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Abstract

Optical microscopy has become an invaluable tool for investigating com-
plex samples. Over the years, many advances to optical microscopes have
been made that have allowed us to uncover new insights into the samples
studied. Dynamic changes in biological and chemical systems are of utmost
importance to study. To probe these samples, multidimensional approaches
have been developed to acquire a fuller understanding of the system of
interest. These dimensions include the spatial information, such as the
three-dimensional coordinates and orientation of the optical probes, and
additional chemical and physical properties through combining microscopy
with various spectroscopic techniques. In this review, we survey the field
of multidimensional microscopy and provide an outlook on the field and
challenges that may arise.

377

mailto:cxd15505@gmail.com
mailto:nfang@xmu.edu.cn
mailto:bind@uark.edu
https://doi.org/10.1146/annurev-physchem-090519-034100
https://www.annualreviews.org/doi/full/10.1146/annurev-physchem-090519-034100


1. INTRODUCTION

We human beings live in a multidimensional universe. Length, width, depth, and time are the four
fundamental dimensions that our senses perceive macroscopically. Beyond space and time, infor-
mation onmatter and energy, especially the governing physical and chemical laws, forms the foun-
dation of our understanding of the physical world.Measurement science has long been relied upon
to provide all kinds of information in different length scales, from the astronomical to subatomic.
At the short end of the length scales (cells, molecules, and nanomaterials), optical microscopy
imaging has become an indispensable approach to understanding dynamic biological and chem-
ical processes in complex systems. Its spatial resolution, ranging from ∼200 nm governed by the
diffraction limit of light to several nanometers enabled by the newly developed super-resolution
imaging techniques (1–3), is sufficient to resolve many nanoscale structures and dynamics.

It is widely recognized in the imaging field that a multidimensional observation of the same
sample is essential to harvest the rich properties of photons for visualizing not only the sample
morphology (location, thickness, density, etc.) but also the dynamics, including motion, orien-
tation, binding kinetics, and transient states, of target biological and chemical structures at the
single-molecule level. Strictly speaking, the dimension is defined as the number of independent
parameters or coordinates of an object. In the context of this discussion, a dimension can refer
to different types of signals (e.g., fluorescence, scattered light, or transmitted light), color, po-
larization, and spatial dimensions, including translation and rotation. The term combinatorial
microscopy is designated to describe this approach (4).

An active line of research in optical microscopy imaging is to integrate the state-of-the-art
techniques into one system/device to provide accurate multidimensional information with high
spatial and temporal resolution. This integration could be much more than a simple channel-
splitting problem.Most of the advanced techniques require the nontrivial tasks involved in tuning
the point-spread functions (PSFs).The PSF is the optical response of the imaging system to a point
light source. Furthermore, temporal and spatial resolutions are two interconnected key parame-
ters in optical microscopy: They share the total photons collected from the sample. In theory,
researchers can sacrifice one for the other. Both are limited by the signal-to-noise (S/N) ratio.
Under ideal situations, the factors governing signal and noise are determined by the nature of the
samples and the detection methods; thus, they set the fundamental limits of optical microscopy.

In this review, we survey the recent efforts toward developing multidimensional imag-
ing methodologies and systems. The following sections are organized in the sequence of an
increasing number of dimensions and experimental complexity. The oldest and most prac-
ticed, multiwavelength (each color can be considered a dimension) imaging, is discussed first
(Section 2.1), followed by single-particle tracking (SPT) in 3D space (Section 2.2). Then, the
discussion expands to consider the dipole orientation of the imaging probes (Section 3). Finally,
we survey recent efforts in combinatorial microscopy and spectroscopy techniques (Section 4).
This is not a comprehensive review of all multidimensional imaging techniques but a survey of
recent efforts in this emerging field.

2. CONVENTIONAL MULTIDIMENSIONAL IMAGING CONCEPTS

2.1. Multiwavelength Fluorescence Imaging

Due to good specificity and sensitivity, fluorescence microscopy is routinely used for applications
in biology, chemistry, andmaterials science. Imagingmultiple fluorophores in the same sample has
become a basic requirement in many of these applications. In principle, multiwavelength imaging
splits the collection pathway of the light after interacting with the sample.Dual- and quad-channel

378 Filbrun et al.



devices are available commercially to add multiwavelength imaging capability to conventional
microscopes.

Overcoming the diffraction limit with wide-field imaging techniques was a major break-
through. Since the first demonstration of super-resolution fluorescence imaging, many labs have
used this technique with multicolor systems to elucidate structures in biological and chemical
systems (1, 5, 6). Shroff et al. (6) demonstrated nanometer resolution between two proteins
inside fixed cells with dual-color photoactivated localization microscopy. Zhuang and coworkers
(1) utilized multicolor stochastic optical reconstruction microscopy to image clathrin-coated
pits and microtubules concurrently. More recently, the Zhuang lab (7, 8) developed a mul-
ticolor imaging method, namely, multiplexed error robust fluorescence in situ hybridization
(MERFISH). MERFISH is a single-molecule imaging method capable of imaging thousands of
RNA species in a single cell and revealing their spatial distribution. Inavalli et al. (9) developed
a method that correlates stimulated emission depletion microscopy and single-molecule imaging
to study the clustering of PSD95 molecules in dendritic cells. They also used this technique
to study glutamate receptor mobility. Points accumulation for imaging nanoscale topography
(PAINT) (10), coupled with DNA strands for labeling, that is, DNA-PAINT (11), was used to
study single-molecule binding kinetics in DNA origami in real time. Frequency-multiplexed
(fm)-DNA-PAINT (12) is a new method that uses a frequency modulation of the excitation lasers
to excite different fluorophores, allowing for concurrent super-resolution imaging of multiple
fluorophores. This frequency-modulated method works well at improving collection efficiency
by removing the need for sequential excitation but requires a correction algorithm to eliminate
cross talk between fluorescent probes. For additional information on multicolor single-molecule
localization, readers are referred to References 3, 13, and 14.

