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Abstract

Regenerative processes that maintain the function of the gastrointestinal
(GI) epithelium are critical for health and survival of multicellular organ-
isms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the
GI epithelium. ISC function is regulated by intrinsic, local, and systemic
stimuli to adjust regeneration to tissue demands. These control mechanisms
decline with age, resulting in significant perturbation of intestinal home-
ostasis. Processes that lead to this decline have been explored intensively in
Drosophila melanogaster in recent years and are now starting to be character-
ized in mammalian models. This review presents a model for age-related re-
generative decline in the fly intestine and discusses recent findings that start
to establish molecular mechanisms of age-related decline of mammalian ISC
function.
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SOMATIC STEM CELLS: LOCAL, SYSTEMIC, AND CELL
AUTONOMOUS REGULATION

Most animals harbor an intrinsic capacity to heal and regenerate tissues. Central to this capacity
is the availability of a population of cells with sufficient potency to recreate all differentiated cell
types needed for tissue function. Such somatic stem cells (SSCs) exist in many tissues in verte-
brates, where they have to be carefully controlled to maintain their regenerative potential while
preventing deregulation that could lead to dysplasias and neoplasias.

Depending on the needs of each tissue, resident SSC populations are controlled and activated
in specific ways: SSCs in the muscle and the upper airways, for example, are often maintained in a
quiescent state and only activated after tissue damage, while SSCs in the small intestinal epithelium
are always active, providing a continuous stream of progenitor cells that go on to differentiate
into the cell types lining the intestinal lumen (1-3). The precise context-dependent regulation of
SSC activity and function is achieved through a combination of cell-intrinsic, local, and systemic
regulators, which all impinge on stem cell function and thus on regenerative capacity and structure
of the tissue (1-4). This renders stem cells susceptible to changes in their microenvironment as
well as the broader physiological status of the animal, including to its metabolic and inflammatory
condition. This susceptibility allows SSCs to appropriately respond to changes in the organism’s
condition, but it also poses a risk for the long-term health of regenerating tissues. As the animal
ages, for example, systemic stress signals tend to be elevated, resulting in skewed SSC responses
to damage (Figure 1). At the same time, the long-term maintenance of SSCs in a quiescent state
means that SSCs are exposed to environmental and intrinsic stressors often for many years before
they are needed for a regenerative response. The resulting accumulation of molecular damage in
organelles, as well as of DNA, lipids, and proteins, has been described as a possible driver of SSC
decline, especially in tissues such as the muscle (3, 5-9).
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Regulation and aging of somatic stem cells. (#) Intrinsic (cell-autonomous), local (niche), and systemic factors regulate somatic stem cell
maintenance, quiescence, activation, lineage specification, and differentiation. () In the aging animal, many of these factors decline or
become deregulated, resulting in the loss of stem cells, deregulated stem cell activity, skewed differentiation potential, and
misdifferentiation of daughter cells.
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Strikingly, heterochronic parabiosis experiments have demonstrated that SSCs can be rejuve-
nated by changes in the systemic environment, indicating that systemic factors can over-ride the
defects accumulated in these cells. Such rejuvenation can improve regenerative activity in many
tissues and bears promise for the development of interventions that promote tissue repair in older
patients (3, 5, 6).

SSCs in barrier epithelia are exposed to a unique combination of intrinsic and extrinsic stres-
sors, yet they also exhibit remarkable regenerative potential and resilience. Understanding these
qualities and gaining insight into age-related changes in such SSCs are crucial for the development
of interventions into a range of chronic inflammatory diseases. The Drosophila gastrointestinal (GI)
tract has served as a powerful and genetically accessible model system for the exploration of the bi-
ology and age-related decline of regenerative capacity in barrier epithelia (4, 8-12). In this system,
a deep understanding of regulatory mechanisms of intestinal stem cell (ISC) activity and lineage
specification is combined with the complexity of an epithelium that interacts with the microbiota,
mounts innate immune responses, and serves as a semipermeable barrier to the exterior milieu.
Accordingly, important insight into age-related changes in cell-autonomous, paracrine, and en-
docrine regulation of ISC activity and function has been obtained in this system in the last decade
4, 8-12).

In this review, I discuss our current understanding of the interplay of intrinsic, local, and sys-
temic changes that cause regenerative decline in barrier epithelia of the GI tract, with a specific
focus on lessons from the Drosophila model and how they apply to vertebrate stem cell biology. I
specifically highlight new findings elucidating the causes and consequences of age-related changes
in the function of ISCs in Drosophila and mice and focus on intervention strategies that may im-
prove stem cell function, regenerative homeostasis, and longevity.

BARRIER EPITHELIA: REGENERATION, INFLAMMATION,
METABOLISM, AND IMMUNITY

Epithelia lining the GI and urogenital tracts, as well as the airways, exhibit unique properties due
to their exposure to the exterior milieu, their close interaction with the microbiota, and their func-
tion as a tight but semipermeable barrier for water, air, nutrients, immune factors, and digestive
enzymes. It is therefore no surprise that these tissues exhibit a unique regenerative capacity and
contain robust SSC populations. These tissues also exhibit unique plasticity and have evolved a
variety of mechanisms to replace lost stem cells by dedifferentiation (13-16).

At the same time, the high functional diversity of such epithelia, which include epithelia that
contain acid-producing cells in the gastric region, epithelia that are dominated by ciliated cells in
the airway, and epithelia that form extensive crypt/villi structures in the small intestine, is reflected
by the diversity of regenerative approaches. In the upper airways, for example, basal stem cells are
mostly quiescent and only activated after tissue damage, while in the small intestine, stem cells in
the crypt base are mostly active, generating a continuous supply of new cells that form the villus
epithelium. This diversity of SSC behaviors is likely a consequence of the diversity of epithelial
microenvironments. SSCs respond to growth factors, cytokines, and cell contact cues in their
local environment and are dynamically regulated by signals emanating from neighboring cells. A
detailed understanding of the homeostatic maintenance of SSC function in these epithelia thus
requires deep insight into such local signals and the multitude of signals that can impinge on SSCs
in conditions of nutrient deprivation, infection, inflammation, and mechanical damage (17-21).

