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Abstract

Time-dependent density functional theory has emerged as a method of
choice for calculations of spectra and response properties in physics, chem-
istry, and biology, with its system-size scaling enabling computations on
systems much larger than otherwise possible. While increasingly complex
and interesting systems have been successfully tackled with relatively sim-
ple functional approximations, there has also been increasing awareness that
these functionals tend to fail for certain classes of approximations. Here
I review the fundamental challenges the approximate functionals have in de-
scribing double excitations and charge-transfer excitations, which are two of
the most common impediments for the theory to be applied in a black-box
way. At the same time, I describe the progress made in recent decades in
developing functional approximations that give useful predictions for these
excitations.
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1. INTRODUCTION

The response properties of an atom, molecule, or solid are a crucial aspect of its characterization.
In poking a system with a perturbation, be it sunlight, a weak laser, or a collision with a small
particle, one causes a gentle disturbance in its constituents whose consequent dynamics reveals a
wealth of information about interactions in the system.Depending on how the timescales involved
in the perturbation compare to the effective reaction times of the constituents, different types of
correlation can be revealed: Sometimes only the electronic system is probed, while other times it
is the vibrational or rotational motion of the ions that responds, or a combination of these.When
the perturbation is weak enough that the system response scales linearly with the strength of the
perturbation, the response at different frequencies and different wave vectors, i.e., the absorption
spectrum, shows peaks at excitation energies of the system whose strength indicates the transition
probability from the ground to that excited state.

Thus, the spectrum, meaning the excitation energies as well as their oscillator strengths, pro-
vides a unique signature of the system. Theoretical computations attempt to forge these signa-
tures to make predictions of dynamics and processes, to identify or characterize an experimental
spectrum, and to design new materials with some desired spectral property. Solving Schrödinger’s
equation for the many-electron system, however, scales exponentially with the number of elec-
trons, so some kind of approximation is ultimately called for. Time-dependent density functional
theory (TDDFT) provides a route to computing the absorption spectra that has achieved the best
overall balance between accuracy and efficiency. Formulated in 1984 (1), with the linear-response
framework developed in 1995 (2, 3), the past 25 years have seen some very exciting applications for
response properties. The functional approximations that were used in the early days of TDDFT
are often still used today. However, there are certain excitations for which these approximations
perform poorly, and more sophisticated approximations are needed. Perhaps the most important
cases of this are double excitations and charge-transfer excitations.

Both double and charge-transfer excitations are not merely of theoretical interest but also have
important practical importance in a number of situations, from photovoltaic design to organic
molecules to biochemical processes. This is particularly true when there is coupling to ionic mo-
tion and themolecule explores a wide range of geometries.There has therefore been a tremendous
effort to describe these excitations not just within TDDFT but also with other many-body wave-
functionmethods. I note that these excitations can also be challenging for wave-functionmethods:
For example, the error in equation-of-motion coupled-cluster methods is related to the amount of
double excitation in the transition (4). The general problem of computing accurate excited states
has inspired the development of the QuestDB database, which has more than 500 highly accu-
rate vertical excitations of different natures (5) in small- and medium-sized molecules, using only
computational data.

This review focuses on the TDDFT description of these two classes of excitations. I begin
with a review of how linear-response calculations proceed in TDDFT (Section 2) before first
addressing the challenge, and some solutions, in obtaining double excitations in Section 3, and
charge-transfer excitations in Section 4. I provide an outlook in Section 5.

2. TDDFT LINEAR RESPONSE

In a nutshell, TDDFT is an exact reformulation of the quantum dynamics of many-body sys-
tems, in which a noninteracting system of N electrons reproduces the one-body density of
the true system (1, 6–9), n(r, t ) = N

∑
σ ,σ2...σN

∫ |�(rσ , r2σ2...rNσN )|2|d3r2...d3rN . Instead of find-
ing the true correlated wave function, a problem that scales exponentially with the number of
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KS: Kohn-Sham

xc: exchange
correlation

Adiabatic
approximation:
no memory, i.e.,
instantaneous
dependence on the
density, as if in a
ground state

χ: density–density
response function

electrons, one need only find a set ofN orbitals that satisfies the time-dependent Kohn-Sham (KS)
equations [

− �
2

2m
∇2 + vS(r, t )

]
φk(r, t ) = i∂tφk(r, t ), 1.

where the KS potential vS(r, t ) = vext(r, t ) + vH[n](r, t ) + vXC[n;�0,�0](r, t ) with the Hartree po-
tential vH[n](r, t ) = ∫ n(r′ ,t )

|r−r′ | d
3r′ is the classical electrostatic repulsion of the electron distribution,

and vXC[n;�0,�0](r, t ) is the exchange-correlation (xc) potential that is defined such that the time-
evolving density of the occupied orbitals is identical to the true density, n(r, t) = ∑

k, occ|φk(r, t)|2.
Atomic units where e2 = � = me = 1 are used throughout this article unless otherwise stated.
The xc potential is a functional of the density, including its history, as well as the initial interact-
ing state �0 and noninteracting state �0; when the dynamics begins in the ground state, as in the
linear-response regime, the initial-state dependence is usurped into the density dependence by the
Hohenberg-Kohn theorem of ground-state DFT (10), and the xc potential may be simply written
as vXC[n](r, t ).

In practice, of course, vXC is unknown and approximations are made, most of which simply
insert the instantaneous density into a ground-state approximation. This adiabatic approximation
thus completely neglects both the history and initial-state dependence, yet has led to many useful
predictions in both the linear response as well as the nonperturbative regime (see Reference 8, and
references therein). In the past couple of decades, there has been an increased understanding of
where and why the functional approximations fail, especially in the linear-response regime, such
that users know when to trust their TDDFT results using standard functionals and when to be
cautious. More sophisticated functionals have been developed from first principles, which, while
computationally more involved, deliver more reliable results for classes of excitations for which
the standard approximations fail. Two of these classes, double and long-range charge-transfer
excitations, are the focus of this review.

