part of the determinant. These reasons may legitimize reading of the USTE
acronym as interchangeable with unified singlet- and triplet-pair extrapolation.

Equations 6 and 7 are both limiting cases of the following rational fraction:

Ecor
X = p0 + pM X−M + pM +1X−(M +1) + · · ·

1 + qN X−N
, 8.

where p and q are coefficients, M ≥ N , and X may also be thought of as X + α. This equation
assumes the form of Equations 6 and 7 when M = ∞, since for large X values, a Taylor expansion
in X−1 yields limX−1→0[1/(1 + qN X−N )] ∼ 1 − qN X−N . Thus, if N = 3, Ecor

∞ = p0 and A3 =
−p0q3. Another possibility (see above) is to limit the numerator to odd powers and M = 5. Such
a continued fraction has proven reliable for representing correlation energies (86): With M = ∞
and the two parameters fixed from energies for Ne with basis sets of large cardinal number
(X = 9 and 10) (3), it yielded Ecor,S

∞ = −210.64 mEh and Ecor,T
∞ = −104.88 mEh for the singlet-

pair and triplet-pair CCSD/VXZ energies, versus −210.61 mEh and −104.87 mEh from CCSD-
R12 calculations. It may then be ideal to fit unusual dependences as in R12 calculations (102).

4. COMPLETE BASIS SET EXTRAPOLATION SCHEMES FOR
CORRELATION ENERGY

4.1. A Dual-Level Scheme: Uniform Singlet- and Triplet-Pair Extrapolation

The USTE (82) scheme has its origin in a three-parameter rule implicit in Equation 8:

Ecor
X = Ecor

∞ + A3

(X + α)3
+ A5

(X + α)5
, 9.

where Ecor
∞ , A3, and A5 are parameters and the offset factor α effectively accounts for the terms

beyond the fifth power in Equation 1. Chosen with the requirement that Equation 7 must repro-
duce the exact correlation energy for He from FCI/CBS(5, 6) calculations, the value α = − 3

8 is
assumed hereinafter except where otherwise specified (82). By then defining the auxiliary relation
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A5 = A◦
5 + c Am

3 (82), where A◦
5 = A5 (A3 = 0) and where c and m are optimized from ab initio

energies for a variety of systems in a training set, Equation 9 is transformed into the dual-level
USTE rule. Supplemental Table 1 gathers all parameters fixed from MRCI(Q)/AVXZ energies
for 24 systems (82) as well as MP2/VXZ, CCD/VXZ, and CCSD/VXZ energies (77). Naturally,
they vary with the method and basis set used, but not significantly for methods and bases belonging
to related families. In fact, correlation energies obtained by SR methods and the dynamical part
from MRCI(Q) calculations (36), and even correlation energies obtained via intrinsic scaling (103),
are accurately extrapolated with USTE even for systems out of the calibrating set (36, 38). For
single-reference MP and CC energies, USTE assumes the analytic form (88)

Ecor
∞ = Ecor

X2
− A◦

5(X2 + α)−5

+ Ecor
X1

− Ecor
X2

+ A◦
5[(X2 + α)−5 − (X1 + α)−5]

c [(X2 + α)−5 − (X1 + α)−5] + (X2 + α)−3 − (X1 + α)−3
[(X2 + α)−3 + c (X2 + α)−5],

10.

where X1 and X2 are cardinal numbers. Although Equation 10 looks superficially more compli-
cated, it is as easy to solve as the traditional inverse cubic power law for X3.

The USTE scheme may also assume the form

Ecor
X = Ecor

∞ + A3

(X + α)3

[
1 + τ53

(X + α)2

]
, 11.

where τ53 = A5/A3 = (A◦
5/A3) + cAm−1

3 . Showing the proper asymptotic behavior, Equations 9
and 11 therefore allow an estimate of the ratio τ53 to be extracted from ab initio correlation
energies. Values have been reported at the MP2, CCD, and CCSD levels of theory with VXZ
basis sets, as well as at the MRCI(Q)/AVXZ level (86). Note that τ53 assumes a value of −0.75 for
natural-parity singlet states in the 1/Z expansion for various states of the He isoelectronic series [it
corresponds to the ratio of the

(
	+ 1

2

)−6 and
(
	+ 1

2

)−4 terms, namely − 5
4 ; see 11] (82), although

its value may vary if the HF wave function is used (11), as shown in MP2 studies of symmetry-
adapted pairs (12). In fact, τ53 accounts both for the

(
	+ 1

2

)−6 term arising from natural parity
singlet states and for the leading term with the same dependence in triplet states, and thus for all
electron pairs (for details, see 86).

4.2. Dual-Level Generalized Uniform Singlet- and Triplet-Pair Extrapolation

One might wonder at this point how τ53 varies over configuration space: If not significantly, can
it be constrained at some best estimate (86) leading to a generalized USTE (GUSTE)? This
could identify systems with similar A3 values but distinct A5 values, such as He-like systems (11),
where some triplet states have different values of A5 for A3 = 0. The generalization consists of
writing A5 = ηA◦

5 + cAm
3 (86), where the scaling factor η moves the curve up and down parallel

to the original law [A5(0) = A◦
5, with η = 1] to mimic a desired result. Obviously, one has

again the three-parameter rule in Equation 9 unless a criterion is used to fix η. The simplest
way is to select η from a calculation with X = Q; this method is called GUSTE/DTQ. Thus,
ηDTQ = A3

(
τ

DTQ
53 − cAm−1

3

)
/A◦

5, where DTQ implies that only the three smallest cardinal numbers
are employed. Naturally, A3 varies with the cardinal numbers used for extrapolation, and so does
η (86). If higher cardinals are affordable (86), one has τ Q56

53 and GUSTE/Q56. GUSTE commonly

employs the average ratio τ̄53 =
(
τ

DTQ
53 + τ

Q56
53

)
/2 (86).
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4.3. Other Dual-Level Schemes and Beyond

Because triple-level or superior schemes require raw calculations with ≥3 distinct bases, they can
be cumbersome and computationally demanding, and hence are only briefly addressed.

