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Abstract

Modern computational chemistry has reached a stage at which massive ex-
ploration into chemical reaction space with unprecedented resolution with
respect to the number of potentially relevant molecular structures has be-
come possible.Various algorithmic advances have shown that such structural
screenings must and can be automated and routinely carried out. This will
replace the standard approach of manually studying a selected and restricted
number of molecular structures for a chemical mechanism. The complexity
of the task has led to many different approaches. However, all of them ad-
dress the same general target, namely to produce a complete atomistic pic-
ture of the kinetics of a chemical process. It is the purpose of this overview
to categorize the problems that should be targeted and to identify the prin-
cipal components and challenges of automated exploration machines so that
the various existing approaches and future developments can be compared
based on well-defined conceptual principles.
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1. INTRODUCTION

Any chemical process may be decomposed in terms of a network of elementary steps. The exact
knowledge of all elementary steps, including intermediates, transition structures, and products
allows for kineticmodeling and the prediction of concentration fluxes through the network.Due to
advances in the field of theoretical and computational chemistry in the past decades and the ever-
increasing computational power of modern hardware, it has become feasible to explore chemistry
on a broad scale, i.e., tackling the vast dimension of chemical reaction space. In general, the truly
exhaustive exploration of some chemical process cannot be guaranteed, but the current state of
theoretical and computational chemistry allows for the generation of algorithms that march into
an enormously larger fraction of this space than what would be accessible by manual exploration.

Chemical reaction space exploration comprises methods that generate knowledge about a
chemical mechanism through atomistic modeling. These methods can be closely tied to data-
driven approaches, which attempt to induce reliable results about potential reactivity from exist-
ing experimental knowledge in the chemical literature (1). Reactive pathways are then inferred
from rules and models generated on the basis of existing data (2–4), such as reactions published
in patents (5, 6) or curated databases (7). These approaches were initially devised to exploit expert
generated rules (8, 9) and have recently seen an impressive revival owing to the rise of machine
learning techniques (5–7, 10–16).Machine learning facilitates automating and abstracting the rule
generation based on amounts of data that were unprocessable before. This data-driven approach
can be a powerful means to generate ideas about chemical reactivity for new systems similar (ac-
cording to some measure) to reactants studied in the literature. By contrast, chemical reaction
mechanism exploration based on quantum-chemical first-principles methods, which we consider
in this work, provides an option, next to experimental synthesis, for probing the validity of the ideas
derived from data-driven inference, provided that depth, reliability, and accuracy of the quantum-
chemical exploration can be guaranteed. One aim of this overview is to work out the criteria that
need to be considered and fulfilled in order to make quantum-chemical mechanism exploration a
reliable peer-to-data-driven reactivity deduction.

In a recent review (17), we discussed in detail algorithms for chemical reaction space explo-
ration. They may be grouped into three classes (17): (a) those that aim at a complete exploration
of a given potential energy surface, (b) those that trade breadth for depth by relying on structure
hopping and chemical heuristics, and finally, (c) those that exploit human intuition to tame the
combinatorial explosion of structures in vast networks involving numerous possible reactants and
pathways through, e.g., steering by interactive quantummechanics. As further reviews on the topic
can be found in References 18 and 19,we onlymention some keymethodological work in the field,
highlighting that a variety of algorithms and concepts have already been devised. They comprise
graph-based approaches (20–22), first-principles heuristics that extract rules from the conceptual
interpretation of the electronic wave function (23–25), chemical heuristics using first-principles
calculations (26, 27), and stochastic approaches (28, 29). It is not surprising that the global ex-
tension of local search and sampling methods has delivered an even broader range of exploration
algorithms. Examples are those that exploit artificial forces (30–33), growing string methods (34,
35), exploratory ab initio molecular dynamics (36, 37) metadynamics (38–41), and other enhanced
sampling methods (42–45).

Considering that exhaustive overviews on the topic have already been provided (17–19), this
work focuses on comparability and the missing links needed to make the different approaches
comparable. Because of the numerous concepts and algorithmic procedures introduced so far, it is
difficult to have a balanced comparison of the different exploration schemes on the same footing.
This becomes even more difficult when considering that exploration algorithms may be designed
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to serve specific purposes (e.g., gas-phase versus solution chemistry, restrictions to specific com-
pound classes or computational methods, and so forth).

There have been some attempts in the literature to compare existing algorithms at the example
of specific target problems (46, 47).However, such comparisons are difficult. A trivial hurdle turns
out to be the parameters and thresholds that control an exploration algorithm, which may be
chosen in a nonoptimal way, making a direct comparison less conclusive (47). Furthermore, the
performance of some algorithm may also depend on the choice of a specific task. For this reason,
it is desirable to have a set of criteria at hand, which allow one to arrive at informed and balanced
conclusions about a specific computational approach.

