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Abstract

This review focuses on a recent class of path-integral-based methods for
the simulation of nonadiabatic dynamics in the condensed phase using only
classical molecular dynamics trajectories in an extended phase space. Specif-
ically, a semiclassical mapping protocol is used to derive an exact, continu-
ous, Cartesian variable path-integral representation for the canonical par-
tition function of a system in which multiple electronic states are coupled
to nuclear degrees of freedom. Building on this exact statistical foundation,
multistate ring polymer molecular dynamics methods are developed for the
approximate calculation of real-time thermal correlation functions. The re-
markable promise of these multistate ring polymer methods, their successful
applications, and their limitations are discussed in detail.
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1. INTRODUCTION

Coupled electron–nuclear motion, nonadiabatic effects, are ubiquitous in chemistry and play a key
role in the transport of spin, charge, energy, and excitation through complex molecular systems
(1, 2). Adiabatic or Born-Oppenheimer dynamics describe the time evolution of the nuclear wave
function under forces from a single electronic potential energy surface (3). Nonadiabatic pro-
cesses, in which the Born-Oppenheimer approximation is no longer valid, correspond to nuclear
dynamics on multiple, coupled electronic potential energy surfaces that are not well-separated en-
ergetically. It is this need to includemore than one electronic state that offers a challenge to theory:
Accurate and rapid electronic structure methods are required to characterize multiple electronic
states (typically the ground state and a handful of low-lying excited states) accompanied by quan-
tum dynamic methods that can capture the coupling between nuclear motion and electronic state
transitions.

Great strides have been made in the development of exact quantum dynamic methods
(4–8); however, large-scale and predictive simulations of nonadiabatic processes remain a signifi-
cant challenge. Nonadiabatic methods based on Gaussian wave packet dynamics (9, 10) and semi-
classical theory have had some success in small system simulations (11–14), with the linearized
semiclassical initial value representation (LSC-IVR) (15–21) and the recently introduced quasi-
classical windowing methods (22–24) showing the most promise for higher-dimensional system
studies. Similarly, rigorous mixed quantum classical approximations for nonadiabatic dynamics
derived from first principles enable studies on systems with a handful of degrees of freedom (25–
28), but it is the more ad hoc surface hopping approach that is, arguably, the most widely used
for large-scale simulations (29–34). Unfortunately, standard surface hopping simulations of high-
dimensional condensed-phase systems face challenges due to the lack of nuclear quantization, the
differential treatment of electronic and nuclear dynamics, and the use of dynamics that do not
preserve detailed balance (31).

Centroid molecular dynamics (CMD) (35–38) and ring polymer molecular dynamics (RPMD)
(39–41) have emerged as a particularly successful class of methods for condensed-phase simula-
tions of Born-Oppenheimer dynamics. Both of these approaches are based on exact, imaginary-
time path integrals (42, 43) and have been shown to successfully describe nuclear quantum effects
in condensed-phase quantum systems using only classical molecular dynamics trajectories. In par-
ticular, RPMD has been used in large-scale atomistic simulations of charge transfer (44–49). The
broad success of RPMD has motivated the development of several approximate, imaginary-time,
path-integral-based methods for quantum dynamic simulations of nonadiabatic reactions. This
includes the mapping-variable (MV)-RPMD method that, like RPMD, employs an ensemble of
classical trajectories to preserve the quantum Boltzmann distribution (50–54) and the closely re-
lated nonadiabatic RPMD (NRPMD) (55–58) and coherent-state (CS)-RPMD (59).

This review showcases the development of multistate RPMD methods, highlighting their
promise for efficient, accurate, and predictive simulations of nonadiabatic processes. Current the-
oretical limitations and implementation challenges are also discussed, along with some directions
for future development. Readers of this review might find it helpful to refresh their understanding
of nonadiabatic dynamics and conical intersections (60) as well as RPMD (41).

2. THEORY

2.1. Nonadiabatic Dynamics

The molecular Hamiltonian for a system of electrons and nuclei can be written as

Ĥ (r,R) = T̂R + Ĥel(r,R), 1.
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where T̂R is the nuclear kinetic energy operator and Ĥel(r,R) is the electronic Hamiltonian. The
eigenfunctions of the total molecular Hamiltonian can then be written as an expansion,

�(r,R, t ) =
∑
j

χ j (R, t )φ j (r,R), 2.

where the coefficients of expansion are the time-dependent nuclear wave functions, χ j(R, t),
and φj(r, R) is the complete orthonormal set of eigenfunctions obtained by solving the time-
independent electronic Schrödinger equation,

Ĥelφ j (r,R) = Ej (R)φ j (r,R). 3.

The total molecular wave function evolves in time according to the time-dependent Schrödinger
equation,

i�
∂�(r,R, t )

∂t
= Ĥ�(r,R, t ), 4.

which can be further simplified to obtain equations of motion for the nuclear wave function,

i�
∂χ j (R, t )

∂t
=
[
T̂R + Ej (R)

]
χ j (R, t )+

∑
k

Cjkχk(R, t ). 5.

Equation 5 describes coupled nonadiabatic motion of the nuclear wave function χ j(R, t): The
first term in brackets defines motion on a single electronic potential energy surface Ej(R) and the
second term describes coupled motion through the nonadiabatic coupling operator,

Cjk = 〈φ j|T̂R|φk〉 −
∑
i

�
2

Mi

〈
φ j|∇i|φk

〉∇i, 6.

where the nuclear kinetic operator is T̂R = −
∑

i
�
2

2Mi
∇2
i , and the summation index i runs over the

number of nuclear degrees of freedom. Born-Oppenheimer dynamics (sometimes referred to as
adiabatic dynamics) assumes that the nonadiabatic coupling is negligible, i.e., Cjk ≈ 0, resulting in
a significantly simpler equation that describes nuclear motion on a single electronic surface (3).
This section describes nonadiabatic dynamics in the adiabatic representation; in the next section, I
introduce the diabatic Hamiltonian. See the sidebar titled Adiabatic and Diabatic Representations
for more information.

2.2. Mapping Variables for Electronic States

Developing classical trajectory-based methods for nonadiabatic dynamics requires transforming
from discrete electronic states to continuous Cartesian electronic variables. This idea has been
explored extensively in the semiclassical literature, and several formally exact mappings have been
proposed (11, 12, 61, 62). This review confines itself to the Meyer-Miller-Stock-Thoss (MMST)
mapping that has been shown to work well for a wide range of applications (13, 18, 19, 63, 64).

