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Abstract

Maintenance of a homeostatic body core temperature is a critical brain func-
tion accomplished by a central neural network. This orchestrates a complex
behavioral and autonomic repertoire in response to environmental temper-
ature challenges or declining energy homeostasis and in support of immune
responses and many behavioral states. This review summarizes the anatomi-
cal, neurotransmitter, and functional relationships within the central neural
network that controls the principal thermoeffectors: cutaneous vasoconstric-
tion regulating heat loss and shivering and brown adipose tissue for heat
production. The core thermoregulatory network regulating these thermo-
effectors consists of parallel but distinct central efferent pathways that share
a common peripheral thermal sensory input. Delineating the neural circuit
mechanism underlying central thermoregulation provides a useful platform
for exploring its functional organization, elucidating the molecular under-
pinnings of its neuronal interactions, and discovering novel therapeutic ap-
proaches to modulating body temperature and energy homeostasis.
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BAT: brown adipose
tissue

POA: preoptic area
in the rostral
hypothalamus

CVC: cutaneous
vasoconstriction

Feedforward sensory
signal:
thermoreceptor
stimulus, e.g., cold
ambient temperature,
that activates a
thermoeffector but is
itself unaffected by the
resulting
thermoeffector
activation

1. INTRODUCTION

Among the most critical brain functions is its role in homeostasis, the maintenance of conditions
within the interior milieu that support optimal cellular function and, thus, function, and thus, life
itself. Mammalian homeothermy, the maintenance of a relatively constant body core tempera-
ture (TCORE), at approximately 37◦C in most species, requires the complex orchestration of many
autonomously regulated homeostatic variables. Maintaining TCORE in subthermoneutral environ-
ments requires excess heat production (thermogenesis), through brown adipose tissue (BAT) and
shivering, and represents a significant factor in energy homeostasis: the balance between energy
intake in the fuel we eat and energy expended through “work” and heat production. The oxygen
demands of metabolic heat production will impact respiratory and acid-base homeostasis. Both
the hyperemia required for augmented BAT and muscle thermogenesis and the alterations in skin
blood flow to regulate heat loss can become important factors in cardiovascular homeostasis. Evap-
orative cooling, the only physiological mechanism for reducing body heat in ambient temperatures
greater than TCORE, can severely strain water balance and osmotic homeostasis. The execution
of thermoregulatory behaviors, involving a complex integration of thermal comfort/discomfort
and somatic motor control systems, will also affect many homeostatic systems. Finally, transi-
tions into particular behavioral states (e.g., sleep, psychological stress, febrile or septic immune
responses, hibernation, and starvation) may represent the induction of new homeostatic states ac-
companied by shifts to new, more appropriate levels of TCORE that are defended by alterations in
thermoeffector activity. Given this complex intimate relationship between the defense of TCORE

and the maintenance of homeostasis, it is not surprising that the primary integrative site in the
brain for thermoregulation, the preoptic area (POA) of the hypothalamus, is in close proximity
to hypothalamic regions involved in regulating many of these same homeostatic variables and
their associated motivated behaviors. In this review, we summarize the current state of research
into the core central neuronal circuits and principal neurotransmitter mechanisms governing the
thermoregulatory control of the principal thermoeffectors. Although most of the experimental
data supporting the conclusions of this review were obtained from small rodents, the revelation
of metabolically active BAT depots in adult humans (1) and the prominence of shivering ther-
mogenesis in human cold defense (2) suggest that this information is also relevant to the central
control of TCORE in humans.

The regulation of TCORE can be modeled as a reflex (3, 4), with both feedback and feedforward
(5) mechanisms impinging on the integrative circuitry of the POA (Figure 1). The feedback
sensory signals for TCORE arise from thermoreceptors in viscera, muscle, spinal cord, and brain
(Figure 1) and provide a consolidated assessment of TCORE. Upon detection of temperature
changes in core tissues, thermoeffector responses are evoked, in a negative feedback manner such
as the inhibition of thermogenesis and cutaneous vasoconstriction (CVC) by increases in TCORE,
to return TCORE into an optimal range.

The primary thermoregulatory feedforward sensory signal comes from cold and warm ther-
moreceptors in the skin, which are stimulated by a combination of the ambient and subcutaneous
temperatures. The latter is strongly influenced by the level of cutaneous blood flow bringing
warm blood from the core into conductive contact with the ambient environment. The reflex
thermoregulatory responses elicited by stimulation of skin thermoreceptors represent an early
line of defense against potential threats to TCORE. To accomplish this, sensory stimuli elicit a
feedforward response, via the POA (Figure 1), by activating thermoeffectors, as in the case of
cold skin stimulating thermogenesis and CVC. The significance of the feedforward system can
be appreciated from the finding that the temperature of the brain was unaltered when rats were
exposed to a 4◦C environment for 2 h (6).
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Figure 1
(a) A schematic of the autonomous thermoregulatory system. The POA receives a variety of sensory afferent inputs, including
feedforward thermosensory signals from cutaneous thermoreceptors; feedback signals reflecting TCORE from body core organs; and the
pyrogenic mediator (i.e., PGE2) produced in response to immune challenges. After integrating the afferent signals, the POA provides
efferent command signals to peripheral effectors through the sympathetic and somatic motor systems. (b) A schematic of the core neural
circuit for thermoregulatory reflexes. Blue pathways are activated for heat gain (e.g., cold defense and fever), and red pathways are
activated for heat loss (e.g., heat defense). Green pathways represent thermoeffector efferent pathways that are regulated by the
inhibitory (red ) and excitatory (blue) inputs from the POA. Tonic excitatory inputs (black arrows) are provided from unknown sources to
the DMH/DHA and to the rRPa/PaPy. Abbreviations: BAT, brown adipose tissue; CVC, cutaneous vasoconstriction; DH, dorsal horn;
DHA, dorsal hypothalamic area; DMH, dorsomedial hypothalamic nucleus; EP3R, prostaglandin EP3 receptor; IML, intermediolateral
nucleus of the spinal cord; LPB, lateral parabrachial nucleus; PaPy, parapyramidal area in the medulla oblongata; POA, preoptic area;
rRPa, rostral raphe pallidus nucleus; SPN, sympathetic preganglionic neuron; VH, ventral horn; WS, warm-sensitive.

www.annualreviews.org • Central Mechanisms for Thermoregulation 287



PH81CH13_Morrison ARI 22 December 2018 12:38

TRP: transient
receptor potential

A wide variety of nonthermal signals can impact thermoeffector activity through their influences
on the core thermoregulatory network (reviewed in 7, 8). Finally, there are physiological situations
in which the balance point (4) of the myriad of inputs to the core thermoregulatory system must
be altered to effect a beneficial, stabilized change in TCORE, for instance, the elevated TCORE

during fever to fight infection (Figure 1) or the reduced TCORE during starvation, hemorrhage,
or hibernation to conserve metabolic resources.

