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Abstract

Modern quantum chemistry algorithms are increasingly able to accurately
predict molecular properties that are useful for chemists in research and
education. Despite this progress, performing such calculations is currently
unattainable to the wider chemistry community, as they often require
domain expertise, computer programming skills, and powerful computer
hardware. In this review, we outline methods to eliminate these barriers us-
ing cutting-edge technologies. We discuss the ingredients needed to create
accessible platforms that can compute quantum chemistry properties in real
time, including graphical processing units–accelerated quantum chemistry
in the cloud, artificial intelligence–driven natural molecule input methods,
and extended reality visualization.We end by highlighting a series of exciting

313

mailto:Todd.Martinez@stanford.edu
https://doi.org/10.1146/annurev-physchem-061020-053438
https://www.annualreviews.org/doi/full/10.1146/annurev-physchem-061020-053438
https://creativecommons.org/licenses/by/4.0/


applications that assemble these components to create uniquely interactive platforms for com-
puting and visualizing spectra, 3D structures, molecular orbitals, and many other chemical
properties.

1. INTRODUCTION

Hartree and Fock could have scarcely imagined in the 1930s that their equations would eventu-
ally be solved in a matter of seconds for molecules with hundreds of atoms, much less that these
calculations could be launched through voice commands using a virtual assistant such as Amazon’s
Alexa. Advances in computing power, artificial intelligence (AI)/machine learning (ML), network-
ing communication, and scientific algorithms have made this a reality. We are in the midst of an
exciting transition from an era where chemical computation was restricted to experts willing to
struggle with algorithm/code development, input deck formatting, and 2D visualizations to one
where students can launch calculations by speaking to their smartphones and then visualize the
results in three dimensions using augmented reality (AR). The rapid advances in all of the above
areas promise to make interactions with chemical computation even more ubiquitous and natural
in the future. It is hard to predict how this will change chemical research and chemical education,
but we eagerly anticipate the day when chemical computation is as ubiquitous and frictionless as
arithmetic on handheld calculators.

Increasingly powerful computational hardware, affordable smart devices, and versatile pro-
gramming languages laid the ground for this technological shift. Graphical processing units
(GPUs) had a remarkable effect on computational capabilities by allowing data to be efficiently
processed in parallel (1, 2). This resulted in a dramatic reduction in computation time for paral-
lelizable tasks. Numerous computational chemistry software packages have now been developed
to exploit the massively parallel architecture of modern graphics cards, both for empirical force-
field molecular dynamics (3–6) and for quantum chemistry and/or ab initio molecular dynamics
(7–10). This has enabled empirical force-field simulations with O(108) atoms (11) and both
quantum chemical and ab initio molecular dynamics simulations with O(103) atoms (12–16). It
has also enabled quantum mechanics/molecular mechanics condensed phase simulations of pho-
tochemical dynamics (including electronic excited states) with O(102) atom quantum mechanics
regions for aggregate times of up to 1 ns (17–21). Additionally, it has opened up the possibility
for molecular dynamics–driven reaction discovery on ground (22) and excited (23) electronic
states.

Meanwhile, the advent of cloud computing provided dynamically scalable virtual resources
as a service over the web (24). This offers a nearly barrierless platform for accessing powerful
computational hardware and managing data. GPUs and cloud computing have been fundamental
to the growth of AI by allowing scientists and engineers to efficiently train and deploy complex
MLmodels without purchasing and housing expensive hardware. In the last decade,MLmethods
have been widely applied in chemistry to predict new synthetic routes (25, 26), discover new drugs
(27, 28), and design new materials (29). In computational chemistry, ML-based potentials have
emerged as a possible solution to attain the accuracy of density functional theory (DFT)-based
potentials with the computational efficiency of force fields (30, 31) and there are continuing efforts
to use ML to find better functionals to increase the accuracy of DFT (32–34).

ML-based technologies can also enhance the interaction between chemistry students and re-
searchers, and computational chemistry tools. Quantum chemistry software typically requires
coding expertise to install and run the software, specialized knowledge to prepare input files and
parse the output, and access to high-performance computing (HPC) resources. This results in a
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(a) Different modes of input for quantum chemistry packages. (b) Workflow showing how natural user
interfaces, graphical processing unit–accelerated quantum chemistry in the cloud, and extended reality can
work together to create accessible, user-friendly interactions with quantum chemistry. ( 1©) A user takes a
picture of a chemical structure or prompts a vocal request, which is passed to a server. The server calls
external application programming interfaces (i.e., ChemPix) to predict the SMILES representation and
retrieves the molecular information (i.e., atomic positions). ( 2©) The server sends a request to perform the
calculation in the cloud. ( 3©) The results are finally communicated to the user via virtual reality or
augmented reality. Abbreviation: SMILES, simplified molecular input line-entry system.

high barrier to entry for nonexpert users. Calculations are most commonly launched and analyzed
using the command-line or limited graphical user interfaces (35) (Figure 1a). The recent ML-
driven advances in image and speech recognition offer new routes to input molecular structures
and initiate calculations. Moreover, versatile programming languages (e.g., Python) allow these
technologies to be readily interfaced with cloud-computing resources and accessible platforms
such as mobile devices, web browsers, and virtual assistants. Applying these methods can lower or
completely eliminate the barrier to interact with quantum chemistry software.