If X is large enough, high-order terms can be neglected and the offset parameter α set to 0,
with the popular X3 dual-level protocol assuming the form (24, 74, 75, 104–107)

Ecor
∞ = Ecor

X + cX
(
Ecor

X − Ecor
X −1

)
, 12.

where cX = (X −1)3/[X 3 − (X −1)3]; a corresponding expression is obtained if a power of X �= 3
is used (71). This is denoted by X3(X − 1, X ) or by (X − 1, X ) if no confusion arises; other
notations such as [X − 1, X ] are occasionally used (91). Much utilized in extrapolations of both
intra- and intermolecular energies (39), this method is inaccurate when extrapolating from small
cardinals.

An accurate numerical dual-level scheme is due to Schwenke (79) and denoted by SCH(FX ):

Ecor
∞ = Ecor

X −1 + FX
[
Ecor

X − Ecor
X −1

]
, 13.

where FX = X p/ [X p − (X − 1)p ] are coefficients (identical to cX above if the power is p = 3),
which were determined (79) by using CCSD-R12 energies (77). Thus, they are dependent both
on the basis set used and the correlated method.

Recently, Okoshi, Atsumi & Nakai (91) suggested two schemes for CBS(D, T ) extrapolation
of MP2, CCSD, and CCSD(T) energies, namely OAN(C)[2,3] and OAN(P)[2,3]. The first uses
Equation 6 but with the power optimized using the condition that it must fit the CBS-extrapolated
correlation energies calculated with the X3(3, 4) protocol using VXZ and AVXZ basis sets. As test
data, the G3X set was utilized for MP2 and CCSD, whereas G2 was employed for CCSD(T). For
MP2/VXZ, the authors found a sharp peak for 187 molecules at s = 2.15–2.20 (except for Li2,
for which the peak appears at 2.385); a value of 2.174 was thus chosen. The OAN(P)[2,3] variant
represents the prefactor as A3(3, 4) = αA3(2, 3) + β, with α and β chosen for each combination
of method and basis set from the G2 and G3X test sets. Both variants perform accurately ver-
sus CBS(T , Q) reference values. Two issues may be of concern: First, it is questionable whether
CBS(T , Q) provides reliable references; second, OAN(C)[2,3] does not follow the s = 3 asymp-
totic law. A similar comment applies to OAN(P)[2,3], and a stringent test would require high-level
explicitly correlated energies.

Multilevel schemes have occasionally been used for benchmarking purposes (29). Using pri-
marily large bases at the frozen-core [fc, as opposed to all-electron (ae)] level, fc-CCSD(T)/AVXZ,
Feller (29) tested modifications of five CBS dual- and triple-level extrapolation formulas to re-
produce a diverse set of 183 atomization energies. The most effective appears to be a generalized
version of Schwenke’s form with nine adjustable parameters (versus three in the original protocol),
which seems capable of yielding results comparable to the raw values requiring basis sets three
steps higher in the hierarchical staircase. A weighted average of such formulas was also tested (29),
which turned out to be better behaved than the components in the sense that some approach the
asymptote from below while others do it from above.

4.4. A Dual-Level Scheme with Basis Set Rehierarchization: USTE(x − 1, x)

Achieving an accuracy as high as one possibly can get implies obtaining (Ecor
∞ , A3) from raw energies

with the highest affordable rank. Although the (5, 6) cardinal pair is affordable for few-electron
systems with most ab initio methods, a tractable CBS/(D, T ) is key for larger ones. This is a goal of
GUSTE (86), with τ53 kept invariant over configuration space once it is determined from a single
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calculation with a larger X value. This quickly gets out of reach for medium-sized molecules, and
we turn to another scheme (48) aiming at the same goal.

The approach begins by recognizing that extrapolations are best discriminated if their form is
linear. Equation 9 is then rewritten as Ecor

X = Ecor
∞ + A3 X̃ −3 (48), which is equivalent to defining

a new hierarchical number (generally a real positive number):

X̃ = (X + α)
[

1 + A5/A3

(X + α)2

]−1/3

, 14.

where A3 and A5 have the same meaning as in the original USTE scheme (82). For the reassign-
ment, various approaches were tested while obtaining a highly accurate potential for the weakest
interaction in He2 (48). Subsequently, MP2, CCSD, and CCSD(T) calculations were done for 18
systems at the fc level (108), and nearly all of these were used for USTE (26, 82, 109). The values
of X̃ were then determined from the requirement that they fall onto the straight line defined by
Ecor

X versus X̃ −3, a procedure applied to the whole test set using the largest affordable cardinal
numbers (48). The newly defined x = X̃ values are shown in Supplemental Table 2 using the
hybrid Latin/Greek labeling x = d , t, q , p , h. Tested on 106 neutral and closed-shell species (84)
including H2, the method (108) keeps the original acronym but is accompanied by the hierarchical
numbers used for the extrapolation: USTE(x1, x2).