TheMMSTmapping was first introduced as a mapping from discrete electronic state variables
to classical analog action-angle variables (11, 65) and was subsequently established to be an exact
transformation (12). Specifically, electronic states are mapped to bosonic creation and annihilation
operators with commutation relations [a†n, am] = δnm:

|ψn〉 〈ψm| → â†nâm =
1√
2�

([x̂]n − i[p̂]n ) 1√
2�

([x̂]m + i[p̂]m ). 7.

In Equation 7, [.]n indicates the nth element of theK-dimensional electronic position andmomen-
tum operators x̂ and p̂, and the equality is obtained using the definitions of the ladder operators.
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ADIABATIC AND DIABATIC REPRESENTATIONS

In general, the complete set of eigenfunctions of the electronic Hamiltonian, {φj(r, R)}, is referred to as the adia-
batic representation, and, as discussed in Section 2.1, nuclear motion is coupled to the adiabatic electronic states
through the nonadiabatic coupling vector. This vector is challenging to compute for high-dimensional systems, and
its magnitude is inversely proportional to the energetic separation between electronic states, making it singular at
conical intersections.

The diabatic representation is constructed to minimize the nonadiabatic coupling vector.However, the resulting
states are not eigenstates of the electronic Hamiltonian leading to off-diagonal terms in the potential energy matrix.
Diabatic states are frequently localized, providing an intuitive physical picture of reactive events: For instance, the
donor state and the acceptor state in an electron-transfer reaction are, typically, diabats.

Diabatic states are nonunique, and several diabatization protocols have been developed to construct quasi-
diabatic states either by transforming from an adiabatic basis or through direct localization protocols (66–74). The
multistate RPMD methods discussed here are all derived assuming a diabatic representation.

The K electronic states of the system are thus mapped to a set of K singly excited oscillator (SEO)
states,

|ψn〉 → |0102 . . . 1n . . . 0K 〉 ≡ |n〉, 8.

that are defined as the product of K − 1 independent ground-state harmonic oscillators and one
oscillator in the first excited state. In Equation 8, the notation |n〉 is introduced for the SEO states,
indicating that the nth oscillator is singly excited. As a simple example, the electronic states of a
two-level system can be mapped to two SEO states, |1〉 and |2〉, such that

ψ1 → |1〉 ≡ |1102〉 and ψ2 → |2〉 ≡ |0112〉. 9.

Note that the mapping defined here is exact for both adiabatic and diabatic states (11, 18).
Consider a diabatic Hamiltonian for a system with K electronic states and F nuclear degrees

of freedom,

Ĥ = 1
2
P̂TM−1P̂+V0(R̂)+

K∑
n,m=1
|ψn〉 [Ve]nm (R̂) 〈ψm|, 10.

where R and P are the F-dimensional vectors of nuclear positions and momenta, M is the diag-
onal mass matrix, V0(R) is the state-independent potential energy, [Ve]nm (R) are elements of the
K× K diabatic potential energy matrix, and |ψn〉 are the diabatic electronic states. Using the map-
ping in Equation 7, the K-state Hamiltonian in Equation 10 can be written in the SEO basis as

Ĥ = 1
2
P̂TM−1P̂+V0(R̂)+

K∑
n,m=1
|n〉 [Ve]nm (R̂) 〈m|, 11.

or equivalently in Cartesian operator form as

Ĥmmst = 1
2
P̂TM−1P̂+V0(R̂)+ 1

2

K∑
n,m=1

[Ve]nm (R̂)
(
[x̂]n [x̂]m +

[
p̂
]
n

[
p̂
]
m − δnm�

)
. 12.

Approximate semiclassical methods for nonadiabatic dynamics such as LSC-IVR (15–17,
19) typically use classical trajectories generated by the classical version of the Hamiltonian in
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Equation 12,

Ṙ= ∂Hmmst

∂P
Ṗ = −∂Hmmst

∂R
,

[ẋ]n=
∂Hmmst

∂[p]n
[ṗ]n = −

∂Hmmst

∂[x]n
. 13.

2.3. Imaginary-Time Path Integrals for a Multistate System

The path-integral representation yields an exact classically isomorphic representation of the quan-
tum canonical partition function (42). Here, I introduce the modifications necessary to construct
an exact path-integral representation for the canonical partition function of a multistate system
using the mapping variables (MVs).

Consider the quantum mechanical partition function for a canonical ensemble,

Z = Tr
[
e−βĤ

]
=

K∑
n=1

∫
dR 〈R,ψn| e−βĤ |R,ψn〉, 14.

where Ĥ is the diabatic Hamiltonian in Equation 10, β = 1/kBT, |R〉 represent nuclear position
states, and |ψn〉 are the diabatic electronic states. Inserting N copies of the identity operator,

Î =
K∑
n=1

∫
dR |R,ψn〉 〈R,ψn|, 15.

we obtain a product of high-temperature matrix elements in the electronic and nuclear degrees of
freedom,

Z = lim
N→∞

∫
dR1

∫
dR2 . . .

∫
dRN

K∏
α=1
〈Rα| e−βN Ĥ0 |Rα+1〉 × Iel, 16.

where βN = β/N, the state-independent Hamiltonian, Ĥ0 = 1
2 P̂

TM−1P̂+V0(R̂), and the elec-
tronic trace is defined as

Iel =
∑
n1

∑
n2

. . .
∑
nN

N∏
α=1

〈
ψnα

∣∣ e−βNVe (Rα )
∣∣ψnα+1

〉
. 17.

Note that in Equations 16 and 17, the multistate ring polymer is cyclic, with RN + 1 = R1 and
ψnN+1 = ψn1 . The high-temperature nuclear matrix elements can be evaluated within the Suzuki-
Trotter approximation (75, 76) to obtain a nuclear phase-space integral expression for the quantum
canonical partition function,

Z ∝ lim
N→∞

∫
d{R,P}e−βNHrp ({R,P}) × Iel, 18.

where the notation
∫
d {R,P} ≡ ∫ dR1

∫
dP1 . . .

∫
dRN

∫
dPN is introduced, and the proportion-

ality sign indicates that some constants have been omitted. The classical nuclear ring polymer
Hamiltonian in Equation 18 is

Hrp({R,P}) =
N∑
α=1

1
2
PT
αM

−1Pα +Vrp({R}), 19.

with the ring polymer potential defined as

Vrp =
N∑
α=1

1
2
ω2
N (Rα −Rα+1)T M (Rα − Rα+1)+V0(Rα ), 20.
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and ωN = N/(β�). The different multistate path-integral-based methods discussed in this review
differ in their treatment of the electronic integral in Equation 17.