The development of such natural user interfaces (NUIs), which can listen and see, offers an
exciting new avenue toward a virtual chemical laboratory. A typical workflow of a NUI is shown
schematically in Figure 1b. A user takes a picture of a chemical structure with a smart device or
prompts a vocal request to a virtual assistant, which is then passed to a server that feeds external
application programming interfaces (APIs). These APIs translate the image or the vocal input to a

www.annualreviews.org • Interactive Quantum Chemistry 315



machine-readable format and return it to the server. The server can then call a web database (e.g.,
PubChem; 36) to retrieve themolecular structure (atomic positions in Cartesian coordinates).The
server can then launch a quantum chemistry calculation in the cloud. Finally, the server returns
the results to the device, which relays them to the user via voice, standard display, or virtual reality
(VR) or AR.

In this review, we summarize the progress to date in this field, from the enabling technology
of GPU-accelerated quantum chemistry to the various interfaces and workflows layered on top
of this and natural user input schemes that have been enabled. An overview of GPU-accelerated,
cloud-based quantum chemistry is provided in Section 2, intuitive molecule input mechanisms
driven by AI are described in Section 3, and Section 4 covers molecular visualization in VR or AR.
Finally, in Section 5, we discuss how these cutting-edge tools can be combined to build accessible,
user-friendly services for human interaction with computational chemistry (see 37).

2. THE QUANTUM CHEMISTRY ENGINE

2.1. GPU-Accelerated Quantum Chemistry

Solution of the electronic structure problem, i.e., quantum chemistry, is a key enabling technology
in computational chemistry. The resulting electronic energies and forces allow for optimiza-
tion of molecular geometries and ab initio molecular dynamics to directly model time-resolved
experiments (38) or to explore potential energy surfaces, including the possibility for bond re-
arrangements (22, 39). Even for large-scale problems involving many atoms where ab initio
molecular dynamics may be computationally infeasible, the quantum chemistry toolkit provides
the data needed to fit empirical force fields (40). Unfortunately, the expense of quantum chem-
istry often presents a major computational bottleneck. Traditional ab initio approaches are often
hampered by the evaluation of the many two-electron repulsion integrals needed to represent
the fundamental Coulomb interactions. As the number of these integrals scales with the fourth
power of molecular size, a naive treatment will lead to at best O(N 4) scaling of computational
effort (where N is the number of electronic basis functions, which is generally linear in the num-
ber of atoms). However, many of these integrals are numerically negligible (for example, those
corresponding to the interaction of electrons that are far apart in the molecule). This led to
the introduction of screening approaches that identify the negligible integrals beforehand and
avoid computing them entirely (41–43). Screening reduces the scaling of computational effort
attributable to integral handling for the simplest self-consistent field (SCF) approaches (Hartree–
Fock theory or DFT) to O(N 3), which is still problematic. The other aspect of SCF approaches
that consumes a large share of computational resources is linear algebra associated with matrices
of the size of the molecular basis set (i.e.,N × N), also leading to O(N 3) scaling.

Traditional central processing units (CPUs) have been used to solve the electronic structure
problem since the advent of quantum chemistry. As these CPUs evolved they have focused on
providing performance for general-purpose tasks needed by most users. Unfortunately, quantum
chemistry has not been among the most popular of these general-purpose tasks, so it is not sur-
prising that CPUs have not always been optimal for the requirements of quantum chemistry.
Furthermore, the advances in CPU processing power due to increasing clock speeds (i.e.,Moore’s
law) have slowed considerably since the turn of the century. Fortunately, the twenty-first cen-
tury witnessed the rise of special-purpose GPUs aimed at the videogame market. These GPUs
were designed for the demands of videogames—fast data movement to get millions of pixels on
the screen at frame rates of 60 Hz, fast matrix computations to rotate and stretch objects in a
3D scene, efficient data parallelism to apply transformations to millions of pixels at a time, and
efficient collision detection and ray-tracing to achieve realistic lighting effects.
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As videogames are primarily physics-based simulations, it should not be surprising that the
GPU architecture maps well onto the requirements of quantum chemistry. The data parallelism
and efficient linear algebra can be put to use immediately to (a) compute many integrals in parallel,
(b) contract these into the neededmatrix operators, and (c) diagonalize matrices to find eigenvalues
and eigenvectors.

We do not go into the technical details of this mapping of quantum chemistry algorithms to
GPU architectures (2, 7, 8, 10, 44–49) but instead only highlight a few key points. Our efforts to
utilize GPUs started with videogame consoles such as the Sony PlayStation2 (PS2). These efforts
were challenging because videogame consoles use proprietary architectures and closed software
ecosystems, with very little generally available documentation. Nevertheless, we were able to exe-
cute quantum chemistry programs [a locally modified version of GAMESS (General Atomic and
Molecular Electronic Structure System); 50] on multiple PS2 consoles in parallel (51). Nvidia’s
introduction of CUDA in 2008 simplified GPU programming considerably, and this was the cata-
lyst for increased progress in the area, including applications of GPUs to both quantum chemistry
and empirical force field–based molecular dynamics (52).

To utilize GPUs effectively, one should follow a few key principles. Equations for important
quantities should be grouped by type, so that one can leverage data parallelism most effectively.
In the context of two-electron integrals, this means that one needs to group them by the angular
momenta of the basis functions involved in the integral (44–46). As an example, the code required
for (ss|ss) integrals is different from that for (ss|sp) integrals and therefore one should have differ-
ent kernels (i.e., GPU subroutines) for each of these. This is easily accomplished by sorting the
basis functions by angular momentum, which leads to the desired grouping of the integrals. One
then needs to specify how GPU threads should walk through the set of two-electron integrals,
generating the integrals and contracting them with density matrix elements. The amount of fast
memory (registers) on the GPU is limited, and this can make high-angular-momentum integrals
difficult to handle. To cope with the limited memory, one is often forced to split the computa-
tion of high-angular-momentum integral classes into subgroupings, for example, (dxxdxx|dd) and
(dyydyy|dd), instead of handling all the (dd|dd) integrals with a single kernel (47). This implies re-
dundant computation (as integrals of the same angular momentum class for the same atoms will
involve some reused intermediates), but the calculation is then possible (whereas it would not be
if the number of available registers was insufficient). Often, the bottleneck in GPU computations
is not the arithmetic operations but rather the data movement. Thus, it can often be the case that
redundant work has little effect on performance.

