A ANNUAL REVIEWS

Annual Review of Physiology IP₃ Receptor Plasticity Underlying Diverse Functions

Kozo Hamada and Katsuhiko Mikoshiba

Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; email: hamada@shanghaitech.edu.cn, mikosiba@shanghaitech.edu.cn

Annu. Rev. Physiol. 2020. 82:151-76

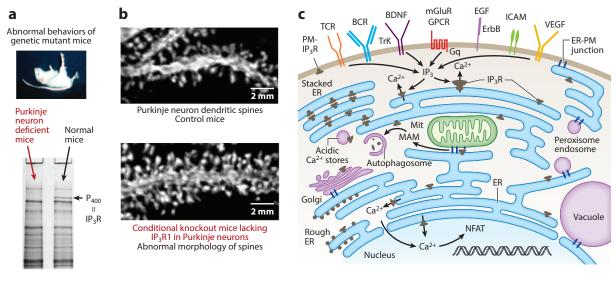
First published as a Review in Advance on November 15, 2019

The Annual Review of Physiology is online at physiol.annualreviews.org

https://doi.org/10.1146/annurev-physiol-021119-034433

Copyright © 2020 by Annual Reviews. All rights reserved

ANNUAL CONNECT


- www.annualreviews.org
- Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Keywords

inositol 1,4,5-trisphosphate receptor, Ca²⁺ channel, gating mechanism, allosteric regulation, inositol 1,4,5-trisphosphate, endoplasmic reticulum

Abstract

In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP₃), an intracellular chemical signal that binds to the IP₃ receptor (IP₃R) to release calcium ions (Ca²⁺) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP₃R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP₃R structures and begun to integrate with concurrent functional studies, which can explicate IP₃-dependent opening of Ca²⁺-conducting gates placed ~90 Å away from IP₃-binding sites and its regulation by Ca²⁺. This review highlights recent research progress on the IP₃R structure and function. We also propose how protein plasticity within IP₃R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.

Figure 1

IP₃R functions at cellular microdomains. (*a*) In an early study of mutant mice showing motor defects, P_{400} proteins lacking in Purkinje neuron deficient mice were identified as the IP₃R (1, 184). Panel adapted with permission from Reference 184. Copyright 1985, S. Karger, AG. (*b*) Morphology of Purkinje neuron dendritic spines in control mice (*top*) and adult mice (*bottom*) lacking IP₃R1. Panel adapted from Reference 15 under the terms of the Creative Commons Attribution 4.0 International License, **http:// creativecommons.org/licenses/by/4.0**. (*c*) IP₃ is liberated by G protein–coupled receptors (GPCRs), B cell receptors (BCRs), T cell receptors (TCRs), receptors for brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), intercellular adhesion molecules (ICAMs), and epidermal growth factor (EGF) (185–188). IP₃ specifically binds to IP₃R and opens the Ca²⁺ channel. IP₃R-mediated Ca²⁺ release from Ca²⁺ stores, including the endoplasmic reticulum (ER) and acidic stores, should occur in various microdomains near the organelle, including mitochondria (Mit), plasma membrane (PM), Golgi, peroxisomes, endosomes, vacuoles, and autophagosomes. The ER contacts Mit at the mitochondria-associated membrane (MAM). Ca²⁺ activates gene expression via the nuclear factor of activated T cells (NFAT).

DISCOVERY OF P₄₀₀/IP₃R FROM THE BRAIN

In the 1970s, mutant mice with abnormal behaviors were studied, and a large membrane protein called P_{400} , which is highly abundant in cerebella of normal mice, was almost absent in Purkinje neurons of mutant mice showing motor defects (**Figure 1***a*) (1, 2). The mutant mice had poorly arborized dendrites in Purkinje neurons, while reduced P_{400} expression resulted in a loss of calcium ion (Ca^{2+}) spikes (3), suggesting a correlation of P_{400} with Ca^{2+} signaling. The P_{400} protein was purified (4) and its cDNA was isolated (5). Results showed that the P_{400} protein is an inositol 1,4,5-trisphosphate receptor (IP₃R) that releases Ca^{2+} from the endoplasmic reticulum (ER) in response to inositol 1,4,5-trisphosphate (IP₃) (6–8). Importantly, because the IP₃R channel cannot open without Ca^{2+} , the coincidence of IP₃ and Ca^{2+} is critical for channel activation (9, 10). To determine the physiological roles of IP₃R, knockout mice lacking IP₃R isoforms (IP₃R1, IP₃R2, or IP₃R3) were generated. Severe cerebellar ataxia (11), impaired long-term depression (12), and abnormal dendrites of Purkinje neurons (13) were found in mice lacking IP₃R1.