For this reason,we adopt ametaconceptual perspective aimed at the definition of common gen-
eral concepts and requirements. First, we discuss and categorize the range of possible mechanistic
targets. To keep this task well defined and controllable, we focus on the identification of elemen-
tary reaction steps and hardly touch upon the natural extension and combination with subsequent
kinetic modeling. For work relating to kinetic modeling in the context of reaction networks, we
point the interested reader to References 48–64.

2. CATEGORIZING MECHANISTIC SEARCHES

The central paradigm of reaction mechanism exploration is the idea that a chemical process un-
der consideration can be mapped onto a (transformation) network of elementary reaction steps
connecting reactants and stable intermediates through transition-state structures. As a starting
point, we may adopt the simplest concepts as they emerge from Eyring’s absolute rate theory (65)
or Kramers’s theory (66, 67). For the sake of clarity, this may be considered sufficiently funda-
mental as a network of elementary reaction steps can be arbitrarily refined through subsequent
calculations that provide data required for more advanced rate theories.

We consider all parts of chemical (reaction) space relevant for a problem as one huge network
that encodes a chemical function. Because an exploration process will have some starting point and
might already target a specific end point, we define three principal exploration types: a forward
exploration with an open end (FOE), a backward exploration with an open start (BOS), and a start-
to-end exploration (STE) with known start and end (see Figure 1 for a graphical representation
of these exploration types).

Asking how compound A reacts with compound B manifests a prototypical FOE example with
a potentially open end. The compounds A and B constitute a known start. We must then as-
sume that any stable intermediate of the detailed mechanism may, in principle, again react with
the starting compounds A and B, or with any other intermediate provided that it is sufficiently
long-lived. By contrast, the task of how to synthesize compound C constitutes an inverse prob-
lem (68–70), which is difficult to solve as the number and type of reagents in forward direction is
not known in the beginning. Hence, this BOS exploration type will in general require additional
information on potential reagents and catalysts that can promote the forward reaction. The ma-
chine learning–based retrosynthesis algorithms mentioned in the Introduction can provide valu-
able hints on which reagents to choose. If starting and end points of an exploration are for some
reason known and fixed, an exploration algorithm may identify the viable network of connecting
elementary steps and then contribute to the question of what is the (according to some measure)
best pathway and how to promote it.

Because the final product(s) of a chemical process may take part in subsequent reactions and
because chemical reactions are in general reversible, the labels “start” and “end” can become some-
what arbitrary. Still, the definitions of the three types discussed so far represent typical classes of
exploration problems.
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Figure 1

Three principal
exploration types:
(a) forward open-
end exploration,
(b) backward open-
start exploration,
(c) start-to-end
exploration. Starting
material (initial
reactants) are given on
the left-hand side and
are typically of small
molecular weight.
Common reagents
(including ubiquitous
molecules in the
environment) are
depicted separately to
highlight their
multipurpose
application. A network
can grow exponentially
in forward
explorations, because
all newly emerging
stable intermediates or
side products need to
be considered as new
reactants.
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Although all reagents that are part of the network are treated in the same way, it can be advan-
tageous to single out specific compounds due to their ubiquitous or universal nature as reactants
such as, for example, H2O, 1O2, small elimination products (e.g., HBr), (solvated) protons, and
so on. In this way, screening tasks such as those for a reaction’s robustness toward functionalized
molecules (71) can be simplified. Further conceptual steps, such as work-up, reactant separation,
and sequential reaction steps, can be easily encoded into a network by restricting the connectivity
of certain nodes. Note, however, that a specific reference to an actual environment of a reaction
is not made in the labels introduced so far. Implicit and explicit solvation, as well as metal sur-
faces, protein environments, or other environments will initially lead to different, though related,
networks.

The setting defined so far comprises a broad range of scenarios from simple reaction mecha-
nisms in the gas phase (STE without additional common reagents) to autocatalyzed reactions with
side reactions (FOE with additional common reagents), to probing a restrosynthetic proposal for
synthesis (STE with various restrictions and constraints), to screening of an optimum catalyst for
a specific target transformation (STE with different catalysts as common reagents). Classifying re-
action network exploration protocols according to the three types introduced above allows us to
categorize the different algorithmic and conceptual approaches toward the exploration challenge
and compare them on the same basis. Considering the open nature of FOE-type explorations, it is
obvious that an actual algorithm will require some adjustable determination of the termination of
the exploration. For the termination of FOE and BOS explorations, bounds on molecular weights
are simple criteria, and in the case of STE explorations the number of reactions between start and
end could be limited. Furthermore, constraints based on kinetic modeling at a certain temperature
and other external constraints can be introduced.

3. GENERAL NOMENCLATURE FOR REACTION NETWORKS

Because notions such as system, molecule, compound, reagent, and structure are often used inter-
changeably,we introduce and define the essential concepts.To define the components of a reaction
network, we first settle on the notion of a molecular structure.

Molecular structure: A single arrangement of atomic nuclei on a Born–Oppenheimer potential
energy surface shall be denoted a molecular structure. Consequently, it is represented by
a set of Cartesian coordinates for the nuclei. Depending on the interpretation in terms of
a kinetic theory, we are, in general, interested in structures with specific properties, most
importantly those with vanishing geometry gradients that highlight stable intermediates
and first-order transition states.