Another key aspect of efficient GPU algorithms is the avoidance of any logic. Ideally, integral
screening is arranged in a way that completely avoids any consideration of the negligible inte-
grals. This turns out to be rather straightforward: One sorts the pairs of basis function indices
representing either of the two electrons in the integral so that the corresponding charge den-
sities, i.e., χi(r)χ j (r), are ordered by decreasing self-repulsion. Charge densities with very small
self-repulsion (usually arising because the atom centers are very distant) are then discarded com-
pletely (pruned). When a charge density is pruned, the corresponding one-electron integrals are
also discarded (53).

Finally, the most affordable GPUs are typically capable of only limited double-precision arith-
metic. This motivates the use of mixed and dynamic precision schemes (44, 54, 55), where the
smallest integrals are treated in single precision and only the largest integrals are stored and ma-
nipulated in double precision. Even when full double-precision arithmetic is available (e.g., in
the GPUs designed for HPC), it can still be advantageous to adopt dynamic and mixed precision
schemes, since single-precision numbers consume half of the memory (and thus can be moved at
twice the speed). Similar conclusions have also recently been reached for CPUs (56, 57).
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Application of the above principles to quantum chemistry algorithms on GPUs has led to
speedups of one to three orders of magnitude (44–47). At least one order of magnitude of this
speedup comes from the improved performance of GPUs (which are 10–15 times faster for both
floating-point operations andmemory bandwidth).The remainder of the acceleration comes from
improvements in the algorithms (which might also be beneficial on CPUs, although this has not
been investigated in detail).

2.2. Quantum Chemistry in the Cloud

Cloud computing provides a mechanism to rent computational resources on demand without
incurring the costs of purchasing and maintaining HPC resources. Commercial cloud platforms
often provide the most affordable access to specialty hardware such as GPUs, field-programmable
gate arrays, and tensor processing units. Combined with containerization technologies (58, 59),
entire scientific workflows can be deployed reproducibly at scale across a plethora of cutting-edge
hardware.This has led to considerable interest from the scientific community, including chemistry
(60–66).

In the context of quantum chemistry, there have been several efforts to use cloud computing.
In one mode of operation, cloud resources are rented and used for batch computing similar to
traditional HPC clusters managed by job schedulers such as SLURM (Simple Linux Utility for
ResourceManagement).The first computational chemistry calculations on public cloud resources
(60, 61) were carried out in this way. Alternatively, one can take full advantage of the flexibility
allowed by the on-demand nature of cloud computing by deploying entire workflows that act
more like traditional web services. In this model, the computing service (a) provides an interface
for users to submit jobs; (b) farms out those jobs on cloud resources, scaling the number of workers
up and down as needed; and (c) returns results to the user. This latter strategy has been adopted
by projects such as TeraChem Cloud (63) and OpenEye’s Orion platform (64).

We illustrate how cloud computing can be used to provide on-demand HPC calculations by
reviewing the TeraChem Cloud (TCC) framework, which is shown schematically in Figure 2.
TCC provides GPU-accelerated electronic structure calculations as a service and is organized into

High-performance computing service

Client A

Client B

Client C

Web
server

Data
storage

Worker

Job
queue

Status
database

TCPB
server

Figure 2

Overview of the TeraChem Cloud framework. Figure adapted with permission from Reference 63; copyright
2020 American Chemical Society. Abbreviation: TCPB, TeraChem Protocol Buffer.
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three main layers. The first layer is a client-facing web server that handles job submission, status,
and retrieval. The second layer is built from components that manage the state of the calculations:
a job queue, status database, and long-term data storage for completed jobs. Finally, the third layer
is composed of backend workers that compute the requested electronic structure calculation. In
our case, this is done with an instance of a TeraChem Protocol Buffer server (7) running on up to
16 GPUs on a single node, but the TCC framework can in principle use any quantum chemistry
package with a Python interface.

The encapsulated structure of the TCC framework is designed to be scalable. In principle, ad-
ditional web servers could be launched if there was heavy client traffic, or more backend workers
could be added if the queue was full and cloud resources were available or advantageously priced.
Combining the scalable nature of cloud computing with the GPU-accelerated single-node per-
formance of the TeraChem package results in a platform that can provide real-time electronic
structure calculations for many users on systems containing hundreds of atoms. This capability,
when combined with intuitive ways to input, display, and interact with chemical data, serves as the
foundation for a host of applications that greatly increase the accessibility of quantum chemistry.

3. NATURAL MOLECULE INPUT METHODS USING
MACHINE LEARNING

Currently, the standard molecule input method for quantum chemistry packages consists of XYZ
or PDB files, which contain Cartesian coordinates of the 3D structure. These files are not always
straightforward to generate or interpret without visualization software. In this section, we discuss
two alternative molecule input mechanisms designed to be user-friendly and intuitive: sketches of
hand-drawn chemical structures and voice commands. Both techniques use ML to automatically
extract information from natural human input and to translate this information to the appropriate
quantum chemistry software input format.