Classically, the thermoneutral temperature range is the narrow range of ambient tempera-
tures during which TCORE can be maintained solely by altering the CVC sympathetic outflow
(9). Below thermoneutrality, cold defense thermoeffector mechanisms are recruited, including
(a) thermoregulatory behaviors to reduce heat loss, (b) CVC to limit heat loss to the environment
and conserve heat in the body core, and (c) thermogenesis. The principal sources of metabolic
heat production, which arises primarily from the inefficiency of ATP synthesis and utilization,
are BAT, whose sympathetic neural input fuels uncoupling protein-1–enriched mitochondria that
shunt proton fluxes into heat production, and shivering movements in skeletal muscles. Above
thermoneutrality, effector mechanisms for heat defense include (a) thermoregulatory behavior to
increase heat loss; (b) augmented cutaneous blood flow, due to cutaneous vasodilation and visceral
vasoconstriction (10), to facilitate superficial heat loss; and (c) evaporative cooling (e.g., sweating).
Although they are important first responders, the central nervous system mechanisms controlling
and mediating thermoregulatory behaviors remain incompletely defined (11). Additionally, since
most central nervous system research subjects are furry rodents that do not sweat for thermoregu-
lation, little information is available on the central nervous system pathways regulating evaporative
cooling (12). Thus, our review focuses on the central nervous system pathways regulating CVC,
BAT, and shivering thermogenesis.

2. THERMAL AFFERENT SIGNALING

2.1. Peripheral Thermoreceptors

The availability of recent genetics-based approaches has allowed considerable exciting progress
in our understanding of the molecular basis for thermoreception by neurons, including the roles
of the transient receptor potential (TRP) family of cation channels in cutaneous thermoreceptors.
Cool sensation to elicit cold-defensive responses involves the TRPM8, a cation channel with a
conductance activated during modest cooling (<27◦C), and by menthol (13, 14), which elicits
BAT, shivering, and CVC cold-defensive responses when applied to mouse skin (15). TRPM8
deficiency or blockade of peripheral TRPM8 channels blunts autonomic and behavioral cold-
defense responses, leading to mild hypothermia (16–18). Although TRPM8 is a sensor of ambient
cool, the mild cold-defensive phenotypes of TRPM8-deficient mice (16, 17) suggest either a
relatively effective compensatory mechanism for the TRPM8 deletion or the existence of other
cutaneous cool receptors contributing to thermoregulation.

The cutaneous warm receptors involved in thermoregulation are more uncertain. The TRPM2
is expressed in primary somatosensory neurons (19) and is activated by warm temperatures (20),
and TRPM2 deficiency compromises thermoregulatory behavioral responses to a warm ambient
temperature (19), but not circadian oscillations in TCORE (21). The normal regulation of TCORE in
TRPV1-deficient mice (22) argues against a role for the TRPV1, activated by heat, vanilloids, or
protons (23, 24), as a warm receptor in thermoregulation (25). Nonetheless, modulation of TRPV1
conductance, likely on nonthermal sensory neurons that influence the core thermoregulatory
network, can have dramatic effects on thermoeffector activity and TCORE (26–28).

The splanchnic and vagus nerves distributed in the abdomen also contain cool- and warm-
sensitive fibers that exhibit thermosensory properties (29, 30), and vagal afferent neurons express
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LPB: lateral
parabrachial nucleus

MnPO: median
preoptic nucleus

Thermoresponsive
neuron: a neuron
whose discharge is
affected by
thermoreceptor
stimulation

various types of TRP channels (31). By virtue of their location, such thermoreceptors could provide
a TCORE-related feedback signal to the central thermoregulatory network (Figure 1). However,
the role of this thermosensory information in thermoregulation is unknown. Skeletal muscle may
also contain thermoreceptors that could play a significant role in stimulation of eccrine sweating
during exercise (32).

2.2. Thermal Afferent Pathways Regulating TCORE

Primary cool and warm cutaneous thermoreceptors synapse on distinct populations of somatosen-
sory dorsal horn neurons in the spinal cord and spinal trigeminal nucleus that respond to either
innocuous skin cooling (33) or warming (34) and send projections to both the thalamus (i.e.,
spinothalamic or trigeminothalamic) and to the pontine lateral parabrachial nucleus (LPB) (i.e.,
spinoparabrachial or trigeminothalamic) (35, 36). These spinothalamocortical pathways provide
thermal afferent signaling for perception, localization, and discrimination of skin temperatures
(37). However, because rats with functionally verified thalamic ablations of the spinothalamocor-
tical pathway display intact BAT thermogenic responses to skin cooling as well as cold-avoidance
and heat-avoidance thermoregulatory behaviors (38, 39), it has become clear that this pathway is
not required for thermoregulation.

On the other hand, autonomous thermoregulatory responses to changes in ambient tempera-
ture, including skin cooling–induced shivering and BAT thermogenesis, as well as skin warming–
induced cutaneous vasodilation, require transmission of cutaneous thermosensory signals to the
POA via the spinoparabrachial pathway (38, 40, 41). Indeed, rats whose LPB is bilaterally lesioned
or inactivated fail to defend their TCORE under either cooled or warmed conditions (39, 42) and
fail to execute thermoregulatory behaviors to avoid innocuous cold and warm temperatures (39).
Together, these findings show the importance of LPB-mediated thermosensory transmission in
thermoregulation and highlight the thalamic and parabrachial divergence in the neural pathways
for the transmission of cutaneous thermosensory signals that separately drive thermal perception
and thermoregulation. Thus, modulation of the activity of ascending dorsal horn neurons would
influence not only our perception of peripheral thermal signals [e.g., how do you feel? (37)] but
also the autonomous and behavioral responses to those signals.

The cutaneous thermoreceptor signaling from the dorsal horn to the POA that drives feed-
forward thermoregulatory responses is integrated with a variety of as yet unidentified inputs in
the LPB of the pons. In the LPB, the axons of dorsal horn neurons (43) synapse on LPB neurons
projecting to the median preoptic nucleus (MnPO) (38) (Figure 2). In rats, cold exposure (4◦C)
activates LPB-MnPO neurons in the external part of the LPB (LPBel), and heat exposure (36◦C)
excites LPB-MnPO neurons in the dorsal part of the LPB (LPBd), although these neurons rarely
respond to noxious stimuli (38, 40). Thermoresponsive spinoparabrachial neurons are likely glu-
tamatergic because glutamate receptor antagonists in the LPB abolish cutaneous thermoreceptor–
evoked responses (38, 40), and glutamate receptor stimulation in LPBel and LPBd elicits BAT
thermogenesis and cutaneous vasodilation, respectively (38, 40), mimicking thermoregulatory re-
sponses to ambient cooling and warming. These observations define two neuronal populations of
LPB-MnPO neurons: Those in the LPBel transmit innocuous cool and those in the LPBd trans-
mit innocuous warmth sensed by cutaneous thermoreceptors. Supporting this model, intravenous
injection of a TRPM8 antagonist slows the discharge of skin cooling–activated neurons in the
LPBel (18).