Another broadly used multiwavelength method is Förster resonance energy transfer (FRET).
Since multiwavelength single-molecule FRET was introduced (15), it has grown in usage due to
its unique ability to deduce high spatial resolution in complex environments. Four-color, single-
molecule FRET with total internal reflection fluorescence and confocal microscopy was demon-
strated by Lee et al. (16) to reveal six interfluorophore FRET efficiencies in real time. Recently,
Jeffet et al. (17) introduced a multimodal single-molecule spectromicroscopy instrument using
continuously controlled spectral resolution. This instrument addition allows switching between
localization, color detection, and full spectral resolution in the same channel. This is achieved by
rotating two Amici prisms in the collection pathway; the angle of the prisms relative to each other
changes the dispersion of light onto the camera. They demonstrated the use of this system with
single-molecule FRET quantification. Single-molecule FRET was also recently demonstrated
with 3D tracking (18), a technique that is discussed in the following section. For a more com-
prehensive review of FRET, we refer readers to References 19 and 20. Additional techniques that
use multiwavelength techniques are structured illumination microscopy (21, 22) and light sheet
microscopy (23, 24). This review is not exhaustive, and the reader is encouraged to read the cited
excellent review articles on these techniques.

2.2. Three-Dimensional Single-Particle Tracking

SPT treats each signal as a point emission; thus, the resultant PSFs are treated similarly. Fitting the
PSF to the image of a single particle/molecule has allowed nanometer-scale localization precision.
By tracking single emitters’ trajectories, SPT reveals rich information about specific systems in
biology and materials science. There have been many good reviews giving overviews as well as
providing information on the practical considerations of SPT and related data analysis (25); this
section focuses on recent advances in 3D SPT (26–28).
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2.2.1. Defocused imaging. One of the first methods realized for 3D particle tracking was defo-
cused imaging (Figure 1a), in which the out-of-focus ring radius is correlated to the axial position
of the particle (29). This method images at a fixed focal plane and reveals the axial position of the
particles relative to the imaging focal plane. Since this method was developed, there have been
several other techniques developed for 3D particle tracking. Multifocal, phase mask, parallax, and
astigmatism are some of the more recent methods routinely used to probe axial information in
SPT imaging.

2.2.2. Confocal microscopy. In confocal microscopy, the sample is imaged using a point-
scanning method. This gives a significant advantage over conventional far-field methods, as not
only can the point-scanning method generate images with higher resolution, but it also produces
3D scanning capabilities. For example, Germann &Davis (30) built a four-focus excitation confo-
cal microscope for tracking single emitters in three dimensions using a feedback mechanism and
a piezo stage. They demonstrated this by tracking fluorescent nanoparticles in a glycerol solution
with a 1.86-ms temporal resolution and a fluorescence photon detection efficiency of from 6% to
9%. More recently, Werner and coworkers (18) used a multicolor FRET system for 3D single-
molecule tracking using a confocal microscope and a closed-loop feedback piezo stage. Welsher
& Yang (31) utilized a two-photon, laser-scanning microscope with 3D target locking to visualize
the cellular uptake of TAT peptide–modified nanoparticles. Furthermore, the Yang lab (32) has
developed single-particle dynamic light scattering based on approximating the particles’ shapes
to be prolate or oblate (Figure 1b). They demonstrate precision similar to transmission electron
microscopy for measuring particle shape.

2.2.3. Multifocal plane microscopy. Multifocal plane far-field microscopy, which refers to
imaging multiple axial planes simultaneously, is another method used to reveal 3D information.
This technique splits the collected light after the objective and focuses each light path on its
respective camera, each of which is conjugated to a different axial plane. Information in three di-
mensions is revealed by fixing the focal distance between the planes and developing a calibration
curve by scanning the z axis of a fixed emitter through multiple planes. This was first demon-
strated with two focal planes (Figure 1c) concurrently to reveal trafficking of the Fc receptor
FcRn in transfected human endothelial cells (33).More recently, a dual-objective multifocal plane
microscopy system was developed for improved localization precision (34). Submillisecond tem-
poral resolution with nanometer-level lateral and axial precision was accomplished upon tracking
fluorescent beads in a glycerol solution using a bi-plane imaging system (35). Jiang et al. (36)
published a dual-color bifocal imaging system by independently focusing and collimating each
channel. Toprak et al. (37) demonstrated a bifocal imaging system (Figure 1d) in which the im-
age in one channel is defocused by introducing an additional focal lens for determining the axial
position and the image in the second channel is kept in focus for determining the lateral posi-
tion of the particle. The axial position of particles is determined by measuring the diffraction ring
size.