2.3.1. Mean-field formulation. The high-temperature electronic matrix elements in
Equation 17,

〈ψn| e−βNVe (Rα ) |ψm〉 = [�]nm (Rα ), 21.

can be either calculated by diagonalizing the diabatic potential energy matrix when K is small or
analytically evaluated in the N→∞ limit (77),

[�]nm (R) =
{

e−βNVnn (R) if n = m
(−βNVnm )e−βNVnn (R) if n �= m

. 22.

Substituting Equation 22 into Equations 17 and 18, we obtain an exact, mean-field (MF)
path-integral representation of the canonical partition function,

Z ∝ lim
N→∞

∫
d {R,P} e−βNHmf ({R})sgn (�mf ), 23.

where the MF ring polymer Hamiltonian is defined as

Hmf ({R} , {P}) =
N∑
α=1

1
2
PT
αM

−1Pα +Vrp ({R})− 1
βN

ln (|�mf ({R})|), 24.

and the effective state-averaged potential is obtained from

�mf = Tr

[
N∏
α=1

�(Rα )

]
, 25.

where the K × K matrix elements of � are as defined in Equation 22. Note that it is necessary to
include the sign function in Equation 24, as�mf is not necessarily positive for systems with K> 2.

In the MF framework, nuclei are time-evolved by integrating the classical equations of motion
under the MF Hamiltonian in Equation 24,

Ṙα = ∂Hmf

∂Pα
and Ṗα = −∂Hmf

∂Rα

. 26.

These trajectories, generated in a standard path-integral molecular dynamics (PIMD) simula-
tion (78), are then used to calculate exact thermal equilibrium average properties for a multistate
system.

2.3.2. Electronic mapping variable path integral. Deriving a classically isomorphic path-
integral expression for the electronic integral in Equation 17 using explicit MVs requires a new
discretization protocol. Specifically, the discrete diabatic state identity operator in Equation 15
must be replaced with an identity defined in electronic position states (79)

1̂ =
∫

dx |x〉 〈x| P̂ , 27.

where the projection operator, P̂ , constrains the electronic MVs to the SEO basis,

P̂ =
K∑
n=1
|n〉 〈n|. 28.
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Inserting N copies of this identity leads to an electronic integral of the form

Iel =
∫

dx1
∫

dx2 . . .
∫

dxN
N∏
α=1
〈xα| P̂e−βNVe (Rα )P̂ |xα+1〉. 29.

Using the definition of the SEO states and evaluating the matrix elements within the
high-temperature Trotter approximation (80) yield an expression for themultistate partition func-
tion (79):

Z ∝ lim
N→∞

∫
d {R,P}

∫
d {x} e−βNHrp e−

∑N
α=1 xTα .xα �0 ({x}, {R}). 30.

In Equation 30, Hrp is previously defined in Equation 19, and the electron-nuclear coupling
term is

�0 (x,R) = Tr

[
N∏
α=1

(
xα ⊗ xTα

)
�(Rα )

]
. 31.

In Equation 31, the symbol� is used to represent an outer product of theK-dimensional electronic
position vectors. Exact thermal equilibrium properties can be computed for K-level systems using
standard path-integral Monte Carlo (PIMC) importance sampling (81).

Deriving a classically isomorphic representation for the canonical partition function requires
an integral over a phase-space distribution for both the electronic and nuclear degrees of freedom.
The next section discusses some of the different ways in which such an electronic phase-space
distribution can be generated.

2.4. Approximate Real-Time Correlation Functions

Classical configurations drawn from an exactN-bead imaginary time path integral distribution can
be time evolved under an effective classical Hamiltonian to approximately calculate the real-time
correlation functions of a quantum system.

2.4.1. Ring polymer molecular dynamics. For an adiabatic (single-surface) process, the path-
integral representation of the canonical partition function in Equation 18 simplifies to

Z ∝ lim
N→∞

∫
d{R,P}e−βNHrp ({R,P}), 32.

where the ring polymer Hamiltonian is previously defined in Equation 19. Molecular dynamics
trajectories generated by this Hamiltonian,

Ṙα =
∂Hrp

∂Pα
and Ṗα = −

∂Hrp

∂Rα

, 33.

sample the canonical ensemble and are used in standard PIMD simulations to compute exact
thermal equilibrium average properties (78).

RPMD uses these same molecular dynamics trajectories to approximate the real-time, Kubo-
transform correlation function (see the sidebar titled Kubo-Transform Correlation Functions)
as

Crp
AB(t ) =

1
Z

∫
d{R,P}e−βHrpA({R(0)}, {P(0)})B({R(t)}, {P(t)}), 34.

where O =∑N
α=1O(Pα ,Rα ) are the bead-averaged values of the corresponding operator, and the

time-evolved positions and momenta are obtained by integrating the classical equations of motion
in Equation 33.
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KUBO-TRANSFORM CORRELATION FUNCTIONS

Dynamical observables for systems in or near thermal equilibrium can frequently be obtained from real-time
thermal correlation functions. In classical mechanics, correlation functions are obtained as a thermal ensemble
average over the product of observable A at time t = 0 and observable B at time t. The corresponding quantum
real-time thermal correlation function can take several forms; here, the focus is on the Kubo-transform correlation
function (82, 83),

Ckubo
AB (t ) = 1

βZ

∫ β

0
dλTr

[
e−(β−λ)Ĥ Âe−λĤ eiĤt/�B̂e−iĤt/�

]
,

that emerges naturally from linear response theory for the calculation of transport properties. The Kubo-
transform correlation function shares symmetries with the classical correlation function, and both RPMD (39) and
MV-RPMD (50, 58) correlation functions have been shown to take this form in the t→ 0 limit.

The RPMD approach offers some key advantages over other classical trajectory-based ap-
proaches for condensed-phase quantum dynamics. First, the dynamics, by construction, conserve
the quantum Boltzmann distribution. This feature ensures that, despite the use of classical
trajectories, RPMD simulations do not suffer from unphysical zero-point energy leakage, a
common difficulty in semiclassical MV methods (13, 84–86). Second, the ring polymer transition
state, as defined by RPMD rate theory, has been shown to emerge naturally as the t→ 0+ limit
of the generalized Kubo-transform flux-side correlation function (87–89). Finally, as reviewed
elsewhere (41), RPMD and related methods have been remarkably successful in high-dimensional
simulations of Born-Oppenheimer dynamics.