Both skin cooling–responsive and warming–responsive groups of LPB neurons express the
transcription factor FoxP2, and half of skin warming–responsive LPBd-POA projection neurons,
but not the cooling-responsive LPBel neurons, also express prodynorphin (44). These genetic
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Figure 2 (Figure appears on preceding page)

(a) A model of the local circuit in the POA that controls thermoregulatory effectors in response to cutaneous
thermosensory inputs. Warm-sensory inputs from the LPBd activate GABAergic neurons in both MnPO
and MPA (red shaded area), which then inhibit excitatory neurons in the DMH and rRPa that otherwise drive
cold-defensive responses. Warm-sensory inputs also activate glutamatergic neurons in the MnPO ( green
shaded area), which then excite GABAergic neurons in the vLPO to inhibit the excitatory neurons in the
DMH and rRPa. Cool-sensory inputs from the LPBel activate local GABAergic neurons in the MnPO to
inhibit the W GABAergic neurons projecting to the DMH/rRPa. Cool-sensory inputs also activate
glutamatergic neurons in the MnPO that project to the DMH/rRPa excitatory neurons to drive cold-
defensive responses. (b) Immunohistochemistry for EP3Rs in the rat POA (left). Intense immunoreactivity is
distributed in the MnPO, MPA, and PS. Inset shows neuronal cell bodies with EP3R immunoreactivity in
the MnPO (white arrowheads). Modified with permission from Reference 139. Copyright 1999, Elsevier.
Drawings (right), which represent the histological sections in the left panels, show the anatomical definitions
of POA subregions at the rostrocaudal levels, referring to the nomenclature in Paxinos & Watson’s
stereotaxic rat brain atlas (153). Abbreviations: 3V, third ventricle; ac, anterior commissure; C, cooling-
activated; DMH, dorsomedial hypothalamic nucleus; EP3R, prostaglandin EP3 receptor; LPB, lateral
parabrachial nucleus; LPBd, dorsal part of the LPB; LPBel, external part of the LPB; LPO, lateral preoptic
area; ox, optic chiasm; MnPO, median preoptic nucleus; MPA, medial preoptic area; MPN, medial preoptic
nucleus; POA, preoptic area; PS, parastrial nucleus; rRPa, rostral raphe pallidus nucleus; vLPO, ventral part
of the LPO; W, warming-activated.

SNA: sympathetic
nerve activity

DMH/DHA:
dorsomedial
hypothalamic nucleus/
dorsal hypothalamic
area

markers for thermoresponsive LPB neurons may permit selective optogenetic and chemogenetic
control of the cool and warm afferent pathways. Additionally, the LPB-MnPO neurons may be glu-
tamatergic, as the responses evoked by stimulation of LPB neurons are eliminated by antagonizing
glutamate receptors in the MnPO (38, 40). The glutamatergic phenotype of the thermorespon-
sive LPB neurons is also supported by expression of a glutamatergic neuronal marker, but not a
GABAergic marker, in FoxP2-expressing LPB neurons (44).

The transmission of thermal afferent signals through the LPB is important for the defense of
TCORE from environmental thermal challenges. It will be important to understand how transmis-
sion of thermal sensory information through the LPB can be impacted by other influences on LPB
neuronal discharge (45), including those that produce the dramatic reversal in thermoreceptor-
evoked responses that occurs in thermoregulatory inversion (46).

3. EFFERENT CIRCUITS REGULATING THERMOEFFECTOR
ACTIVITY

The central nervous system thermoregulatory control of the sympathetic outflows mediating CVC
and BAT thermogenesis, and of the somatic motoneurons producing shivering, is effected through
parallel but distinct, effector-specific, integrative/efferent circuits (reviewed in 7, 47–49) that share
common peripheral thermal sensory inputs.

3.1. Efferent Neural Pathways Controlling BAT Thermogenesis

The efferent neural pathways controlling BAT thermogenesis are composed of neurons whose
excitation leads to increases in BAT postganglionic sympathetic nerve activity (SNA) and BAT
thermogenesis. Excitatory drives to neurons in the dorsomedial hypothalamic nucleus/dorsal hy-
pothalamic area (DMH/DHA) should also be included in the efferent pathways controlling BAT;
however, the sources of the excitation of DMH/DHA neurons remain to be defined.

3.1.1. Sympathetic motor system controlling BAT thermogenesis. The sympathetic motor
system controlling BAT thermogenesis consists of the BAT sympathetic preganglionic neurons
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Sympathetic
premotor neuron:
supraspinal neuron
providing an excitatory
input to sympathetic
preganglionic neuron
in the spinal
intermediolateral
nucleus

rRPa/PaPy: rostral
raphe pallidus nucleus/
parapyramidal area in
the medulla oblongata

innervating the sympathetic ganglion cells that, in turn, innervate BAT depots (50). The inter-
scapular BAT depot is the largest BAT depot in rodents and may correspond to the supraclavicular
BAT depot described in adult humans (51). The BAT sympathetic ganglion cells innervating the
rat interscapular BAT are located in the first four thoracic sympathetic ganglia (50). Although
their function remains enigmatic, there is a BAT depot on the ventral surface of each thoracic
sympathetic ganglion in both rats and humans (51). The number of ganglion cells innervating in-
terscapular BAT and thus the amplitude of the BAT sympathetic response to cold are influenced
by developmental factors, including the presence of cold challenges during early postnatal life
(50).

3.1.2. Sympathetic premotor neurons drive BAT thermogenesis. The excitability and activ-
ity of BAT sympathetic preganglionic neurons are governed primarily by their supraspinal inputs
from BAT sympathetic premotor neurons, although they also receive segmental sensory inputs.
The most functionally significant population of BAT sympathetic premotor neurons is in the
rostral ventromedial medulla, centered on the rostral raphe pallidus nucleus (rRPa), but including
some neurons in the raphe magnus nucleus and the parapyramidal area (PaPy) (52–54). Neurons
in the rRPa/PaPy area are consistently retrogradely labeled at early survival times following pseu-
dorabies virus inoculations of interscapular BAT (52, 54–56). Although populations of neurons in
the A5 region, the rostral ventrolateral medulla (RVLM), and the paraventricular hypothalamic
nucleus were infected following pseudorabies virus injections into BAT (54, 55), only neurons in
the rRPa/PaPy area and in the paraventricular hypothalamic nucleus were activated during cold
exposure (52, 54). Non-noxious skin cooling in normal humans revealed increased activity within
the region of the human medulla corresponding to the rodent rRPa (57).

Spinally projecting neurons in the rRPa/PaPy region, which are candidate BAT sympathetic
premotor neurons, can contain phenotypic markers for glutamatergic neurons (VGLUT3) (52,
58, 59), serotonergic neurons (52, 54, 59), and GABAergic neurons (59), and VGLUT3- and
serotonin (5-HT)–containing terminals are apposed to sympathetic preganglionic neurons (52, 58,
59). Anatomical substrates also exist for BAT sympathetic preganglionic neuronal discharge to be
influenced by GABA (59), thyrotropin-releasing hormone, and substance P (60) and catecholamine
(54) premotor inputs.