More recently, multifocal microscopy 3D SPT has been extended to imaging up to nine focal
planes concurrently. This system uses a diffractive optical element at the second pupil plane of a 4f
system, creating nine images at different focal planes on a single camera (Figure 1f ) (38).Gustafs-
son and coworkers (39) developed an aberration-corrected multifocal system using a diffractive
multifocal grating in the Fourier plane followed by a chromatic-corrected grating, and demon-
strated its use by tracking single RNA polymerase II molecules inside cells with a 4-μm depth of
field. Louis et al. (40) developed a multifocal plane imaging system using a proprietary prism that
splits the light into eight different path lengths, thus imaging four different focal planes on each
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Figure 1 (Figure appears on preceding page)

Three-dimensional single particle tracking with (a) diffraction ring size (r0), (b) single-particle dynamic light scattering, (c) bi-plane
imaging, (d) bifocal imaging, (e,f ) multifocal plane imaging, (g,h) astigmatism, (i) double helix, and ( j,k) parallax. Panel a adapted with
permission from Reference 29; copyright 2003 Optical Society of America. Panel b adapted with permission from Reference 32;
copyright 2019 American Chemical Society. Panel d adapted with permission from Reference 37; copyright 2007 American Chemical
Society. Panel e adapted with permission from Reference 40; copyright 2020 Optical Society of America. Panel f adapted with
permission from Reference 38; copyright 2019 American Chemical Society. Panel g adapted with permission from Reference 41;
copyright 2008 AAAS. Panel h adapted with permission from Reference 44; copyright 2016 American Chemical Society. Panel i
adapted with permission from Reference 45; copyright 2012 United States National Academy of Sciences. Panel k adapted with
permission from Reference 49; copyright 2009 American Chemical Society. Abbreviations: BP, bandpass filter; BS, beam splitter;
d, displacement unit; DF, dark field; DOE, diffractive optical element; EMCCD, electron multiplying charge-coupled device; EX,
excitation filter; f1/2, focal length; FPGA, field programmable gate array; FS, field stop; GP, gold prism; IR, infrared; LED, light-
emitting diode; n, refractive index; OBJ, objective lens; RL, relay lens; SLM, spatial light modulator; TL, tube lens; WL, widefield lens.

camera for a total of eight (Figure 1e). Multifocal microscopy is advantageous due to its large
axial range, high imaging speed, and high accuracy, but splitting the signal into multiple channels
requires major instrument customization and reduces the field of view.

2.2.4. Point-spread function engineering. Manipulating the shape of the PSF has proven to
be effective at revealing axial information and tracking particles in three dimensions. For example,
this can be performed by adding a cylindrical lens before the tube lens to produce astigmatism
(Figure 1g) (41). As the particle moves out of focus, the PSF becomes elongated faster in one
lateral direction and the axial information is coded in these PSF shape changes (42). Holtzer et al.
(43) demonstrated the use of astigmatism to track single quantum dots (QDs) inside cells in three
dimensions with improved lateral and axial accuracy over the commonly used defocused methods.
Zhao et al. (44) used a diamond-shaped astigmatism (Figure 1h) for 3D tracking of fluorescent
particles in cylindrical nanopores with a localization precision of 8, 12, and 15 nm in the x, y, and
z axes, respectively, over a 5-μm imaging depth.

Another popular method of tuning the PSF is by inserting a phase mask behind the objec-
tive. The double helix PSF (Figure 1i) was first established by Moerner and coworkers (45). This
method transforms the original Gaussian-like PSF into a double helix shape in which the axial
information is encoded in the lateral orientations of two lobes of the double helix PSF. They
demonstrated the system by 3D tracking of QDs inside living cells with 10-nm localization pre-
cisions in both the lateral and axial directions (46). Recently, Shechtman et al. (47) developed a
tetrapod PSF with an extended axial range of 20 μm. Phase mask methods are popular for re-
vealing axial information and are readily available; however, they are challenging to implement
in images with a high background. Furthermore, if the emitters are too dense, recovering ax-
ial information is challenging because of the overlapping of multiple engineered PSFs. Parallax
imaging has also been successfully demonstrated for 3D particle tracking (48–50). This method
can be achieved by inserting a wedge prism halfway into the back focal plane of the objective
(Figure 1j), thus slightly deviating half of the light to create two images on the same camera. The
lateral image separation on the camera is related to the axial information of the sample. Yajima
et al. (48) developed this method to track QDs in a motility assay, directly revealing the corkscrew
rotations of a microtubule being transported on a surface functionalized with molecular motors.
Chen et al. (50) has used this method to track nanorods during endocytosis—a subject that is cov-
ered in more detail in the following section. Goldman and coworkers (49) demonstrated parallax
by splitting the image with a pair of almost parallel mirrors at the conjugate imaging plane to the
back focal plane of the objective (Figure 1k).
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3. ORIENTATION ANGLES AS ADDITIONAL DIMENSIONS

In addition to wavelength and spatial coordinates, the orientation angles of anisotropic imaging
probes can be considered further dimensions. The acronym SPORT, for single-particle orien-
tation and rotational tracking, was coined to describe a toolbox for tracking the rotational dy-
namics of plasmonic gold nanorods (AuNRs) in live cells (51–53). The name SPORT may also
refer to other SPT techniques that follow not only 3D translation but also the orientation and
rotational motions of the imaging probes (53, 54). Three prominent examples of biological pro-
cesses that involve rotational motion are DNA packing, self-rotation of the F1-ATP synthase, and
intracellular transport by motor proteins (55–62). Many biological molecules, especially those
macromolecules that consist of multiple domains, undergo subdomain conformational changes to
a specific, favorable orientation to achieve their activities (63). In SPORT experiments, there are
many options for the choice of orientation probes, such as fluorescent molecules, QDs, nonfluo-
rescent nanoparticles, Janus particles, etc.Here, we discuss different orientation probes and vari-
ous optical microscopy imaging techniques used for orientation and rotational dynamics tracking
studies.