Shown in Supplemental Figure 1 are the average deviations between the novel hierarchical
and cardinal numbers,
χ . Notably, the cardinal is always larger than the hierarchical number for
CC methods, but smaller for MP2 in the case of the DZ basis. The actual basis is then statistically
better than DZ for MP2, while others are slightly poorer than the ones they represent. Also visible
from the same plot is the fact that the hierarchical number tends asymptotically to a value �0.26
smaller than the cardinal, both for CC and for MP2. Such a pattern is well described by


χ = p0 + 1
2

tanh
[

(X − X0)
p1

]
, 15.

where
χ = X − x, X0 = 1.75 (the crossing point of the MP2 and CC curves) is a reference, and pi

are parameters: p0 = −0.2110 and p1 = 1.7211 for MP2; p0 = −0.2004 and p1 = 0.3770 for CC.
Good one-parameter fits are still obtained with p0 fixed at p0 = −0.2057, yielding p1 = 1.7816 and
p1 = 0.3678 for MP2 and CC, respectively. Clearly, X − x attains a nearly constant value for CC
from TZ onward. In fact, the utilized basis sets tend to converge asymptotically, in both the CC and
MP methods, to hierarchical numbers �0.3 smaller than the corresponding cardinals. The only
anomaly is DZ, which partly explains why CBS extrapolations from basis sets with the two lowest
cardinal numbers are problematic with the X3 (23, 24) protocol. Indeed, USTE(d , t) significantly
outperforms the original USTE (82) scheme. The universality of the novel hierarchical numbers
across other hierarchized bases has been verified (90), and the results have even been enhanced
for AVXZ basis sets. In general, USTE(x − 1, x) (108) outperforms USTE(X − 1, X ) (82) and
outperforms X3 (23, 24) even more. In turn, it shows excellent agreement with the results from
Schwenke’s (79) numerical protocol for CC energies and polarizabilities, which are critical for
accurate long-range interactions (108, 110).

4.5. More on Dual-Level Schemes with Basis Set Rehierarchization

Consider the inverse X power law in Equation 7 with an exponent β. One has (64)

Ecor
∞ = Ecor

X −1 +
(

Ecor
X − Ecor

X −1

)[( X + α

X + α − 1

)β
− 1

]−1

, 16.
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Figure 2
Unnormalized frequency distributions of the optimal extrapolation exponents (ideal β obtained from
Equation 17) for a 106-species test data set as fitted to Gaussian distributions. Abbreviations: CCSD(T),
coupled-cluster theory with single, double, and perturbative triple excitations; MP2, second-order
Møller–Plesset theory.

from which it follows that

β = ln
(

Ecor
X − Ecor

X −1

Ecor∞ − Ecor
X

+ 1
)/

ln
(

X + α

X + α − 1

)
. 17.

Two questions arise. The first question is whether the optimal shifted angular momenta (X + α)
obtained by matching the hierarchical numbers in USTE(x − 1, x) predict the ideal asymptotic
β value. The second one is whether, by varying α and β to minimize the residuals, one might
enhance the performance of USTE(x − 1, x). These questions are particularly pertinent for (d , t)
and (t, q ), since CBS extrapolation from larger pairs is expected to mimic the asymptotic behavior.
Because the second question demands investigation, only the first one, concerning whether X +α
can be approximated by X −
χ in Equation 15, is considered, using the 106-species test set and
USTE(5, 6) as a reference.

Figure 2 shows histograms of the optimum β values for (d , t), (t, q ), and (q , p), all broadly
depicting a Gaussian-type shape, except the (d , t) distribution, which shows a somewhat asym-
metrical form with an outlier point at β ∼ 4. They were fitted to a three-parameter Gaussian
form, not necessarily normalized, with the fits mimicking the histograms, except in the (d , t) case,
which has an asymmetric bell shape and is unpopulated for values x � 2.8 with an outlier close to
3.5 (the value is for H2 and is thus of no concern for extrapolation purposes; see 108). As shown,
all distributions peak close to 3, with the peak positions and average values being, in the order
given above, (2.95, 2.98), (2.98, 2.97), and (2.96, 2.94) for MP2 and (2.91, 2.94), (3.00, 2.99),
and (2.98, 2.95) for CCSD. This supports a faster MP2 versus CCSD convergence to the CBS
limit: All β values get closer to 3 for MP2 than for CCSD, from (d , t) onward. The results seem
also to corroborate the scheme employed in the USTE(x − 1, x) calibration. Although they use
the hierachical numbers in Supplemental Table 2 (48), they should be similar to the results
obtained by combining Equations 15 and 17. Indeed, a fully analytical USTE(x̃ − 1, x̃) may be
Ecor

X = Ecor
∞ + A3 x̃−3, where x̃ = X −
χ and where 
χ is given by Equation 15; analysis of this

topic is outside the scope of the present review.
With various dual-level CBS schemes in the literature for extrapolating the correlation energy,

one might think of recasting them into a unifying form. Seino & Nakai (93) have shown such a
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form to be analogous to Equation 12, but with the constant redefined as cX = (X − 1 + η)β/[
(X + γ )β − (X − 1 + η)β

]
, where η and γ are parameters; they validated it for various dual-level

models (23, 48, 84, 91, 93, 108, 111) using DZ and TZ basis sets.

4.6. A Single-Level Scheme: USPE(x)

Until recently, the only single-level protocol was Ecor
X /Ecor

∞ = 1 − 2.4X−3 (with energy in Eh), a
golden rule (26) hereafter denoted by V2000, where the prepower constant was chosen from 33
distinct data sets referring to 20 molecules and one atom (24, 109). Although Ecor

∞ lies closer to
the CBS limit than Ecor

X , it performs modestly compared with dual-level protocols, which is not
surprising because of the lack of parameters to characterize even the method.