Properties: Each such molecular structure may then be assigned some property that relates to an
electronic structure defined by the number of electrons and spin assigned, its state of excita-
tion (typically the ground state), and any derived molecular property (such as the electronic
energy or total dipole moment). Here, we may also allow for conceptual properties such as
partial charges and local spin that rely on some chosen decomposition scheme.

With these basic terms, we may proceed and introduce a compound:

Compound: A set of molecular structures with the same nuclear composition and connectivity in
terms of chemical bonds denotes a chemical compound. The bonding pattern that is crucial
for the assignment to the set may be either fixed based on heuristic rules or, preferably,
determined through a bonding analysis [e.g, in terms of Mayer bond orders (72)].
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Although such a bonding analysis may often be unique (and particularly helpful to detect and
assign molecular structures as different conformers to the same compound), it cannot be excluded
that certain structures end up in a gray zone (for instance, if bond orders are very low). This may
then create ambiguities on the conceptual level of compounds, but not on the more fundamental
level of the molecular structures (characterized by a vanishing gradient).

Whereas we consider structures essentially as static for quantum-chemical single-point energy
calculations, the concept can be extended to molecular dynamics simulations. Then, however,
clustering algorithms (73–77) are required to assign sets of structures to a node, which is then a
generalization of the compound concept.Transitions between such compounds derived from clus-
tering trajectory data can provide access to kinetic information through Markov state modeling
(51, 78–80). A single-point-calculation approach requires the explicit generation of all relevant
conformers (for example, with the program package RDKit),1 whereas molecular dynamics simu-
lations then generate compounds through clustering.

In order to generate relationships between structures and eventually compounds, transforma-
tions from one node in the network to another one must be uncovered. In general, one first strives
to identify all relevant elementary steps that connect molecular structures and then later generates
a reaction network out of these elementary steps that transform compounds into one another. For
transformations we use the following terms:

Elementary (reaction) step:One (or more) structures may be related to one (or more) different
structures via a single transition state representing an elementary step that can be resolved
as a sequence of structures along a corresponding minimum energy pathway.

Reaction: A chemical transformation of one (or more) compounds into one (or more) different
compounds represents a reaction that can be distilled from at least one, but in general more
than one, elementary steps.

As an example,Figure 2 shows a small reaction network built from the four types of nodes defined
above.

Elementary 
reaction step

Compound

Structure

Reaction

Figure 2

Example network built from reactions and compounds. The expanded section shows a subnetwork structure
that highlights the relationship between structures and compounds as well as the relationship between
reactions and elementary steps.

1RDKit is an open-source cheminformatics software, available at http://www.rdkit.org.
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Any algorithm tackling a chemical question posed in terms of changing molecular structures
should explore the transformation steps of these structures and eventually generate compounds
and reactions. Hence, chemical reactivity and function will then be encoded in terms of the el-
ementary steps connecting structures as nodes of a network. However, we may introduce a few
more general concepts that allow for comparison between compounds and reactions. These gen-
eralizations are important to cover concepts such as residue that assign a spectator role to certain
parts of a molecule; they are indispensable in an explicit quantum-chemical description, which,
in general, requires detailed knowledge about all electrons and nuclei involved. As such, these
generalizations represent the first step toward mechanistic interpretation, because the network of
structures and their connecting elementary steps are agnostic with respect to the assignment of
any role in the chemical function under consideration. Furthermore, generalizations can be in-
voked to assign networks that are very different, on the level of atoms and elementary particles,
to the same class. Typical examples are generalizations of molecular function to be fulfilled by
a comparatively wide range of compounds, such as oxidizing agent or hydride source. For these
reasons, we introduce three additional terms:

State of a compound: Reducing or oxidizing a compound (and hence, all its structures), chang-
ing the degree of excitation or the spin state, or protonating one of its active sites leads to
different molecular structures in a quantum-chemical description and would therefore pro-
duce different nodes in a reaction network from which new elementary steps lead to further
structures. The close relationship to quantum mechanical concepts and prototypical reac-
tions (protonation, electron transfer) make them amenable to automated identification and
assignment in quantum-chemical procedures.

Reagent: A group of compounds that share the same role in a network form the category of a
reagent that is specific for that role. Typically, reagents are “oxidant,” “reductant,” “acid,”
“base,” and “catalyst.”

Purpose:The concept of “reagent” allows for comparison and a higher degree of abstraction of a
network, which for the network itself is its “purpose.” Purpose is the superordinate concept
to “reaction.” A typical purpose in reaction chemistry is “synthesis” or “catalysis,” but the
term may as well refer to any molecular functions encoded in terms of structural changes
such as “molecular motor” or “mechanochemical device.”