Intestinal epithelia are particularly vulnerable to misregulation of homeostatic mechanisms,
as mechanical and chemical stressors damage this epithelium regularly, whereas exposure to en-
teropathogens is common, the commensal microbiota has to be managed, the epithelial barrier
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has to be maintained, and enzymes and nutrients have to be secreted and resorbed. Misregula-
tion of homeostatic mechanisms is a likely cause of intestinal dysbiosis and chronic inflamma-
tion, pathologies that can in turn negatively influence epithelial regeneration and cause dysplasias
and cancers (22-27). Understanding the various interactions between intestinal regeneration, ep-
ithelial functions, the commensal microbiota, and the immune system is thus critical to develop
strategies for intervention and prevention of GI diseases.

Aging is among the main risk factors for a range of chronic and inflammatory diseases, and
diseases of the GI tract are no exception. Elderly individuals are susceptible to infectious and
inflammatory diseases (22), show increased incidence in colorectal cancer (28), exhibit metabolic
imbalance (29), and are prone to GI infections (30). Age-related changes in the GI tract may not
only cause a higher incidence of inflammatory diseases of the gut but also a decline in overall
health and life span. Several age-related complications such as obesity (31), insulin resistance (32),
and general frailty (33) have been associated with changes in the intestinal microbiota.

Conditions that often contribute to the development of such GI diseases are premalignant
metaplasias and dysplasias. In the human GI tract, epithelial metaplastic lesions increase the risk of
intestinal cancer (34). Such lesions are characterized by ectopic replacement of epithelial cell types.
In Barrett’s metaplasia, the esophageal squamous epithelium acquires properties of the gastric or
intestinal columnar epithelium, resulting in a higher risk of esophageal adenocarcinomas (35, 36).
Dysplasias, in turn, are characterized by aberrant cell proliferation and differentiation. Dysplastic
lesions are believed to follow metaplasias in epithelial carcinogenesis and can contribute to the
progression toward invasive carcinoma (37, 38).

The discovery and characterization of ISC populations in flies and mice in the past decade (39—
41) and the study of their age-related dysfunction have led to the realization that these epithelial
diseases are likely a consequence of misdirected epithelial regeneration caused by changes in the
regulation of ISC activity and function. Drosophila has served as a particularly productive model in
this respect, allowing detailed dissection of cell-autonomous, local, and systemic signaling mecha-
nisms that are deregulated in aging animals and contribute to the loss of epithelial homeostasis in
the GI tract. I describe this model in detail in the following section and propose a model for the
age-related loss of tissue homeostasis in the fly gut that also shortens overall life span of the animal.

DROSOPHILA INTESTINAL STEM CELLS: A MODEL FOR COMPLEX
REGULATION OF GASTROINTESTINAL REGENERATION

The Drosophila GI tract has served as a rich and productive model for the elucidation of homeo-
static mechanisms that maintain integrity of barrier epithelia. The GI tract of the fly is lined by
a pseudostratified monolayered epithelium that is regionally compartmentalized and surrounded
by visceral muscle, innervated, and contacted by tracheal tubules (12). This epithelium is regener-
ated upon damage by Escargot (Esg)-expressing ISCs. ISCs are multipotent and regenerate cells
with secretory/absorptive function like enterocytes and gastric copper cells, as well as cells with
endocrine function like enteroendocrine cells (EEs). ISC potential is regionally diversified, with
posterior midgut ISCs, for example, producing primarily enterocytes and EEs, and ISCs in the
gastric region generating three different cell types: enterocyte-like cells, EEs, and copper cells (8,
12). It remains unclear whether this diversity is developmentally entrained and thus regulated by
intrinsic determinants of ISC identity or whether it is a consequence of the microenvironment.

Regulation of Intestinal Stem Cell Proliferation

In contrast to that in the mammalian small intestine, ISC proliferation in flies is dynamic.
Under homeostatic conditions, ISCs are mostly quiescent, resulting in relatively slow turnover
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of the epithelium. In response to stressful insults, however, ISCs are activated within hours,
allowing rapid and efficient restoration of the damaged epithelium. This response is observed
upon infection with enteropathogens, as well as in response to DNA damage, oxidative stress,
or surfactant challenge (4, 11, 12). In cases in which the challenge is temporary, such as during
infection with the mild enteropathogen Erwinia carotovora carotovora 15 (Eccl5), ISCs return to
quiescence upon reestablishment of a functional epithelium, and the animal can thus survive
multiple challenges [albeit, with a progressive loss of stem cells (42)]. The activation of ISCs
results in an asymmetric division, which allows self-renewal of ISCs, as well as the generation
of either EE- or enterocyte-committed postmitotic progenitor cells called enteroblasts (4, 12).
The commitment into the EE or enterocyte lineage occurs at the level of the stem cell and can
be modulated by Robo/Slit signaling through a negative feedback loop in which EEs secrete
the ligand Slit to engage Robo2 receptors in ISCs, preventing their specification into the EE
fate (43). Differentiation of enteroblasts into enterocytes is governed by Notch signaling, which
is activated in enterocyte-committed enteroblasts by Delta ligands expressed on ISCs (4, 12).
Interestingly, ISCs can also undergo symmetric divisions under certain conditions, such as during
adaptive resizing (when the intestine is growing during a refeeding phase after starvation) (44).