3.1. Chemical Structure Recognition

Diagrams of skeletal structure are the universal language of organic chemistry. They describe the
complete 2D structure of a molecule (including stereochemistry) in an exceptionally simple way
by representing carbon and hydrogen atoms implicitly. Any reasonably sized molecule or chemical
reaction can be quickly sketched out in this way with a pen and paper or a mouse, allowing humans
to efficiently communicate the arrangement of atoms and bonds. Because of this, skeletal formulas
serve as perhaps the most natural molecule input method for quantum chemistry software.

Although diagrams of chemical structures are easily decoded by humans, they are not ma-
chine readable and so cannot be directly input into computational chemistry software. Converting
images of chemical structures to computer-readable representations, termed optical chemical
structure recognition (OCSR), has been a goal for three decades (67–69). Until recently, OCSR
systems were rule based and consisted of a series of handcrafted algorithms for identifying lines,
edges, and characters to compile molecular graphs (70–76). In the past few years, however, the rise
of deep learning led to a shift toward data-driven approaches, with neural networks learning end-
to-endmappings from images of chemical structures tomachine-readable representations (77–81).
ChemGrapher is an interesting case that takes ideas from classical and modern approaches to cre-
ate amodular pipeline of neural networks that break down the recognition task into three subtasks:
semantic segmentation, segment classification, and graph building (77).

Most OCSR tools are developed with the goal of mining the literature for chemical structures
and so focus on recognizing ChemDraw-type images. Since the topic of this article is creating
barrierless ways for scientists to perform quantum chemistry calculations, we are concerned with
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Image-to-SMILES neural network for hand-drawn hydrocarbon recognition consisting of a CNN encoder
and a LSTM decoder. Figure adapted with permission from Reference 82. Abbreviations: CNN,
convolutional neural network; LSTM, long short-term memory; PNG, portable network graphics; SMILES,
simplified molecular input line-entry system.

designing themost natural inputmethod possible.With this inmind,we focus on recognizing pho-
tographs of hand-drawn chemical structures, which can be sketched by any chemist and require no
specialized software or cumbersome procedures. This increases the difficulty of the recognition
task considerably, as large variability of molecule drawing styles, backgrounds, and picture quality
is introduced.

Using deep learning methods, we recently developed ChemPix for offline hand-drawn hydro-
carbon recognition (82).We chose to represent molecules as simplified molecular input line-entry
system (SMILES) strings (83) so that we could directly apply natural language processing (NLP)
networks. A neural image captioning network consisting of a convolutional neural network
encoder and a long short-term memory (LSTM) decoder with attention and beam search was
repurposed to translate photographs of hand-drawn chemical structures to SMILES representa-
tions (Figure 3). Transformer models (84) have now replaced LSTMs as the network of choice
for NLP tasks and should likely be explored for future expansions of ChemPix. Our image-to-
SMILES network was trained with a synthetic data set of augmented and degraded images of
RDKit hydrocarbon structures and fine-tuned with the addition of a small subset of real-world-
photographed hand-drawn structures. By forming a committee of the trained neural networks,
we achieved over 85% accuracy for the top three predicted structures using only 400 real-world
training samples. The output SMILES labels can be converted to an XYZ file using OpenBabel
(85).

Shortly after ChemPix was released, Mathpix (86), which originally developed software for
converting images of mathematical equations to LaTeX code, released similar software that can
recognize molecules (including heteroatoms) with reasonable accuracy. A template script to per-
formTCC calculations starting from a picture of a hand-drawn chemical structure is available (87).
In Section 5.2,we discuss how these chemical structure recognition tools have been combinedwith
other components described in this article to create MolAR (88), an accessible, user-friendly, and
interactive quantum chemistry phone application.

3.2. Speech Recognition

Since speech is one of the most natural methods of human communication, voice-enabled tech-
nologies hold great promise as intuitive user interfaces (89, 90). In the last decade, huge strides
have been made in the development of efficient voice user interfaces (VUIs) thanks to progress in
NLP (91). NLP uses AI methods to interpret speech and text (92) for virtual assistants, chatbots,
language translators, and spam filters.

NLP algorithms have exciting potential for chemistry applications; for example, voice-
activated, hands-free software could be used to read and write electronic notebooks while
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performing experiments. In computational chemistry, vocal prompts could be used to input the
commands or as support for programming tasks; Hocky, White, and colleagues (93, 94) re-
cently showed that Codex (95) can generate code for chemical applications from natural language
prompts. Further applications of NLP in chemistry are certainly promising. However, chemi-
cal language is even richer in ambiguities, synonyms, and context-dependent interpretation than
most spoken languages are.This can lead to challenges in chemical adaptations ofNLP algorithms
designed for the spoken or written word.

In the following section, we describe how to design a basic VUI to launch molecular calcula-
tions with TCC and perform single-point energy calculations at a standard level of theory (e.g.,
PBE0/6-31G∗). As with chemical structure recognition described above, this VUI must recognize
the name of a molecule and convert it to a machine-readable format (e.g., SMILES).

Extended discussions of speech recognition can be found in the literature (96).For our purposes
here, the speech recognition algorithm returns a text transcription of a recorded audio signal. If the
vocal prompt contains just the molecular name, it can be directly converted to the corresponding
SMILES string using public online databases (e.g., PubChem). The molecular structure can then
be retrieved and passed along with the method for the calculation to be performed in the cloud.
The result of the calculation can be vocally communicated back to the user using text-to-speech
APIs (a template script to perform TCC calculations via voice control is available; 87). Vocal
input can also facilitate user interaction in VR.We recently combined vocal prompts with VR in
InteraChem (97) using Unity’s built-in voice recognition module (see Section 4.1).