2.4.2. Mean-field ring polymer molecular dynamics. As described in Section 2.3.1, tracing
over the electronic degrees of freedom yields an MF path-integral expression in nuclear phase
space. MF-RPMD (see, for instance, Reference 90), borrowing from the RPMD idea, approxi-
mates the real-time Kubo-transform correlation function for a multistate system as

Cmf
AB (t ) =

1
Z

∫
d{R,P}e−βHmf sgn(�mf )A({R(0),P(0)})B({R(t),P(t)}), 35.

where O indicates the bead-averaged function corresponding to the operator Ô, and the time-
evolved positions and momenta are obtained by integrating the MF equations of motion defined
in Equation 26.

InMF-RPMD, the nuclei evolve in time under an effective state-averaged electronic potential,
and the dynamics conserve the quantum Boltzmann distribution. MF-RPMD is practical, easy to
implement, and accurate in the strong- to moderate-coupling regimes, but the lack of explicit
electronic variables makes these dynamics inaccurate in the nonadiabatic weak-coupling regime.

2.4.3. Mapping variable ring polymer molecular dynamics. The N integrals over electronic
positions in Equation 29 can be rewritten as a trace over each of the N electronic variables (50).
The trace over an operator can, in turn, be written as a phase-space integral over its Wigner
function,

Tr
[
P̂e−βNVe (Rα )P̂

]
=
∫

dxα
∫

dpα
∫

d�xα eipα .�xα
〈
xα + �xα

2

∣∣∣∣ P̂e−βNVe (Rα )P̂
∣∣∣∣xα − �xα

2

〉
. 36.
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Including a single projection operator in Equation 36 is sufficient to constrain the electronic MVs
to the SEO subspace but inserting a pair of projection operators symmetrically about the potential
operator enables analytic evaluation of the Wigner transform. The resulting expression for the
electronic integral is (50)

Iel ({R}) =
∫
d
{
x,p

}
e−

∑N
α=1(xα .xα+pα .pα )

N∏
α=1

(
Cα − I

2

)
� (Rα ), 37.

where I is the K × K identity matrix, and the complex electronic matrix is

Cα = (xα + ipα )⊗ (xα − ipα )T . 38.

Inserting the electronic integral back into the expression for canonical partition function in
Equation 18 yields an exact, classically isomorphic, phase-space integral in the nuclear degrees of
freedom and the electronic MVs,

Z ∝ lim
N→∞

∫
d {R,P}

∫
d
{
x,p

}
e−βNHmv e−

∑N
α=1(xα .xα+pα .pα )sgn (�mv), 39.

where the MV Hamiltonian is

Hmv = Hrp ({R,P})− 1
βN

ln (|�mv|), 40.

with the ring polymer Hamiltonian,Hrp, defined in Equation 19, and the interaction term defined
as

�mv = Re

{
Tr

[
N∏
α=1

(
Cα − I

2

)
�(Rα )

]}
. 41.

Because �mv is not necessarily positive, the absolute value is used in Equation 40, and the corre-
sponding sign function is included in Equation 39; in Equation 41, the real part of the product of
complex matrices,Cα, is used, as the canonical partition function and the Kubo-transform corre-
lation function are real valued.

The MV-RPMD approximation to the multistate Kubo-transform correlation functions can
then be written as

Cmv
AB (t ) =

1
Z

lim
N→∞

∫
d {R,P}

∫
d
{
x,p

}
e−βNHmv e−

∑N
α=1(xα .xα+pα .pα )sgn (�mv)

A
[{
R,P, x,p

}
(0)
]
B
[{
R,P, x,p

}
(t )
]
, 42.

where the time-evolved positions and momenta are generated by the MV ring polymer Hamil-
tonian in Equation 40 and the bead-averaged functions O =∑N

α=1O(Rα ). The sign function,
sgn(�mv), in Equation 42 and the exponential of

∑N
α=1 (xα.xα + pα.pα ) are constants of motion

(50, 54) that weight the contribution of each trajectory at t = 0. Like RPMD, MV-RPMD tra-
jectories conserve the quantum Boltzmann distribution, and for dynamics on a single electronic
surface, the MV-RPMD Hamiltonian simplifies to the RPMD Hamiltonian.

2.4.4. Alternate multistate ring polymer molecular dynamics methods. Rather than the
projected position space identity in Equation 27, an identity in momentum states or even coherent
states can be defined to arrive at different but formally exact, classically isomorphic representations
of the canonical partition function. The alternate multistate RPMD methods for approximate
dynamics differ both in the formulation of the initial thermal distribution and in the Hamiltonian
used to generate trajectories in real time. For a quick comparison of multistate RPMD methods,
see the sidebar titled Summarizing the Features of MV-RPMD, NRPMD, and CS-RPMD.
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SUMMARIZING THE FEATURES OF MV-RPMD, NRPMD, AND CS-RPMD

At t = 0, the MV-RPMD correlation function corresponds to the exact Kubo-transform correlation function for
linear operators. In the adiabatic limit, at which nuclear dynamics occurs on a single electronic surface, all three
approximations reduce to RPMD. Integrating out the electronic variables analytically in all three cases yields MF-
RPMD (79).

The MV-RPMD Hamiltonian generates an ensemble of classical trajectories that conserve the quantum
Boltzmann distribution (50, 54). The trajectories generated by the MMST-like Hamiltonians in NRPMD and
CS-RPMD, like nonadiabatic LSC-IVR (19), fail to conserve the quantum Boltzmann distribution. This failure
can lead to zero-point energy leakage, and an inverted potential problem in which the electronic potential takes
on negative values (13, 84, 85).

For a bare two-level system with no coupled nuclear degrees of freedom, MV-RPMD fails to capture Rabi
oscillations. As one might expect from the success of LSC-IVR for bare two-level systems (19, 79), both NRPMD
and CS-RPMD do successfully capture Rabi oscillations (55, 59). In the limiting case of a single ring polymer bead,
N = 1, the MV-RPMD and NRPMD Hamiltonians are identical and, like CS-RPMD, capture Rabi oscillations
and conserve the classical MMST Boltzmann distribution.