The mechanisms governing activation of ISCs after a challenge have been intensively inves-
tigated since the first description and characterization of ISCs in 2006 (39, 40). These studies
have led to a comprehensive model for the control of ISC proliferation during regenerative
episodes (4, 12). Signals derived from damaged enterocytes, hemocytes, visceral muscle, and more
distant tissues stimulate proliferative activity of ISCs. Major signaling pathways involved in this
activation include the epidermal growth factor receptor (EGFR), Jun N-terminal kinase (JNK),
Janus-activated kinase (JAK)/signal transducer and activator of transcription (STAT), bone mor-
phogenetic protein (BMP), and WNT signaling pathways. These pathways respond to EGF-like
ligands (such as Vein) expressed in the visceral muscle, to reactive oxygen species (ROS) and
inflammatory cytokines [Unpaireds (Upds)] emanating from enterocytes, to BMP-like ligands
(Dpp) secreted by hemocytes, and to Wnt-like ligands (Wg) derived from enteroblasts (Figure 2).

A critical question emerging from these studies is how individual ISCs integrate and decode
the large number of mitogenic signals to engage in the appropriate context-specific proliferative
response. One mechanism of integration is the need for simultaneous activation of various path-
ways to spur ISC proliferation. It has been shown, for example, that the EGFR pathway is required,
but not sufficient for ISC proliferation under homeostatic conditions, as quiescent ISCs exhibit
dual phosphorylation of the downstream kinase ERK. Combined activation of EGF-induced ERK
and ROS-induced JNK signaling is in turn required and sufficient to promote ISC proliferation
(45). This specific integration is achieved by dual phosphorylation of the downstream transcrip-
tion factor Fos on unique ERK- and JNK-responsive sites. Ca’* signaling has been reported as a
second mechanism of signal integration in the control of ISC proliferation. Elevation of cytosolic
[Ca’*] can be observed in ISCs in response to activation of a range of different promitotic signal-
ing pathways and is required and sufficient to trigger ISC proliferation by stimulating CaN and
CREB-regulated transcriptional coactivator (CRTC) activity (46, 47).

These findings indicate that the transition from a quiescent to an activated state is defined in
ISCs by unique molecular changes that are a consequence of the concerted action of the signaling
pathways mentioned above. It will be interesting to test this hypothesis in the context of cellular
metabolism, as recent studies indicate that changes in energy metabolism are critical to ensure or
sustain appropriate proliferative responses. ISC proliferation is influenced by mitochondrial pyru-
vate intake, mitochondrial fission and fusion, and lipid metabolism (48-50). A central coordinator
of nutrient sensing, translation, and autophagy, the TOR signaling pathway, is also required for
efficient entry of ISCs into the active state (42).
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Figure 2 (Figure appears on preceding page)

The Drosophila gastrointestinal (GI) tract and intestinal stem cell (ISC) regulation. The Drosophila GI tract is
compartmentalized and exhibits regionally differentiated regeneration of the GI epithelium. The main
compartments include the proventriculus (PV), anterior midgut (AM), and middle midgut (MM) that include
the copper cell region (CCR), posterior midgut (PM), and hindgut (HG). Schematics for lineage
relationships of gastric stem cells (GSSCs) and posterior midgut stem cells (ISCs) are shown in panel 4.
GSSCs are activated by stress and generate gastroblasts (GBs), which can go on to differentiate into copper
cells (CC), interstitial cells (IS), and enteroendocrine cells (EEs). ISCs generate enteroblasts (EBs) that
differentiate into enterocytes (ECs) or EEs. Control mechanisms regulating ISC maintenance and
proliferation are shown in panel 4. Unpaireds (Upds) activate the Janus-activated kinase (JAK)/signal
transducer and activator of transcription (STAT) signaling pathway through the receptor domeless (dome) in
response after stress-induced secretion from ECs is triggered by Jun N-terminal kinase (JNK) signaling,
which activates the transcription factor Yorkie (Yki). Upds from ECs also activate vein expression in the
muscle, which in turn activates epidermal growth factor receptor (EGFR) signaling in ISCs. Wingless (Wg)
derived from the muscle has been proposed to support ISC survival by activating canonical Wnt signaling
through Frizzled (Fz), Dishevelled (Dsh), adenomatous polyposis coli (APC), and armadillo (Arm). EGFR as
well as other receptor tyrosine kinases (RTKs), such as the insulin receptor (InR) and the PDGF/VEGF
receptor (PvR), engage the phosphatidyl inositol 3 kinase (PI3k) and Akt signaling pathway to inhibit
forkhead box O (FoxO) activity, and the Ras/mitogen-activated protein kinase (MAPK) pathway to activate
Fos. Hemocytes secrete decapentaplegic (Dpp) to engage the saxophone (Sax)/Smad on X (Smox) pathway
during ISC activation, and Dpp will also engage the thickveins (Tkv)/mothers against Dpp (Mad) pathway to
inhibit ISC proliferation in the later phase of the regenerative response. Both Tkv and Sax interact with the
Type II receptor Punt (Put). Insulin-producing cells (IPCs) can influence ISC proliferation through the
secretion of Drosophila insulin-like peptides (Dilps). ISCs also respond to reactive oxygen species (ROS)
through the JNK signaling pathway. Mitogenic signals are integrated by ISCs through the calcium (Ca®*),
calcineurin (CaN), CREB-regulated transcription coactivator (CRTC) signaling pathway.