When applied to linear response, the formalism and its functionals simplify. First-order
perturbation theory gives the linear response of the density to a perturbation δv(r, t)

n(1)(r, t ) =
∫ ∞

0
dt ′

∫
d3r′χ (rt, r′t ′ )δv(r′t ′ ), 2.

where in the frequency domain the density–density response function χ has poles at the exact
frequencies 	j = Ej − E0. In addition, the residues give transition densities between the true
ground �0 and excited � j many-body states

χ (r, r′,ω) =
∑
j

〈�0|n̂(r)|� j〉〈� j|n̂(r′ )|�0〉
ω − 	 j + i0+ + c.c.(−ω), 3.

where n̂(r) = ∑
i δ(r − ri ) is the one-body density operator. The notation c.c.(−ω) denotes the

complex conjugate of the first term at frequency −ω. Equation 3 involves a sum over excited
states; the j= 0 terms in the first and second terms cancel. Using the fact that the time-dependent
KS system yields the same density as the interacting system, TDDFT provides an expression for
the response function χ that bypasses finding the excited states (3, 11),

χ [n](r, r′,ω) = χS[n](r, r′,ω) +
∫
d3r1d3r2χS(r, r1,ω)

[
1

|r1 − r2| + fXC(r1, r2,ω)
]

χ (r2, r′,ω), 4.

where

χS[n](r, r′,ω) = lim
η→0+

∑
k, j

( fk − f j )δσk ,σ j

φ∗
k (r)φ j (r)φ∗

j (r′ )φk(r′ )

ω − (ε j − εk ) + iη
5.
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xc kernel:
fXC[n](r, r′,ω)

SMA: small matrix
approximation

SPA: single pole
approximation

is the time-frequency Fourier transform of χS(r, r′, t − t ′ ) = δn(r,t )
δvS(r′ ,t ′ )

, and the xc kernel is that of

fXC[n](r, r′, t − t ′ ) = δvXC[n](r,t )
δn(r′t ′ ) . In Equation 5, f i are Fermi occupation numbers of the orbital i in

the ground-state KS determinant and σi indicates the spin of the orbital i.
Equation 4 is the central equation in TDDFT linear response (3), showing how the excitation

energies and transition densities of the true interacting system are related to those of the non-
interacting KS system and the xc kernel. In practice, although this is used directly for extended
systems, for molecules a matrix formulation is used (2, 11). There are several versions that are all
essentially equivalent (6, 12, 13) and involve solving for eigenvalues and eigenvectors of a matrix
in the basis of KS single excitations. In the Casida formulation (2, 11, 13), we have

R(	 j )Fj = 	2
j Fj 6.

(provided the orbitals are chosen real), where

Rqq′ (ω) = ω2
qδqq′ + 4√ωqωq′

∫
d3rd3r′�q(r)

[
1

|r − r′| + fXC(r, r′,ω)
]

�q′ (r′ ), 7.

with q = i → a denoting a single KS excitation from an occupied orbital i to unoccupied a,
and �q(r) = φ∗

i (r)φa(r) a KS transition density. In Equation 7, we have restricted ourselves to
spin-saturated, closed-shell systems for simplicity; the spin-dependent versions of these equations
yield singlet-triplet splittings. The eigenvalues of R yield the excitation energies 	j, while the true
transition densities and oscillators are related to the eigenvectors f j.

Two truncations of Equation 4 or Equation 7 are particularly useful tools for analysis. In the
small matrix approximation (SMA), we focus on one KS excitation and assume it has negligible
coupling to the other excitations. Then (3, 12–14),

	SMA =
√

ω2
q + 4ωq

∫
d3rd3r′�q(r) fHXC(r, r′,ω)�q(r′ ) , 8.

where the notation HXC denotes Hartree-xc, fHXC = 1
|r−r′ | + fXC. If, additionally, the correction

to the KS excitation frequency ωq is itself much smaller than ωq, taking a Taylor expansion yields
the single pole approximation (SPA)

	SPA = ωq + 2
∫
d3rd3r′�q(r) fHXC(r, r′,ω)�q(r′ ) . 9.

In principle, use of the exact ground-state xc potential and exact xc kernel in Equation 4 or
Equation 7 would yield exact excitation energies and transition densities of the physical system.
However, both of these ingredients are unknown and need to be approximated in practice. The
choices for the ground-state functional are enormous (15–18) and vary hugely in their degree of
empiricism as well as in their computational cost. For the xc kernel, the adiabatic approximation
for the xc potential translates to a frequency-independent fXC, which follows from vAXC[n](r, t ) =
v
g.s.
XC [n(t )](r), then fXC[n](r, r′, t − t ′ ) = δ2EXC[n]

δn(r)δn(r′ ) δ(t − t ′ ), so

f AXC[n](r, r
′,ω) = δ2EXC[n]

δn(r)δn(r′ )

∣∣∣∣
n=n(r)

. 10.

In the following sections, we analyze what the challenges are in using linear-response TDDFT
for double excitations and charge-transfer excitations, as well as possible solutions, from the per-
spectives of both Equations 4 and 7. Both expressions demonstrate the key role played by the
xc kernel in producing the response of the interacting system from that of the KS one, but also
the key role played by the bare KS excitations themselves as a zeroth order starting point for the
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TDDFTmachinery.We will see that, while the structure of the kernel is the crucial aspect in cap-
turing double excitations and charge-transfer excitations between open-shell fragments, a good
approximation for the ground-state potential is a crucial aspect of getting charge transfer between
closed-shell fragments correct.

Before doing so, we note that there are two other formulations of linear response within
TDDFT that may be more computationally efficient for certain situations. The Sternheimer
approach, also known as density perturbation theory or coupled perturbed KS, avoids the cal-
culation of unoccupied states by instead considering perturbations of the occupied KS orbitals in
the frequency domain (19, 20). Also avoiding unoccupied orbitals, one can Fourier transform the
real-time propagation of occupied orbitals under a weak perturbation, often using a δ-kick in time
to uniformly stimulate the entire spectrum (21).

3. DOUBLE EXCITATIONS

First, what is a double excitation? The term is a shorthand for a state of double-excitation charac-
ter and has meaning in the context of noninteracting reference systems such as Hartree-Fock or
KS DFT (22). In these systems, one has N orbitals that are occupied in the ground state, where
N is the number of electrons, and an infinite number of virtual orbitals. A doubly excited Slater
determinant is when two electrons are promoted out of occupied orbitals into two virtual orbitals,
and a double excitation of the true interacting system is then one that has a significant proportion
of doubly excited determinants in an expansion of the true correlated state, using the noninter-
acting reference states (see also Figure 1). Clearly, the details of the expansion coefficients and
the orbitals themselves are dependent on which noninteracting reference is chosen. Whether a
given state should be classified as a single excitation (usually meaning a linear combination of sin-
gle excitations, again with respect to a chosen noninteracting reference) or a double or multiple
excitation, generally then depends on the choice of the reference. Note, though, that for a given
reference, a well-defined and unambiguous classification can be made by following the states as
the interaction is slowly turned down to zero. For DFT references, this is done along the adi-
abatic connection curve, and the procedure is described in Reference 23 (see also discussion in
Reference 24).