2.4.4.1. Nonadiabatic ring polymer molecular dynamics. Path-integral discretization of the
Boltzmann operator in electronic variables can be performed by introducing N/2 copies of
the projected position space identity in Equation 27 and N/2 copies of a projected momen-
tum space identity. Analytic evaluation of the resulting electronic matrix elements yields an exact,
phase-space expression for the canonical partition function (55),

Z ∝ lim
N→∞

∫
d {R,P}

∫
d
{
x,p

}
e−βNHrp e−(

∑N
α=1 xα .xα+pα .pα )�nr, 43.

where

�nr = Tr

{
N∏
α=1

[
pTα−1� (Rα ) xα

] [
xTα � (Rα )pα

]}
, 44.

and the matrix � is defined in Equation 21.
The proposed NRPMD approximation to the Kubo-transform correlation function is (55)

Cnr
AB(t ) =

1
Z

lim
N→∞

∫
d {R,P}

∫
d
{
x,p

}
e−βNHrp e−(

∑N
α=1 xα .xα+pα .pα )�nr

A
[{
R,P, x,p

}
(0)
]
B
[{
R,P, x,p

}
(t )
]
, 45.

where A and B are bead-averaged functions, and the time-evolved positions and momenta are
obtained by integrating equations of motion generated by a different Hamiltonian,

Hnr = Hrp ({R,P})+ 1
2

N∑
α=1

(
xTαVexα + pTαVepα −Tr [Ve]

)
. 46.

Equations of motion for the electronic mapping variables under the NRPMD Hamiltonian in
Equation 46 describe each bead evolving under the semiclassical MMST Hamiltonian previously
defined in Equation 12. However, unlike MV-RPMD, the classical trajectory ensemble used here
does not conserve the quantum Boltzmann distribution.
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2.4.4.2. Coherent-state ring polymer molecular dynamics. As the name suggests,CS-RPMD is
derived by inserting identity in the form of an overcomplete set of coherent states (59). Evaluating
the electronic integral then yields an expression that is exact in the N→∞ limit,

Z ∝ lim
N→∞

∫
d {R,P}

∫
d
{
x,p

}
e−βNHcs�cs, 47.

where the CS-RPMD Hamiltonian is

Hcs = Hrp +
N∑
α=1

1
2
(
xTαVexα + pTαVepα

)−Tr [Ve] 48.

with the interaction term

�cs = e−
∑
α (xα .xα+pα .pα )Tr

[
N∏
α=1

1
2
(xα + pα )⊗ (xα − ipα )T

]
. 49.

CS-RPMD approximates the Kubo-transform correlation function as

Ccs
AB(t ) =

1
Z

∫
d {R,P}

∫
d
{
x,p

}
e−βNHcs�cs

A
[{
R,P, x,p

}
(0)
]
B
[{
R,P, x,p

}
(t )
]
, 50.

where the time-evolved positions and momenta are generated by the CS-RPMDHamiltonian in
Equation 48. Unfortunately, CS-RPMD trajectories also fail to conserve the quantum Boltzmann
distribution, because �cs is not a constant of motion.

2.5. Exact Quantum Liouvillian in the Mapping-Variable Representation

Deriving an exact ring polymer Liouvillian for quantum dynamics in the MV framework is a
step toward the rigorous derivation of approximate real-time, multistate RPMD methods. For
adiabatic dynamics, it has been shown that RPMD and CMD can both be connected to an ex-
act quantum Liouvillian derived from a generalized Kubo-transform correlation function that is
equivalent to the Kubo-transform correlation function for bead-invariant operators and in the
N→∞ limit (87, 88, 91).

An analytic expression for the exactN-bead, path-integral Liouvillian in the phase space of the
nuclear and electronic degrees of freedom can be similarly derived (92):

L[N ] = L[N ]
nuc + L[N ]

elec + L[N ]
hd , 51.

where the first term corresponds to nuclear evolution on an Ehrenfest-like average electronic
surface,

L[N ]
nuc =

N∑
α=1

PT
αM

−1 ∂

∂Rα

− 2
�

[
V0 (Rα )+Vsc (Rα , xα,pα )

]
sin

(
�

2

←−−
∂

∂Rα

−−→
∂

∂Pα

)
, 52.

the second term describes the Rabi oscillations of the electronic degrees of freedom along with
higher-order couplings to nuclear derivatives,

L[N ]
elec =

N∑
α=1

1
�

[
pαVe (Rα )

−→∇xα − xαVe (Rα )
−→∇pα

]
cos

(
�

2

←−−
∂

∂Rα

−−→
∂

∂Pα

)
, 53.

and the third term corresponds to nuclear and electronic evolution due to higher-order
derivatives in both degrees of freedom,

L[N ]
hd =

N∑
α=1

1
4

[−→∇xαVe (Rα )
−→∇xα +

−→∇pαVe (Rα )
−→∇pα

]
sin

(
�

2

←−−
∂

∂Rα

−−→
∂

∂Pα

)
. 54.
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MATSUBARA APPROXIMATION

A complex Matsubara Liouvillian for adiabatic dynamics can be derived by rewriting the exact ring polymer Liou-
villian in terms of the N normal modes of a free ring polymer and then truncating to include onlyM < N smooth
or Matsubara modes (87). The resulting complex Liouvillian preserves the quantum Boltzmann distribution, and
the real part describes dynamics under the RPMD Hamiltonian (87, 88, 91, 93).

Starting with the exact multistate ring polymer Liouvillian (92), transforming to the normal modes of the free
nuclear ring polymer, and truncating to include onlyM < N normal modes yield a complex multistate Matsubara
Liouvillian (58). Unlike the adiabatic case, this multistate Liouvillian does not conserve the quantum Boltzmann
distribution for a generalK-level system.The real part of thismultistateMatsubara Liouvillian gives rise to dynamics
in the hybrid MS-RPMD framework outlined in Section 2.5 (58).

In Equation 52, Vsc is the MMST potential (last term in Equation 12) and the arrows over the
F-dimensional nuclear partial derivatives indicate the direction inwhich the derivative is evaluated.
In Equation 53,Ve is the diabatic potential energy matrix and�x/p indicate partial derivatives with
respect to the K-dimensional vectors of electronic position or momentum MVs, respectively.

Interestingly, all three terms in the Liouvillian describe a ring polymer dynamics in which
each bead evolves independently in time. The beads are, however, connected to each other at time
t = 0 through the initial thermal distribution that resembles the MV-RPMD distribution for the
electron degrees of freedom but includes an additional nontrivialWigner transform in the nuclear
degrees of freedom (92). Constructing an approximate classical ring polymer Hamiltonian for
multistate system dynamics requires that the exact quantum Liouvillian be truncated to eliminate
higher-order derivatives.

Truncating L[N ] to O(�0) results in classical dynamics that do not conserve the quantum
Boltzmann distribution:

L[N ]
0 =

N∑
α=1

PT
αM

−1 ∂

∂Rα

− [V0 (Rα )+Vsc (Rα , xα ,pα )
]←−−∂
∂Rα

−−→
∂

∂Pα
55.