To assign an oxidation, charge, spin, excitation, or protonation state to a compound not only
attributes chemical meaning to a network of structures but also has consequences for network data
handling, storage, analysis, and presentation. The fundamental nature of these states also allows
for their monitoring during exploration (81). Furthermore, note that some compounds may be
part of different sets of reagents in different contexts. Early stage exploration algorithms do not
feature these last two types of nodes and how they encode purpose, because of the bottom-up
nature of reaction network exploration based on the first principles of quantum mechanics.

Given two ormore explored networks, these concepts define connections between them,which
can and should be exploited by exploration algorithms. One type of connection is node sharing,
i.e., the fact that a compound (and hence, its structures) can occur also in another network. Calcu-
lated data on such parts of a network can be reused and call for centralized database storage (the
QCArchive project byMolSSI2 is one example of a technical realization that could be exploited by
network exploration algorithms). Another type of connection is contextually joining reaction net-
works of structures that are very different on a quantum-chemical level through the assignment of

2The QCArchive database is available at https://qcarchive.molssi.org/.
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the same purpose. A typical example is a generic catalytic cycle, which on a realization level can put
networks with different catalysts or with differently substituted substrates into the same context.
As a result, one could even derive functional networks in which modulating effects of molecular
structure are hidden in an environment description of a quantum-chemical embedding approach.

Deliberately, we have left some terms unspecified to allow for some vagueness in the context of
network exploration. This is convenient as it facilitates comparability of different algorithms and
does not interfere with the core concepts introduced above. For instance, we have not specified
the term “system” and may use it as a stand-in for the way possible elementary steps are actually
set up and then explored in an algorithm.

4. FEATURES OF REACTION NETWORK EXPLORATION
ALGORITHMS

4.1. General Foci

The main results of a reaction network exploration will be extracted at the level of compounds
and reactions. Context-based abstractions into reagents and purpose then allow for arranging and
highlighting the vast amounts of data. Splitting up reactions and compounds into structures and
elementary steps allows for understanding the fine details of a particular mechanism at the level
of the physical dynamics of the involved molecular species.

At the level of compounds and reactions, it is reasonable to distinguish between two dimen-
sions: the breadth of a network and its depth. Here, breadth refers to the amount of reactions and
compounds that have been incorporated into the network, whereas depth denotes the amount of
structures and elementary steps discovered for each of the compounds and reactions. Naturally,
both will be difficult to determine in absolute terms as this would require complete knowledge
about a chemical process, which is the target of an exploration algorithm.

A lack of depth will likely yield qualitatively wrong kinetics, and hence, it will predict wrong dis-
tributions of reactants across the networks once these are modeled. Depth fidelity also comprises
the accuracy of the chosen computational methods, which manifests itself in errors on barrier
heights. A lack of network breadth will yield qualitatively wrong results for the total kinetics as it
implies that important side reactions have been missed.

In order to describe a chemical process as reliably as possible, both dimensions must be pushed
to their limits, and it will be important to find algorithm-intrinsic measures that hint toward their
saturation. Therefore, it is instructive to define two distinct types of completeness, one for the
breadth, the graph fidelity, and one for the depth, the node fidelity.

Naturally, different applications can require a different focus with respect to these directions.
Consider the following two examples:

� The calculation of the feasibility of a single reaction cascade to gain insights into its reaction
mechanism by exploring a multitude of conformers and pathways requires slow growth of
the network breadth and very accurate exploration of its depth.

� The exploration of an entirely unknown set of reactions of given compounds may favor
a quick growth, with an a posteriori automatic refinement scheme to increase depth and
breadth for interesting parts of the network. A low accuracy in terms of depth for unacces-
sible and therefore uninteresting parts of the network will be sufficient and oftenmandatory
for the sake of feasibility.

As should be apparent now, a multitude of requirements exist for a generally applicable explo-
ration tool. It shall be able to switch between the different exploration modes defined in Section 2
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and arrive at a sufficient accuracy. To this end, we define a more complete set of key challenges
for exploration algorithms in the next section that allows one to classify and assess algorithmic
developments regarding their scope and capabilities.

4.2. Challenges

In order to later compare and eventually rank algorithms that explore chemical space, computa-
tionally it is imperative to define their goals. These targets presented in the next subsections are
driven by the following general challenges:

Validation challenge: The exquisite details that exploration algorithms can generate for any
chemical process raise the question of reliability as, in general, no or very little experimental
or theoretical reference data will be available. Consequently, uncertainty quantification (82)
will become a crucial part of the whole exploration process (63, 83).

Operating with huge amounts of raw data: Automated exploration algorithms will be most
useful for cases that require thousands or millions of structure searches and optimizations.
As a consequence, huge amounts of data will be produced whose manual inspection is not
at all possible. Therefore, automated exploration algorithms must be very stable, handle all
data in a fully automated and integrated way, and automatically draw the operator’s attention
to critical situations such as convergence failures that cannot be resolved automatically.

Minimal expectations on the operator side: The software design that implements an explo-
ration algorithm must consider that all its parameters, thresholds, screws, and bolts cannot
be fully understood on the application side. In other words, the efficiency and reliability of
the algorithm should depend as little as possible on knowledge about the intricate effects of
changing some of its parameters. Naturally, the default values for them should be expected
to be stable and applicable to a wide range of problems and situations.