Recently generated knockout mice lacking IP_3R1 in the cerebellum and brainstem exhibited the same abnormal behaviors as the IP_3R1 knockout mice (14); however, conditional knockout mice specifically lacking IP_3R1 in Purkinje neurons showed only severe cerebellar ataxia (15). Interestingly, increased spine density and length (**Figure 1***b*) were observed even in adult mice, indicating the critical role of IP_3R1 in spine maintenance of Purkinje neurons in adults (15). The

IP₃**R:** inositol 1,4,5-trisphosphate receptor

ER: endoplasmic reticulum

IP₃R1-mediated regulation of spine morphology was elucidated by IP₃R-dependent activation of protein kinase C and consequent calmodulin (CaM)-dependent protein kinase II β (CaMKII β) phosphorylation, which modulates F-actin bundling to maintain spine structures (16). The gene expression of IP₃R is related to brain plasticity, and disrupted-in-schizophrenia 1, a susceptibility gene for major psychiatric disorders including schizophrenia, regulates the transport of mRNA encoding IP₃R1 for synaptic plasticity (17).

In addition to IP₃R1, knockout mice lacking IP₃R2 showed impairments of astrocytic Ca²⁺ surge and neuronal plasticity by transcranial direct current stimulation, which enhances memory and cognition in humans (18). A number of prominent studies indicate that IP₃R2 was the major isoform in astrocytes because a large part of calcium signaling is attenuated in IP₃R2 knockout mice (19, 20). However, this has been debunked by recent studies. Ca²⁺ imaging of hippocampal slices revealed that IP₃R2 and IP₃R3 were functional in astrocytes and also suggested the presence of functional IP₃R1 in astrocytes (21). A study using a highly sensitive Ca²⁺ indicator clarified Ca²⁺ release in cortical and hippocampal astrocytes of IP₃R2 knockout mice (22). These data shed light not only on IP₃R2 but also IP₃R1 and IP₃R3 that are involved in astrocytic functions.

In the past 40 years, numerous studies have clarified the diverse functions of IP_3R in living systems, ranging from unicellular organisms to our bodily organs, including the brain; however, how to achieve these diverse functions remains a mystery. Here, we review recent advances in researching the cellular microdomains and protein structures of IP_3R and discuss how to approach a possible linkage between the diverse functions of IP_3R and their structural dynamics that we refer to as IP_3R plasticity.

DIVERSE FUNCTIONS OF IP3R AT MICRODOMAINS

IP₃R is abundant in the smooth ER and is localized at lower levels in rough ER (23), the Golgi (24), the nucleus (25–27), and the plasma membrane (PM) (28, 29) (**Figure 1***c*). Nuclear IP₃R plays an important role in gene transcription (30, 31) and is expressed in nuclear calcium stores to mediate nuclear signaling and cause nuclear translocation of protein kinase C (30, 31). Apoptosis induces mixed clusters of IP₃R1 in the nucleus (32), and IP₃R1 gene expression in hippocampal CA1 is decreased by neonatal anoxia, which triggers translocation of IP₃R1 to the nucleus and neuronal cell death (33). In addition to the nucleus, reports show that IP₃R can locate at the PM of neurons (28), lymphocytes (34), platelets (35), and hepatocytes (36). The studies using chicken B cells lacking endogenous IP₃R have clarified Ca²⁺ influxes via a limited population of the PM-IP₃R (37, 38). IP₃R is also located within acid Ca²⁺ stores (39–41), which can control autophagy in *Trypanosoma brucei* (42).