+ 1
�

[
pαVe (Rα )

−→∇xα − xαVe (Rα )
−→∇pα

]
. 56.

This truncated Liouvillian suggests a hybrid MS-RPMD scheme with trajectories initialized from
an MV-RPMD distribution and time evolved under the NRPMDHamiltonian. For more details,
please see the sidebar titled Matsubara Approximation.

3. IMPLEMENTATION

All calculations using the imaginary-time, path-integral-based methods discussed here are con-
verged in the limit N→∞. Multistate RPMD methods are expected to converge with relatively
lowN values for nonadiabatic system simulations, as the number of beads depends on temperature
and the magnitude of the electronic coupling.

3.1. Thermal Correlation Functions

Approximate multistate RPMD thermal correlation functions take the form

Cms
AB(t ) =

〈A({x0,p0,R0,P0})B({xt,pt,Rt,Pt})Q({x0,p0,R0,P0})〉W
〈Q({x0,p0,R0,P0})〉W , 57.
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Table 1 Implementation details for MV-RPMD, NRPMD, and CS-RPMD

Method W Sampling Q Hms

MV-RPMD e−βHmv e−
∑N
α=1 (xα .xα+pα .pα ) PIMC sgn(�mv)a Hmv

b

NRPMD e−βHrp e−
∑N
α=1 (xα .xα+pα .pα ) |�nr| PIMC sgn(�nr)c Hnr

d

CS-RPMD e−βHcs PIMD �cs
e Hcs

f

Hybrid MS-RPMDg e−βHmv e−
∑N
α=1 (xα .xα+pα .pα ) PIMC sgn(�mv) Hnr

Abbreviations: CS-RPMD, coherent-state ring polymer molecular dynamics; MS-RPMD, multistate ring polymer
molecular dynamics; MV-RPMD, mapping-variable ring polymer molecular dynamics; NRPMD, nonadiabatic ring
polymer molecular dynamics; PIMC, path-integral Monte Carlo; PIMD, path-integral molecular dynamics.
aEquation 41.
bEquation 40.
cEquation 44.
dEquation 46.
eEquation 49.
fEquation 48.
gHybrid multistate RPMD from nonadiabatic Matsubara derivation (58).

where ms = {mv, nr, cs}, the subscripts 0 and t indicate the initial or time-evolved phase-space
vectors, respectively, and the notation 〈·〉W is used to indicate a thermal ensemble average over a
distributionW. Trajectory initial conditions are generated from the distributionW using standard
PIMC or PIMD methods, and then time-evolved by integrating Hamilton’s equation of motion
for a multistate Hamiltonian.

The forms of the distribution W and the Hamiltonian Hms used to generate real-time tra-
jectories for each of the approximate multistate RPMD methods described here are specified in
Table 1.

The function Q that appears in the denominator of Equation 57 is the estimator for the
canonical partition function such that

Z = lim
N→∞

∫
d {R,P}

∫
d{x,p}Q (x,p,R,P)W (x,p,R,P). 58.

For single-surface, Born-Oppenheimer processes,Q = 1, but for multistate systems, this function
accounts for the fact that the isomorphic classical expression for the canonical partition function
does not, in general, correspond to a positive definite distribution.

3.2. Estimators

The functions A and B in the numerator of Equation 57 are estimators derived to yield the exact
thermal equilibrium average values, 〈Â〉 and 〈B̂〉, when the trajectory ensemble is sampled from
the function W. Detailed derivations are not presented here, but some of the estimators most
frequently used in the multistate RPMD methods are introduced.

When the operators depend on nuclear position O(R̂), the corresponding bead-averaged
estimators are O ({R}) = 1/N

∑N
α=1O(Rα ). For electronic state population operators, several

estimators have been derived and shown to be exact for the calculation of thermal equilibrium
properties. Specifically, three estimators have been derived for the electronic state projection
operator Pn = |n〉〈n| in the MV-RPMD framework. The Boltzmann population estimator takes
the form (50)

Pβ
n =

[�mv]nn
Tr [�mv]

, 59.
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where the matrix �mv is defined in Equation 41, and the notation [.]nn is used to indicate
the corresponding matrix element. The Wigner estimator has been used in the simulation of
photoinitiated, excited-state dynamics (51),

PW
n =

2K+1

N

N∑
α=1

e−
∑
α xα .xα+pα .pα

(
[xα]2n +

[
pα
]2
n −

�

2

)
. 60.

The semiclassical estimator was first introduced as a population estimator in the NRPMD frame-
work but was subsequently shown to be exact in the MV-RPMD framework as well (52, 55):

P sc
n =

1
2N

N∑
α=1

(
[xα]2n +

[
pα
]2
n − �

)
. 61.

Finally, in the CS-RPMD framework, the population estimator takes the form

Pcs
n =

1
N

N∑
α=1

[
xα − ipα

]
n

[
xα+1 + ipα+1

]
n

(xα − ipα )T (xα+1 + ipα+1)
. 62.

3.3. Nonequilibrium Correlation Functions

The short-time accuracy of RPMD for nonequilibrium correlation functions has been established
through connections with Matsubara dynamics and demonstrated through numerical simulations
(94). Although the short-time accuracy of the multistate RPMD methods has not been clearly
established, recent work developing a nonadiabatic Matsubara dynamics suggests that their per-
formance is likely similar for thermal equilibrium correlation functions and nonequilibrium cor-
relation functions (58).

The protocol for initializing to a photoinduced excited state was developed in the context of
theMV-RPMD framework (51) and later adapted to anNRPMD implementation as well (59). As-
suming vertical Franck-Condon excitation, nuclear phase-space variables can be initialized from a
ground-state equilibrium distribution. Initial conditions for electronic MVs are then chosen such
that only one electronic state is initially populated. Drawing on ideas from the semiclassical liter-
ature (95), this can be achieved by setting the Wigner or the semiclassical population estimators
(Equations 60 and 61) for each bead to 0 for an unpopulated state, 1 for a fully populated state, or
a number between 0 and 1 for partially populated states.

It is necessary to determine a dynamical temperature, as the multistate RPMD Hamiltonian
depends on the inverse temperature, β = 1/kBT. For a thermal simulation, β is determined by
the physical temperature of the simulation. However, for a system initially in the excited state,
a fictitious dynamical temperature, Td, is necessary to account for the excess energy introduced
to the system upon photoexcitation. Numerical simulations demonstrate that the best choice of
fictitious temperature is TdkB = Ei, where kB is the Boltzmann constant and Ei is the total initial
energy of the system in the excited state (51).