Unknown degree of incompleteness of generated data: For any reasonably complicated case, it
cannot be rigorously proven that the exploration of the corresponding reaction network of
interest has been completely explored.Therefore, it will be difficult to construct sufficiently
complex benchmark cases against which exploration depth and breadth can be measured,
and most likely, these will only emerge in a joint effort of various approaches over time.

4.3. Targets

Within this basic setting,wemay now formulate goals and targets of exploration algorithms. Some
of these goals have been tackled already, but all of them remain to be improved upon in some way.
It is therefore decisive to have this list at hand for future developments in the field.

4.3.1. General applicability and stability. A key goal for the exploration of reaction spacemust
be flexibility with respect to the class of molecules and their environments that can be considered.
An algorithmic restriction toward a specific compound class, reaction environment, or state of
aggregation can be a severe limitation in the discovery process as it would severely limit the domain
of exploration and exclude potentially decisive reagents, solvents, and so on. An ultimately useful
protocol must be able to accommodate any potentially relevant molecular scenario, even if it is
truly hard to map in a virtual screening process. Examples can be found in structures with multiple
transition metals in a protein environment or with molecules on metal surfaces.

Furthermore, it must be ensured that the algorithms employed are as stable as possible because
an exploration protocol may lead them to regions of configuration space that pose problems for
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them. For instance, orbital convergence will be a key issue—solution methods for complete failure
of convergence (84) or for convergence to wrong solutions (85) are required.

It will, in general, be necessary to operate with a wide range of approaches, spanning fast and
less accurate as well as slow and accurate energy assignment protocols, from detailed structure
construction and search to advanced sampling through molecular dynamics and Monte Carlo
methods. Therefore, the requirements for exploration algorithms in terms of general applicability
are immense.

4.3.2. Intrinsic constraint monitoring and adaptation of the exploration algorithm. Obvi-
ously, any algorithmwill involve choices that eventually limit its applicability. For instance, explor-
ing reaction space on the basis of individual evaluations of the stationary Schrödinger equation
emphasizes the role of the electronic energy, which will be reasonable as long as it determines
the major part of the relevant energy differences.When the exploration then enters a regime of a
potential energy surface that is rugged, this needs to be substituted by a proper molecular dynam-
ics or Monte Carlo sampling approach—and vice versa. The quantum-chemically explored reac-
tion network can then be supplemented with proper information from some enhanced sampling
approach, possibly encoded in terms of a kinetic model built from this sampling [e.g., through
Markov state models (51, 78–80)].

In order to recognize these limitations, it is crucial to determine the limits with algorithm-
intrinsic means while exploring a network in order to achieve sufficient breadth and depth. In
the example above, a large number of small barrier heights in some region of reaction space can
be taken as a sufficient indication. As long as no fully satisfactory integrated software is available,
interoperability of different implementations will be of key importance.

4.3.3. Taming conformational explosion. With increasing size of molecular structures, con-
formations of a compound become increasingly important. Formoderately sized compounds, con-
formers can be explicitly constructed (24, 86) and optimized. At some point, however, this will no
longer be feasible, and again, sampling approaches will be needed. For truly large molecules, this
will eventually become a cumbersome task as highlighted by the protein folding problem. The
whole menace of conformational depth becomes even more severe when considering transition
state structures, especially when embedded into a fluxional environment such as, for instance, wa-
ter. An exploration based on a single conformation per compound could be a first step toward
generating an overview on the most interesting parts of a network of elementary steps, but later
refinement will then be more mandatory.

4.3.4. Type of energy data provided. It is obvious that ultimate energetical data assigned to
nodes of a network should be free-energy data within a well-defined thermodynamic ensemble.
However, this ultimate goal is not easily accessible to arbitrary accuracy, and a first step would
therefore be a network based on electronic energies only (to be later refined by modeling contri-
butions from the nuclear framework at some finite temperature). Given the fact that macroscopic
constraints such as temperature, pressure, volume, particle number, and so forth can change, it
would be desirable to store all data per structure from calculations, which allow one to evaluate
free-energy data for changing external parameters at will. Arriving at free energies may be accom-
plished within very different models ranging from those that start with the standard rigid-rotor
harmonic-oscillator particle-in-a-box model (see, e.g., Reference 57), to continuum solvation ap-
proaches (see, e.g., Reference 87), to additivity schemes (see, e.g., Reference 88), and to explicit
sampling approaches (see, e.g., References 89 and 90).
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4.3.5. Environment embedding. Exploring some chemical function or reactivity is most easily
accomplished for reactants lacking any environment (i.e., for isolated species that may be consid-
ered to represent a gas-phase situation at low pressure). The inclusion of a suitable environment
represents a major challenge that must be addressed by an exploration algorithm. Clearly, explicit
molecular dynamics in a box of sufficient size under periodic boundary conditions is an attractive
choice, but this quickly limits the scope of an exploration to the Born–Oppenheimer surface that
can be constructed for the elementary particles in that specific box. Changing reagents will not
easily be possible. Hence, embedding schemes (for reviews, see References 91–94) play an im-
portant role, possibly combined in a multilayer strategy that extends from explicit environment
structures close to a reactant to structureless dielectric environments at large distance. Different
embedding scenarios will lead to variations of similar networks that require specific care on the
data-management size in order to allow for relevant chemical interpretation and conclusion.