VGLUT3- and 5-HT–containing neurons in the rRPa/PaPy are activated by cold exposure,
pyrogens such as prostaglandin (PG)E2, or psychological stress (52, 54, 61–63), and activating
glutamate or 5-HT receptors in the spinal intermediolateral nucleus increases BAT SNA and BAT
thermogenesis (52, 64). Blockade of glutamate receptors in the spinal intermediolateral nucleus
suppresses the BAT thermogenesis evoked by activating neurons in the rRPa (52). Serotonin in the
spinal intermediolateral nucleus potentiates the activation of BAT SNA by glutamate receptors in
the spinal intermediolateral nucleus (64). Blockade of spinal serotonin receptors reverses the cold-
evoked activation of BAT SNA (65), and mice lacking central serotonergic neurons show blunted
BAT thermogenesis during cold exposure (66). Thus, rRPa glutamatergic and serotonergic inputs
to the spinal intermediolateral nucleus, at least some of which are directly onto BAT sympathetic
preganglionic neurons, are critical for determining the level of BAT SNA and BAT thermogenesis.

Some influences of glutamatergic and serotonergic inputs to the spinal intermediolateral nu-
cleus in the control of BAT SNA are mediated via spinal interneurons in the vicinity of the
spinal intermediolateral nucleus (54) and likely include GABAergic interneurons (67) that receive
VGLUT3- and GAD67-containing terminals (59), consistent with inputs from BAT premotor
neurons in the rRPa/PaPy. Activation of 5-HT1A receptors on GABAergic neurons in the spinal
intermediolateral nucleus contributes to the potentiation of glutamatergic inputs to BAT sympa-
thetic preganglionic neurons by 5-HT (64).
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The glutamate-driven activity of BAT sympathetic premotor neurons in the rRPa/PaPy region
is essential for the thermoregulatory and febrile activation of BAT thermogenesis (53, 68–71).
Inhibition of neurons in rRPa/PaPy inhibits cold-evoked BAT thermogenesis and reduces TCORE

(71–73). A wide variety of stimuli increase BAT thermogenesis by activating BAT sympathetic
premotor neurons in the rRPa/PaPy, including disinhibition of neurons in the DMH/DHA (74),
activation of corticotropic-releasing factor receptors in the POA (75), systemic administration of
leptin (72), and psychological stress (76). Thus, the BAT sympathetic premotor neurons in the
rRPa/PaPy are the principal final common medullospinal pathway for the sympathoexcitatory
drive to the BAT sympathetic preganglionic neuronal network in the spinal cord controlling BAT
SNA.

We are only beginning to understand the complex local microcircuitry and neurochemical in-
teractions that regulate the discharge of the BAT sympathetic premotor neurons in the rRPa/PaPy.
The discharge of BAT sympathetic premotor neurons in the rRPa results primarily in the balance
point of tonically active glutamatergic excitatory and GABAergic inhibitory inputs. The effective-
ness of these inputs can be modulated, as exemplified by the orexin input to the rRPa from the
perifornical area of the lateral hypothalamus (77). rRPa neurons express N-methyl D-aspartate
and kainate glutamate receptors whose activation evokes intense increases in BAT SNA (68). The
thermoregulatory increases in BAT SNA and BAT thermogenesis during cold exposure or PGE2-
induced fever are due to an increase in the glutamatergic excitation of BAT sympathetic premotor
neurons from neurons in the DMH/DHA (53, 68–71, 78–81). However, under thermoneutral or
warm conditions, the DMH/DHA excitation to rRPa is reduced. Moreover, GABAergic inputs,
including those from the POA (53, 82), as well as muscarinic cholinergic (83) and glycinergic (84)
inputs to the rRPa, prevail over non-DMH/DHA glutamatergic drives to rRPa to maintain a low
level of BAT SNA (68, 85). The abundant GABAergic inputs to VGLUT3-expressing neurons in
the rRPa (86) include those from medullary reticular nuclei that are stimulated during hunger to
inhibit BAT thermogenesis and reduce energy expenditure (87).

3.1.3. DMH/DHA BAT sympathoexcitatory neurons provide the thermosensory-
modulated excitation to BAT sympathetic premotor neurons in the rRPa. Under warm
conditions, transection of the neuraxis immediately caudal to the POA increases BAT SNA and
BAT thermogenesis (46, 88). However, transections made just caudal to the hypothalamus do not
increase BAT thermogenesis in warm rats (89), but rather reverse PGE2-evoked increases in BAT
SNA and BAT thermogenesis (90, 91). These observations are consistent with BAT sympathoin-
hibitory efferents from the POA (see below) and with an essential source of excitatory drive to BAT
thermogenesis between the POA and the rostral midbrain. Subsequent investigations have iden-
tified the DMH/DHA as the region containing BAT sympathoexcitatory neurons that provide an
essential glutamatergic drive to BAT (and cardiac) sympathetic premotor neurons in rRPa/PaPy,
necessary for the increases in BAT thermogenesis (and heart rate) during cold exposure, fever,
and stress (68, 71, 74, 76, 79, 81, 92, 93).

A cluster of neurons in the DMH/DHA projects directly to the rRPa (76, 77, 79, 94–96)
and is synaptically connected to interscapular BAT (54, 55, 96). Administration of endotoxin,
cold exposure, or psychological stress, each of which increases BAT thermogenesis, activates
neurons in the DMH/DHA (54, 76, 96, 97). Glutamatergic neurons expressing VGLUT2 in
the DMH/DHA directly project to VGLUT3-positive sympathetic premotor neurons in the
rRPa/PaPy, and optogenetic stimulation of monosynaptic transmission from the DMH/DHA
to the rRPa elicits BAT thermogenesis and cardiovascular stimulation, mimicking responses to
cold, inflammation, and stress (76). Increases in TCORE and activity were evoked by activation
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of either glutamatergic or GABAergic neurons in mouse DMH/DHA, although whether BAT
thermogenesis contributed to these increases was not tested (93).

The discharge of BAT sympathoexcitatory neurons in the DMH/DHA is primarily determined
by the balance of their tonically active glutamatergic excitatory and GABAergic inhibitory inputs
(Figure 1b). Febrile, cold, or stress-evoked excitations of BAT SNA and BAT thermogenesis
require that the glutamatergic activation of neurons in the DMH/DHA (71, 76, 79, 90, 92, 98)
outweighs their GABAergic inhibitory inputs that maintain a low level of BAT SNA and BAT
thermogenesis under warm conditions (74). The GABAergic and glutamatergic inputs providing
the principal thermosensory modulation of the activity of BAT sympathoexcitatory neurons in the
DMH/DHA arise from the thermoregulatory integrative circuits in the POA described below.
Many of the mouse DMH/DHA thermogenesis-promoting neurons express the leptin receptor
(96), which could provide a metabolic modulation of the thermoregulatory excitation of BAT
sympathetic premotor neurons.