4. APPLICATIONS

Multistate RPMD methods have been used in a range of applications including vibronic spectra
calculations (56), dynamic simulations of spin-boson models (50, 54, 55, 59) and photoinduced
excited-state dynamics (51, 57), and in studies of proton-coupled electron transfer (52). In this
section, I discuss three specific studies that highlight the strengths of these approaches.
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4.1. Two-Level Systems

Approximate multistate RPMD methods are benchmarked through the study of two-level sys-
tems coupled to a single nuclear degree of freedom. Nuclear dynamics is characterized through
calculations of the nuclear position autocorrelation function, where Â = B̂ = R̂.

In the adiabatic (strong-coupling) regime, both the MF-RPMD and MV-RPMD nuclear au-
tocorrelation functions agree well with exact quantum results, as shown in Figure 1a. As the
coupling strength is decreased and nonadiabatic effects start to play a significant role,MV-RPMD
outperforms MF-RPMD, as shown in Figure 1b–d. While not shown here, it has been estab-
lished that, despite minor differences in the nuclear autocorrelation function calculated using
MV-RPMD,CS-RPMD, andNRPMD for these systems, there is little to choose between them in
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Figure 1

The mapping-variable ring polymer molecular dynamics (MV-RPMD) nuclear autocorrelation functions, CRR(t), for a two-level system
coupled to a single nuclear mode are calculated using Equation 42 with A = B = R. The converged number of beads ranges from N = 5
in the weak- and moderate-coupling regimes to N = 10 in the strong-coupling case. The number of trajectories required goes from 104

to 105, with the larger number corresponding to stronger coupling and more beads. The diagonal elements of the diabatic potential
energy matrix are shifted oscillators, and the off-diagonal coupling is tuned from (a) the adiabatic, strong-coupling regime to
(b) moderate coupling to (c) the nonadiabatic, weak-coupling regime with nonzero driving force and (d) a symmetric nonadiabatic
coupling model. MV-RPMD results are plotted using red lines with squares and mean-field (MF)-RPMD results are shown as green
dashed lines. Exact quantum results, generated by diagonalizing a discrete-variable representation Hamiltonian on a grid (96), are
shown with solid black lines. Panels a–d adapted from Reference 50. (e, f ) These graphs explore mixed time slicing for the model system
in panel d, in which different numbers of beads are used to discretize the electronic Ne and nuclear degrees of freedom Nn. Panel e plots
the nuclear position autocorrelation function with Ne:Nn values 1:6 with red triangles, 3:6 with green squares, 6:6 with blue circles, and
exact results with black dashed lines. Panel f plots the nuclear autocorrelation function with more beads for the electronic state variable,
representing the function with Ne:Nn values 4:1 with purple diamonds. Panels e and f adapted from Reference 54.
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terms of accuracy (59). Furthermore, a recent study (97) on the use of mixed time slicing withMV-
RPMD inwhich different numbers of beads are used to describe the electronic and nuclear degrees
of freedom suggests that when nuclear and electronic motion are strongly coupled, the best results
are obtained by quantizing them to the same extent, as demonstrated in Figure 1e, f (54).

BothNRPMD and CS-RPMDhave been used to compute electronic state population correla-
tion functions for these same model systems and find good agreement with exact quantum results
(57, 59). Expectedly, these results closely resemble those generated by LSC-IVR calculations in
which theWigner transform of the Boltzmann operator is obtained from an exact calculation (79).
However,MV-RPMDpopulation autocorrelation functions are noisy and deviate rapidly from the
exact result even at relatively short times.

4.2. Excited-State Dynamics

The different mechanisms of ultrafast photoinduced dissociation can be modeled using a manifold
of three coupled excited states, where one is initially occupied through photoexcitation.Coronado
et al.’s study (98) considers three model systems that differ in the relative timescales on which
branching events are observed and in the extent of coupling between the different excited-state
surfaces.

Figure 2a demonstrates that the time-dependent electronic state populations calculated in an
MV-RPMD simulation capture the short-time behavior for all three model systems. However, at
longer times, MV-RPMD proves less accurate, particularly for the first model, in which the two
curve-crossing events are well separated in time. Results for the same models from an NRPMD
simulation are shown in Figure 2b. It is evident that these dynamics are more accurate at longer
times, in particular even capturing the longer timescale transitions in the first model system. In-
terestingly, MV-RPMD simulations in the classical one-bead limit are comparably accurate with
NRPMD, as shown in Figure 2c, because the MV-RPMD Hamiltonian reduces to the NRPMD
Hamiltonian for dynamics in this limit.

4.3. Mechanistic Study of Proton-Coupled Electron Transfer

Proton-coupled, electron-transfer (PCET) reactions are a class of reactions that are central
to understanding important chemical processes such as water-splitting catalysis, bioinorganic
reactions, and enzyme catalysis. PCET can be theoretically described using a system-bath model
(2) in which four electron–proton diabatic states are coupled to solvent degrees of freedom that
are, in turn, coupled to a thermal bath representing the environment. The four electron–proton
states are quasi-diabatic states labeled DD, DA, AD, and AA, where the first and second letters
indicate the electron or proton is in its donor (D) or acceptor (A) state, respectively. The mecha-
nistic study described here focuses on the chronology of charged particle transfer—some systems
exhibit concerted electron and proton transfer, while others undergo sequential transfer events
with either the electron transferring first (ET-PT mechanism) or the proton transferring first
(PT-ET mechanism) (2).

MV-RPMD simulations were recently used to successfully characterize the mechanism of
PCET in a series of model systems (52). A nonequilibrium initial distribution was generated by
constraining the system to a dividing surface defined by nuclear configurations corresponding to
the curve crossing between the reactant (DD) diabatic state and one of the other three diabatic
states. Time-evolving trajectories forward and backward in time from this dividing surface served
to highlight the different PCETmechanisms. Specifically, following the timescales on which pop-
ulation transfers from the reactant to the other diabatic states yielded mechanistic insight. For
instance, Figure 3 shows the results of an MV-RPMD study of population dynamics for a model
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(a) Three model systems in which the three coupled, diabatic, excited-state potential energy surfaces, Vnn(R), are described by Morse
functions and the black arrows indicate the state initially populated upon photoexcitation from the ground state. The excited-state
populations, Pn(t ), plotted in panels b–d are color coded to match the corresponding potential surfaces in panel a. (b) Excited-state
population dynamics from bead-converged (N = 4), mapping-variable ring polymer molecular dynamics (MV-RPMD) calculations
using the Wigner estimator (solid lines). The number of trajectories employed ranges from 2 × 103 to 3 × 104, with (top) model I
requiring the fewest trajectories and (bottom) model III requiring the most. Exact quantum results are plotted with dashed lines in
panels b–d. (c) Time-dependent populations from nonadiabatic RPMD (NRPMD) using the semiclassical estimator. The plots in panel c
are made with data provided by the authors of Reference 57. (d) MV-RPMD population dynamics in the N = 1 classical limit (solid lines)
that agree remarkably well with NRPMD results. Panels a, b, and d adapted from Reference 51.