3.1. Fluorescent Probes

Single-molecule, fluorescence-based techniques usually rely on either polarization modulation
or PSF engineering for extracting orientation and rotational information (64–73). Here, we dis-
cuss the use of QDs as fluorescent orientation probes for rotational tracking in SPORT using
single-molecule fluorescence polarization (SMFP) microscopy (64, 74–76). Readers may refer to
previously published reviews for more comprehensive information (77–79).

Because of better photostability and higher quantum yield compared to those of traditional flu-
orescent molecules, QDs draw particular attention from researchers searching for better fluores-
cent orientation probes. During early studies, defocused imaging of QDs with SMFP microscopy
was used along with pattern matching to simulated defocused images to determine the orientation
of the probes (64, 74). A sophisticated microscopy method was also developed to simultaneously
determine the movement and 3D orientation of quantum rod–tagged myosin V (76). A colocal-
ization methodology combining interferometric scattering microscopy (iSCAT) and SMFP mi-
croscopy was reported to visualize both the position and orientation of QD-labeled Simian virus
40 (SV40) particles (75). The center of mass of each SV40 particle was imaged by iSCAT, while
fluorescent QDs attached to the virus were tracked simultaneously to report the orientation in
real time on artificial lipid membranes. Although the study presented an interesting methodology
to investigate virus–membrane interactions, it is difficult to extend such methodology to live cell
imaging, where the background inside a living cell is subject to dynamic changes.

3.2. Plasmonic Nanoparticles

Noble metal nanoparticles (also known as plasmonic nanoparticles), especially gold and silver
nanoparticles, have gained exceptional attention due to their unique optical properties attributed
to their localized surface plasmon resonance (LSPR) (Figure 2a) (80, 81). Recent advances in op-
tical imaging of gold nanoparticles in various applications have been reviewed elsewhere (82–86).
Noble metal nanoparticles can be detected indefinitely without worrying about photobleaching or
blinking. Their large optical cross section allows them to be localized with high spatial and tem-
poral resolution (53, 81, 87). Plasmonic nanoparticles with different shapes, such as gold nanorods
(AuNRs), gold nanostars, nanowires, nanocubes, nanoprisms, etc., have been explored as orienta-
tion probes (51, 88–99).
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Figure 2 (Figure appears on preceding page)

SPORT with nonfluorescent nanoparticles. (a) Plasmonic nanoparticles, as one unique group of nonfluorescent nanoparticles, have
been explored as orientational probes with different shape variations attributed to their localized surface plasmon resonance properties.
Panel a adapted with permission from Reference 80; copyright 2008 American Chemical Society. (b) Illustration of a hypothetical
transporting AuNR–containing endosome with three dynein and one kinesin protein and rotational dynamics associated with the
processes. Panel b adapted with permission from Reference 93; copyright 2018 American Association for the Advancement of Science.
(c) Four randomly orientated AuNRs on a glass slide surface were determined by fitting recorded dark-field images (first column) with
simulated dark-field images (second column). Panel c adapted with permission from Reference 114; copyright 2010 American Chemical
Society. (d) Rotational motion of the microtubule was reported by (top right) the image pattern changes of 10 × 35–nm AuNR (top left)
attached to its surface using DIC microscopy on engineered environments. Panel d adapted with permission from Reference 51;
copyright 2010 American Chemical Society. (e, top) DIC image of an axon of a differentiated PC 12 cell. One of the internalized
transferrin-modified AuNRs is marked by the white arrow. (Bottom) Trajectories and DIC intensity traces of a cargo at the track
switching. Panel e adapted with permission from Reference 106; copyright 2012 Nature Publishing Group. ( f ) Intracellular transport
of a nanorod-containing vesicle in a living A549 cell recorded by automated 5D single-particle tracking technique. Panel f adapted with
permission from Reference 50; copyright 2017 Nature Publishing Group. Abbreviations: AuNR, gold nanorod; DIC, differential
interference contrast; E field, electric field; SERS, surface-enhanced Raman spectroscopy; SPORT, single-particle orientation and
rotational tracking.

3.2.1. Dark-field microscopy. AuNRs have anisotropic absorption and scattering properties
accredited to the presence of both longitudinal and transverse LSPR.AuNRs show an orientation-
dependent optical response when illuminated by polarized light (51, 100–102). AuNRs have
proven to be one of the ideal orientation probes for studying rotational dynamics and are the
most extensively used probes in SPORT experiments (51, 52, 80, 101, 103–110). AuNRs as ori-
entation probes were first explored by Sönnichsen & Alivisatos (100) using dark-field microscopy
to image AuNRs loosely attached to a surface. Dark-field microscopy was then used by many
other groups (62, 93, 98, 111–115) to study the rotational dynamics of plasmonic nanoparticles.
Dark-field microscopy–based SPORT techniques are not often used for live cell imaging due to
high background scattering interference; however, researchers have been dedicating their efforts
to finding workarounds by applying this technique to image gold nanoparticles at cell sidewalls
or in axons of neurons (Figure 2b) (93, 115–117). Noji and coworkers (62) developed objective-
type, vertical illumination dark-field microscopy to image the rotation of single AuNRs attached
to the rotary molecular motor F1-ATPase. This study demonstrated a high-speed, angle-resolved
imaging method with microsecond temporal resolution and one-degree angular precision. De-
focused orientation and position imaging and multichannel polarization imaging have also been
widely used in dark-field microscopy to resolve the 3D spatial position and orientation of AuNRs
(Figure 2c) (98, 114).