But this definition relying on the notion of a noninteracting reference means that whether a
state is classified as being a double excitation or not can lose intrinsic meaning. A double excitation
using a single determinant reference, such as Hartree-Fock or KS DFT, may appear as single
excitations from a multireference ground state or if excited-state orbital-relaxation is accounted
for, such as has been discussed for the case of butadiene, for example (4, 25, 26). However, within
TDDFT no such ambiguity arises, because the KS ground state is a Slater determinant (except in
cases of strict degeneracy), and the excitations are obtained within a fixed basis of occupied and
unoccupied orbitals once the ground state is determined; i.e., there is no orbital relaxation as such.
Thus, the double-excitation character of the state is well-defined in TDDFT, determined by the
path of Reference 23.

Nowwe turn to how double excitations appear in the linear response spectrum. In fact, they are
completely absent in the KS linear response, and it is purely through their interaction with a single
excitation that they appear in the true response function, as we now will demonstrate.We consider
expanding the true interacting states |� j〉 in the complete set formed by KS determinants

|� j〉 = C j
0|�0〉 +

∑
q

C j
q |�q〉 +

∑
D

C j
D|�D〉 + . . . , 11.
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a   Single versus double excitations

b   Auto-ionizing resonances and Auger processes c   Excitations of molecule of open-shell moieties
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i ω = 2(εa–εi) ω

Bound double excitation with
energy in the continuum

Single excitation to
the continuum

Figure 1

Double excitations in different contexts. (a) Single versus double excitations, defined with respect to a single-determinant reference
such as KS, and the example of the butadiene 21Ag state, which is a mixture of two single and one double excitations out of the KS
single Slater determinant reference. (b) Auto-ionizing resonances often involve double excitations in which, in a single-particle
reference, a double excitation to a bound orbital has an energy that lies in the continuum. Once electron interaction is accounted for,
the state turns into a resonance, and TDDFT with a frequency-dependent kernel can give approximate line widths (22). (c) Excitations
of a stretched molecule exemplify the ubiquity of double excitations when static correlation is present. Abbreviations: HOMO, highest
occupied molecular orbital; KS, Kohn-Sham; TDDFT, time-dependent density functional theory.

where q = i → a represents all single excitations out of the KS ground-state determinant �0, and
D = (i → a, j → b) represents all double excitations, etc. The numerator of Equation 3 involves
matrix elements between the ground and excited states of the density-operator n̂(r), which, be-
ing a one-body operator, has only nonzero elements between determinants that differ by at most
one orbital. For this reason, even before considering χ , it is instructive to apply Equation 3 to the
noninteracting KS system,where the numerator involves 〈� j|n̂(r)|�0〉: Only the single excitations
〈�j| = 〈�q| give a nonzero contribution. Physically, this is to be expected, because a double exci-
tation in a noninteracting system would mean that two electrons are excited, a process that would
require two photons, and so would scale quadratically in the perturbation strength, not linearly.

Returning to the interacting system, it follows from above that if the true ground state is weakly
correlated and well-approximated by a Slater determinant, then excited states of double-excitation
character |� j〉 contribute to the linear response solely through their single-excitation component
|�q〉 in the expansion of Equation 11. More generally, putting the expansion of Equation 11 for
|�0〉 and |� j〉 into Equation 3,we see that the |�0〉 component of the interacting ground state |�0〉
gives a nonzero contribution only throughmatrix elements with the single-excitation components
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|�q〉 of the excited state |� j〉, while the single-excitation components of the ground state (|�q〉
in the expansion of |�0〉) give a nonzero contribution through the double-excitation component
|�D〉 of the excited state, and the double-excitation component of the ground state connects to the
single excitation and any triple-excitation components of the excited state. Likewise, the double-
excitation component of the excited state connects only to the single excitation and any triple-
excitation components of the ground state. As triple excitations are generally much higher in
energy, we see that the double excitations really contribute only through couplings with the single
excitations. There are clearly more poles in the interacting χ than in the KS χS: χ has poles at
true states that are linear combinations of single, double, and higher excitations, while χS has poles
only at single excitations.

Given that in TDDFT χ is obtained from χS through Equation 4, the appearance of double
excitations in χ depends entirely on the xc kernel. That is, unlike single excitations, there is no
zeroth order approximation to the double excitation that can be extracted from the response func-
tion or in Casida’s matrix. One could resort to taking sums of the KS single excitations as a zeroth
order approximation, but such a term does not naturally arise in the TDDFT linear-response for-
malism. Further, to generate more poles than the KS system has, the xc kernel must be strongly
frequency dependent. Another way to see this is through thematrix equation,Equation 7.As this is
a matrix that spans only single excitations, the only way that information about a double excitation
can enter is implicitly through fXC. Because the interacting system has a larger number of excita-
tions than do the noninteracting ones, the equation must represent a nonlinear rather than a linear
eigenvalue problem, which arises due to the frequency dependence of the xc kernel (22, 27–30).

The lack of double excitations in the adiabatic approximation was noted soon after TDDFT
linear response was formulated (27, 28), when it was also suspected that including frequency de-
pendence would unveil them. Reference 31 numerically demonstrated the need for frequency
dependence to capture double excitations by showing that the adiabatically exact approximation
misses their peaks in the absorption spectrum. The adiabatically exact approximation is the best
that an adiabatic approximation could hope to be, as it inputs the instantaneous density into the
exact ground-state xc functional. This can be done only for model systems in which the exact
ground-state xc functional is numerically accessible; to demonstrate this, Thiele & Kümmel (31)
ran real-time propagation on some one-dimensional, two-electron systems in the linear-response
regime.

An explicit computation of the frequency dependence of the exact xc kernel is quite a com-
putational feat, given that it is effectively solving an inverse problem that is very sensitive to
small errors. Yet it has been achieved (32–34) on model systems, and results verify the simple
pole structure of the xc kernel near double or multiple excitations that was postulated in a simple
model in Reference 29 (Section 3.1). Thiele & Kümmel (32) performed real-time calculations of a
kick perturbation that is localized in space and time to effectively find the functional derivatives in
χ (r, r′, t− t′) and χS(r, r′, t − t ′ ), then Fourier transformed them to the frequency domain to reveal
a full spatial and frequency dependency of the kernel, fXC = χ−1

S − χ−1 − 1/|r − r′|. Entwistle &
Godby (33) and Woods et al. (34) worked directly in the frequency domain to construct the true
and KS response functions. In both approaches, regions of small density need extra attention; a
thorough analysis together with different ways to deal with this can be found in Reference 34. An
interesting issue that arose is the gauge freedom of the xc kernel (34–36): Adding functions g(r,ω)
(independent of r′), h(r′, ω) (independent of r), or a spatially independent term to fXC(r, r′,ω) has
no effect in the Dyson equation (Equation 4). This reflects the fact that the physics is invariant
under a spatially uniform but possibly time-dependent shift of the potential. These studies used
the soft-Coulomb interaction between electrons that is often used in one-dimensional models.
An exact analytic expression for the xc kernel has also been shown on two different models with
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different interactions: one for a ring geometry with a squared cosine interaction (37), and the
other for a lattice system, the (a)symmetric Hubbard dimer (38–41).