system initially constrained to two different dividing surfaces. In both cases, it is evident that, as
the population of the reactant (DD) state decreases, the population of the electron-transfer (AD)
state increases first, followed by a subsequent transfer of population to the product (AA) state.
These studies served as the first demonstration of the utility of multistate RPMD methods in
high-dimensional, condensed-phase systems, and further serve to establish dividing surface inde-
pendence in MV-RPMD simulations of population dynamics (52).

5. LIMITATIONS

5.1. Reaction Rate Theory

The success of RPMD in the calculation of condensed-phase reaction rates has been shown to arise
from the connections betweenRPMD rate theory and the quantum transition-state theory derived
from the generalized flux-side, Kubo-transform correlation function (91). The development of a
multistate RPMD rate theory is key to enabling large-scale application of these methods and
remains an outstanding challenge.

Other multistate methods based on RPMD have had some success in the calculation of rates,
such as ring polymer surface hopping (99), kinetically constrained (KC)-RPMD (100, 101),
and MF-RPMD for the calculation of adiabatic and nonadiabatic reaction rates in multistate
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(a) The four diabatic potential energy surfaces, Vnn(S), labeled DD, DA, AD, and AA for a model PCET
system, are pictured. (b) A plot showing the change in population, Pn(t ), calculated using the Boltzmann
population estimator introduced in Section 3.2, for each of the four diabatic states color coded to match
panel a. The focusing protocol introduced in Section 3.3 is used to sample the initial electronic MVs such
that the semiclassical population estimators for the DD and AD states are equal to 0.5, those for the AD and
AA states are equal to 0, and the nuclear position is set to s = −0.8 a.u., corresponding to the crossing
between the DD and AD diabatic states. Trajectories are run forward and backward in time and spliced
together to discover the PCET mechanism; here the population dynamics demonstrate that the PCET is
sequential, with ET preceding PT (ET-PT mechanism). (c) A plot showing the Boltzmann population
dynamics for the same model system obtained from an MV-RPMD simulation in which the initial electronic
MVs are sampled such that the semiclassical population estimators for the DD and AA states are equal to
0.5, those for the DA and AD states are equal to 0, and the nuclear position is set to s = 0 a.u., corresponding
to the crossing between the DD and AA diabatic states. The resulting population changes correctly predict
an ET-PT mechanism, demonstrating that dynamics in the MV-RPMD framework are independent of the
choice of dividing surface. All calculations are converged with N = 10 beads using an ensemble of ∼105
classical trajectories. Abbreviations: A, acceptor; D, donor; ET, electron transfer; MV-RPMD, mapping-
variable ring polymer molecular dynamics; PCET, proton-coupled electron transfer; PT, proton transfer.

systems (102). KC-RPMD introduces a single auxiliary variable that reports on the probability of
electronic transitions and employs trajectories that conserve an approximate quantum Boltzmann
distribution in this expanded phase space (100). Nonadiabatic reaction rates calculated in the
MF-RPMD framework require the introduction of an ad hoc constraint to ensure that trajectories
pass through the electronic transition state (102). In a practical sense, MF-RPMD offers a simple
and scalable approach to the calculation of nonadiabatic condensed-phase reaction rates; however,
the lack of explicit electronic variables limits mechanistic insights.
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Given the importance of dynamics that preserve detailed balance in the context of rate calcu-
lations, it is expected that recent work understanding the nature of MV-RPMD dynamics (53, 54,
92) and the derivation of new population estimators (51, 52) will pave the way to developing a
rigorous rate theory with explicit electronic variables.

5.2. Detailed Balance and Rabi Oscillations

As discussed in earlier sections, multistate RPMD methods developed to date either conserve the
quantum Boltzmann distribution (MV-RPMD) or, like nonadiabatic LSC-IVR, correctly describe
the electronic transitions in bare two-level systems (NRPMD and CS-RPMD).The hybrid multi-
state method derived from the nonadiabatic Matsubara Liouvillian also falls in this latter category,
with dynamics that do not obey detailed balance.Deriving an imaginary-time, path-integral-based
dynamics that can both capture Rabi oscillations and preserve detailed balance remains an out-
standing theoretical challenge.

5.3. Ab Initio Path Integrals for Nonadiabatic Dynamics

Ab initio dynamics refers to trajectory-based simulations in which the potential energy and forces
are computed on the fly from electronic structure. Ab initio multistate path-integral dynamics
faces additional challenges. First, the Schrödinger equation must be solved for multiple adiabatic
eigenvalues and eigenstates at each time step. Second, the multistate methods described here all
assume a diabatic electronic Hamiltonian whose diagonal and off-diagonal elements must be ob-
tained from an on-the-fly diabatization. Some promising avenues toward this goal include recent
work that proposes circumventing diabatization altogether (103, 104) and advances in the rapid
calculation of quasi-diabatic states, briefly referenced in the sidebar titled Adiabatic and Diabatic
Representations.

5.4. Borrowing Limitations from Ring Polymer Molecular Dynamics

Multistate RPMD methods are extensions of RPMD to systems in which multiple electronic
states are coupled to nuclear degrees of freedom. The limitations of RPMD must, therefore, be
taken into account: Specific concerns include the spurious dynamical frequencies introduced by
the spring terms between neighboring beads (105), inaccuracies in describing nuclear correlation
functions with nonlinear operators (106), and the inability to capture nuclear quantum coherence
effects at times >β� (44, 46).

6. OUTLOOK

This review introduces readers to the theoretical foundations of the recently developed multistate
RPMD methods for the simulation of nonadiabatic reactions in the condensed phase using only
classical trajectories in an extended electron–nuclear phase space. The applications discussed
here demonstrate the versatility of these multistate path-integral methods, and the availability
of open-source software will enable their broader use (107). The many exciting avenues for
future research include ab initio multistate path-integral studies and the derivation of a rigorous
nonadiabatic reaction rate theory.
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