3.2.2. Total internal reflection scattering microscopy. To improve the S/N ratio and angu-
lar resolution for both azimuth and polar angles, the total internal reflection scattering (TIRS)
microscopy–based focused orientation and position imaging method was developed to reveal the
orientation of AuNRs on gold film in a single frame (118). This method relies on the use of lin-
early polarized illumination and the plasmonic coupling effect between the AuNRs and gold film
to produce donut-shaped scattering patterns and determines the in-plane orientation angles in a
360° range without angular degeneracy.Dual-color TIRSmicroscopy was developed to illuminate
the longitudinal and transverse LSPR of surface-bound AuNRs for simultaneous determination of
the in-plane and out-of-plane rotational dynamics with high angular precision (119). The angular
resolution of the TIRS method was further improved to subdegree uncertainty by employing a
double Fresnel rhomb half-wave plate to digitally modulate the polarization of the total internal
reflection (120).
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3.2.3. Photothermal imaging. The Link group (101, 121) has demonstrated the use of both
photothermal imaging and correlation spectroscopy to image the orientation of AuNRs. The
intensity of the AuNRs was modulated by polarization using photothermal imaging (101). The
orientation of the AuNRs on a glass slide surface was determined by fitting photothermal polar-
ization traces that were confirmed by scanning electron microscopy. One-photon plasmon lumi-
nescence correlation spectroscopy was reported by the same group (121) to probe the rotational
and translational dynamics of AuNRs using dual-wavelength excitation. Rotational dynamics
were extracted from the polarization-dependent luminescence spectra. Zhang et al. (122) reported
a similar method, called resonance light scattering correlation spectroscopy, for characterizing
the rapid rotational and translational diffusion of gold nanoparticles and AuNRs in solution.

3.2.4. Differential interference contrast microscopy. Over the last decade, differential in-
terference contrast (DIC) microscopy has been transformed from a complementary cell imaging
technique into a primary research tool for visualizing the dynamics of single nanoparticles in
chemical and biological applications. Wavelength-dependent DIC microscopy was explored as a
multiplexing detection tool for detecting and differentiating multiple types of nanoparticles based
on DIC contrast in live cells (123, 124). Wang et al. (51) laid the theoretical foundation for the
use of AuNRs as orientation probes in DIC microscopy to study rotational dynamics in SPORT
experiments (Figure 2d). They successfully demonstrated this technique by tracking the rota-
tional motions of AuNR cargos during transport on engineered surfaces and in live cells. The
optical response of AuNRs and the influence of instrument settings on the detected DIC signal
were carefully studied to investigate geometric effects (102, 125). DICmicroscopy–based SPORT
techniques were further applied to reveal the distinct rotational dynamics of AuNRs functional-
ized with different surface modifiers on live cell membranes and to visualize the rotational motion
of AuNRs containing cargo at pauses (seemingly static when imaged by conventional SPT tech-
niques) during axonal transport (Figure 2e) (52, 106). These two studies shed light on the rational
design of the drug delivery system and working mechanisms of motor proteins, respectively. By
analogy to fluorescence polarization anisotropy, DIC polarization anisotropy was introduced as
an improved approach to the direct use of bright and dark intensities for determining the orien-
tation of the AuNRs (104, 107). This factor is computed from the orthogonally polarized dark
and bright intensities in DIC traces and is believed to provide more accurate, reproducible, and
reliable orientation measurements in dynamic studies. As a label-free technique, DIC does not re-
veal molecular information between the interaction of the AuNRs and the cellular environment.
Thus, a dual-modality (DIC and fluorescence) SPORT experiment was carried out to simultane-
ously record the rotational motion of AuNRs and fluorescently labeled microtubules (108). DIC
bright and dark intensities, as well as translational movements of the AuNRs obtained in SPORT
experiments, contain rich information about the AuNRs’ diffusion, rotation speed, and rotation
modes, which are correlated to the transient interactions of the AuNRs and their surrounding
environment (52, 109).

3.2.5. Recent advances in SPORT. New improvements to SPORT have been made through
novel imaging probes (89, 126–130) and innovative instrument designs (105, 110, 131). An auto-
mated 5D SPORT system that integrates DIC and parallax microscopy has been built for continu-
ous tracking of three spatial coordinates (x, y, z) and two orientation angles (azimuth and elevation)
of the targeted AuNRs in live cellular environments (Figure 2f ) (50). This method was applied
to reveal the characteristic rotational dynamics of transferrin-coated AuNRs from initial contact
with the cell membrane, binding to membrane receptors, internalization via receptor-mediated
endocytosis, and subsequent intracellular transport. To overcome the persistent challenge of

386 Filbrun et al.



Clathrin Dynamin

5 μm Half of a wedge prism

Dichroic mirror

Focused channel

Defocused channel

Parallax slider

Lens 2

Lens 1Mirror

Beam
splitter

Objective scanner

Focused parallax

Upper

Lower

Defocused

Δy

5 μm

Figure 3

Multimodality automatic 5D single-particle orientation and rotational tracking (SPORT) for imaging clathrin-mediated endocytosis.
Figure adapted with permission from Reference 133; copyright 2021 Nature Publishing Group.

angular degeneracy in SPORT, bifocal dark-field and parallax microscopy were integrated to ex-
pand the resolvable angle ranges: from 0 to ∼360° for the azimuth angle and 0 to ∼90° for the
polar angle. This method was applied to study the dynamic translation and rotational motion of
cargo during intracellular transport and discovered different interactions, namely, tight attach-
ment and tethered rotation, of cargo to motor proteins and microtubule tracks (132).