3.1. Dressed TDDFT

To reveal the hidden double excitations in fXC, Maitra, Zhang, Cave, and Burke (29) considered a
simple idealized situation in which, in the KS system, one double excitation is close in energy to a
single excitation, and both are far away from all other excitations, such that in the frequency range
near these two states, the KS response function has a single pole. Electron interaction mixes these
two excitations such that there are two excitations in the interacting system that are linear com-
binations of this KS single and double, each contributing a distinct pole in the response function
χ . Motivated by the expression obtained from solving Equation 7 in this subspace for fXC, we (29)
asserted the dressed SPA (dSPA) for the xc kernel∫

d3rd3r′�q(r) f dSPAXC (r, r′,ω)�q(r′ ) =
∫
d3rd3r′�q(r) f AXC(r, r

′ )�q(r′ ) + |HqD|2/2
ω − (HDD −H00)

, 12.

where the second term gives a frequency-dependent correction to a chosen adiabatic approxima-
tion (first term) involving Hamiltonian matrix elements with the KS single (q), double (D), and
ground state (0). (A sketch is shown in Figure 2.) The kernel was proposed as an a posteriori cor-
rection to the adiabatic approximation,which was applied to just the particular KS single excitation
that lies near a double excitation. Its derivation relies on the idea that the interactions of these two
excitations with the other KS excitations in the system are far weaker than those with each other.
If several KS single excitations mix significantly with a double excitation, then the dressing can
be applied in a matrix spanned by those singles, in a dressed Tamm-Dancoff scheme, as was done
for small polyenes in References 42–44 (see also Figure 1a). Gritsenko & Baerends (45) unveiled
the spatial dependence of the kernel and, using the common energy denominator approximation,
could approximately account for the effect of the entire spectrum on the coupled singly and doubly
excited states.

Several related and more rigorously based approaches have led to kernels of essentially the
same form as Equation 12. Casida (46) used the equation-of-motion superoperator approach
to derive a polarization propagator equation, separating out the adiabatic and nonadiabatic
contributions. The nonadiabatic part was shown to reduce to Equation 12 in the special case in

ω

ωωq

ωq

ΩA

ΩA

Ω2

Ω2
Ω1 Ω1

KS Adiabatic Exact

Xs
–1

X–1 Xs
–1 ƒHXC= –

Xs
–1 ƒA

HXC–

Figure 2

Schematic illustration showing how the frequency dependence in the dressed kernel generates an extra pole.
Abbreviations: HXC, Hartree exchange correlation; KS, Kohn-Sham.
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which the ground state is closed-shell, while in the general case, it provides an extension of dressed
TDDFT to open-shell doublets. Romaniello et al. (47) built an xc kernel from contracting the
four-point Bethe-Salpeter equation of many-body theory to the two-point one of TDDFT (48,
49). Usually a static approximation is used for the many-body kernel, but Romaniello et al. (47)
showed that a frequency-dependent screened Coulomb interaction is crucial to capturing these
states; the frequency dependence of the TDDFT xc kernel extracted from this has two origins,
one from the folding of the space variables, and the other from this explicit dependence. This
approach, however, led to spurious excitations that were thought to be due to a self-screening
error and later were shown to be avoidable by imposing a condition for number conservation
in the Bethe-Salpeter approach (50). The relation between this approach and the propagator
approach was clarified in Reference 51.

The dressed kernel has been tested on a range of different molecules, computing excited state
geometries as well as energies (43, 44, 52). An extensive study using the development version of
the deMon2k code (53) on 28 organic molecules suggested that dressed TDDFT gives the best
results when the adiabatic kernel it is paired with is a hybrid.

Still, there are double excitations for which the dressed kernel does not apply, namely when
the condition that the subspace containing the double excitation be uncoupled from the others,
in particular the ground state, does not hold. When the KS lowest unoccupied molecular orbital
(LUMO) energy lies low close to a doubly occupied highest occupied molecular orbital (HOMO)
energy, any single excitation out of the HOMO will be near degenerate, with a double excitation
in which the other electron occupying the HOMO hops into the low-lying LUMO (54) (see also
Figure 1c).This means that fHXC(ω) has a strong frequency dependence throughout the spectrum.
It also means that the dressed kernel is not appropriate, as the SPA under which it is to be applied
breaks down (12, 13, 55).Two relevant situations in which this occurs are conical intersections with
the ground state (56) and stretched single bonds such as in dissociating diatomic molecules (54,
55, 57) (see Section 4.2). In these cases, ground-state DFT also struggles tremendously, because
the single Slater determinant character of the KS state is so far from the exact ground state, which
is strongly correlated.

While the frequencies give the position of the peaks in the absorption spectrum, an aspect
of the spectrum that tends to be less discussed is the height of the peaks in the spectrum, that
is, the oscillator strength. TDDFT gives, in principle, the exact oscillator strengths, which
are extracted from the residues of the susceptibility χ or the eigenvectors of the matrix R of
Equation 7 (2, 11–13); a recent benchmarking for general excitations in small compounds can be
found in Reference 58. Casida (2) showed that frequency dependence of the xc kernel imposes
a renormalization of the eigenvectors Fj of R compared to those obtained from the adiabatic
approximation when computing the oscillator strengths (equations 4.39– 4.41 in Reference 2). To
my knowledge, the effect this renormalization has on shattering the single KS peak strength into
the mixed single- and double-character components has not been explored very much; I know of
only one work on an asymmetric Hubbard dimer, discussed in Reference 41.

3.2. Searching for Doubles Elsewhere Within DFT

Although dressed TDDFT has successfully computed excitation energies of double excitations, it
is not widely used; this is perhaps because it is not applied in a black-box way, as one first scans the
single excitations out of an adiabatic approximation to see where to apply the frequency-dependent
part of the kernel. I briefly mention here some other density-functional-based approaches that
have been explored for double excitations.

A natural approach is to consider quadratic response: Given that two photons are required to
excite two electrons in a noninteracting system, one might hope that an adiabatic approximation
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used within quadratic response theory has the right structure to couple single and double KS
excitations. Unfortunately, it was found (22, 59) that while adiabatic quadratic response does
contain poles at the sum of linear-response-corrected KS single excitations, it misses the mixing
between single KS excitations with these double excitations. Using the Tamm-Dancoff approx-
imation in the linear-response part of the calculation makes even these poles disappear.