4.3.6. Error and uncertainty diagnostics. Anymodel that produces raw data for a network ex-
ploration algorithm will rely on certain approximations. For instance, electronic structure mod-
els are likely to be based on fast semiempirical (95) or density-functional theory (96) methods,
which can be affected by surprisingly large errors for specific structures (see References 97–99
for examples).Without proper uncertainty quantification, explorations based on such data will be
inherently unreliable. Error estimation (82) therefore becomes key. Methods have been devised
that point the way for how this can be achieved (57, 83, 100–102).

4.3.7. Automated error reduction. Naturally, nonnegligible errors for certain structures de-
tected during exploration require (automated) refinement by launching more accurate energy cal-
culations. Typically, this will encompass starting reliable ab initio calculations. Although this is
feasible for single-reference methods such as explicitly correlated coupled cluster theories (103),
which can typically be run as black boxes, this is not that straightforward for multiconfigurational
problems although significant progress has been made in this respect (104–106). Then, only feasi-
bility considerations are an issue, butmay be alleviated by embedding calculations (94, 107–110). If
an exploration protocol allows for such calculations on demand, then the determined error should
be propagated through the network in order to reduce the uncertainties for the approximate ex-
ploration method. As we have shown (83, 111), this is possible by means of machine learning. Such
approaches are determined to play an important role inmaximizing the accuracy while minimizing
the computational cost of the network explorations.

4.3.8. Intuitive and immersive interaction and visualization. As vast networks will contain
toomuch data for a human to grasp, it is imperative that results of any exploration can be displayed
in an accessible way and that conclusions can be drawn with the help of algorithms. This requires
specific software for human–machine interaction as visual inspection of alphanumerical data will
be unfeasible and pointless. Suitable graphical user interfaces are required that also free one from
looking at alphanumerical raw data stored in some data bank container. They may invoke new
hardware (see, for instance, References 112–116) to intuitively experience these data in order to
easily put focus on relevant aspects. Such hardware and software also allow formanual interference
and control of the otherwise automated exploration process.

Obviously, interaction cannot mean manual editing of input files for a specific program and
a manual database query and insertion, but rather it means a simple click on a node, opening
a context-dependent minimal menu. In view of the definitions introduced above, it is possible to
define layers for this purpose reflecting in the first layer structures and elementary steps, and in the
second compounds and reactions, and then on top of this one abstract layer that encodes reagents
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and purposes. Figure 2 shows one example of such a representation, also indicating the idea of
switching between these layers.

It appears natural that interacting with such an interface and steering the whole exploration
protocol would be easier (and for nonexperts most convenient) through language processing algo-
rithms.Voice control of exploration is one option that has already been proposed as a valuable goal
for computational chemistry (117, 118). Given the advances in the context of daily-life artificial-
intelligence assistants and the availability of open-source language processing libraries (119),3 this
task is not at all difficult and even the setup of an interpretation assistant, which can translate be-
tween chemical jargon and the precise ingredients required for quantum-chemical calculations on
a properly prepared atomistic model, will be rather straightforward.

4.3.9. Maximum accessibility. Although many quantum chemistry programs are reasonably
easy to install, an exploration software will most likely involve a database, a user front-end, and
a back-end that manages all calculations. Hence, installation and therefore accessibility are more
complex by design. Both hardware and quantum-chemical software packages available at the out-
set of an exploration attempt will result in various setups with different computational capabilities.
Given the recent rise of cloud computing and virtual machines, easy access to standardized con-
figurations of the back-end accessible as images is likely a key feature that allows easy setup of the
entire machinery for nonexperts. Although proprietary software can be made accessible in this
way, open-source initiatives are likely to form a more stable and user supported base. The latter
are preferred in any case due to better reproducibility, reliability, and fidelity.With the plethora of
settings already available for quantum-chemical calculations and the profound impact they have
on the resulting data (120), it will only be possible to reproduce and understand data if their pro-
duction and processing can be inspected at the source-code level.Given the additional algorithmic
layers needed in a reaction network exploration it is of key importance to document and explain
possible settings. For the same reasons, a comprehensive way of accessing and documenting the
used options for a given exploration run is another key part of this goal.