The common challenges of voice recognition APIs include variation in the pronunciation of
words, accents, and background noise. In chemistry applications, recognizing chemical jargon adds
another level of difficulty. Common speech recognition algorithms (e.g., Google Voice API; 98)
can recognize only commonly employed chemical names such as water or ammonia, although their
ability to understand complex IUPAC names can be improved by designing a custom vocabulary.
A more detailed discussion of how to build a robust VUI is provided in Section 5.1. Below, we
describe the use of virtual assistants in computational chemistry, includingChemVox (66), an Alexa
skill for voice-controlled quantum chemistry.

4. OUTPUT VISUALIZATION VIA EXTENDED REALITY

4.1. Virtual Reality

Molecules are inherently 3D objects; therefore, it should come as no surprise that computational
chemists have long been searching for a visualization solution better than standard monitors and
displays. Even as early as the 1990s, immersive VR environments such as the CAVE (cave au-
tomatic virtual environment) (99) system were being explored as an alternate way to visualize
3D graphics. CAVE-like systems utilize a series of projectors to display stereoscopic images on
multiple walls of the room.The user wears a pair of 3D stereoscopic glasses, providing the illusion
that a 3D object is floating in the air before them. Although full CAVE setups are expensive and
difficult to install, a single stereoscopic display is more affordable, portable, and still provides some
3D visualization capabilities. Despite the promise of a more intuitive visual experience for users,
these displays have seen only limited adoption among molecular visualizers.

However, the ability to visualize molecules in 3D has risen dramatically in the past decade due
to the mass availability of VR headsets. These head-mounted displays contain two high-resolution
screens that serve the same purpose as the spectroscopic glasses in the CAVE setup: By present-
ing two slightly different perspectives, the user interprets the two separate images as a single 3D
scene. The VR headsets are typically paired with a set of handheld controllers that allow the user
to manipulate the 3D scene. Due to the popularity of VR headsets in gaming, the hardware is
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Figure 4

Several snapshots from an ab initio interactive molecular dynamics simulation of the ring opening of
cyclobutene in the InteraChem visualizer, with the highest occupied molecular orbital visualized. Figure
reproduced with permission from Reference 97; copyright 2021 American Chemical Society.

relatively affordable. Additionally, the existence and ease-of-use of game engines (e.g., Unity and
Unreal Engine) simplify the development of new applications for these peripherals.

As a result, a host of molecular visualizers for VR headsets have been developed over the past
few years. The well-known visualizer VMD (visual molecular dynamics) (100) has VR capabili-
ties through the VRPN (Virtual Reality Peripheral Network) library (101). VRChem (102) is a
molecular builder for organic molecules. Nanome (103) and Molecular Rift (104) are VR visual-
izers targeting drug design applications. A group at the University of California, San Francisco,
has developed a trio of applications for biomolecular visualization, collaboration, and education:
ChimeraX VR, AltPDB, andMolecular Zoo (105).Narupa (106) is a multiuser visualizer designed
for interactive molecular dynamics simulations, and InteraChem (97, 107) is designed for ab initio
interactive molecular dynamics.

Many of the VR visualizers share similar features: Small molecules are shown in ball-and-stick
representation, while larger biomolecules such as proteins may be rendered with cartoon struc-
tures to represent α-helices and β-sheets. The handheld controllers can be used to manipulate the
scene, pull on individual molecules or atoms, or interact with various menus or displays. Figure 4
shows several snapshots from an ab initio interactive molecular dynamics simulation of the ring
opening of cyclobutene in the InteraChem visualizer. This simulation was performed in real time
by connecting to the same TeraChem Protocol Buffer server that powers the TCC framework
described in Section 2.2. Taken together, accessible computation and visualization can enable new
kinds of tools for research and education.

4.2. Augmented Reality

AR is an exciting extended reality technology that superimposes virtual objects onto real-world
scenes (108, 109). The popularity of AR is due in large part to its interactive nature: Users can
directly manipulate their point of view of the virtual 3D object by rotating, translating, and
zooming.
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Figure 5

Visualization of (a) biomolecule and (b) molecular dynamics trajectory in AR. These can be viewed in AR
using an iOS mobile device (e.g., iPhone or iPad) by scanning the respective QR codes. (c) The workflow to
create an AR molecular structure, from SDF file to geometric primitives to USDZ file. Panels b and c
adapted with permission from References 39 and 88, respectively. Abbreviations: AR, augmented reality; QR,
quick response; SDF, spatial data file; USDZ, universal scene description ZIP.

Thanks to the ubiquity of smartphones and more powerful mobile chips and sensors, AR has
now become much more accessible (110): One can simply point a phone’s camera at a real-world
scene and see a virtual object appear in the scene. Major mobile operating systems (Android
and iOS) now have software development kits (SDKs), allowing developers to easily create AR
applications.

In chemistry, AR allows users to visualize molecules in 3D and manipulate them in a natural,
intuitive way (111–113). For example, the visualization of large biomolecules in AR is a unique
experience where users can see the 3D molecular structure appear in the real world in front of
them and interactively inspect its structural features, active site, and solvent-accessible channels
(Figure 5a). Visualizing animations in AR is a unique way to follow chemical reactions. Under-
standing a molecular dynamics simulation from 2D plots is extremely difficult, whereas viewing
an animation of the trajectory in AR offers an immediately intuitive experience. Embedding quick
response (QR) codes into the figures of scientific publications that link to AR visualizations can
therefore enhance accessibility (39) (Figure 5b).