Back to linear response, instead of improving the xc kernel, spin-flip TDDFT instead modifies
the reference state around which the linear response is performed (60, 61); this was originally
introduced to access ground states of multireference character. A double excitation with respect
to the ground state appears as a single excitation of the new reference state. Choosing a high-spin
triplet state as reference and applying spin-flip excitations, double KS excitations contribute to
the TDDFT linear response using the usual adiabatic xc kernels or noncollinear ones designed
by considering the nature of the reference state (62).

An alternative linear-response theory was recently developed that is in a similar spirit to
TDDFT but distinct in that the excitations involve electron additions or removals: In particle–
particle random phase approximation (pp-RPA) (63, 64), the reference state is the ground state of
(N − 2) electrons instead of N. Then two electrons are added to any of the unoccupied orbitals
of the reference; in this way, double excitations naturally arise. There are some limitations, de-
pending on the character of the double excitation (e.g., it does not capture excitations in which a
significant amount of the hole is in the HOMO-1), but it works well otherwise; it also works for
other difficult excitations in TDDFT, including charge transfer.

Falling back to DFT, note that constrained variational methods have been formulated to re-
produce excited states of a given character and have been applied to double excitations, in par-
ticular SCF and orbital-optimized DFT (65), constricted variational DFT (66), and eXcited
Constrained DFT (67).

Stepping outside standard KS DFT, a promising approach that has resurfaced in recent
years is ensemble DFT (68–70). Ensemble DFT is based on the rigorous Gross-Oliveira-
Kohn variational principle for ground and excited states, and its initial exposition predated the
linear-response framework of TDDFT. Although early approximations for the functionals were
not accurate enough to be useful (71, 72), very recent algorithmic and functional developments
have reawakened the exploration of whether it could become a practical and accurate method,
with computational cost similar to that of KS DFT. Several works have considered double
excitations in this framework (73–76).

4. CHARGE-TRANSFER EXCITATIONS

A charge-transfer excitation is one in which a large fraction of the excited-state electron density is
localized in a region with little spatial overlap with the density of the ground state. This occurs in
a number of situations, for example, when the excited state is rotated with respect to the ground
state, as in twisted intramolecular charge-transfer compounds, or at stretched geometries, as in a
dissociating bond. In the limit of minimal overlap between the donor and acceptor states, one can
obtain the lowest charge-transfer energy staying within a ground-state DFT by using constrained
DFT (77). One can extract useful coupling matrix elements from the constrained states. For a
general approach to charge transfer, one needs to consider TDDFT. Charge transfer plays a key
role in many central processes in science, including photosynthesis, photovoltaic devices, molec-
ular switches, nanoscale conductance, and reactions in solvents and at interfaces. In many of these
applications, the systems are large enough that TDDFT is the only practical option, and so charge
transfer has received a lot of attention. A detailed review of the issues and developments in both
linear response and fully time-resolved, nonperturbative dynamics can be found in Reference 78.
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In the early 2000s, it was realized that standard approximate TDDFT functionals severely un-
derestimate charge-transfer excitation energies (79, 80). Yet, at around the same time, a TDDFT
study made a breakthrough in the explanation of the charge-transfer process responsible for
the dual fluorescence of 4-dimethyl-aminobenzonitrile (DMABN) in polar solvents, whose
mechanism had until then remained a mystery (81). The nature of the red-shifted emission band
had been thought to be due to an intramolecular charge-transfer state, but the lack of accurate
but computationally efficient methods at the time made it difficult to know whether it had a
twisted or planar quinoidal structure. Using TDDFT with the B3LYP functional, Rappoport &
Furche (81) could without doubt identify the electronic and geometric nature of the state and
the mechanism that led to the dual fluorescence. This was an early success story for TDDFT
and charge-transfer processes, in which the underestimation of the charge-transfer excitation
energies themselves was not important. They were indeed likely underestimated, but two aspects
of the study meant that it did not affect the conclusions: First, the calculations were performed
in the gas phase, while the phenomenon occurs in solvent that would tend to lower the excitation
energy anyway, and second, the excited properties such as vibrational frequencies and force
constants used to identify the state appear to be generally less sensitive. However, in general,
the large underestimation of charge-transfer excitation energies hampers the predictivity of
standard TDDFT approximations in a range of applications in physics, chemistry, and biology
and has driven tremendous developments in the past decade or so, such that now first-principles
nonempirical functional approximations are available that can in many cases yield reliable and
predictive results for charge-transfer excitations (82).

For the ensuing discussion on why these excitations are so challenging for TDDFT,we need to
first recall what their exact value should be. Consider an excitation of a stretched neutral molecule
in which one electron has transferred from one end (the donor) to the other (the acceptor). Then,
at large separations, the exact frequency of this excitation approaches

	 = ID − AA − 1/R, 13.

where ID = ED(ND − 1)− ED(ND) is the ionization energy of theND-electron donor,AA = EA(NA)
− EA(NA + 1) is the electron affinity of the NA-electron acceptor, and −1/R is the electrostatic
attraction between the fragments after the transfer, lowest order in the separation R.

How these excitations are represented in TDDFT depends on the character of the underlying
KS orbitals. We must distinguish two cases: charge transfer between closed-shell fragments and
between open-shell fragments. The latter case is particularly challenging for TDDFT because of
the strongly correlated nature of the ground state, and the analysis of the situation is quite distinct
from the former. Note that several diagnostics of the degree of charge transfer in an excitation
have been useful (83–85).

4.1. Charge-Transfer Excitations Between Closed-Shell Fragments

In this case, we have a pair of electrons in the HOMO of the donor from which we transfer one
to the LUMO of the acceptor. The Kohn-Sham orbital energy difference is then simply

ωq = εAL − εDH , 14.

and the TDDFT procedure of Equation 7 provides a diagonal correction and mixes this excita-
tion with other excitations through the fXC-matrix element that goes into Rqq′ . However, it is evi-
dent from this equation that the KS transition density �q(r) = φD∗

H (r)φA
L (r) is exponentially small

as a function of the separation R, so for a nonvanishing correction to the KS orbital energy dif-
ference, fXC(r, r′,ω) must exponentially grow as a function of R. Local and semilocal functionals
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LDA/GGA:
local density
approximation/
generalized gradient
approximation

EXX: exact exchange
(not Hartree-Fock)

[local density approximation (LDA)/generalized gradient approximation (GGA)] do not have this
property, so their TDDFT excitation energy collapses to the orbital energy difference.