Epithelial Immunity in Drosophila and the Microbiota

As a barrier epithelium, the Drosophila intestinal epithelium interacts with and manages the mi-
crobiota and is exposed to enteropathogens. As a consequence, epithelial regeneration, epithelial
immunity, and inflammation are closely linked, a likely evolutionary adaptation to a challenging
environment. ISC function and activity are uniquely sensitive to infection with enteropathogens
and can be influenced by the microbiota. Three main defense mechanisms manage the interactions
of the epithelium and the bacterial flora (11, 51): the peritrophic matrix, the peptidoglycan recog-
nition protein (PGRP)/immune deficiency (IMD)/relish pathway, and the p38/phospholipase C
gamma (PLCg)/calcium/dual oxidase (Duox) signaling pathway. The peritrophic matrix consists
of chitin and glycoproteins secreted by the proventriculus [with possible contributions by ente-
rocytes (52)] that cover the intestinal epithelium. It prevents direct contact of microbes and other
lumen contents with epithelial cells, and loss of peritrophic matrix components renders flies sus-
ceptible to infections (53). The PGRP/IMD/Relish pathway controls expression of antimicrobial
peptides in response to recognition of bacterial peptidoglycans (54-67). Itis kept inactive in home-
ostatic conditions by a variety of negative regulators, including Caudal (68), PGRPs of the SC, LB,
and LF class (59, 69, 70), USP36 (71), and PIRK (72). Loss of these regulators can result in a shift
in commensal populations, activation of stress signaling in the epithelium, and excessive stem cell
proliferation, resulting in epithelial dysplasia (68, 73, 74). The p38/PLCg/Ca’**/Duox signaling
pathway controls the production of ROS by enterocytes. Duox is a member of the NADPH oxi-
dase family and is transcriptionally induced in enterocytes in response to p38 MAPK activation (64,
75). It is activated in response to a bacterial challenge by a pathway involving activation of phos-
pholipase CB (PLCB) and triggers inositol-1,4,5-triphosphate (IP3)-induced Ca** release. Ca?*
binds and activates Duox (64, 76, 77). The epithelium produces an enzyme that protects against
the cytotoxic effects of ROS: extracellular immune-related catalase (77). Yet during an infection,
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ISCs respond to Duox-mediated ROS production by entering a proliferative state. A combina-
tion of this ROS signal, enterocyte-derived inflammatory cytokines (primarily Upds), and visceral
muscle—derived Vein promote the proliferative response of ISCs to infection, ensuring rapid tissue
regeneration upon tissue damage (4, 45, 78-80).

While these defense mechanisms control the response of the epithelium to enteropathogens,
they also shape, and are influenced by, the natural microbiota. The Drosophila intestine contains a
relatively simple microbiota comprising approximately 5-20 microbial species. Major constituents
are beneficial microbes, such as Acetobacter pomorum and Lactobacillus plantarum, which promote
growth and development in flies when reared on a restricted diet (68, 81-84). These microbes,
in contrast to pathobionts, do not activate the intestinal immune system, allowing colonization
of the gut. The epithelial immune system differentiates between pathobionts and commensals
due to their differential secretion of uracil, which is secreted by pathobionts such as Vibrio fluvi-
alis, Klebsiella pneumonia, Erwinia carotovora carotovora, Shigella sonnei, Pseudomonas aeruginosa, and
Serratia marcescens, but not by symbionts such as A. pomorum, L. plantarum, and Commensalibacter
intestini. Uracil induces Hedgehog (Hh) signaling, which is required for intestinal expression of
the calcium-dependent cell adhesion molecule cadherin 99C (Cad99C) and subsequent Cad99C-
dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS
production by acting as signaling platforms for PLCB/PKC/Ca’*-dependent Duox activation
(66).

Interestingly, the species composition of the microbiota is not the only determinant of home-
ostasis in host/commensal interactions in the fly gut. Recent studies suggest that it is also the loca-
tion of microbial colonization that shapes innate immune responses and inflammatory processes
in the intestinal epithelium. Disrupting the luminal microenvironment, for example, in conditions
in which the acidic gastric region is dysfunctional, allows ectopic colonization of specific gut re-
gions by bacteria that normally colonize other regions. This also results in significant changes in
microbiota composition and the induction of the above-referenced inflammatory response. Ac-
cordingly, loss of the gastric region has been shown to contribute to the age-related decline in
intestinal homeostasis and to shorten life span (85).

The microbiota also produces metabolites that can influence ISC function and overall home-
ostasis. This function of the microbiota is only beginning to be understood, and more work is
needed to obtain a comprehensive view of the influence of microbial metabolites on ISC func-
tion. A recent study has found that in conditions of elevated L. plantarum colonization, bacteria-
derived lactic acid triggers the activation of the intestinal NADPH oxidase Nox, causing ROS
production, intestinal damage, ISC overproliferation, and shortened life span. ROS production in
this interaction requires lactate oxidation by the host intestinal lactate dehydrogenase, suggesting
that changes in host gene expression can modulate the influence of the microbiota on tissue home-
ostasis (86). A second study reported that mono-association with L. plantarum disrupts intestinal
homeostasis and shortens life span, confirming the deleterious effects of excessive or unbalanced
colonization with normally beneficial bacteria (87).

Aging and the Fly Intestinal Epithelium

The need for coordination between immune and inflammatory responses and epithelial regener-
ation sensitizes the fly intestine to stress-induced loss of homeostasis. This is particularly evident
in the intestine of aging flies. The intestinal epithelium in old Drosophila exhibits uncontrolled
ISC proliferation and epithelial dysplasia that is associated with a loss of barrier function (58,
80, 88, 89). The causes and consequences of these phenotypes have been studied intensively in
recent years (4, 65), and it is now possible to propose a comprehensive model for the loss of
epithelial function in the aging Drosophila intestine (Figure 3). However, while the wide-ranging
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Aging of the Drosophila GI tract. A model for the progressive decline of epithelial homeostasis and the
development of epithelial dysplasia and barrier disruption. Loss of barrier function precedes death in flies. It
can be measured by exposing flies to a blue food dye that only penetrates the gut epithelium upon barrier
dysfunction and then turns the fly blue. Pathways that cause distinct steps in the progression of tissue
dysfunction are shown. JAK/STAT activation of copper cells (identified by Cut staining) results in their
transdifferentiation and loss, which in turn results in loss of luminal acidity (shown in ye//ow) and bacterial
dysbiosis. FoxO/Relish (Rel) activation in the enterocytes of the posterior midgut contributes to commensal
dysbiosis, which in turn results in epithelial dysplasia by activating inflammatory signaling, including JNK
signaling in ISCs. Regional or cell type—specific perturbation of these pathways can improve homeostasis and
extend life span. Abbreviations: CC, copper cell; GI, gastrointestinal; ISC, intestinal stem cell; JAK,
Janus-activated kinase; JNK, Jun N-terminal kinase; STAT, signal transducer and activator of transcription.

and combined age-related changes in cellular composition, morphology, signaling, and gene ex-
pression, as well as regenerative activity in the aging epithelium, have been extensively explored,
our understanding of cell-intrinsic changes that may drive age-related stem cell dysfunction
remains incomplete. In the following section, I present a possible model for age-related epithelial
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degeneration and then discuss new studies that provide the first insight into the intrinsic
molecular changes that impact ISC function.