Our workflow to generate a 3D molecule in AR uses ARKit (114), an iOS SDK tool that
implements AR (Figure 5c). The starting point is a spatial data file (SDF) containing the XYZ
Cartesian coordinates of each atom and the type of bond between pairs of atoms. This file is
converted to a list of geometric primitives, where each atom is represented by a sphere (radius
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proportional to the van der Waals radius) and each bond is represented by cylinders (the bond
order is denoted by the number of cylinders used). The geometric primitives are then used to
create a universal scene description ZIP (USDZ) file. USDZ is a file format created by Pixar that
can be displayed in AR on iOS devices without the need to install any third-party software (115).
To create smoother 3D models, we subdivide the surfaces of spheres and cylinders into small
triangles and rectangles and write them as meshes.

Recently, many AR applications for chemistry education have been developed, and a compre-
hensive overview has been provided (112, 113). Below, we discuss MolAR (88), which combines
chemical structure recognition, cloud quantum chemistry, and AR to create a seamless experience
for visualizing and interacting with molecular structures.

5. ASSEMBLING THE PARTS: INTEGRATION INTO
COMMON PLATFORMS

In this section we consider how the technologies discussed so far can be combined to dramati-
cally increase the accessibility and usability of computational chemistry tools. GPU-accelerated
quantum chemistry software makes it possible to carry out real-time computations in seconds,
the cloud-computing framework performs these calculations as a versatile service, and NUIs offer
user-friendly ways to interact with these technologies on easily accessible platforms (e.g., smart-
phones and virtual assistants). The primary design focus of the following tools is to provide a
natural and interactive human interface for easy access to computational chemistry tools.

5.1. Virtual Assistants

Virtual assistants such as Amazon’s Alexa, Apple’s Siri, and Google’s Assistant simplify the interac-
tion with technology by allowing users to communicate with devices via natural spoken language.
They are commonly used in smart homes but also have great potential to facilitate routine oper-
ations in the scientific setting. For example, Helix (116) and Vitro (117) are lab assistants that can
walk users through predefined experimental procedures with step-by-step instructions.

We recently released ChemVox (66) (Figure 6), an Alexa skill to perform real-time quantum
chemistry calculations from voice commands (see 118). ChemVox can answer questions such as
“What is the dipole moment of caffeine?” and return results in a matter of seconds.This is possible
thanks to GPU-accelerated quantum chemistry (discussed in Section 2.1), which carries out re-
quested computations. Since Alexa’s response time is restricted to only 5 seconds, the calculations
need to be very fast.

Currently, ChemVox can calculate the dipole moment, the excitation energy, and the sol-
vatochromic shift for small- and medium-sized molecules (up to ∼100 atoms). The ChemVox
backend employs an AWS (Amazon web service) Lambda function that is interfaced with Pub-
Chem and TCC. The ChemVox workflow proceeds as follows: (a) The user issues a request via
an Alexa skill; (b) the request is passed to the Lambda function, which processes the information;
(c) the requested molecular structure is retrieved from the PubChem database; (d) the input speci-
fications are sent to TCC, which performs the calculation; and (e) the results along with a skeletal
image of the molecule (in screen powered devices) are returned via Alexa and the full calculation
details are emailed to the user.

To overcome the limits of VUIs discussed in Section 3.2 and improve the recognition of
molecule names, we built a custom vocabulary containing ∼5,000 unique chemical words, such as
dichloromethane and cyclohexane. Furthermore, to improve the ability of ChemVox to recognize
user’s intentions, we defined hundreds of sample utterances for each intent. This allows the skill
to understand the same question with different phrasings.
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(Left) Diagram of user interacting with ChemVox, and (right) conversation between ChemVox and a user performing quantum
chemistry calculations with vocal commands.

Integrating virtual assistants with mobile applications, such as MolAR (described in the fol-
lowing section), is an exciting future avenue. This would allow molecules to be visualized in AR
directly from speech commands.

5.2. Mobile Applications

Considering the universal use of mobile smart devices (e.g., smartphones and tablets) among
students and researchers, mobile applications are an ideal platform for delivering computational
chemistry tools to the community (119, 120).

Recently, several applications for interactive learning and molecular visualization have been
developed (121, 122). For example,MILAGELEARN+ integrates several teaching strategies, like
gaming and autonomous learning, to make learning organic chemistry concepts more interactive
and engaging (123). Molecular viewer applications such as Atomdroid (124) or Molecules (125)
provide platforms for 3D molecular visualization, enhancing student understanding of molecular
structure.

Relatively few applications can compute and visualize quantum mechanical properties.
MO-Cubed (126) allows users to build molecular structures and compute their chemical prop-
erties via semiempirical calculations, while WebMO (127) offers visualization of molecular
orbitals/vibrational modes and can submit jobs to a WebMO server and view the results.

As discussed in Section 4.2, AR is the frontier of molecular visualization on mobile smart de-
vices. The Android and iOS mobile operating systems now support AR natively, leading to several
applications for viewing molecules in AR (128–130).MoleculARweb (131) is a web-based applica-
tion that displays the chemical structure of a built molecule in AR, whereas users of BiochemAR
(132) can visualize and manipulate potassium channels.

We recently developed MolAR (88), an iOS open-source application that combines chemical
structure recognition, AR, and quantum chemistry cloud computing to transform hand-drawn
chemical structures into 3D molecules in AR: The AR structure appears to float above the page
as if it has come to life (Figure 7) (for a demonstration, see 133). MolAR is connected to TCC,
allowing users to compute and visualize chemical properties (e.g., frontier molecular orbitals
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Figure 7

Features of the MolAR app: hand-drawn chemical structure recognition, recognition of molecules in objects (molecular hunt),
visualization of molecules and biomolecules from public databases (i.e., Protein Data Bank), a molecular gallery with selected template
molecules for users not familiar with chemistry, visualization of vibrational normal modes, and calculation of electronic properties such
as dipole moment and molecular orbitals. Figure adapted with permission from Reference 88; copyright 2022 AIP Publishing.

and dipole moments) in real time. AR animations of vibrational normal modes can also be
viewed.