3.2. Efferent Neural Pathways Controlling Shivering Thermogenesis

Skeletal muscle shivering, involving rapid, repeated skeletal muscle contractions leading to heat
production through the inefficiency of ATP utilization, is the most thermogenic of the human
cold-defense and febrile thermoeffector responses (2). Generation of shivering thermogenesis has
two phases: the overt, phasic muscle contractions and the preceding increase in tonic motoneuron
discharge (99). As with BAT thermogenesis, because shivering thermogenesis relies on energy
consumption, the thermoregulatory control of shivering is sensitive to metabolic signals relating
to energy balance and the availability of fuel substrates (100).

3.2.1. Spinal mechanisms of shivering. The skeletal muscle contractions during shivering are
an involuntary somatic motor response for the purpose of thermogenesis. They are driven by
alpha-motoneurons located in the ventral horn of the spinal cord or in the facial and trigeminal
nuclei of the hindbrain. The inputs to alpha-motoneurons that specifically regulate their discharge
during shivering are unknown. The neural mechanisms required to generate at least a rudimentary
rhythmic shivering are likely present in the spinal cord, as cooling the spinal cord can produce
shivering in spinal animals. Additionally, the rhythm of the shivering oscillation is not necessarily
imposed universally by the supraspinal premotor inputs to the ventral horn, because the rhythms
of simultaneous shivering in muscle groups controlled from different spinal levels do not usually
have a constant phase relationship (101). Gamma-motoneurons (fusimotor neurons) could also be
within the efferent pathway for shivering because central activation of gamma-motoneurons and
the stretch reflex could drive the tonic component of shivering, and it appears to play a significant,
but not indispensable, role in the generation of phasic shivering contractions (99, 101, 102).

3.2.2. Somatic premotor neurons for muscle shivering. The rRPa/PaPy region likely contains
a population of neurons that function as somatic premotor neurons for muscle shivering. The
activity of neurons in rRPa/PaPy is necessary for cold-evoked and febrile shivering, as shivering
electromyograms cease immediately after inhibition of rRPa/PaPy neurons with injections of
a GABAA or a 5-HT1A receptor agonist (41). The skin cooling–evoked activation of gamma-
motoneurons is dependent on the activity of neurons in the rRPa (103). Because glutamatergic,
GABAergic, and serotonergic neurons in rRPa/PaPy project to the spinal cord, it is expected that
release of these neurotransmitters in the ventral horn would play a role in the regulation of muscle
shivering.
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3.2.3. Inputs to rRPa/PaPy regulate muscle shivering. The discharge of muscle shivering
premotor neurons in the rRPa is primarily determined by the balance of their excitatory and
inhibitory inputs. A GABAergic input, potentially driven by neurons in the ventral part of the lateral
POA (vLPO), to neurons in the rRPa/PaPy region prevents shivering electromyogram activity
under warm conditions (41, 82, 104). The inhibition of shivering following activation of 5-HT1A

receptors in rRPa (41) reveals the potential for local 5-HT release to significantly reduce shivering.
Neurons in the DMH/DHA, likely those that project to the rRPa/PaPy, provide an excitatory input
to shivering premotor neurons in the rRPa/PaPy that is required for thermoregulatory shivering,
as inhibition of neurons in the DMH/DHA eliminates cold-evoked and febrile shivering (41).
The strong shivering response evoked by blocking GABAA receptors in the rRPa under warm
conditions also reveals the existence of a prominent, tonic excitatory input to the rRPa neurons
that drive shivering, but this is unlikely to arise from neurons in the DMH/DHA (90).

3.3. Efferent Neural Pathways for the Control of Cutaneous Vasoconstriction

The CVC-mediated retention of heat energy within the body core helps to sustain a normal TCORE

in subthermoneutral environments and elevate TCORE during fever (Figure 1). Cutaneous vasodi-
lation results from inhibition of CVC SNA in response to skin or core warming and augments the
transfer of heat energy in the body core to the environment, reducing the potential for hyperther-
mia. These thermoregulatory CVC responses are accompanied by visceral vaso- and venodilation
in the cold and constriction in the warm (10) that support the significant thermoregulatory al-
terations in blood flow distribution. In humans, a sympathetic vasodilator outflow is principally
responsible for the increase in cutaneous blood flow in hyperthermic environments (12). The
balance of descending excitatory and inhibitory pathways emanating from the thermoregulatory
integrative regions of the POA, as well as from unidentified source(s) in the brainstem, governs
the level of activity of CVC sympathetic premotor neurons in the brainstem to regulate cutaneous
blood flow (105) (Figure 1b).

The sympathetic preganglionic neurons for CVC are located in the intermediolateral nucleus
of the thoracolumbar spinal cord. These project primarily to paravertebral, CVC sympathetic
ganglion cells that innervate the cutaneous blood vessels and anastomoses. The discharge of
sympathetic preganglionic neurons for CVC is governed primarily by their inputs from CVC
sympathetic premotor neurons in the ventromedial medulla, including the rRPa and the PaPy,
and in the RVLM. Pseudorabies virus retrograde tracing studies from rat tail artery consistently
support the existence of CVC sympathetic premotor neurons in these two areas and indicate that
those in the rRPa/PaPy can be glutamatergic (expressing VGLUT3) and/or serotonergic (52, 106,
107), while those in the RVLM include a population of C1 neurons and are likely glutamatergic.
Pseudorabies virus labeling from rat tail artery was also observed in the A5 noradrenergic cell
group, lateral hypothalamic area, and paraventricular hypothalamic area (106), but the function
of these neurons in controlling CVC remains unknown.

Activation of neurons in the rRPa elicits CVC (108, 109) and prevents the cutaneous vasodila-
tion evoked by warming the POA (110). Inhibition of neuronal activity in the rRPa elicits cutaneous
vasodilation (111). Neurons in a comparable region of the human brainstem are activated by skin
cooling (57). The RVLM also contains CVC sympathetic premotor neurons that contribute to
thermoregulatory responses by providing an important excitatory drive to CVC sympathetic pre-
ganglionic neurons that is synergistic to the predominant, thermally modulated excitation from
CVC premotor neurons in the rRPa (112). There is also a complementary interaction of serotonin
and glutamate neurotransmission in the spinal intermediolateral nucleus in determining the CVC
SNA. Blockade of spinal 5-HT2A receptors markedly reduces the CVC SNA response to rRPa
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stimulation, which is completely eliminated by subsequent blockade of spinal glutamate receptors
(113).