For a single-level scheme, A needs to be determined from some other criterion. The simplest
would be to consider its average value for a test set, but this is not expected to yield any significant
improvement over V2000, since A varies widely with the system. The alternative is to relate A to
a byproduct of the correlation calculation, for example (89)

Ecor
∞ = Ecor

X + A(E tot
X )

x3
, 18.

with A(E tot
X ) chosen by imposing that the extrapolations mimic some reference values. Using the

USTE(5, 6) predictions (82) and the 18-system data set (108), this yields A(E tot
X ) = b + a E tot

X , with
good fits reported for the MP2 and CCSD methods as well as the VXZ and AVXZ bases (89).
This may be explained by the fact that A represents an energy that grows approximately with the
number of electrons. However, the dependences on the atomic number (Z) of E tot

X and Ecor
X are

distinct (112, 113), and hence Equation 19 fails for atoms in the stringent criterion of consistency
of dimensionality. In fact, the total energy (112) varies as −AZ7/3 + B Z2 − C Z5/3 + · · · , while
the leading dependence of the correlation energy was found numerically (113) to be −a Z4/3 −
b Z2/3 − cZ1/3. Yet the above is strictly valid for atoms, whereas the ideal formula must also apply to
molecules, although thus far only molecules made of atoms from H to Ne have been considered.
Since no oscillations are expected, and primarily because Z is not defined for a molecule, Equation
18 may effectively warrant such a requirement. Thus,

Ecor
∞ = Ecor

X + a fx E tot
X

x3
= Ecor

X + a[1 + κ(X )]E tot
X

x3
, 19.

where a characterizes the method and basis set and where κ(x) [or κ(X )] is an adaptative auxiliary
form (48, 108). Clearly, Equation 19 is applicable only to systems with Ecor

X �= 0; Supplemental
Table 2 gathers the average values of a in this unified single-parameter extrapolation [USPE(x)]
scheme. Despite its limitation to first-row atoms, it often outperforms dual-level schemes.

When aiming at applicability to atoms and molecules as well as distinct rows of the periodic
table, the above lack of dimensionality may require some solution. One such solution consists of
relating correlation energies calculated at two distinct levels of theory, one much cheaper than the
target level. Two such methods are density functional theory (DFT) and MP2. Since the former
is part of a plethora of methods not considered in this work, we focus on MP2. Supplemental
Figure 3a shows that a linear relationship holds between the CCSD(T) and MP2 correlation
energies, with the latter being costless since it is part of the CCSD(T) output. The calculations
(all employing MOLPRO; see 114) include the 106-species test set (89) plus 20 systems involving
elements of higher periods that are part of a training set used (115) to calibrate a restricted-open-
shell CBS model chemistry. Although only the 18-system set is used in Supplemental Figure 3b,
a linear relationship holds between AMP2

cor (X ) correlation and MP2 correlation, thus setting a
promising scenario for predictions as consistent as those using USPE(x). This is a fair expectation,
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since A(EHF) should be well approximated linearly for both MP2 and CC, which also suggests an
approximately linear relationship between ECC

cor versus EMP2
cor . Since this is shown only for atoms of

the first period, it requires validation for other atoms. Yet even if distinct linear relations apply, the
ratio is expected, on the basis of Supplemental Figure 3, to be linear. Note that a scaling relation
for CCSD(T) and MP2 correlation interactions of a noncovalent complex was also reported (116).

Assessed with the 106-species test set, USPE(t) outperforms (d , t), while (X > T )-predicted
correlation energies show deviations similar to (X −1, X ) or (x−1, x) (89). In turn, USPE(q ) out-
performs computationally demanding CCSD(F12)/def2-QZVPP results (117). Regarding CCSD-
F12b/3C(FIX) (118), the predicted values tend to fall slightly below. Notably, USPE(d ) outper-
forms USTE(D, T ) and X3(D, T ) for MP2, and X3(D, T ) for CCSD.

Regarding Equation 19, MP2(F12)/AV6Z (119) predicts slightly larger correlation energies
than most extrapolations (89), a trend seen from a statistical analysis of the error/valence electron in
Supplemental Figure 4. Also visible is the fact that explicitly correlated methods tend to perform
inefficiently with small bases but remarkably well with large ones. Note that both conventional
and R12-type methods must perform similarly in convergence when approaching the CBS limit,
and hence any convergence delay between the two must reach a maximum at some intermediate
cardinal number. This is the case with MP2 and MP2-F12, with κ(X ) in Equation 19 being the
accumulated delay in CBS convergence up to a given X . For the 18-system set at MP2(F12)/AV6Z
(119) and MP2 (VXZ and AVXZ) levels, one gets (89) fd = 1.00, ft = 1.02, fq = 1.04, f p = 1.08,
and fh = 1.13, which are well mimicked by

κMP2(X ) = η + 1
2

tanh
(

X − Xm

5

)
, 20.

where η = 0.46 for both the newly hierarchized and conventional bases (see Supplemental
Figure 4). In turn, Xm = 10 and δ = Xm − xm = 0.3, with the denominator of the tanh argument
fixed at 5 to make it close to −1 at x, X : d , D. Note that η �= 0.5 reflects the fact that the
smallest hierarchical number is D : 2 (d ), where κMP2 = 0, while in the high-X limit, κMP2 ∼ 1.
This suggests that the accumulated delay of MP2 attains ∼ 50% of its maximum at X ∼ 10, a
nonverifiable prediction until bases with cardinal numbers as large as X � 10 become available.
Although a novel scheme (USPE fx ) may then be proposed, its rate of delay ∝sech2[(X − Xm)/5]
may require validation from ab initio calculations. Regarding CCSD-F12, f CCSD

x,X ∼ 1, as USTE
and USPE predict slightly more negative CBS energies, which may be explained by the slower
basis set convergence (118) of CCSD-F12.

Note that a Taylor series expansion may suggest an effective convergence power law that is
somewhat smaller than inverse cubic. Interestingly, this may explain some power laws (71, 84, 91)
available in the literature, although the current protocol shows the well-established asymptotic
power. For CCSD, some previous work (71, 84, 91) predicts a negative power law larger than for
MP2, also in line with the above analysis.