One might wonder, How far is the KS orbital energy difference ωq = εAL − εDH from the exact
charge transfer excitation energy (Equation 13)? The answer depends not only on what ground-
state functional is being used but also on whether the calculation is performed within pure KS
DFT or the generalized KS framework (86–88). There is a key difference between these two for-
malisms that has a significant consequence for charge-transfer excitations: in the former, unoccu-
pied orbital energies are excitations of the neutral system, while in the latter, they have a character
somewhere in between neutral and addition energies depending on the amount of Hartree-Fock
that is mixed in. Given that charge-transfer excitations, albeit being overall neutral, do involve the
addition of one electron on one moiety, the generalized KS may have a practical advantage. In
the following, I briefly outline different approaches, considering the nature of the bare KS orbital
energy differences as well as the TDDFT correction from fXC, which for nonlocal functionals
could be nonvanishing. I also consider several distinct and contrasting approaches, and again note
that more detailed exposition is given in Reference 78.

First, if the exact ground-state functional is somehow known and used, then we have
ωq = ID − AA

S = ID − AA − A
XC, because in DFT the magnitude of the HOMO orbital energy

is exactly equal to the true ionization energy, but the KS LUMO orbital energy differs from the
electron affinity by the derivative discontinuity A

XC (78, 89–94). That is, the exact KS orbital en-
ergy difference is lacking relaxation contributions to the acceptor’s electron affinity as well as the
−1/R behavior at large separations; if the exact ground-state functional was used in the TDDFT
calculation, these termswould need to result from the fXC term inEquation 7, and, from the discus-
sion around Equation 13, one sees that this requires fXC(r, r′,ω) to have somematrix elements that
grow exponentially with fragment separation R (note, this is not the same as growing with |r− r′|).

Of course, the exact ground-state functional is not known, so the second case considered here
is the situation for local and semilocal functionals, LDA/GGA.With local approximations, the ϵH
in Equation 14 is a significant underestimate of the ionization energy: Because the LDA/GGA
potentials depend only (semi)locally on the density, and the density falls exponentially with the
distance from the atom, the LDA/GGA potentials go to zero exponentially instead of having the
slower −1/r tail away from a finite system. Although this does not affect the lower-energy or-
bitals occupied in the ground state so severely, the valence levels that probe these regions further
from the atom get pushed upward, and hence the LDA/GGA HOMO (and LUMO) orbital en-
ergies are too small. Tozer (79) showed that the error for charge-transfer excitations when using
these functionals tends to the average of the derivative discontinuities of the donor and acceptor:
ωq = ID − AA − 1/2(D

XC + A
XC). This is unchanged by the TDDFT correction from fXC due to

the local nature of the kernel in LDA/GGA. As a fix, configuration-interaction singles (CIS) was
added to simply shift the LDA/GGA values, as described by Dreuw et al. (95); CIS alone gives
the −1/R behavior but tends to the Hartree-Fock orbital energy difference, which gives an over-
estimate. A fix that stays within TDDFT was provided by Gritsenko & Baerends (96) applying a
kernel that switches on an asymptotic correction to ALDA when the fXC matrix element becomes
too small.

The third case is, in a sense, a functional approximation at the opposite extreme of DFT: exact
exchange (EXX). In contrast to LDA, this has a nonlocal dependence on the density (not to be
confused with still providing a local multiplicative potential). EXX has a fundamental importance
complementary to that of LDA in that it results from first-order (Görling-Levy) perturbation
theory in the electron interaction with respect to the KS system (97, 98). Because the EXX poten-
tial does have the correct −1/r behavior far from a finite system, the KS HOMO orbital energy
approximates the true ionization energy much better than LDA does. Furthermore, through
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Global hybrid:
fraction of
Hartree-Fock
exchange + a
(semi)local functional

RSH: range-separated
hybrid; includes full
Hartree-Fock
exchange at large
range

orbital dependence, the TDEXX kernel contains the required diverging property as a function of
R (36, 99–101), yielding both the exchange component to the derivative discontinuityX as well as
the −1/R. Frequency dependence is an important aspect: If the adiabatic EXX kernel, fXC(ω = 0),
is used, the correction vanishes instead as R → 0 (36). The EXX kernel must be evaluated at the
charge-transfer excitation energy in order to yield a finite correction; this is related to the strong
frequency dependence of the derivative discontinuity of the xc kernel (36, 102).

Next are global hybrid functionals, popular throughout quantum chemistry. These functionals
combine a fraction of Hartree-Fock exchange with a local or semilocal functional; for example,
with the ubiquitous B3LYP, the fraction is aX = 1/4.Hybrid functionals fall within the generalized
KS formulation (86–88), in which the formal justification arises from including a fraction of the
electron–electron interaction W in the minimization of T + aXW over Slater determinants that
yield a fixed density; the pure KS DFT approach, however, minimizes only the kinetic energy T.
The generalized KS potential is no longer identical for each orbital and is nonlocal (i.e., nonmul-
tiplicative), as it includes a fraction of the Hartree-Fock potential. As a result, the HOMO orbital
experiences a −aX/r potential asymptotically away from a finite system instead of the exponential
falloff of (semi)local functionals, so its energy is not as badly underestimated. Further, the LUMO
eigenvalue includes this fraction of the exchange contribution to the derivative discontinuity (87);
this reflects the partial affinity nature of the unoccupied levels in a hybrid, because in Hartree-
Fock the unoccupied orbitals see an (N + 1)–electron system, while in pure KS DFT, they see an
N-electron system. This also underlies the difference between EXX performed with an optimized
effective potential and Hartree-Fock. Thus, hybrids reduce the underestimation of the orbital
energy difference for a charge-transfer excitation. Additionally, the Fock-exchange contributes
as −aX/R at large separations to the fXC correction. That is, the KS orbital energy difference pro-
vides a partial derivative discontinuity, while the fXC correction partially provides the asymptotic
behavior with R.

The global hybrid nudges us toward the correct excitation energy, but the range-separated
hybrid (RSH) takes us further by recovering the full Hartree-Fock exchange at large electron–
electron separation (103, 104). The idea is to split the Coulomb interaction into long- and short-
range terms, such as

1
|r1 − r2| = erf (γ |r1 − r2|)

|r1 − r2| + 1 − erf (γ |r1 − r2|)
|r1 − r2| , 15.

and use local or semilocal approximation for the second term, which dominates at short distances
and dies off at long range, while using Hartree-Fock for the first term, which dominates at long
range and dies at short range. The range-separation parameter γ controls the distance at which
the long-range part begins to take over: The larger the γ is, the smaller the distance at which the
Hartree-Fock kicks in. This approach balances the advantages of the Hartree-Fock and semilo-
cal DFT worlds, capturing dynamical correlation and taking advantage of the error cancellation
between exchange and correlation from semilocal DFT at short range, while using Hartree-Fock
for the long-range interaction that is dominated by exchange and poorly captured by semilocal
DFT. Variations of this essential idea include also using some Hartree-Fock at short range; the
CAM-B3LYP combines RSH with B3LYP, including a third parameter in the range separation
such that there is a nonuniform fraction of Hartree-Fock exchange at all separations (105–107).
For the problem of charge transfer, RSH yields the exact −1/R dependence at large R and gives an
approximate discontinuity correction to the LUMO orbital energy, moving it toward the physi-
cal electron affinity of the donor (108). A challenge is in the empiricism: finding parameters that
yield a balanced description of charge transfer as well as local valence and Rydberg excitations
in addition to ground-state properties. The results can be very sensitive to these parameters (82).
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Also, different range-separated forms have been explored, including some with density-dependent
parameters (109, 110); some forms tend to yield a more uniform performance than others
(111, 112).