The development of epithelial dysplasia in aging flies is closely linked to changes in the micro-
biota (18, 90-95). Recent studies suggest that these changes are a consequence of the age-related
loss of acidity in the lumen of the gastric region due to the transdifferentiation of gastric ep-
ithelial copper cells into posterior midgut enterocytes (85). This metaplasia is induced by ectopic
JAK/STAT signaling activity in copper cells of the gastric epithelium, which is in turn a conse-
quence of chronically elevated Upd inflammatory cytokine expression, both from local sources
in the intestine and from peripheral tissues such as the fatbody (85). This results in insufficient
acidification of the gastric lumen and a colonization of the posterior midgut by commensals that
usually colonize the anterior midgut.

Ectopic colonization of the posterior midgut is associated with an expansion and a shift in
composition of the microbiota. This dysbiosis triggers chronic activation of the p38/Duox in-
flammatory response in the posterior midgut epithelium and thus chronic production of ROS.
Accordingly, the aging intestinal epithelium exhibits high levels of ROS and ROS-induced signal-
ing such as JNK signaling, platelet-derived growth factor (PDGF)/vascular endothelial growth
factor (VEGF) signaling, and disruption of normal Nrf2 signaling (58, 80, 88, 89). The chronic
exposure to such signals results in continuous proliferative activation of ISCs and the overproduc-
tion of ISC daughter cells. Epithelial dysplasia is a consequence of this overproduction of cells but
is also associated with a misdifferentiation of daughter cells. These cells exhibit ectopic Notch sig-
naling activity and DI expression, continue expressing stem cell markers such as Esg, initiate but do
not complete differentiation into enterocytes, and accumulate on the basal side of the epithelium,
disrupting its structure as well as function (58, 80, 89).

Finally, epithelial dysplasia is associated with epithelial barrier dysfunction, which is predictive
of fly death (96). Accordingly, multiple studies have demonstrated that the overall longevity of the
animal correlates with the age of onset and the severity of the described intestinal changes (74).
Based on the described discrete steps in the progression toward loss of epithelial homeostasis,
multiple studies have tested cell type-specific and temporally controlled interventions to perturb
specific steps and could show that such interventions extend life span (11, 74, 90-93, 95). These
include suppressing JAK/STAT signaling in gastric epithelial cells, modulating the innate immune
response in midgut enterocytes, preventing excessive ISC proliferation, and promoting mainte-
nance of the epithelial barrier (9, 12, 74, 85, 96). Interventions that control nutrient availability
for ISCs, such as dietary restriction, also result in reduced ISC overproliferation and extended life
span (97, 98).

Although the proposed progression of age-related intestinal dysfunction is consistent with a
large number of findings, several recent observations indicate that the chain of causality may be
more complicated than anticipated or that additional ISC-intrinsic factors contribute to the loss
of homeostasis in the aging intestinal epithelium:

1. The exact causal relationship between dysplasia and barrier dysfunction remains elusive, and
recent studies suggest that epithelial barrier dysfunction can be a consequence of changes in
enterocytes that are not mediated by ISC overproliferation. In fact, loss of barrier function
can be observed in the absence of ISC overproliferation, and it is thus possible that barrier
dysfunction develops independently in the aging intestine and contributes to or causes
epithelial dysplasia. A recent study has found that altered expression of Snakeskin (Ssk), a
septate junction-specific protein, can modulate intestinal homeostasis, microbial dynamics,
immune activity, and life span in Drosophila. Strikingly, intestinal upregulation of Ssk
improves intestinal barrier function during aging, limits dysbiosis, and extends life span,
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indicating that strengthening the epithelial barrier is sufficient to rescue many of the other
parameters of GI aging described above (99, 100). Further strengthening the notion that
changes in bacteria, alterations in ISC proliferation, and loss of barrier integrity can be
uncoupled, it was found that loss of the Drosophila tricellular junction protein gliotactin
(Gli) in enterocytes results in activation of stress signaling in ISCs and an increase in ISC
proliferation, even under axenic conditions, as well as a gradual disruption of the intestinal
barrier (101). Further studies are needed to characterize the relationships between these
phenotypes in detail.

2. Age-related dysfunction in a variety of intrinsic signaling pathways and processes in ISCs
indicates that ISC dysfunction can develop independently of the described bacterial dysbio-
sis and inflammatory response. Recent studies have described a loss of proteostatic capacity
in older ISCs due to a loss of Nrf2 activity (102), a decline of mitochondrial function in
stem and progenitor cells (49), increased endoplasmic reticulum stress (93), activation of
retrotransposon expression and ensuing DNA damage (103), changes in autophagy (104)
and heterochromatin (105), and increased polymerase III transcriptional activity (106). All
of these mechanisms seem to contribute to dysplasia in the aging intestine, yet it remains
unclear how these processes interact at the level of the stem cell and with the wider inflam-
matory condition developing in the epithelium (90-95). Strikingly, ISCs of old flies also
display frequent somatic mutations, resulting in neoplasias (94), and the fly intestine may
thus also serve as a model for the age-related increase in cancer formation in vertebrates
(49, 90-95, 104). These stem cell-intrinsic mechanisms of age-related decline also serve as
targets for interventions, as improved homeostasis, and in some cases even life span exten-
sion, was observed when perturbations were targeted toward ISCs in the studies described
above (93, 103-106).