5. CAN COMPLETE BASIS SET EXTRAPOLATION
AVOID COUNTERPOISE?

A challenging undertaking in modern electronic structure theory is the quantitative treatment of
intramolecular and intermolecular interactions. The traditional approach, which is the focal point
of the present analysis, combines advances in methods for treating electron correlation with a
hierarchical expansion of the basis, which is then systematically expanded in both its radial and
angular parts to reach the CBS limit. The question then arises whether a quantitative account
of the BSSE is required prior to CBS (74). From an accurate study (47, 48) on He2, the author
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has shown that CBS extrapolation of both CP-corrected and CP-uncorrected energies leads to
essentially the same value (within 10−2 K or so) of the vdW well depth, with the sole benefit of
CP being a smoother convergence pattern. Although the suggestion (47, 48) that CP could be
eschewed gathered support (58–63), a debate arose. The topic is here elaborated with the help of
a few case studies.

Being a simple concept, BSSE is highly accepted, and so is CP as a way to approximately
correct it (43). However, CP has drastic effects, besides making the calculations expensive and not
necessarily more accurate in absence of CBS (32, 38, 47, 48). For example, the CBS(D, T ) binding
energy of the formic acid dimer gets unusually large when including BSSE with augmented DZ
and TZ bases, and it does not decrease with basis set size. In line with other findings (60, 120),
this is attributed to two effects. One effect is the BSSE itself. The resulting error should then
decrease with basis set size, which implies that CP is superfluous at the CBS limit. The other
effect is ascribed (60) to an intramolecular BSSE, supposedly due to an artificial improvement
of the electron correlation. Imputed to an unbalanced description of the electron correlation, it
would significantly increase the intermolecular BSSE, since both effects seem related by a power
law (120). Due to such undesirable intramonomer effects, both BSSE corrections were questioned,
with Sheng et al. (60) refraining from including any corrections at all for their CCSD(T) results,
in agreement with the above (47, 48).

Another elucidative study uses the barely bound helium dimer and a FCI treatment. Two
errors were assigned from basis set incompleteness. One is BSSE, while the other, called basis set
convergence error (BSCE), is the exact interaction energy minus the CP-corrected FCI energy in
the same basis (60). They were found from FCI/AVXZ (X = D−5) calculations to have opposite
contributions. BSCE (negative) is larger at short range and remains larger than (but closer to)
BSSE around the vdW minimum. Only at long range does BSSE become larger. Because they
largely cancel each other out over the vdW well, it was recommended (60) that BSSE not be
included in calculations from short distances until well beyond the vdW minimum. In other
words, CP is required only if accurate tail behavior is at stake. Since caution must be exercised
there anyway (even after CBS) if the basis misses sufficient diffuse functions, one can refrain from
using CP altogether for most purposes. Tests were also done for other systems where basis set
free benchmark numbers are available for monomers and dimers, with Be2 being another example.
A positive answer to the question has in this case too been verified (61). Indeed, the conclusions
seem to hold both at HF and, even more strongly, at correlated [CCSD(T), FCI] levels (61).

A final remark should be made on results suggesting that BSSE should account for substantial
geometry changes of the monomers due to formation of strong hydrogen bonds in the dimer (121).
Considered key (122) for obtaining accurate binding energies of the formic acid dimer (since the
BSSE displays the expected decrease with basis set size), the problem was later attributed (123)
to undue use of a valence basis set jointly with correlation of all electrons, an effect akin to
that reported (55) in a study of the HS2 reaction course. In summary, even if CP-corrected and
CP-uncorrected energies yield identical results upon CBS extrapolation, the latter are easier and
cheaper to get (32, 38, 47, 48). It thus seems legitimate to obviate CP altogether when extrapolating
for basis set incompleteness.

6. COMPLETE BASIS SET EXTRAPOLATION OF MOLECULAR
PROPERTIES

6.1. Tensorial Properties

So far, only extrapolations of energies have been considered, which may lead to more accurate
energy differences. Since other properties can be calculated by electronic structure methods (1),
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one might ask how much they benefit from CBS extrapolation. To answer this, we first recognize
that the envisaged property may be defined as the response of a wave function, an energy, or
an expectation value of an operator to a perturbation, this being any operator not present in
the Hamiltonian, for example an external field. Relativistic terms are here ignored, and so are
properties, such as transition moments, that depend on matrix elements between two distinct
wave functions. The analysis is further restricted to static properties and electronic contributions
to properties of a single molecule at a fixed geometry.

Consider the energy expanded as a Taylor series in the perturbation strength λ,

E = E(0) + ∂E
∂λ
λ+ 1

2!
∂2 E
∂λ2

λ2 + 1
3!
∂3 E
∂λ3

λ3 + · · · , 21.

where the perturbation is usually a vector, the first derivative is also a vector, the second derivative
is a matrix, the third derivative is a (third-order) tensor, etc., and ∂n E/∂λn is an nth-order property.
For example, if the perturbation is due to moving a nucleus, Equation 21 becomes

E(R) = E(R0) + ∂E
∂R

(R − R0) + 1
2!
∂2 E
∂R2

(R − R0)2 + · · ·

= E(0) +
3∑

i=1

Gi (Ri − R0
i ) + 1

2!

3∑
i , j=1

H i j (Ri − R0
i )(Rj − R0

j ) + · · · , 22.

where the expansion has been truncated at the second order: The first derivative is the gradient
G, the second derivative is the force constant (Hessian) H, etc. Thus, G = 0 if R0 is a stationary
point, and the force constant matrix may be used to evaluate the harmonic vibrational frequencies
and normal coordinates Q.

First consider the case where the perturbation is an external electric field:

E(F) = E(0) +
3∑

i=1

μi Fi + 1
2!