The discharge of CVC sympathetic premotor neurons in the rRPa/PaPy is primarily deter-
mined by the balance of their tonically active glutamatergic excitatory and GABAergic inhibitory
inputs. Blockade of GABAA receptors in rRPa prevents the preoptic warming-evoked inhibition
of CVC (110), and antagonistic glutamate receptors in the rRPa block the cold-evoked increase in
CVC SNA (114). Because cold-evoked and febrile activations of CVC SNA are unaffected by in-
hibition of neuronal activity in the DMH/DHA (91), studies to determine the inputs to rRPa that
underlie the thermoregulatory modulation of the discharge of CVC sympathetic premotor neu-
rons have focused on direct or indirect POA-rRPa pathways that do not include the DMH/DHA
and are described below (see Section 4.3.1). However, in warm rats, a brain transection caudal to
the POA causes a large increase in CVC SNA, but further transections caudal to the DMH and
to the midbrain tegmentum do not diminish the elevated CVC SNA (91). These results are con-
sistent with (a) a warm-active, principally inhibitory influence of the descending POA regulation
of the activity of CVC sympathetic premotor neurons in rRPa and (b) the existence of a potent,
tonic excitation to CVC premotor neurons in rRPa from an unidentified source caudal to the pons
(Figure 1b).

4. PREOPTIC AREA CIRCUITS FOR THERMOREGULATORY
INTEGRATION

Within the rostral pole of the hypothalamus, the POA is the primary site in which a variety of
sensory information, including TCORE and skin (ambient) temperature, is integrated to modu-
late the descending command outputs from POA neurons that regulate the excitatory drives to
thermoeffectors (Figure 1).

4.1. The Preoptic Area Contains Warm-Sensitive Neurons

The POA harbors thermosensitive neurons, many of which are warm-sensitive neurons whose
firing rates are increased by elevating local tissue temperature and decreased by reducing POA
temperature (115, 116). Supporting an important thermoregulatory role for warm-sensitive POA
neurons are the findings that local warming of the POA with a thermode causes heat-defensive
responses, including cutaneous vasodilation and saliva secretion (110, 117), while local cooling of
this area elicits BAT and shivering thermogenesis (118, 119). These findings constitute the basis
of the view that the discharge of warm-sensitive neurons in the POA reflects TCORE (i.e., brain
temperature) and contributes to negative feedback signaling (Figure 1) that inhibits the activity
of heat gain thermoeffectors (5). Warm-sensitive neurons in the POA may integrate cutaneous
thermoreceptor input with brain temperature sensation because skin cooling reduces the tonic
discharge of warm-sensitive POA neurons (115) and increases their thermosensitivity (120).

Although these neurons play a critical role in the POA circuits regulating TCORE, the
significance of their intrinsic warm thermosensitivity in thermoregulation remains unknown.
For instance, the degree of thermosensitivity can be strongly modulated by synaptic activity
(121), making it a changeable and adaptable property of these hypothalamic neurons, particularly
with the myriad of potential synaptic inputs and receptor ligands (e.g., PGE2) impinging on
these neurons in vivo. Additionally, warm thermal signals from the skin, viscera, and muscle are
expected to initiate heat-defense responses (32, 40) before brain temperature has increased. In this
light, the warm thermosensitivity of POA neurons may be most important in limiting feedforward
drives for hyperthermia, as has been proposed for the role of the warm-sensory channel, TRPM2,
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in limiting febrile elevations in TCORE (21). The absence of a thermoregulatory phenotype in
TRPM2-deficient mice (21) would be consistent with such a role, although it remains to be
determined if this would also be the case after deletion of TRPM2-expressing POA neurons.

Although some genetic characterization of warm-sensitive POA neurons is available (122),
specific markers of warm-sensitive POA neurons have yet to be identified, slowing progress
to understand the basis for their thermosensitivity, as well as their neuroanatomical connec-
tions, neurotransmitter mechanisms, and roles within POA thermoregulatory circuits. Most POA
warm-sensitive neurons identified in vitro are GABAergic (123, 124), which would be consistent
with their expected inhibitory effect on the activity of the efferent circuits controlling heat gain
thermoeffectors.

4.2. GABAergic Preoptic Area Neurons Control Thermoeffector
Efferent Circuits

The POA contains warm-activated, GABAergic neurons (53, 93, 116, 123, 125). GABAergic
projection neurons are localized in the MnPO, medial preoptic area (MPA), and the vLPO (53,
79, 80, 93, 125) (Figure 2). Many of the POA GABAergic neurons receive and are activated by
cutaneous warm-sensory signals and many express prostaglandin EP3 receptor (EP3R) (53, 79,
80, 125).

POA GABAergic projection neurons have functional connections to thermoeffector effer-
ent circuits (93, 125). The DMH/DHA and rRPa/PaPy receive projections from populations of
GABAergic POA neurons that are activated by cutaneous warm-sensory signals and those express-
ing the EP3R for the pyrogenic mediator, PGE2 (see Section 4.5) (53, 79, 80, 125).

Brain transections just caudal to the POA increase TCORE due to increases in BAT thermogene-
sis and CVC SNA (46, 88, 91). Blockade of GABAA receptors in either DMH/DHA or rRPa/PaPy
elicits BAT and shivering thermogenesis and CVC (52, 74, 85, 91, 104, 108, 126–128).

4.3. Preoptic Area Neurons Integrate Thermal Inputs to Provide Inhibitory
Regulation of Thermoeffector Efferent Circuits

Central and peripheral thermosensory signals modulate the activity of POA GABAergic projection
neurons to adjust this potent inhibitory regulation of the discharge of the heat gain–promoting
neurons in the DMH/DHA and/or the rRPa/PaPy to appropriately regulate thermogenesis and
CVC (Figures 1b and 2a) for environmental conditions.

4.3.1. GABAergic preoptic area projection neurons that regulate thermoeffector efferent
circuits. Inhibition of neurons in the MPA with some extension into the lateral preoptic area
increases TCORE by stimulating shivering, metabolism (129, 130), and CVC (131). Stimulation
of MPA neurons inhibits skin cooling–induced BAT and shivering thermogenesis (71, 82, 129).
These findings support the view that GABAergic POA projection neurons that are directly or
indirectly activated by cutaneous warm-sensory inputs from the LPBd are distributed in the MPA
and the MnPO and provide the descending tonic inhibitory inputs to the DMH and rRPa to
determine the level of sympathetic and somatic motor outflows to thermoregulatory effectors
(Figures 1b and 2a).

The GABAergic POA projection neurons in MnPO and MPA that provide a descending
tonic inhibition to DMH and/or rRPa may include those expressing pituitary adenylate cyclase-
activating polypeptide (PACAP) and brain-derived neurotrophic factor (BDNF) (125). They are
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activated by skin warming signals via the LPBd, but not affected by cooling, and they do not
exhibit the intrinsic thermosensitivity expected of warm-sensitive neurons that monitor TCORE

(125). Optogenetic stimulation of their axon terminals in the DMH reduces BAT thermogene-
sis but does not affect CVC (125). Thus, GABAergic, PACAP/BDNF–expressing POA neurons
provide a skin warming–sensitive inhibitory input to neurons in the DMH to reduce BAT thermo-
genesis. This or another GABAergic group in the POA may control CVC through tonic inhibitory
monosynaptic transmission to the rRPa (53), bypassing the DMH (80, 91).