Cellular processes such as clathrin-mediated endocytosis (CME) require the active participa-
tion of protein machinery. To acquire information on relevant proteins as well as the motions of
nanoparticle probes, we developed a multimodality, multidimensional imaging system: two flu-
orescence channels for imaging clathrin and dynamin, and bifocal dark-field and parallax mi-
croscopy for automatic SPORT (Figure 3) (133) to study the detailed molecular mechanisms
involved in CME. The synchronization of translation and the rotational motion of cargo and the
assembly and disassembly of related proteins revealed how and when the cargo was cut from the
membrane with rich and previously undiscovered details. Our results showed the fission of cargo
is caused by the large and quick twist produced by the coordinated dynamin helix action upon
GTP hydrolysis.

3.3. Janus Particles

Janus particles, named after the Roman god of gates who has two opposite faces, are a group of
special particles that have two or more unique chemical and physical properties on each particle
(134, 135).

3.3.1. MagMOONs. Kopelman and colleagues (136, 137) developed the Janus particles called
magnetically modulated optical nanoprobes (MagMOONs) that can rotate in themagnetic field to
modulate the fluorescent intensities of the optical probes. Anthony et al. (138) and Anthony & Yu
(139) demonstrated the use ofMagMOONs as orientation probes for tracking in four dimensions:
two lateral translational motions and azimuth angle and zenith angle (also known as polar angle)
(Figure 4a).Nguyen&Anker (140) reported amethod capable of detecting the so-called blinking,
orientation-dependent fluorescence intensity changes, of MagMOONs when the particles rotate
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membranes. Panel d adapted with permission from Reference 146; copyright 2018 American Chemical Society.

to the external modulated magnetic field. The blinking signal changes of the MagMOONs were
observed through 4-mm-thick tissue and were used to detect alginate lyase activity before and
after adding alginate lyase.

3.3.2. Optically anisotropic Janus particles. In recent years, Yu and colleagues (141–147)
developed several types of optically anisotropic Janus particles as orientation probes and used
them for rotational tracking in different applications such as phagocytosis, intracellular transport,
particle-membrane interactions, and others. In one study, microsized triblock patchy Janus par-
ticles containing two fluorescent patches on two poles were used as orientation probes to report
the rotational dynamics of the single microparticles during phagocytosis (Figure 4b) (142). Tran-
sient particle–cell interactions were revealed by the recorded orientation and rotation of the par-
ticles using dual fluorescence color imaging during internalization by macrophage cells. A similar
method was used to fabricate rod-shaped Janus particles with two fluorescent colors on oppo-
site sides along the long axes (Figure 4c). The geometrical and optical anisotropy of these Janus
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particles allowmultidimensional imaging.More specifically, three rotational angles (in-plane, out-
of-plane, and longitudinal) and translational motions of the endosome-wrapped single Janus par-
ticles were measured simultaneously (143).

3.3.3. Amphiphilic Janus particles. The Janus particles used in the intracellular transport
studies were relatively large, which inevitably affects the rotational dynamics of cargo when
used as orientation probes in live cells. Efforts have been made to fabricate Janus particles
at the nanoscale with good uniformity (145–147). Amphiphilic Janus nanoparticles were con-
structed to study the interactions with different (charge, compositions, etc.) supported lipid bilay-
ers (145, 147). Cell membrane–coated nanoparticles (200-nm, amine-modified green fluorescent
particles conjugated to a 40-nm, carboxylate-modified red fluorescent particle on its surface) were
assembled and used as orientation probes for the rotational tracking of ligand–receptor binding
on supported lipid bilayers (Figure 4d) (146). Distinct rotational dynamics of the nanoparticles
were observed during receptor binding, which was hidden in translational confined interactions.
With the advances in anisotropic Janus particle fabrication, new types of Janus particles will no
doubt emerge for rotational studies in different fields.

4. INTEGRATION OF SPECTROSCOPIC AND MICROSCOPIC
MEASUREMENTS

Beyond the dimensions of color, position, and orientation, it is critical to reveal the evolution
of physicochemical properties of the sample and to identify chemical species that are consumed
and/or produced during dynamic processes. Spectroscopicmeasurements, such as Raman, infrared
(IR), absorption, and fluorescence, provide chemical information. The combination of spectro-
scopic andmicroscopic measurements reveals a more thorough picture of the system.Microscopic
and spectroscopic measurements of the same sample are typically done with separate instruments
(148, 149). This severely limits the correlation of microscopic and spectroscopic information for
dynamic processes.Different aspects (dimensions) of the sample undergo change during a dynamic
process on different time and length scales; for example, in a catalytic reaction, fast changes occur
in the reaction kinetics and long-term changes occur in the catalyst stability and degradation.This
corresponds to nanoscale changes of the catalyst structure and meso- or microscale changes to the
catalyst dispersion or support (150). Thus, the integration of the spectroscopic and microscopic
techniques is vital to obtaining correlated information for a more comprehensive understanding
on the sample of interest. Here, we provide a brief review of the recent examples of integrated
spectromicroscopy techniques.