3∑
i , j=1

αi j Fi Fj + · · · , 23.

where Fi are components of the applied field and E(0) is the total energy in its absence. If F
is uniform and applied along the axes i = x, y , or z, then μ = μi is the dipole moment and
α = αi i the dipole polarizability, respectively the negative of the first and second derivatives of the
energy relative to the field (124). As these are fundamental properties of matter that are difficult
to experimentally determine (the inherent uncertainties are often undesirably large; see 125), ab
initio methods offer a valuable route for their accurate determination.

We now write

E(Fi ) = EHF(Fi ) + Ecor(Fi ), 24.

with CBS extrapolations done as described in previous sections. If Equation 23 is now truncated
at the fourth order and E(0) and E(Fi ) are extrapolated at four field values (Fi = ±0.005, ±0.01
a.u.), a system of linear equations can be solved and the properties calculated (83). If the pro-
cedure is then carried out for the x, y , and z field components, average polarizabilities can be
obtained in good agreement with experiment (83). Dual-level (triple-level for HF) CBS extrapo-
lations of polarizabilities were also reported for tetravalent actinide ions (126) with ae-relativistic
core-correlation bases, and at the triple level with AVXZ and dAVXZ (X = Q, 5, 6). Moreover,
calculations of static dipole polarizabilities were performed for Ne, CO, N2, F2, HF, H2O, HCN,
and C2H2 at the CBS level by focal-point analysis (127).

Because the above procedure requires four correlated calculations with applied electric fields
and one without for two cardinal numbers (83), the method is expensive, and hence we next
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consider a simpler variant. For this, let the properties in question be written as (110)

ζ = ζHF + ζ cor, 25.

where ζ = −∂σE(Fi )/∂F σ
i , with ζ = μi ,αi i , etc. Thus, ζHF = −∂σEHF(Fi )/∂F σ

i and ζ cor =
−∂σ Ecor(Fi )/∂F σ

i . If the HF and correlation energies in the presence of an external field are next
assumed to converge to the CBS limit at a similar rate as in its absence, one has

ζHF
CBS = ζHF

X2
+ X−κ

2

X−κ
1 − X−κ

2

(
ζHF

X2
− ζHF

X1

)
, 26.

where X1 = X2 − 1 and κ depends on the cardinal pair (X1, X2) used for extrapolation. Similarly,
if USTE(x − 1, x) or the X3 protocol is used for the correlation energy,

ζ cor
CBS = ζ cor

X2
+ x−3

2

x−3
1 − x−3

2

(
ζ cor

X2
− ζ cor

X1

)
, 27.

where xi = d , t, . . . (108) for USTE(x − 1, x) and Xi = D, T , . . . for X3 (23). Thus,

ζCBS = ζX2 + x−3
2

x−3
1 − x−3

2

(
ζX2 − ζX1

)+
(

X−κ
2

X−κ
1 − X−κ

2
− x−3

2

x−3
1 − x−3

2

)(
ζHF

X2
− ζHF

X1

)
, 28.

where ζX1 and ζX2 are properties at the full correlated level, and ζHF
X1

and ζHF
X2

at the HF level.
Alternatively, with USTE(X − 1, X ) (82), this assumes the form

ζCBS = ζX2 + B(X1, X2)
(
ζX2 − ζX1

)+
[

X−κ
2

X−κ
1 − X−κ

2
− B(X1, X2)

](
ζHF

X2
− ζHF

X1

)
, 29.

where

B = − [(X2 + α)−3 + c (X2 + α)−5
]

c
[
(X2 + α)−5 − (X1 + α)−5

]+ (X2 + α)−3 − (X1 + α)−3
; 30.

unlike Equations 10 and 29, this does not depend on A◦
5. In turn, with USPE(x), one has

ζCBS =
(

1 + a
x3

2

)
ζX2 + X−κ

2

X−κ
1 − X−κ

2

(
ζHF

X2
− ζHF

X1

)
, 31.

where a is defined in Supplemental Table 3 and other symbols have the meanings given above.
If a finite difference method is used,αi i = −[E(F (1)

i )−2E(F (2)
i )+E(F (3)

i )]0/h2, where F (1)
i = −h,

F (2)
i = 0, and F (3)

i = h are the applied electric fields along i = x, y , z. Clearly, h must be small
to warrant converged results, but large enough (0.005) to facilitate differentiation (125). With
USPE, the average polarizability will look like Equation 31, but with ᾱ replacing ζ , which is
manifestly cost-effective, since only one correlated calculation is required. The good performance
of USTE (83, 110) has been demonstrated: Even at the (d , t) level, the predicted polarizabilities
show errors (<1%) similar to those of the most accurate MP2 and CC raw values. Note that
the direct CBS extrapolation of raw polarizabilities is erroneous, albeit with small errors (110).
For large hierarchical numbers, the difference between ζHF

i i (X2) and ζHF
i i (X1) is small, and such an

approximation is plausible.
Consider next the gradients required to integrate the equations of motion in direct dynamics

or the frequencies that imply second derivatives. The solution stems from Equations 28–30, since
for a continuous function f (x) in the interval [x − h, x + h], the intermediate value theorem
warrants that there is a point ξ ∈ (x − h, x + h) such that f (n)(ξ ) = [ f (n)(ξ1) + f (n)(ξ2)]/2, with
ξ1 ∈ (x − h, x) and ξ2 ∈ (x, x + h). Gradients and Hessians can then be extrapolated when such
raw data are available. Two observations are in order. First, the second term of Equation 28 is
nonnegligible [for (d , t): −0.235 in MP2 and −1.118 in CCSD], which may lead to nonmonotonic
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behavior, depending on the ζ -differences at HF and correlated levels. This has been verified from
calculations done here for 8 diatomics, all at optimum ground-state geometries: H2, N2, HF
(hydrogen fluoride), C2, O2, CO, HCl, and S2. Second, the equilibrium geometry varies with
X , which may hamper correct extrapolation. Suffice it to add that convergence of the raw ζHF

and ζMP2 properties is itself often nonmonotonic, although (d , t) predictions from Equation 28
mimic the MP2 and CC values at the V6Z level to within about 2%, a deviation similar to that
often obtained in optimizing the equilibrium geometry Re . Expectedly, enhanced convergence
can be envisaged by numerical differentiation or analytically from ζ -CBS extrapolations with high
hierarchical pairs.