GABAergic POA projection neurons in the vLPO also provide a descending inhibitory reg-
ulation of thermogenesis. GABAergic neurons in the mouse vLPO are activated in a warm
ambient, and optogenetic stimulation of their DMH terminals reduces TCORE (93). Similarly,
thermogenesis-inhibiting neurons in the rat vLPO are active in warm conditions, as inhibition
of neurons or blockade of glutamate receptors in the vLPO activates BAT and shivering ther-
mogenesis (82). Stimulation of rat vLPO neurons inhibits cooling-induced BAT and shivering
thermogenesis, dependent on a GABAergic input to the rRPa (82). Functional differentiation of
the MnPO/MPA and vLPO GABAergic populations in the control of thermoregulatory effectors
remains to be determined.

Although whether the vLPO directly receives the cutaneous warm-sensory inputs from the
LPBd is unknown, the warm-sensory transmission may be mediated by a glutamatergic local
projection from the MnPO to the vLPO (93) (Figure 2a). Chemogenetic or optogenetic stimula-
tion of glutamatergic MnPO neurons reduces a cooling-induced increase in oxygen consumption
(thermogenesis) and elicits cutaneous vasodilation, leading to hypothermia in subthermoneutral
temperatures (21, 132, 133). These hypothermic responses might represent the cutaneous warm-
sensory activation of glutamatergic interneurons in the MnPO innervating the vLPO.

4.3.2. Cutaneous thermal inputs to the preoptic area regulate BAT and shivering ther-
mogenesis. The MnPO (Figure 2) is the primary POA region that receives cutaneous thermal
afferent signaling from the LPB (38, 40). Cutaneous cooling-activated MnPO neurons drive POA
circuit mechanisms that increase cold-defensive thermoeffector activity. Skin cooling stimulates
neurons in LPBel to increase the glutamatergic excitation of cooling-activated neurons in MnPO,
which leads to activation of BAT and shivering thermogenesis (134). A disinhibition of the ef-
ferent circuits for thermogenesis could contribute to this stimulation of thermogenesis, if the
cooling-activated neurons in MnPO are GABAergic interneurons that inhibit the warm-sensitive,
GABAergic POA projection neurons in the MnPO and MPA that provide a tonic inhibition to
the DMH and rRPa (7, 38, 49) (Figures 1b and 2a). An increased activity of MnPO neurons
that excite the efferent circuits for thermogenesis could also contribute to the thermogenesis fol-
lowing activation of MnPO neurons (135, 136). Inactivation of neurons in the MnPO abolishes
skin cooling–induced BAT and shivering thermogenesis (41, 134, 136). This could arise from
a combination of removing an inhibitory drive to warm-sensitive, GABAergic POA projection
neurons and/or an excitatory input to thermoeffector efferent circuits. In warm environments, the
cutaneous warm-sensory inputs from the LPBd excite MnPO neurons to directly or indirectly
activate the warm-sensitive, GABAergic descending projection neurons in the MnPO and MPA
to inhibit the thermogenic efferent circuits (Figures 1b and 2a). It is noteworthy that the ther-
moeffector responses evoked by stimulation of cutaneous cool thermoreceptors will be reinforced
by a decrease in the activity of the cutaneous warm-activated input to MnPO and vice versa.

4.3.3. Preoptic area regulation of cutaneous vasoconstriction. Skin warming increases the
glutamatergic excitation from the LPBd to warm-activated MnPO neurons and inhibits CVC
SNA, resulting in cutaneous vasodilation. These CVC responses to skin warming are eliminated
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by inhibition of MnPO neurons or by blockade of their glutamatergic receptors (40, 131).
Thus, the activity of neurons in the MnPO and/or MPA regions of the POA is required for the
inhibition of the discharge of CVC sympathetic premotor neurons in the rRPa in response to
skin warming. Activation of either GABAergic, warm-activated neurons in mouse rostral MnPO
(125) or glutamatergic neurons in the mouse anteroventral MnPO (133) inhibits CVC. Together,
these data are consistent with GABAergic projection neurons in MnPO and MPA, potentially
receiving an excitatory input from warm-activated MnPO glutamatergic interneurons, providing
a warm-active, inhibitory drive to CVC sympathetic premotor neurons in rRPa. Whether the
population of GABAergic POA projection neurons controlling CVC differs from those regulating
thermogenesis, and thereby might account for the different thermal thresholds for activating
these thermoeffectors, remains to be investigated.

Skin cooling–activated neurons in MnPO with axons projecting to the rRPa (114) could provide
an excitatory drive to CVC premotor neurons in rRPa, because disinhibition of neurons in the
MnPO region in warm rats activates CVC SNA, which, along with cold-evoked increases in CVC
SNA, is blocked by antagonizing glutamate receptors in the rRPa (114). However, the discovery
of a sustained increase in CVC SNA after brain transections in the caudal pons (91) reveals a
tonic excitatory drive to CVC premotor neurons from an as yet unidentified brainstem site. As
cold-afferent activity increases and warm-sensory input declines, the inhibition of GABAergic
POA projection neurons increases, thereby disinhibiting CVC sympathetic premotor neurons in
rRPa whose activity is then sustained by glutamatergic drives that may arise from cold-activated
neurons in MnPO and from an unknown source in the lower brainstem (Figures 1b and 2a).

4.4. Excitatory Regulation of Thermoeffector Efferent Circuits

Current models and research on central networks for thermoregulation attribute thermoeffector
responses across the range of subthermoneutral to suprathermoneutral environments to an in-
hibitory modulation of the thermoeffector efferent circuits in the DMH/DHA and the rRPa by
GABAergic POA projection neurons. However, because the discharge of the heat gain–promoting
neurons in the DMH/DHA and in the rRPa represents the integration of their excitatory and in-
hibitory inputs, a comprehensive model of the core thermoregulatory network will only be achieved
when the sources and regulation of the excitatory inputs to these heat gain–promoting neurons
are also understood. The question of how excitation is generated in a sympathetic (or somatic, for
shivering) efferent network has stymied researchers for decades, particularly in the cardiovascular
field, and remains unanswered.