4.3.10. Data transferability. For efficient explorations it is highly desirable that already gen-
erated networks and the contained data can be reused and combined such that subsequent explo-
rations do not need to be recalculated but instead can be seamlessly incorporatedwith existing data.
Considering the vast amount of standard reactions and the resulting list of frequently used reagents
and often occurring reactants, data integration will be highly efficient. However, integration of
existing data will only leverage an exploration attempt if uncertainty quantification has rated and
labeled the existing data. It is therefore desirable to generate a central library or database of highly
accurate results that is continuously extended with data from local explorations, if that data has
been generated with an accuracy above a certain threshold. A central database of chemical reaction
space would also be a promising starting point for the application of meta-algorithms andmachine
learning models to exploit and learn from the reaction chemistry that has been mapped out.

4.3.11. Enhanced kinetic modeling. Eventually, kinetic modeling will be required to study
concentration fluxes through a network. As it is a priori not clear what the number and kind of
elementary steps will be that constitute the network, rather general microkinetic solvers will be
required, possibly tightly entangled with the exploration algorithm itself to enhance and guide the
latter (63). Consequently, such solvers should be capable of dealing with vast timescale ranges and

3Mycroft (https://mycroft.ai/) and Jarvis (https://openjarvis.com/) are examples of open-source voice-
based control technology.
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varying degrees of molecularity (at least up to second-order kinetics).Whereas special tools (121)
and commercial solutions (122) are already available, it is obvious that reaction network explo-
ration presents further challenges that demand more developments. Furthermore, to accurately
model the flux in reaction networks, theories beyond Eyring’s absolute rate theory will be needed
(123–127). Clearly, quantum tunneling must also be considered (128). However, improvements
on this level will represent a natural extension of a network of elementary steps, as the software
may automatically gather more information about the potential energy surface in the vicinity of
the nodes in such a way that advanced rate theoretical expressions can be evaluated.

5. OPTIONS FOR COMPARISONS OF NETWORK
EXPLORATION ALGORITHMS

Comparisons of existing algorithms that explore reaction networks have already been attempted
(46, 47). However, in view of the many aspects needing consideration in such an attempt and the
fact that a balanced set of benchmark reaction networks resembling various scenarios of practical
relevance would be required, such comparisons will not be easy, although they are certainly
needed. It is important to assemble a set of criteria by which an exploration algorithm should be
assessed and rated in order to highlight the different problem classes that need to be addressed.
It will be necessary to create a multidimensional diagnostic to characterize a specific exploration
protocol.

Ultimately, any suchmeasure will have to be based on solid comparable data, and hence, bench-
mark data should be generated and collected in future work. Given the many different types of
chemical processes that could be probed, an extendable set of smaller networks appears to be
the best choice in practice. Using the three initially defined exploration modes (FOE, BOS, and
STE; see Section 2) we may propose that three main tests be run for each benchmark network.
Because automated network exploration has a significant and important technical and implemen-
tational component, extensibility and access should bemeasured.Furthermore, the reproducibility
in terms of the licensing of the source code should also be a factor. Assuming a scale from one to
ten, a software that is closed source and requires a specific set of commercial software without
any possible extension would be ranked zero. A fully open-source software with the possibility
of interfacing with any other quantum-chemical code and a set of open-source default programs
provided with the exploration tool to guarantee full functionality would rank as ten.

For a fine-grained comparison of exploration algorithms and implementations assessed at
benchmark networks, five key descriptors (sketched in Figure 3) should be sufficient. The five
descriptors first and foremost include the two types of reliability measures described above. The
node fidelity (depth) is calculated by comparison of the energy spectra of the different nodes
with the reference data. The network fidelity (breadth) is calculated as the amount of correctly
identified compounds and reactions. Naturally, the expense of the calculations is also one of the
descriptors. The computational cost could be measured as done in References 46 and 47, which
use the number of gradient calculations as dominant measure. Because the accuracy depends on
the methods used and that gradient calculations with different methods can vary significantly in
duration, the measure should also incorporate an average time of a gradient calculation on a cer-
tain hardware. In order to probe the transferability of networks,meaning the possibility of reusing
previously generated network data, we may measure the acceleration of an exploration when start-
ing from a subset of already existing nodes in the reference network and may also supplement the
running exploration on the fly with structures surfacing during the exploration that are found to
be already in a central database. Furthermore, nodes that are automatically determined to be sim-
ilar (e.g., nodes that were calculated with different solvents as environment) can and should be
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Figure 3

Fictitious benchmark data shown in rose plots for chemical reaction network exploration software.

used as starting guesses. In order to credit the fact that these software packages and algorithms
should eventually be useful to nonexperts in the field of computational and theoretical chemistry,
it is important to measure the user-friendliness (immersion) as well as the degree of full automa-
tion of a given protocol. The amount of human work required to steer and control an automated
network exploration software could be taken as a measure for user-friendliness and for the level
of automation achieved. Unfortunately, this may require extended user studies. Given the vastly
different approaches to solving many of the problems discussed in this work, a challenge similar
to the Cambridge Crystallographic Data Centre organic crystal structure prediction challenge
(129) or the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) challenge
(130) could be a desirable testing ground for the field. It would allow for better comparisons for
subtopics as well as help focus the efforts on particular unsolved problems.