6.2. Atomization Energies

An essential component of ab initio calculations is their capability to predict or rationalize ex-
perimental outcomes. The atomization energy of a molecule is an example closely related to the
heat of formation, since it differs only by the reference state and neglect of vibrational effects:
For the former, the reference state is the isolated atoms, and for the latter, the elements in their
most stable form. Because the dissociation energy for the reference molecules can be measured,
the atomization energy is an experimental observable.

Accurate thermochemical calculations are feasible only for small systems formed from first-
and second-row atoms (128, 129), with CCSD(T) being the state-of-the-art method once effects
are added due to convergence to the one-particle CBS limit, core/valence correlation, scalar
relativistic correction, and sources (see Figure 1). Zero-point vibrational energy (ZPE) corrections
are also important for heats of formation and introduce their own computational difficulties. Still,
a correction to the dissociation energy that accounts for the intrinsic error in CCSD(T) must be
added. Ideally, a FCI wave function and a basis capable of capturing the magnitude of the effect
should be employed. Use of FCI and a TZ valence basis jointly with the above composite scheme
could then be a strategic choice, since it can differentiate between heats of formation that differ by
�0.5 kcal mol−1 (128). Alternatively, inclusion of fully iterative triple excitations (CCSDT) may
be adopted (117, 129), as the involved ∼n8 scaling may still be affordable.

The performance of a CBS extrapolation scheme can therefore be plausibly addressed from
calculations of atomization energies once some additivity scheme is adopted. One due to Klopper
et al. (117) adds to fc-CCSD/CVQZ energies the following: core-valence correction, perturba-
tive corrections for connected quadruple excitations [CCSDT(Q)], scalar relativistic and spin-
orbit effects, anharmonic ZPE vibrational effects, and HF corrections. To improve the correla-
tion at the fc-CCSD/CVQZ level, fc-CCSD(F12)/def2-QZVPP calculations are advocated (17),
with an 
EF12 correction believed to give subchemical accuracy: few kJ mol−1 versus chemical
(<1 kcal mol−1) versus spectroscopic (<1 cm−1). Thus (117),

Etotal = Efc-CCSD(T)/CVQZ +
ECV +
EZPE +
Eanh +
EF12 +
EMVD

+
ESO +
ET +
E(Q), 32.

with all but 
Eanh computed (130) at the ae-CCSD(T)/CVTZ equilibrium geometry: 
ECV is
a CVQZ core-valence correlation correction obtained as the difference between ae-CCSD(T)
and fc-CCSD(T) energies, 
EZPE is the ae-CCSD(T)/CVTZ harmonic ZPE, 
Eanh is the cor-
rection to ZPE due to anharmonic effects at the fc-MP2/VDZ level, and 
EMVD is the ae-
CCSD(T)/CVTZ correction for scalar relativistic effects (130). Spin-orbit corrections (131) are
also considered: 
ESO = 0.35399, 0.93278, and 1.61153 kJ mol−1 for C, O, and F, respectively.
Also added is the full correction for connected triples and a perturbative correction for connected
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quadruple excitations (132):


ET = ECCSDT/VT Z − ECCSD(T)/VT Z, 33.


E(Q) = ECCSDT(Q)/VD Z − ECCSDT/VD Z. 34.

Finally, a correction for basis set truncation error at the MP2-F12 level of theory is included,
EF12,
which (for enhanced results) was subsequently estimated at the CCSD(F12) level of theory,


EF12 = 
Efc-CCSD(F12)/def2-QZVPP −
Efc-CCSD/CVQZ, 35.

as well as a HF correction


HF = EHF/CV5Z − EHF/CVQZ 36.

and, for the triple excitations [via fc-CCSD(T) with CVQZ and CV5Z bases followed by X3
extrapolation], a correction to the CCSD/CVQZ energies (117).

Recently, we employed (108) the full scheme of Klopper et al. (117) but replaced 
EF12 by
CBS-extrapolated correlation energies, denoted by 
(X − 1,X ):


(X − 1,X ) =
(

Ecor(atom)
(X−1,X ) − Ecor(atom)

CCSD/CVQZ

)
−
(

Ecor(mol)
(X−1,X ) − Ecor(mol)

CCSD/CVQZ

)
. 37.

Also, geometries were optimized at the ae-CCSD(T)/CVTZ level (thus ensuring calculations at
minima), and atomic or molecular correlation energies used HF or restricted open-shell HF refer-
ences. A comparison of RMSDs for calculated atomization energies of 73 systems from the Active
Thermochemical Tables (133) shows a significant improvement for CBS extrapolations beyond
(d , t) or FQ relative to CCSD/CVQZ values (108). Generally, USTE(x − 1, x) and SCH(FX )
perform best, and USTE(q , p) and SCH(FQ) show the smallest errors. However, it is unwise to
extract definite conclusions, since some of the steps involved in the process of calculating molecular
atomization energies may involve somewhat uncertain approximations.