Regarding excitatory inputs to thermoeffector efferent circuits, glutamate receptor activation
in the rRPa mediates the cold-evoked increase in CVC SNA (114); however, the proposed POA
(114) and brainstem (91) sources of this input remain to be validated. A glutamatergic excitatory
input to neurons in the DMH/DHA and in the rRPa maintains the elevated BAT thermogenesis
during fever (68, 92), and a similar dependency is expected, although not yet demonstrated, for
the cold-evoked increase in thermogenesis. Neurons in the DMH/DHA provide the glutamater-
gic excitation to rRPa mediating stress-induced BAT thermogenesis (76), but this has not been
directly demonstrated for cold- or PGE2-evoked thermogenesis. The MnPO is a potential source
of excitatory input to the DMH and rRPa to drive cold-defensive responses. The MnPO con-
tains a population of glutamatergic neurons that project to the DMH/DHA and are synaptically
connected to BAT (135). These MnPO neurons could provide an excitation to thermogenesis-
promoting neurons in the DMH/DHA, as activation of this glutamatergic input to DMH/DHA
with MnPO injection of tuberoinfundibular peptide of 39 residues (TIP39) drives a hyperthermia,
while inactivation limits cold-defensive thermogenesis (135). Skin cooling activates neurons in the
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MnPO that project to the rRPa (114). Inhibition of neurons in the MnPO reverses the cooling-
and PGE2-evoked increases in BAT thermogenesis (134, 136). Thus, skin cooling–dependent
glutamatergic transmission from the MnPO to the DMH and rRPa may increase the excitability
of these excitatory neurons that drive cold-defensive responses (Figures 1b and 2a).

However, the DMH and the rRPa receive excitatory inputs from other sources as well
(Figures 1b and 2a), because disruption of both GABAergic and glutamatergic efferents from
the POA with a transection evokes strong BAT thermogenesis and CVC (46, 88, 91). These
experiments indicate the existence of a potent excitatory input to DMH/DHA neurons whose
source remains unknown. Similarly, the large increase in BAT SNA following disinhibition of
rRPa neurons in rats with a brain transection caudal to the DMH (90) reveals a brainstem source
of excitatory drive to BAT sympathetic premotor neurons in rRPa. Similar transection experi-
ments reveal a tonically active brainstem source of excitation to CVC premotor neurons in the
rRPa (91). Once the sources of these tonic excitatory drives are identified, a key question will be
what mechanisms support their tonic discharge.

4.5. Preoptic Mechanism that Triggers Fever During Infection

Systemic infection or inflammation or systemic injection of lipopolysaccharide in experimental
fever stimulates biosynthesis of the pyrogenic mediator, PGE2, in endothelial cells of brain blood
vessels (137) and in some peripheral tissues (138). Local and blood-borne PGE2 acts via EP3Rs in
POA neurons distributed in both MnPO and MPA (139, 140) (Figure 2b) to trigger thermoeffector
responses, including CVC, and BAT and shivering (chills) thermogenesis (7, 53, 141) that mimic
cold-defense responses.

The EP3R is the PGE receptor primarily responsible for its pyrogenic action, as EP3R-deficient
mice fail to develop fever in response to PGE2, interleukin-1β, or lipopolysaccharide (140, 142).
The coupling of EP3R to the inhibitory Gi protein, which reduces intracellular cAMP level, the
decrease in POA cAMP level by PGE2, and the attenuation of PGE2-induced fever by phosphodi-
esterase inhibition that blocks cAMP degradation (143) all provide support for the current model
(7, 79, 80) in which the inhibition of EP3R-expressing neurons in the MnPO and MPA by PGE2

underlies the activation of heat retention and thermogenesis that elevates TCORE in fever. Many
EP3R-expressing POA neurons are GABAergic and include two nonoverlapping populations that
project to the DMH and the rRPa (53, 79, 80). Approximately 40% of MPA neurons infected
with pseudorabies virus from BAT inoculations expressed the EP3R (56). These data indicate that
thermoeffector activation during fever is dependent on a PGE2-mediated inhibition of EP3R-
expressing, GABAergic POA neurons that provide a descending tonic inhibition of the DMH and
rRPa, thereby disinhibiting the excitatory outflows that drive thermogenesis and CVC.

5. CENTRAL CIRCUITS FOR BEHAVIORAL THERMOREGULATION

Voluntary behavior for thermoregulation, illustrated by rodent cool- and warm-seeking behaviors
in hot and cold environments, respectively, is directed at conditioning the ambient temperature
for optimized efficiency of the autonomous thermoregulatory mechanisms, including reducing
the energy cost of thermogenesis and the water cost of evaporative heat loss. This instinctive
behavior is the principal mode of thermoregulation in poikilotherms and is also important even in
mammals when they are in severe thermal conditions under which autonomous thermoregulation
is less effective.

Thermoregulatory behavior in humans is directed at avoiding thermal discomfort or displea-
sure and obtaining thermal pleasure (144), consistent with the involvement of emotion-related
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regions in the cerebral cortex and amygdala (145), which are activated by cutaneous innocuous
thermal stimuli (146). Unexpectedly, ablation of the spinothalamocortical pathway has no effect on
cold- or heat-avoidance behavior in rats, indicating that behavioral thermoregulation is indepen-
dent of the cortical perception of skin temperature (39). Elimination of those thermoregulatory
behaviors following inhibition of LPB neurons (39) indicates that the LPB mediates the ther-
mosensory afferent signaling for behavioral thermoregulation, as it does for autonomous ther-
moregulation. Although the LPB transmits pain signals to the amygdala (147, 148), they are likely
mediated by LPB neurons different from those mediating thermosensory inputs to the POA (38,
40, 44, 149). However, whether the POA is involved in behavioral thermoregulation is contro-
versial. Lesion of the POA, which strongly attenuates autonomous thermoregulation, does not
affect operant thermoregulatory behaviors (150) or warm- or cold-seeking behavior (151). How-
ever, local heating and cooling of the POA can elicit thermoregulatory behaviors to reverse the
changes in TCORE (152). Optogenetic stimulation of PACAP/BDNF neurons in the POA, which
are activated by skin warming, elicits cold-seeking behavior (125). Therefore, the cutaneous ther-
mosensory inputs to the POA from the LPB may stimulate thermoregulatory behavior, likely
through the DMH (151). How the thermosensory signals conveyed to the POA contribute to the
generation of thermal comfort and discomfort that motivate behavioral thermoregulation remains
to be understood.

6. PERSPECTIVES

Considerable progress has been achieved in understanding the functional organization of the ded-
icated thermoregulatory network in the central nervous system that provides the fundamental
neural control of the thermoregulatory effectors: thermoregulatory behavior, CVC, and BAT and
shivering thermogenesis. This knowledge provides an essential framework for future research to
address some of the many questions in this field. What is the molecular and neural basis underly-
ing the excitatory drives to key efferent neurons determining thermoeffector activity? What POA
mechanisms determine the different threshold temperatures for activation of different thermoef-
fectors? What are the neural mechanisms responsible for the changes in TCORE that accompany
different behavioral states that arise from the myriad of nonthermal inputs to the core ther-
moregulatory network or that are characterized as neurogenic fever after brain injury? How are
the circadian and sleep-related changes in TCORE generated? What are the neural mechanisms
through which homeostatic conflicts (e.g., blood volume versus evaporative cooling in a hot en-
vironment) are resolved? How can our understanding of the alterations in the thermoregulatory
network in hibernating/torpid mammals be recruited to implement therapeutic approaches (e.g.,
hypothermia) to alter TCORE and metabolism?
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