Raman spectroscopy is a vibrational spectroscopic technique capable of providing molecu-
lar fingerprint information for chemical identification and revealing the structural and electronic
properties of materials. Raman spectroscopy has been successfully integrated with different optical
microscopies (151–154). Single-particle Raman spectroscopy has been integrated with scattering
imaging and an optical trapping system (Figure 5a) to realize concurrent characterization of the
physical and chemical properties of single particles (151).The orchestrated combination of Raman
spectroscopy measurements and fluorescence imaging has been applied to the investigation of bi-
ological systems such as the therapeutic effects of drugs in vivo and the diagnosis of tumors (152,
153). The integration of Raman spectroscopy with a multiphoton imaging system (Figure 5b)
helps to characterize the molecular origin of detected multiphoton-induced signals and to corre-
late the image contrast with specific tissue constituents (154).

IR spectroscopy is another nondestructive spectroscopic technique providing rich chem-
ical and structural information. It has also been used with Raman spectroscopy to provide
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Figure 5 (Figure appears on preceding page)

Examples of integrated spectroscopy and microscopy measurements. (a) Experimental setup of the optical trapping–Raman
spectroscopy system. Panel a adapted with permission from Reference 151; copyright 2018 Elsevier. (b) Schematic diagram of the
multimodal spectromicroscopy system. Panel b adapted with permission from Reference 154; copyright 2008 The Optical Society.
(c) Schematic of the IR Raman microscope. Panel c adapted with permission from Reference 164; copyright 2019 American Chemical
Society. (d) Schematic diagram of the spectromicroscopy system for studying the dynamic processes in thin film during thermal
annealing. Panel d adapted with permission from Reference 175; copyright 2020 American Chemical Society. (e) Experimental
schematic of the two-dimensional WL microscopy system. Panel e adapted with permission from Reference 178; copyright 2019
American Chemical Society. Abbreviations: AFM, atomic force microscope; AL, Axicon lens; AOM, acousto-optic modulator; B/D,
beam splitter/dichroic mirror; BF, bandpass filter; BS, beam splitter; CARS, coherent anti-stokes Raman spectroscopy; CCD,
charge-coupled device; CM, chirped mirror; DBS, dichroic beam splitter; DM, dichroic mirror; FM, flip mirror; HM, hot mirror; IR,
infrared; L, lens; LED, light-emitting diode; LPF, long pass filter; M, mirror; MCT, mercury cadmium telluride detector; MO,
micro-objective; NF, notch filter; OBJ, objective lens; OC, optical chopper; OPO, optical parametric oscillator; P, prism; PC, personal
computer; PD, photo diode; PL, photoluminescence; PMT, photomultiplier tube; Pol, polarizer; SF, short pass filter; SHG, second
harmonic generation; SP, spectrograph; SS, scanning stage; TFP, thin film polarizer; TL, tube lens; TPEF, two-photon excited
fluorescence; WL, white light; WP, waveplate; YAG, yttrium aluminum garnet; Yb:KYW, Yb-doped potassium yttrium tungstate.

complementary information for the same sample on different instruments (155–158). However,
poor spatial resolution of IR spectroscopy, in the range of from 3 to 30 μm (159), limits its applica-
tion in imaging. In IR photothermal imaging, which was developed to overcome this poor spatial
resolution (160–163), the resolution is determined by the diffraction limit of the visible probe
wavelength. The further integration of mid-IR photothermal microscopy with confocal Raman
spectroscopy (Figure 5c) (164) has realized fast-IR photothermal imaging of living cells with
submicrometer resolution, accompanied with full-spectrum Raman and photothermal spectra.

Fluorescence super-resolution microscopy has been widely integrated with fluorescence
emission spectroscopy to realize multicolor or true color imaging. In early studies, fluorescence
spectroscopic information was revealed using the photon count ratio detected by two collection
channels covering different wavelength regions and was used to separate signals from different
markers (165–167). Excitation and activation lasers are reflected by a dichroic mirror and are
focused onto the back focal plane of the objective, providing wide-field illumination. The fluores-
cence signal from switch-on molecules is split into two light paths according to wavelength and
is detected by the different areas on an electron multiplying charge-coupled device (EMCCD)
detector. In recent studies, the fluorescence spectroscopic information is obtained by dispersing
the fluorescence signal through a prism before detection by one of the collection channels
(168–171). With these advances, high-throughput, single-molecule spectroscopy combined with
super-resolution microscopy that uses a prism in one of the detection channels achieves the
recording of the spectra of ∼102 molecules per few-millisecond time period, and every molecule
can be characterized both spatially and spectrally in 3D (168). There are also studies replacing
the prismwith a grating and realizing simultaneous spatial and spectral characterization (172, 173).
The new dimension of fluorescence spectral information is used to investigate physicochemical
changes of local environments (171, 173) and reaction pathways of single molecules (174).