7. ASSESSMENT OF LOW-COST COMPLETE BASIS SET
EXTRAPOLATION SCHEMES

After examining various schemes for CBS extrapolation of the correlation energy, one might
seek those schemes that are least expensive and potentially most useful in practice. Included in
this discussion are the USTE(x − 1, x), USPE(x), SCH(FX ), and OAN(X − 1, X ) schemes,
whose performances are assessed from the RMSD for the 106-species test set (84, 108, 117,
134) using MP2, CCSD, and CCSD(T) with VXZ (15, 16, 22), XZP (18), and X-ZaP (19, 20)
basis sets. The results (90) are shown in Supplemental Figure 5, with MP2(F12)/AV6Z (119) and
USTE(5, 6)/VXZ taken as reference energies. The first observation concerns the VXZ and X-ZaP
bases, with USPE(t) outperforming USTE(d , t) at a lower cost. The performance of USTE(d , t) is,
however, enhanced with XZP, with improvements greater than 1 kcal mol−1 in MP2 and in CCSD
versus the VXZ homolog. The largest USTE(x − 1, x) deviations correspond to the X-ZaP basis,
with USTE(D, T ) outperforming USTE(d , t) for CCSD, a comparison that may vary slightly
when basis-specific x values are used. Still, USTE(d , t) and USPE(t) outperform OAN(C)(D, T )
(135) for MP2 with any basis, but the opposite is valid for CCSD even if by �0.4 kcal mol−1.
In turn, SCH(FT )/CCSD outperforms USTE(d , t) with VXZ and X-ZaP bases, but USPE(t)
outperforms SCH(FT ) in all cases. Notably, USPE(x) can be competitive with USTE(x − 1, x),
particularly for x ≡ t. In fact, USPE(t) outperforms USTE(d , t) with VXZ and X-ZaP bases,
while USPE(t)/X-ZaP generally outperforms SCH(F(T )) and OAN(C)(D, T ). If TZ calculations
are affordable, USPE(t) may be the best choice if only H and first-row atoms are involved. Often,
all schemes show performances better than R12/TZ-type calculations.
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8. COMPLETE BASIS SET EXTRAPOLATION OF
HARTREE–FOCK-LIKE ENERGIES: AN UPDATE

Recently (92) we developed a dual-level scheme for the CBS extrapolation of the HF energy from
arbitrary hierarchical numbers, not necessarily sequential. The new protocol generally outper-
forms the best available ones and is also valid for CASSCF-type energies.

Consider Equation 3, where, for a fixed universal parameter β̃,

ECAS
∞ = EXi e

β̃Xi − EX j e
β̃X j

e β̃Xi − e β̃X j
. 38.

Aiming at straightening the hierarchical staircase, assume ECAS
∞ , β, and one hierarchical number

xk = Xk as known. The others (i = 2, 3, . . . and i �= k) are determined from (92)

xi = 1
β̃

ln

[
e β̃xk (ECAS

∞ − ECAS
xk

)
ECAS∞ − Exi

]
, 39.

where x2 = d , x3 = t, x4 = q , x5 = p , x6 = h, and x7 = s (48, 108), with the method being
denoted by CAS-E(xi , x j ) or CAS-E when used for CASSCF energies (HF-E for HF, or SCF-E if
used for both). Regarding ECAS

∞ , values from Equation 3 with the (6, 7) cardinal pair (15, 136, 137)
and β̃ = 1.26 (81) were used. Specific x-numbers were then obtained as averages of homologs
so calculated for the 18-system set (89, 90, 108). Because they should be close to the associated
cardinals (90, 108), xk was constrained to minimize the RMSD between the two, with the search
carried out (92) near xk = 7 for the grid 1.2 ≤ β̃ ≤ 2.0 and 6.50 ≤ xk ≤ 7.50. The results
are in Supplemental Table 4. Notably, the SCF-E schemes are more reliable than Karton &
Martin’s (81) protocols even with the smallest basis sets x = d , t, q .

9. CONCLUDING REMARKS

It is impractical to saturate a basis in ab initio calculations, especially for large molecules. With
direct dynamics pointing toward the future in the simulation of chemical reactions (138), a double
partition of the energy followed by CBS extrapolation from low hierachical bases (plus derivatives)
may offer a route to on-the-fly integration of the equations of nuclear motion or may even help
to discover chemistry with an ab initio nanoreactor (139).

Naturally, CBS extrapolation can hardly correct any major handicaps of the methods them-
selves. For example, unbalanced basis sets originate artifacts that cannot conceivably be eliminated,
although they may likely be minimized. The same holds for properties, such as polarizabilities, that
depend mainly on the wave function tail and are thus energetically unimportant. Such cautionary
remarks extend also to systems requiring diffuse functions, which are to be considered whenever
loosely bound electrons are present (anions and excited states). Indeed, USTE(d , t), USPE(t),
and often even USPE(d ) show enhanced results that may explain the optimistic view that CBS
extrapolation helps to minimize basis set unbalance. Nothing can be said, though, about the wave
function, with ab initio methods standing per se, especially of the R12 type. Showing significantly
faster convergence, extrapolations of the energy are still doable for the latter, and Equation 8 or
CS may help in the endeavor.

Finally, there is the question of whether CBS extrapolation can have an impact on large
molecules. The consensus view is that (often heavily) parameterized Kohn–Sham DFT is the
way, and hence any attempt to point to a wave function–based alternative may look dated. With
most functionals calibrated so that calculated energies lie as close to known targets as possible, this

196 Varandas

Supplemental Material

https://www.annualreviews.org/doi/suppl/10.1146/annurev-physchem-050317-021148


PC69CH08_Varandas ARI 17 March 2018 12:2

does not imply that they yield electron densities close to the exact one (140). In turn, a comparison
with experimental data requires at least CBS extrapolation of any raw energies. Taken together,
MP2/CBS(d , t) is likely a scheme capable of competing with Kohn–Sham DFT in terms of both
time and accuracy (141). This is an issue worthy of further exploration.
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