Unlike other mobile applications, MolAR does not require the use of markers, printouts, or
preparation of 3D model files prior to use. Indeed, the application supports several molecular
input formats: common/IUPAC names, SMILES strings, Protein Data Bank (PDB) IDs (for pro-
teins), or skeletal structures. Furthermore, in the spirit of PokémonGo,where users collect virtual
creatures in real-world scenes, a hunt feature allows one to discover representative molecules in-
side common household objects such as food and drink; for example, when users take a picture
of coffee, the 3D model of caffeine appears above it. Work is in progress to incorporate dynamic
motion so that reaction mechanisms can be viewed in AR.

5.3. Web User Interfaces

The internet has become a universal tool for communication and a democratic source of infor-
mation. The continuous growth of users has been accelerated by web user interfaces (web UIs). A
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web UI is a software application based on a client–server architecture; it runs inside a web browser
(client) and often communicates with a remote web server (server).

Web UIs offer several desirable features for interfacing to computational chemistry software.
They do not need to be installed locally and can run across multiple platforms, allowing users to
collaborate using different operating systems (e.g., Linux,macOS,MicrosoftWindows).Web UIs
have low requirements for the user’s computer ( just an updated web browser) since the expensive
computational operations are performed on a remote server. Furthermore, they are accessible
from any device with web browsing capabilities, such as desktop computers, smartphones, and
tablets. The classroom is a particularly compelling setting for web UIs displayed on the newest
generation of projectors, which can turn any flat surface into an interactive touchscreen (for an
example, see 134).

In the last few years,manywebUIs have been developed for computational chemistry.Rose and
coworkers (135) developedMol∗ for 3Dmolecular visualization and analysis of large biomolecular
structures; MoleculARweb (131) and MolAR web UI (136) display chemical structures in AR,
whereas ProteinVR (137) and Autodesk Molecular Viewer (138) allow molecular visualization in
VR. Other web UIs aid in the construction of input structures; for example, MolView (139) is an
intuitive application to build chemical structures, whereas CHARMM-GUI (140) simplifies the
construction of complex biological simulation systems (e.g., membrane structures).

Furthermore, some web UIs set up, launch, and analyze calculations directly in a web browser.
Durrant and coworkers (141) developed Webina, a JavaScript/WebAssembly library to run dock-
ing calculations in a web browser with AutoDockVina.Polik& Schmidt (142) developedWebMO,
a web-based interface for computational chemistry programs, and Entos released Envision (143)
to calculate and compare properties of molecules.

As we have seen with ChemVox and MolAR so far, TCC can be easily interfaced to different
front-end applications. In the following, we expand the platform choice further and describe how
to set up a web UI to build input and perform quantum chemistry calculations in the cloud (144).
This web UI is written in browser-supported languages (e.g., JavaScript, HTML, and CSS), and
its workflow is as follows: (a) The user selects input specifications (e.g., method and basis set)
for the quantum mechanical calculations in the browser using a 3D editor [we use J(S)mol web
applet; 145] and intuitive menus; (b) a request to perform the calculation is sent to TCC from the
web browser; (c) TCC accepts the request and input data, performs the calculations, and sends
back a JSON object with the results; and (d) the results are sent back to the client and displayed
to the user in the browser. Based on this workflow, we are currently developing TeraChem Web
Services (144), a web UI that uses chemical structure recognition as the input method and AR as
the visualization tool (for a demonstration, see 146).

5.4. Twitter Bots

Nowadays, Twitter is an important communication medium for scientists to share information
(e.g., journal publications, conferences, and job openings) (147). Posting multimedia content (e.g.,
videos or pictures of chemistry experiments) can reach a diverse audience of nonscientists inter-
ested in advancing their scientific curiosity. Interfacing chemistry software with Twitter is a unique
way for nonexperts to access the tools, and it can be done by developing Twitter bots, which are
automated Twitter accounts controlled through the Twitter API (148).

Recently, Yamamoto and coworkers (149) presented Twitter bots for cheminformatics appli-
cations such as retrosynthetic analysis, 2D chemical structure editing, and 3D molecule viewing.
These bots reply to a tweet request that includes the SMILES string of a molecule, returning, for
example, the retrosynthetic analysis for that compound.
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We developed an interactive application to perform quantum chemical calculations on Twitter.
By tweeting @TerachemBot compute [property][molecule][functional], the Twitter bot picks up
the request and replies to the tweet with the results of the prompted calculation.TerachemBot can
perform single-point energy calculations with different density functionals (the basis set is fixed
for simplicity to 3-21G) and return the self-consistent energy or dipole moment. Its workflow
is simple: (a) retrieve mentions via Twitter API, (b) parse the input information and launch the
calculation on TCC, and (c) send back the calculation results via the Twitter API. Currently the
bot is offline; however, a demonstration video can be found at Reference 150 and the code is freely
available (87).

5.5. Humanoid Robotics

The flexibility of the discussed APIs lends itself to innovative human interactions with cutting-
edge technologies, including those described above, and robotic platforms. Robotic platforms
allow users to explore complex scientific concepts with support from intelligent systems that
are specifically trained to interact with humans. A new generation of robots have been shown to
successfully participate in complex social scenarios where they interact closely with multiple in-
dividuals for prolonged periods of time. The complexity and variability of these scenarios require
the robot to learn advanced social skills autonomously and incrementally. The robots frequently
learn how to interact with others in the world in a natural manner directly from their experience
as an embodied agent.