Additional research is needed to understand the relative contributions of these processes to the
age-related dysfunction of the epithelium and to identify the rate-limiting steps in the progression
from a healthy regenerating epithelium to ISC dysfunction, epithelial dysplasia, and barrier dys-
function. Such insight would help to identify interventions that not only improve intestinal func-
tion but also benefit the health of the whole organism and thus increase health span and life span.

Critically, an area that is currently understudied in flies is the control and maintenance of
ISC identity. It remains unclear whether ISC multipotency changes during aging, whether such
changes may contribute to epithelial dysplasia, and whether mechanisms that maintain identity
and lineage commitment are useful targets for intervention to improve tissue function. Such
studies are ongoing in the community, and it can be expected that new insight will be obtained in
the near future.

MAMMALIAN INTESTINAL STEM CELLS

The GI tract of mammals is significantly more complex than that of flies, but the general principles
of stem cell regulation, the interaction of barrier epithelia with the microbiota, and the processes
that control epithelial regeneration appear to be broadly conserved. As in flies, the GI tract of
mammals is compartmentalized, resulting in significant epithelial diversity. Accordingly, epithelial
regeneration and stem cell regulation differ in the various regions of the GI tract. Over the last
decade, much has been learned about the stem cell compartment in the mouse GI tract, especially
about leucine-rich repeat-containing G protein—coupled receptor 5 positive (Lgr5*) cells in the
crypts of the small intestine. The use of in vivo and ex vivo (organoid) mouse models for the study
of stem cell identity and function has significantly improved our understanding of the regulation
of epithelial homeostasis and of regeneration in the mammalian small intestine (107, 108).
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The small intestine is lined by a monostratified epithelium that folds into numerous finger-
like protrusions called villi that project into the intestinal lumen, maximizing surface area for
digestion and absorption. Tubular invaginations between these villi, known as crypts, contain stem
cells, Paneth cells, and transit amplifying (TA) cells, whereas the villi contain enterocytes, goblet
cells, and EEs. Paneth cells and ISCs populate the base of the crypt and are closely associated
with each other. While secreting antimicrobial substances and the hydrolytic enzyme lysozyme,
Paneth cells also provide trophic factors for ISCs, promoting their survival and function. ISCs
divide to self-renew and generate TA cells, which in turn undergo multiple rounds of cell division
to amplify their numbers as they migrate along the crypt axis toward the base of the villus, where
they differentiate (41, 109, 110).

Self-renewing and multipotent ISCs in crypts of the mouse small intestine had been predicted
based on lineage tracing studies with mouse chimeras and mutagen-marked cells (110, 111) but
were only identified and characterized in the last decade after ISC-specific markers had been found
(107). These studies proposed two different stem cell populations in the crypt: LGRS5-expressing
crypt base columnar stem cells that intercalate with Paneth cells at the crypt base (41), and Bmil-
expressing +4 stem cells, which are located four cell diameters apical of the crypt base (112).
Lineage tracing using Lgr5-driven inducible Cre recombinase results in epithelial cell clones that
span from the crypt base to the tip of the villus and contain all major epithelial cell types (41,
108). Bmil* cells can also self-renew, proliferate, and generate all the different cell lineages of
the small intestine, supporting epithelial self-renewal and crypt maintenance (112). Both LGRS+
and Bmil™* cells can generate intestinal organoids in culture (113). After ablation of LGRS cells,
Bmil™ cells can restore the crypt base cell population, providing evidence for significant plasticity
of cell identities in the crypt (15), a concept that has been supported by findings that the crypt
base can be repopulated by other cell types as well, including differentiated endocrine and Paneth
cells (15, 16, 107, 114-117). A recent study has also proposed the presence of a distinct revival
stem cell population that can repopulate the crypt in conditions of severe damage (118).

Human cells in the base of colonic crypts also behave as multipotent stem cells (119), and Lgr5-
GFP-positive cells isolated from teratomas can generate long-lived intestinal organoids (120), in-
dicating that ISC identity and function may be conserved between mice and humans.

In addition to the well-characterized crypt basal stem cells of the small intestine, stem cells in
other areas of the GI tract have also been studied, albeit to a lesser extent. This includes stem cell
populations in the esophagus and stomach, which regenerate fundamentally different epithelia.
The esophagus is lined by a stratified squamous epithelium and lacks established niche structures,
such as crypts in the small intestine. A layer of proliferating basal cells attached to the basement
membrane produces several layers of differentiated cells, which are shed into the lumen and re-
placed by cells derived from the basal cells. While basal cells have stem cell properties, it remains
unclear whether a unique self-renewing and quiescent stem cell population exists in the esophagus
(121-125). The stomach, in turn, is lined by an epithelium composed of crypt-like structures called
gastric units that produce gastric acid (in the corpus) or the hormone gastrin (in the Antrum) (126).
A highly proliferative zone of the isthmus of these gastric units contains stem-like cells (126-128).
Lineage tracing based on Cre recombinase driven by the Villin promoter, Lgr5-Cre, or Sox2-Cre
has further identified stem cell populations along the gland in the pylorus (129), at the base of the
gland in the pylorus (130), and in the pylorus and corpus near the isthmus region of the gland
(131), respectively. Troy™/Mist* chief cells at the bottom of the gastric unit in the corpus have
further been proposed to act as reserve stem cells to regenerate all cell types over a longer period
of time (132, 133).

A detailed understanding of the regulation and maintenance of most stem cell populations in
the mammalian GI tract remains elusive. However, studies on Lgr5* crypt basal cells in the small
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intestine have provided insight into ISC maintenance and regulation by factors from the stem cell
niche (134). A multitude of signaling pathways control ISC activity and function, including Wnt,
BMP, and Hh and Notch signaling (135). Most critically, a gradient of Wnt activity along the
crypt axis maintains ISC regenerative capacity (136-142), and its loss leads to complete ablation
of intestinal crypts. Wnt signaling further determines cell fates within and the spatial organization
of the crypt (143).