To avoid empiricism completely,Baer,Kronik, and coworkers (110, 113, 114) andKörzdörfer&
Brédas (115) developed optimally tuned RSH, in which the range-separation parameter is chosen
to minimize the difference between the ionization potential of the donor and the donor’s HOMO
eigenvalue as well as the difference between the electron affinity of the acceptor and the acceptor’s
LUMO eigenvalue, all determined consistently with the same functional. The method is arguably
themost predictive of the different approximations for charge-transfer excitations between closed-
shell fragments and also captures local outer-valence excitations well (116). Still, there are several
issues with RSH that should be kept inmind.The potential energy surfaces for triplets and singlets
can show erratic zigzagging behavior due to the tuning; this does not happen when the range-
separation parameter is fixed (117). RSH violates size consistency (115, 117) and, furthermore, the
values for the RSH parameter found by optimal tuning to the ionization potential and electron
affinity tend not to give good ground-state binding (118).

Finally, other approximations that have shown some degree of success in capturing charge-
transfer excitations include the self-interaction-corrected LDA (119, 120) applied within a
generalized time-dependent-optimized effective potential framework (121).As pointed out in Ref-
erence 122, the appearance of a finite derivative discontinuity in a functional is related to its correc-
tion of self-interaction. The heavy computational cost of this approach has limited its application.
However, a less expensive approach that was recently shown to have promise with charge-transfer
excitations is the TASK meta-GGA (123): Nonlocality arises through its orbital dependence such
that it yields response properties similar to exact exchange but without the numerical cost and
gives some improvement of medium-range charge-transfer excitation energies (124). Double-
hybrid functionals that combine a second-order correlation part to GGA for correlation on top of
a usual hybrid functional have been explored (125), and so have highly parameterized functionals
such as M06-HF meta-GGA and MN15 that use many parameters fit to data sets (126, 127).

4.2. Charge-Transfer Excitations Between Open-Shell Fragments

The analysis of the charge-transfer problem for TDDFT is quite distinct from the previous case
in which the neutral molecule is composed of open-shell fragments, such as in a heteroatomic
diatomicmolecule.There is a fundamental difference in the nature of the KSHOMOand LUMO
compared to the closed-shell fragments case that makes the previous analysis not applicable.With
open-shell fragments, the exact KS singlet ground state has a doubly occupiedHOMOorbital that
is delocalized over both fragments, quite in contrast to the localized HOMO of the closed-shell
case. The LUMO is also delocalized, and its orbital energy becomes degenerate with the HOMO
in the limit of infinite separation. The static correlation in the KS system means that at large
separations, the ground-state KS Slater determinant has a fundamentally different structure from
the interacting wave function, which has a Heitler-London form in contrast to the closed-shell
fragment case.

While the ground-state situation is pathological for approximate TDDFT, it is an important
one for systems away from equilibrium, such as in bond breaking. The excitations are essential to
get right for accurate dynamics in, for example, photodissociation processes.

The exact ground-state KS potential of the widely separated molecule is locally similar to
that of the atoms in the vicinity of each atom but has a step in between of a size approaching the
difference in the ionization potentials of the two atoms (seeFigure 1c and the sidebar titled Step in
the Ground-State Kohn-Sham Potential) (92, 93, 128–130). This makes the atomic HOMOs line
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STEP IN THE GROUND-STATE KOHN-SHAM POTENTIAL

An explicit demonstration of the step in the ground-state Kohn-Sham (KS) potential for the case of open-shell
fragments follows from simply considering the KS equation for the external potential

vext(r) = va(r) + vb(r),

where va(r)(vb(r)) represents the electron–nuclear potential for atom a(b) localized around r = −R/2(R/2)n̂, where n̂
is the interatomic axis with origin at the midpoint between the atoms. The potentials va(r) and vb(r) each support an
odd number of electrons in their atomic ground states, and, for large separations R, the highest occupied molecular
orbital (HOMO) of the diatomic molecule has the form

φH(r) =
√(|φH

a (r)|2 + |φH
b (r)|2

)
/2,

with φH
a (φ

H
b ) the atomic HOMO of atom a(b) localized at −R/2(R/2)n̂.

Now consider the ground-state KS equation in the vicinity of atom a when the intermolecular separation R is
large: Here vext(r) ≈ va(r) − Zb/R, vH[n](r) ≈ vH[na](r) +Nb/R, where Zb and Nb are atom b’s nuclear charge and
electron number, respectively. Then, for neutral atoms, the KS equation for the molecular HOMO near atom a is[−∇2/2 + va(r) + vH[na](r) + vXC[n](r)

]
φH(r) = εHφH(r), φH(r) ≈ φH

a (r)/
√
2.

But we also know that the atomic HOMO satisfies the atomic KS equation[−∇2/2 + va(r) + vH[na](r) + vXC[na](r)
]
φH
a (r) = εHa φH

a (r),

which means that the difference in the exchange correlation (xc) potential of the molecule compared with that of
the atom near atom a is

vXC[n](r ≈ −R/2) ≡ vXC[n](r) − vXC[na](r) = εH − εHa .

The same argument applied near atom b leads to vXC[n](r ≈ R/2) ≡ vXC[n](r) − vXC[nb](r) = εH − εHb . Thus,
across the molecule, there is a step in the difference of the molecular xc potential compared to those of the atomic
xc potentials:

vXC[n](r ≈ R/2) − vXC[n](r ≈ −R/2) = εHa − εHb = Ib − Ia.