134 Unsleber • Reiher



PC71CH06_Reiher ARjats.cls April 9, 2020 11:59

6. ASSESSMENT OF THE CURRENT STATUS

So far, we have discussed general concepts and goals for reaction network exploration algo-
rithms and their implementation. To assess the current status of the field we highlight some
aspects according to the literature. First, it is noteworthy that most exploration methods employ
existing quantum-chemical software packages and models. They generally do not implement
new electronic structure models in a closed-source form, which has advantages for availability,
reliability, and reproducibility of the overall method. The rigorous estimation of the associated
errors on structures and energies, their propagation, and minimization during the exploration
has been tackled only in a few instances (57, 58, 82, 83). In terms of the scope of the chemistry
that has been the subject of exploration attempts so far, most methods work routinely for basic
(gas-phase) organic chemistry, and some of the reported algorithms have been shown to work
with transition metals (18, 20, 21, 23, 25, 29, 40, 43, 131). The explorations reported so far have
largely avoided explicit description of environments such as solvents or protein embedding. Most
applications reported for exploration algorithms have been of the proof-of-principle type. It is
therefore still a long way ahead of us until we have general implementations available that can be
routinely employed in daily research. No study has reported data on a network with, say, 1,000
confirmed compounds and 10,000 possible reactions. (Note that this implies �1,000 conformers
are to be generated and �10,000 elementary steps are to be calculated.) The challenges of
the visualization and analysis of such an amount of data and the transferability of subspaces of
the network have only been touched upon (23, 24). Overall, however, important developments
have been accomplished and key steps have been taken (see Section 1). Considering three major
requirements, i.e., a robust yet flexible exploration algorithm, a scalable and extendable back-end
for the actual computations, and kinetic modeling relating the generated data to actual chemistry,
we note that no single software framework has been established so far that accomplishes these
goals so that comparisons of implementations on equal footing become feasible. We note,
however, that we have set out to provide such a program package.4

7. CONCLUSIONS

In this work, we provided a general description for automated atomistic reaction network explo-
ration algorithms. Owing to the huge diversity and heterogeneity of the tasks, we considered it
necessary to define core concepts, targets, and challenges in order to make this fast-growing field
accessible to assessment and validation and to identify weak spots in existing schemes. Although a
detailed rating of existing schemes has been beyond the scope of this work for various reasons, of
which the limited accessibility of implementations is an important one, the present overview may
still be well suited as a general guideline toward the application range and capabilities of existing
algorithms.

We defined three basic exploration patterns for chemical reaction networks that depend on
the scientific purpose for which they are designed. In connection with a basic nomenclature pre-
sented afterward, we then introduced two fidelity measures related to the breadth and depth of a
network. These are graph accuracy, i.e., the correct identification and connectivity of nodes, and
node accuracy, i.e., the correct description of the set of structures that represent a compound.We
continued to classify prototypical tasks for network exploration algorithms. These include a high
level of automation, error diagnostics and automated uncertainty handling, network data transfer-
ability, and eventually kinetic modeling. Finally, we proposed a transferable comparative scheme

4The scine developers provide software for chemical interaction networks (available at https://scine.ethz.
ch/).
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of reaction space exploration software based on the concepts and targets elaborated on in this
work. Key measures will be node and graph accuracy; software extensibility, automation, immer-
sion, and user-friendliness; data transferability; and of course, the computational cost associated
with a given algorithm/software.

We are certain that such a multidimensional ranking will become decisive in future work on
reaction network exploration algorithms as it can advance the field by clear categorization of new
exploration protocols in the context of existing ones. Detailed quantitative measures can then be
provided for existing networks, and new schemes can emerge, once balanced benchmark networks
become available, that represent the variety of algorithmic features highlighted in this work.

SUMMARY POINTS

1. Predictive theoretical work onmolecular reactivity and functionwill require in all but the
simplest cases the study of a huge amount of molecular structures and their relationships.

2. Automated procedures are mandatory for this task and recent developments point to
fruitful directions for such approaches.

3. Reaction-space exploration approaches must address a wide array of requirements rang-
ing from stable exploration procedures for advanced atomistic modeling to uncertainty
quantification for error assessment and cure, to new visualization and immersion soft-
ware and hardware to interact with complex networks of many thousand nodes.

4. The comparison of exploration algorithms and software is a multidimensional task that
requires careful assessment of the pros and cons regarding their theoretical background,
efficient and stable implementation, and overall software engineering.

FUTURE ISSUES

1. Future developments of algorithms for chemical (reaction) space exploration will require
a very broad theoretical basis in order to cope with the many different scenarios that one
may encounter in real-world molecular processes.

2. Such algorithmic developments will eventually demand a high level of sophistication
of software engineering and integration in order to move on from advanced tools for
specific problems to general tool boxes for explorations of molecular processes at the
nanoscale.

3. Eventually, fully automated computational chemistry software will become a peer-to-
data-driven operation with respect to molecular science in research and education if it
can act autonomously on arguments and questions raised in natural language by the
operator.
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