Acquiring skills is crucial in human daily and professional life; however, learning new scientific
topics, including quantum chemistry, is challenging for many. An expert tutor in the skill is there-
fore highly valuable for explaining challenging concepts. The physical presence of an embodied
robot can pick up on implicit signals via communication channels that can help create an en-
hanced, personalized learning process. Indeed, the interaction between the robotic expert and the
learner could be seen as a continuous flow of physical and emotional signals, which leads the tutor
to build a complex understanding of the human partner and act accordingly. Several studies have
demonstrated the potential of social robots to positively contribute to users’ learning experience
for skill acquisition (151, 152). Furthermore, the presence of physical robots may have advantages
in sensing and using affective data by inducing higher degrees of emotional expressiveness (153).
These results suggest not only that embodied social robots may be a more effective medium for
developing intelligent virtual interfaces but also that integrating affect awareness in the tutoring
model can lead to important benefits.

Several works have attempted to provide solutions for social robots that naturally interact with
users during free interactions. Examples are robots developed to entertain large audiences in mu-
seums or shoppingmalls: A socially intelligent robot has been designed to interact with the general
public in open spaces by integrating methods from audiovisual scene processing, social signal pro-
cessing, and conversational AI (154). These studies proved that even nonexperts can successfully
engage in short-term interactions with a robot.The next challenge for the community is to support
long-term personalization.

We aim to exploit interactive tasks between the humanoid iCub robot (155, 156) (Figure 8a)
and a human partner to effectively tutor quantum chemistry. The humanoid robot has 53° of free-
dom distributed in a body structure that resembles a human’s. The numerous degrees of freedom
and the accurate motor control enable whole-body behaviors and actions that are rich and expres-
sive. This facilitates natural and instantaneous communication between the robot and the user.
As with many other human–robot interaction platforms, iCub’s software architecture allows the
robot to perceive the environment and act appropriately. Sensorial perception allows the robot
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(a) Photograph of an iCub humanoid robot. (b) Outline of the iCub quantum chemistry workflow: ( 1©) iCub
takes a picture of the hand-drawn molecule and sends the image to the server, which then ( 2©) feeds it to
Mathpix to predict the SMILES representation. ( 3©) The SMILES is then sent to PubChem to retrieve the
XYZ Cartesian coordinates of the molecule, which ( 4©) are passed to the TeraChem Cloud to perform the
calculation. ( 5©) The results are finally communicated by voice. Panel b adapted with permission from
Reference 88; copyright 2022 AIP Publishing. Abbreviation: SMILES, simplified molecular input line-entry
system.

to understand discussion points and respond with the whole body, head, and voice. Typical body
language and communicative movements (e.g., nodding to show understanding and engagement)
are replicated in the action control system of the robot, which presents the robot as an expressive
learning partner. This enhances the learning experience of the human by leveraging the robot’s
communicative familiarity.

The workflow of the iCub quantum chemistry tutor is outlined in Figure 8b: (a) iCub takes
a picture of the hand-drawn molecule and sends the image to the server, which then (b) feeds it
to Mathpix to predict the SMILES representation. (c) The SMILES is then sent to PubChem to
retrieve the XYZ Cartesian coordinates of the molecule, which (d) are passed to TCC to perform
the calculation. (e) The results are finally communicated by voice. For a video demonstration, see
Reference 157.

6. CONCLUSIONS

The democratization of quantum chemistry among students and nonexpert users has been hin-
dered by barriers to usability and accessibility. Cutting-edge technologies in GPU-accelerated
quantum chemistry, cloud computing, and AI are gradually enabling the development of interac-
tive interfaces to remove these barriers and make computational chemistry easily accessible for
the wider community. Real-time interactions, intuitive and engaging input/output technologies,
and use of widespread platforms are key factors for success.

Certainly, there is room for improvement. Image and speech recognition can be made more
robust to allow a wider variety of molecular drawings and accent styles to be recognized. Further-
more, they can be extended to recognize stereocenters, charged or radical molecules, and metal
complexes. The computational capabilities of these NUIs can also be extended to more com-
plex problems such as simulation of molecular reactivity. As an example, one could envision an
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application that proceeded from pictures of hand-drawn reactants and products to computing the
minimum energy pathways between them to providing a visualization of the reaction path and
energy profile in AR. A serious challenge for the future is ensuring that the results are reliable for
a broad range of problems and molecules. This requires the development of robust methods and
workflows for automating computational chemistry tasks and assessing the expected uncertainty
in the results.

Another serious challenge is the maintenance of applications such as ChemVox or MolAR. For
example, the continual software updates to the Alexa API have made it challenging to ensure that
ChemVox is always operating as expected. Indeed, this is a major challenge in the development
of any complex software involving many interacting (and changing) APIs. It remains to be seen
whether the academic environment can provide the long-term attention needed to keep these
complex services running.

Although these technologies are still at an early stage, we strongly believe they can affect the
molecular vision of students and academics, serving as powerful and convenient educational and
research tools that encourage scientific curiosity and facilitate learning. Quoting John Dewey,
“If we teach today as we taught yesterday, we rob our children of tomorrow.” Integrating these
interactive technologies in the classroom could deliver a unique learning experience that forms an
enriched foundation for students’ future scientific endeavors.

NOTE ADDED IN PROOF

MolAR is now available for both iPhone (Apple App Store) and Android (Google Play Store).
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