An illustration of the ground-state KS potential and orbitals is shown in Figure 1c.

up in order for the molecular HOMO to correctly straddle both atoms and capture the correct
ground-state density. However, the interatomic step is not captured by approximate functionals:
The semilocal molecular HOMO is delocalized over both atoms but does not reduce to the com-
bination of the atomic HOMOs, and the molecule unphysically dissociates to fractionally charged
species.Hybrid functionals, including RSH, also do not dissociate correctly into the neutral atomic
species. This is true for general N and can be seen simply by considering a model heteroatomic
two-electron system in which there is one electron on each atom: For two electrons, the Hartree-
Fock exchange potential is −vH/2, so that in the vicinity of each atom in the widely separated
limit, vS = vext + vH/2, while it should be vext. The local atomic densities are wrong. A functional
that was inspired by density-matrix functional theory with explicit dependence on both occupied
and virtual orbitals has been shown to capture the step structure (131, 132), but whether this can
be turned into a practical approach remains to be seen. Static correlation is well-known to be a
difficult regime for density functional approximations in the ground state, and its implications for
excitation energies and response are very challenging; some recent progress based on the strictly
correlated electron approach for dissociation can be found in References 133–135.
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All KS excitations of such a system are near degenerate, with a double excitation where both
electrons are excited out of the HOMO; an additional excitation from the HOMO to the LUMO
adds very little cost to a single excitation from the HOMO to any unoccupied orbital. Both
HOMO and LUMO are delocalized over both atoms and have substantial overlap, with an orbital
energy difference that vanishes exponentially with the separation R (54, 55, 78); however, these are
the orbitals involved in the lowest charge-transfer excitations of the molecule. As the bare KS ex-
citation energy ωq between the HOMO and LUMO vanishes exponentially with separation R, the
TDDFT corrections in the matrix elements involving fXC are responsible for the entire charge-
transfer energy of Equation 13. Furthermore, if one were to simplify the analysis through con-
sidering only the HOMO-LUMO excitation subspace, one would observe that Equation 9 is not
valid, as the ωq is smaller than the correction.Within the SMA (Equation 8), the exact fXC matrix
element has a very strong frequency dependence and diverges exponentially with the fragment sep-
aration R (54, 55, 78). The exact-exchange kernel (36, 101) discussed briefly in Section 4.1 displays
a frequency-dependent divergence with respect to R, but in the present case, the divergence occurs
in the correlation kernel. In fact, throughout all frequencies, the xc kernel in the present case is rife
with strong-frequency dependence. This can be understood as being due to mixing with the near-
degenerate double excitations throughout the spectrum.Physically, this mixing is essential to avoid
yielding excited states that have half an electron excess or deficit on one atom (see also Figure 1c).

5. OUTLOOK

Although at equilibrium geometries, double excitationsmay be relevant in relatively few situations,
they are absolutely crucial in coupled electron–ion dynamics following an excitation or driven by a
laser. Levine and coworkers (136) pointed out that, even if problematic excitations are not present
at the equilibrium geometry, photoinduced dynamics traverses large ranges of nuclear configura-
tions, and the likelihood of curve-crossing means that challenging excitations such as double and
charge-transfer excitations and conical intersections are likely to be encountered. For example, in
ethylene, a π → π∗ excitation is followed by twisting and pyramidalization. The global minimum
on S1 is of doubly excited character and at a geometry that is both twisted and pyramidalized,
but the absence of double excitations in adiabatic TDDFT yields an S1 minimum that is purely
twisted (136). This would clearly alter the predictions of the coupled electron–nuclear dynamics.

Likewise, long-range charge-transfer excitations of a molecule are highly relevant for the dy-
namics of a molecule following a photoexcitation out of the ground state of its equilibrium geom-
etry or driven by a laser field. In these situations, the propensity for dissociating is increased for
either the closed-shell or open-shell fragment case. The coupled electronic and nuclear motion
straddles several Born-Oppenheimer potential energy surfaces, and for TDDFT to be used reli-
ably in mixed quantum-classical Ehrenfest or surface-hopping calculations, the surfaces obtained
from linear-response TDDFT must be globally accurate to get accurate dynamics. Indeed, the
lack of computationally efficient and reliably accurate electronic structure methods is arguably the
main hindrance to nonadiabatic dynamics calculations, more so than the choice of method used
for the electron–nuclear correlation: All the methods used to couple the electronic and nuclear
motion would greatly benefit from improved functional approximations in TDDFT, especially
for double excitations, charge-transfer excitations, and conical intersections. Whether develop-
ments uncovering and modeling the memory dependence of exact functionals in the real-time
domain can lead to new approximations for linear response remains to be seen (137).Out of wave-
function methods that may be more reliable for these excitations, one would wish to avoid issues
such as inadequacy of chosen active spaces as the molecule explores geometries in which the elec-
tronic structure has significantly changed character or is not well understood, e.g., in CASSCF and
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relatedmethods,which, at the same time, are limited tomuch smaller molecules than possible with
TDDFT,and evenmore sowith coupled-clustermethods.Even if possible with expanding compu-
tational architectures, running expensive calculations that use a lot of computational power should
be carefully justified in the current climate crisis. The problem also urges forward the further ex-
ploration of other reduced-variable theories, including the ensemble DFT [that was discussed in
application to double excitations in Section 3.2 and that has also been applied to charge-transfer
excitations (138, 139)], Green’s function and Bethe-Salpeter methods (140–143), and one-body
density-matrix functional theory (144–146). Future years hope to see further significant progress
continuing from that made in recent decades, with ever-improving numerical implementations as
well as new and exciting applications yet to be imagined.

SUMMARY POINTS

1. Time-dependent density functional theory (TDDFT) provides an elegant and rigorous
way to obtain electronic excitations and response for many-electron systems that has
achieved an unrivaled balance between accuracy and efficiency. The acrobatics of the
functionals involved that allow noninteracting electrons to reproduce the exact density
of an interacting system remain an intriguing, important, and fun research area.

2. There are certain excitations for which the standard functionals that are semilocal in
space and local in time in their dependence on the density do not perform well, such as
double excitations and charge-transfer excitations.

3. There has been significant process in developing functionals with improved accuracy and
reliability over recent years that address these challenging excitations in a nonempirical
way. For double excitations, a strong frequency dependence is required in the exchange
correlation (xc) kernel, while for many, but not all, classes of charge-transfer excitations,
spatial nonlocality is more important.

FUTURE ISSUES

1. We can look forward to further progress in turning the recent developments into
black-box methods, from the algorithmic and computational point of view (e.g.,
practical treatment of frequency-dependent functionals) and in developments to ease
the computational efficiency to benefit photochemical dynamics applications with the
more accurate functionals.

2. A related point is that the treatment of conical intersections with the ground state re-
mains a challenge.

3. Understanding the performance of the full response properties beyond merely the value
of the excitation energies (e.g., oscillator strengths) from the newer functionals will lead
to more food for thought.

4. The exactness of the underlying theory offers hope that further development of first-
principles functionals from different starting points may lead to improved future robust,
reliable, and predictive functional approximations.
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