High Wnt activity in nonproliferating Paneth cells is required for their terminal differentiation
(144, 145), and this effect is mediated by the Wnt target gene Sox9 (146-148). BMP signaling,
in turn, negatively regulates ISC proliferation and self-renewal, potentially by inhibiting Wnt
signaling (137, 149-152). Proliferation of stem and progenitor cells is also maintained by Notch
signaling, in contrast to the fly intestine, where Notch activation promotes differentiation (149,
153-155). Inhibiting Notch signaling in the mouse converts LGR5* ISCs into secretory cells,
likely through activation of the Wnt pathway (156), while ectopic activation of Notch in the crypt
leads to the expansion of proliferating cells and inhibits the generation of secretory cell types (157).

Lgr5-expressing stem cells can be found throughout the small intestine and in the pyloric re-
gion of the stomach but are absent from the main body of the stomach (corpus) (130) and the
esophageal epithelium (158). Differing levels of Wnt signaling activity may be driving this diver-
sification: Although Wnt is required to maintain basal stem cells in the distal pyloric region (130),
Lgrs-negative basal stem cells in the stomach corpus exhibit different levels of Wnt activity (132).

Intestinal Inflammation

Similar to the IMD/Relish pathway in flies, activation of the Relish homolog nuclear factor-«xB
(NF-«kB) by the mammalian tumor necrosis factor receptor (TINFR) pathway is critical for epithe-
lial immunity (159-162). NF-kB activation in epithelial cells modulates immune responses (163),
and chronic activation of NF-kB and of the TNFR pathway in epithelial cells contributes to in-
testinal inflammation (160, 161, 164). The role of ISC deregulation in intestinal inflammation
and inflammatory disorders is complex, but it is likely that interventions that target ISC function
can serve to improve the trajectory of inflammatory bowel diseases. One example is the use of
interleukin (IL)-22 as a possible therapy for inflammatory bowel diseases (165, 166).

ISCs may also mediate the beneficial effects of dietary perturbations on inflammatory bowel
diseases. Recent work in a mouse model for colitis reports that a short fasting period followed
by normal diet modulates the microbiota and has beneficial effects on inflammation, stem cell
proliferation, and tissue maintenance in the small intestine (167). Accordingly, ISCs are responsive
to changes in diet, including to dietary restriction, which has a beneficial effect on ISC activity in
both young and old mice (168-170). Even a short-term (24-h) fast can have beneficial effects, as
it augments ISC function by inducing fatty acid oxidation in ISCs (170).

Strikingly, there may be a link between diet and barrier dysfunction in mammals, as a recent
study reported that hyperglycemia promotes intestinal barrier permeability in mouse models of
obesity and diabetes. This effect is mediated by GLUT2-dependent transcriptional regulation in
intestinal epithelial cells and alteration of tight and adherence junction integrity. Treating hyper-
glycemia, deleting GLUT? in intestinal epithelial cells, or inhibiting glucose metabolism restored
barrier function and bacterial containment. The study further showed that systemic influx of in-
testinal microbiome products correlates with individualized glycemic control in humans (171).

How these different physiological parameters, inflammatory signals, and controls of epithelial
regeneration are influenced by aging and how they interact to influence age-related changes in
the mammalian intestine remain unclear. Recent studies have started to provide insight into these
questions by focusing on the age-related dysfunction of ISCs.
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Aging in the Mammalian Intestine

Compared to those in the fly intestine, age-related changes in the intestinal epithelium of mam-
mals remain understudied. Studies in the 1990s reported an age-related decline in repair capacity
of the mouse small intestine, showing that 28- to 30-month-old mice exhibit a significant decline
in size and number of intestinal crypts after high doses of irradiation (172). Later, it was shown
that the regenerative capacity of the intestinal epithelium declines upon DNA damage induced
by short telomeres and ROS (173, 174). Recent studies in mice suggest that the age-related loss
of homeostasis described in flies, which includes microbial dysbiosis, barrier dysfunction, and sys-
temic inflammation, is mirrored by similar age-related changes in the GI tract of mammals (175).
Maintaining mice under germ-free conditions was found to prevent the age-related increase in
circulating proinflammatory cytokines and resulted in longer life spans. Cohousing experiments
further demonstrated that old but not young conventionally raised animals can transfer proin-
flammatory conditions to germ-free mice.

However, these studies did not examine ISC function directly and did not explore the interac-
tion between age-related local, luminal, or systemic changes to gain insight into the causes of the
age-related decline in repair capacity. A recent flurry of studies has now taken advantage of the
more sophisticated understanding of mouse ISC biology that has developed in the last decade and
has started to shed light on the effects of aging on ISCs.

A specific focus has been on age-related changes in the function of Lgr5* ISCs of the small
intestine. Nalapareddy and colleagues (176) have reported changes in architecture, cell numbers,
and cell composition in the intestinal epithelium of old compared to young mice and found that
the regenerative capacity of ISCs from old mice is diminished. Morphological changes include a
decrease in crypt numbers, an increase in crypt length and width, an increase in villi length, and
elevated numbers of cells per crypt (Figure 4). It was further shown that fewer proliferating cells
can be observed at the base of the crypt, and while the numbers of ISCs do not change in old
mice compared to young animals, their function declines, resulting in fewer lineage-traced Lgr5*
cell-derived clones in old animals (176, 177). This is consistent with a reduction in stem cell-
specific gene expression, particularly in Wnt pathway genes, in the crypt of old mice, as well as
with a decline in tissue repair after injury (176). Strikingly, this ISC dysfunction is still observed in
ex vivo crypt-derived organoids, which show a decline in viability and a decline in crypt-like buds
after three passages in culture compared to organoids derived from young mice. A recent study has
found a similar age-related decline in the organoid-forming capacity of colonic crypts in humans
(178). This decline in organoid viability is likely a consequence of stem cell autonomous changes
and/or of changes in paracrine niche factors. Accordingly, Pentinmikko et al. (178) report that co-
culture with Paneth cells from young mice partially rescues the organoid forming deficiency of
old Lgr5* ISCs, while Nalapareddy and colleagues (176) find that exposure of mouse organoids to
elevated levels of Wnt3a is sufficient to rescue age-related phenotypes. Although Wnt signaling
in the intestinal epithelium is critical for tissue homeostasis in young mice, regulation of Wnt
ligand expression and of Wnt pathway activity in the crypt is complex, and further work is needed
to establish the causes and consequences of Wnt signaling decline in the aging crypt (140, 149).
Pentinmikko and colleagues (178) propose that one mechanism causing Wnt signaling decline is
the increased expression of the secreted Wnt deacylase Notum in aged Paneth cells.