Photoluminescence (PL) is light emission from matter after absorption of photons. PL spec-
troscopy is a noncontact, nondestructive method that can investigate the optical and electronic
band properties of matter.Recently, Fang and colleagues (175) developed amultimodality spectro-
microscopy imaging system combining far-field, cross-polarized light microscopy with confocal
Raman and photoluminescence spectroscopy (Figure 5d). They used this to study the annealing
process of bulk heterojunction polymers prepared on reflective surfaces in situ. The uniqueness
of this imaging system is its ability to add home-built sample stages, such as the thermal annealing
stage used in this study. The addition of sample stages, tuning the dynamics of the system, gives
further dimensionality to the system, providing rich information about the sample of interest.
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Transient absorption (TA) spectroscopy is a widely applied spectroscopy method that pro-
vides valuable insights into the dynamics of excited-state molecules (176). Zanni and colleagues
(177, 178) developed a multimodal 2D white-light microscopy system that combines atomic force
microscopy (AFM) and 2D electronic spectroscopy using a broadband, white-light, supercontin-
uum laser, for both pump-probe and broadband transient absorption imaging, realizing multi-
dimensional spectroscopic measurements with high temporal and spectral resolution and spatial
dimensions along with hyperspectral transient absorption images (Figure 5e). This characteriza-
tion technique first identifies and topographically characterizes individual nanostructures using
AFM, then spatially and spectrally maps the nanostructure’s intrinsic ultrafast response using TA
imaging and high-resolution 2D electronic spectroscopy.

5. SUMMARY AND OUTLOOK

This review discusses the recent advances in optical microscopy and spectroscopy to extract mul-
tidimensional information from the sample, including morphological features, chemical structure
and dynamics, and physical motions (Figure 6). Further improvement of multidimensional imag-
ing in a variety of applications is still needed.

Acquiring multidimensional data simultaneously for dynamic processes remains challenging.
In situ imaging under realistic conditions may suffer from insufficient spatial and temporal
resolution to distinguish individual molecules involved in a reaction or to follow chemical bond
formation. Therefore, it is very important to increase the spatial resolution and sensitivity of
the imaging method. Fluorescence super-resolution microscopy is the typical optical microscopy
that can overcome the diffraction limit of light and provides a spatial resolution of ∼10 nm. IR
photothermal imaging was developed to overcome the poor spatial resolution of conventional
IR microscopy (160, 163). Further efforts should be devoted to developing the new imaging
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principles. Furthermore, spectroscopies with high spatial resolution would be better to integrate
with microscopy. Tip-enhanced spectroscopies, such as tip-enhanced Raman spectroscopy (179–
181), tip-enhanced photoluminescence spectroscopy (182, 183), and nanoscale IR spectroscopy
(184, 185), have high spatial resolution down to 10 nm (186) in air and subnanometer (187)
under ultrahigh vacuum. These spectroscopies can provide chemical information from small
nanostructures, such as defects. However, it is still greatly challenging to combine tip-enhanced
spectroscopies with microscopy.

Continuous efforts are needed to gain new dimensions through the integration of complemen-
tary imaging techniques. As an example, the combination of multidimensional optical imaging
with electron microscopy is a powerful approach for extracting dynamic and localization informa-
tion from optical microscopy with detailed 3D structural information from electron microscopy,
i.e., 4D cryo-electronmicroscopy,with time being the fourth dimension (188). Furthermore, scan-
ning probe microscopy (SPM), such as atomic force microscopy (AFM) and scanning tunneling
microscopy, can study morphology, phase transformation, and electronic properties of surfaces
with down to atomic resolution. High-speed SPM has made it possible to directly visualize dy-
namic processes. For example, high-speed AFM has been used to reveal subsecond dynamics of
cardiac thin filaments upon Ca2+ activation and heavymeromyosin binding (189).The integration
of SPM can lead to new dimensions of multidimensional optical imaging.

Until now, most of the spectroscopy integrated into microscopy is linear spectroscopy. Spec-
troscopy in 2D, which measures the nonlinear third-order response function, has high structural
sensitivity and intrinsic time resolution to characterize the structural and dynamic information of
samples (190). This achieves improved resolution of neighboring peaks compared to conventional
linear spectroscopies, resulting from the nonlinear scaling of the intensity with transition dipole
strength (191, 192). Techniques such as 2D IR spectroscopy, 2D electronic spectroscopy (193),
and 2D Raman-THz (194, 195) and 2D IR-Raman spectroscopies (196) have been developed. Be-
sides 2D spectroscopy, the other nonlinear spectroscopies, such as second harmonic generation,
sum frequency generation, and difference frequency generation, are also important for the wider
application of multidimensional optical imaging.

Data analysis in multidimensional imaging is another area that requires immediate attention.
Increasing the number of dimensions dramatically increases the amount and complexity of data
produced and archived. The information buried in the interrelationships among the dimensions
scales up exponentially as the number of dimensions increases. Furthermore, multiple dimensions
commonly share the same pool of photons, so splitting them into collection channels may de-
crease the image quality significantly; therefore, robust data analysis algorithms will be greatly
needed. In this regard, fast-developing, deep-learning algorithms may be key to extending our
capabilities in interpreting the data. The main concept of deep learning is to extract high-level,
complex abstractions as data representations through a hierarchical learning process. Compared
to conventional shallow learning, deep learning generalizes in both nonlocal and global methods,
generating learning patterns and relationships beyond immediate neighbors in the data. Because
of this, it can be used to extract complex patterns from massive amounts of interconnected data.
Deep-learning algorithms can potentially be a valuable tool in multidimensional data analysis.
In fact, we have started to see achievements in some areas. These include the algorithms that
connect dots between frames in the presence of many particles for particle tracking (197). In 3D
imaging, deep neural networks have demonstrated their noise-resistance capability for pattern
recognition–based z-position recovery (198). This makes them effective at minimizing the impact
of high background noise. They have also been used for augmented microscopy, which extracts
latent information from obscure bright-field images with the help of the parallel fluorescence
images (199). Deep learning is expected to play a more important role in the future.
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