Other studies have reported sometimes similar, sometimes conflicting phenotypes of aging
ISCs: Moorefield et al. (179) report increased villus height and Paneth cells in 18- to 22-month-
old mice, increased ISC proliferation, and expansion of the ISC population (identified in this
study by moderate expression of Sox9), while also demonstrating that crypt organoid cultures
from old mice yield fewer and less-complex organoids. The authors also find increased apoptosis
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Figure 4

Aging of the stem cell compartment of the small intestine of mice. (#) Current studies have described
changes in crypts of the small intestine that can be reversed through specific perturbations, such as Wnt or
NAD™ supplementation, CR, and fasting, which induces FAO in ISCs. () As described, age-related changes
are variable, and additional insight is needed to establish the relationship between molecular changes,
disruption of tissue morphology, and functional changes. Abbreviations: CR, calorie restriction; EE,
enteroendocrine cell; FAO, fatty acid oxidation; ISC, intestinal stem cell; NAD™, nicotinamide adenine
dinucleotide; TA, transit amplifying.

in the intestinal epithelium of old mice. Cui and colleagues (180), in turn, find that ISCs from
24-month-old mice form cyst-like organoids devoid of differentiated cells. Such organoids are
characteristic of conditions with elevated canonical Wntsignaling. Accordingly, the authors report
higher expression of Wnt target genes in crypts of old mice and find that reducing R-spondin-1
in the culture can suppress the cyst phenotype.

The discrepancy in findings related to Wnt signaling activity in aging intestinal crypts reflects
the difficulty of establishing the origin of dysfunctional regenerative capacity in aging intestines
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of mice. Critically, increased or sustained Wnt pathway activity contributes to colorectal cancers,
complicating the path to restoration of regenerative capacity if Wnt signaling activity is in fact
reduced in old crypts (181). Accordingly, a connection between age-related molecular changes and
the increased propensity for colorectal cancer has recently been described in the colon: In colon-
derived organoids from old mice, spontaneous epigenetic silencing by promoter hypermethylation
(which mimics human aging-like phenotypes) leads to activation of the Wnt pathway, causing a
stem-like state and differentiation defects and resulting in higher sensitivity to transformation by
BrafVe"E compared to organoids from young mice (182).

Although the exact phenotypes of ISCs of aging mice have yet to be robustly characterized, var-
ious studies have reported potential intervention strategies to restore function. Mihaylova et al.
(170) have found that fasting can promote ISC function by inducing fatty acid oxidation, whereas
Yousefi et al. (183) report that calorie restriction improves the regenerative capacity of the in-
testinal epithelium by mTORCI inhibition in injury-resistant reserve ISCs. mTORCI activity
is critical for the transition of many SSC types to an active state but can significantly impair
the function of these cells by promoting differentiation. Accordingly, exposure to rapamycin can
significantly improve the maintenance of airway basal stem cells in aging mice (42, 184). ISC
function in old mice can further be restored by treatment with the Notum inhibitor ABC99
178).

Another study reported that ISCs but not Paneth cells decline in number and proliferative ac-
tivity in aging mice, and that levels of SIRT'1 and mTORCI1 activity decline in these cells. Treat-
ment with the NAD* precursor nicotinamide riboside reverses this phenotype and can promote
repair of gut damage. Strikingly, this effect is found to be blocked by rapamycin or the SIRT1 in-
hibitor EX527 (185). These findings obviously contrast with some of the others discussed above,
and more work is needed to resolve these controversies. It seems likely that two main confounding
elements come together to cause diverse observations: (#) a lack of attention to regional variability
even within the small intestine and (§) the use of single time points to report old mouse pheno-
types. It is likely that careful characterization and comparison of age-related changes in ISCs iso-
lated from different specific regions of the GI tract will provide insight that can resolve the first
concerns, while more comprehensive characterization of developing age-related dysfunctions at
various time points along the life span of mice will resolve the second concern.

Additional techniques that provide more detailed in vivo insight into stem cell function are
also required to obtain a more comprehensive and robust picture of ISC dysfunction in the aging
animal. Of particular interest is the use of live imaging approaches, which in mice require signifi-
cant technical investment, but can lead to important insight into ISC function in homeostasis and
in aging animals. Choi et al. (186), for example, have recently reported a coordinated motion of
ISCs after focal damage in intestinal crypts, which allows reestablishment of the intercalation of
Paneth cells and ISCs. This process is impaired in crypts of old mice, indicating that the decline
in regenerative capacity in the intestine of aging animals is a consequence not only of reduced
ISC proliferation or differentiation capacity, but also of cellular motility. The mechanisms of this
age-related decline remain unclear.

CONCLUDING OBSERVATIONS

The detailed characterization of age-related changes in the GI tract of flies has led to a molecular
model for the establishment of ISC dysfunction. This model allows positing hypotheses for the de-
velopment of similar dysfunction in vertebrates and can inform the development of interventions
that aim to restore tissue function in the elderly and to treat diseases that exhibit inflammatory and
regenerative disturbances of the GI epithelium. Further in-depth characterization of mammalian
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ISC aging is needed to expand this body of work, to rigorously test hypotheses emerging from the
fly model, and to develop therapeutic approaches based on an understanding of ISC aging.
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