The IP₃R protein also operates at membrane contact sites between the ER and other organelles (**Figure 1***c*). For example, membrane contact sites between the ER and mitochondria, so called mitochondria-associated membranes (MAMs), facilitate transport of Ca^{2+} from the ER to mitochondria (43, 44). The voltage-dependent anion channel on the outer mitochondrial membrane binds to the IP₃R via the molecular chaperone glucose-regulated protein 75, and the protein complex links the ER to mitochondria and facilitates Ca^{2+} transport (45). The mammalian TOR complex 2 interacts with the complex at the MAM (46), and it is proposed that autophagosomes could be formed at the MAM (47, 48). An interaction between the ER protein Bap31 and the mitochondrial fission protein Fission 1 homolog should regulate the induction of apoptosis (49). Ca^{2+} transport at the MAM has Janus-faced roles and cancer cells require IP₃R-mediated Ca^{2+} transfer from the ER to mitochondria for survival, while normal cells induce autophagy for survival by impaired Ca^{2+} transfer (50). The IP₃R-binding protein released with IP₃ (IRBIT) is involved in MAM function and structure because the IRBIT knockout reduced staurosporine-induced

PM:

plasma membrane

MAM: mitochondriaassociated membrane

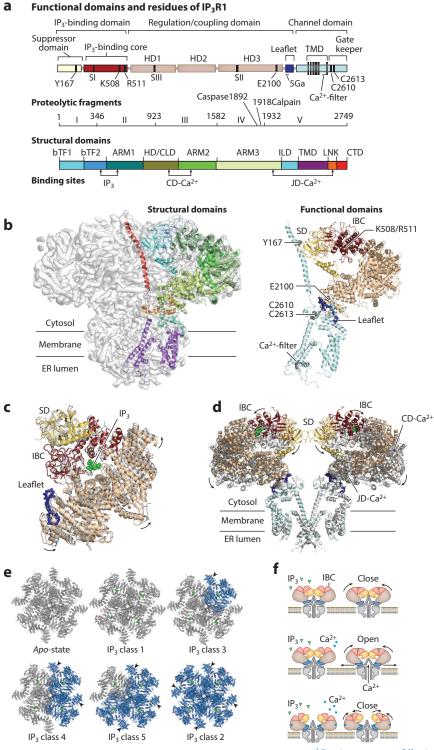
IRBIT: IP₃R-binding protein released with IP₃

EM: electron microscopy

IBC: IP₃-binding core

SD: suppressor domain

apoptosis and mitochondrial Ca^{2+} . In particular, the phosphorylated form of IRBIT (P-IRBIT) likely regulates MAM structure and function (51). IP₃R also associates with the sigma-1 receptor (Sig-1R), an integral ER membrane protein that regulates IP₃R at the MAM (52). Recently, choline produced by phospholipase D was found to be an endogenous agonist of Sig-1R to potentiate Ca^{2+} signals evoked by IP₃R as an intracellular messenger (53).


The ER frequently contacts the PM in neurons (54, 55) and non-neuronal cells (56, 57). Electron cryotomography (cryo-ET) imaging revealed that the ER-PM contact is mediated by extended synaptotagmins in addition to stromal interaction molecule 1 (55). The ER-PM contact is also mediated by ER-resident Sec22 and PM syntaxins (54). The ER forms ER-PM junctions in pancreatic acinar cells (56), and IP₃R-containing ER-PM junctions accumulate at the leading edge of focal adhesions during cell migration (57). In fibroblasts, interleukin (IL)-1 promoted colocalization of protein tyrosine phosphatase α (PTP α) and focal adhesion kinase (FAK) with the ER and increased association of IP₃R1 with PTP α and FAK at focal adhesions near the PM (58).

In the brain, ER-ER contacts are frequently observed in the cell body and dendrites of Purkinje neurons, and electron microscopy (EM) clarified that the stacked ER is enriched with IP_3R (23, 59-61). In the stacked ER, two apposed IP₃Rs bridge between ER layers (61), and this finding is supported by formation of a stacked ER in cells upon overexpression of full-length IP_3R but not by deletion mutants (62). The brief anoxia of oxygen-deprivation (3 min) is enough to cause formation of a stacked ER in Purkinje neurons (63), which is reversible by reoxygenation (64). While structural data has accumulated, physiological roles of the stacked ER remain unknown. A putative Bcl-2 inhibitor apogossypol induced ER aggregation, caused by reorganization of the ER membrane in various cell lines and even in the fission yeast (65). Apogossypol-stimulated Ca^{2+} efflux from the ER is partially mediated by IP₃R because 2-aminoethoxydiphenyl borate, an inhibitor of IP₃R and the transient receptor potential (TRP) channel, completely blocked the apogossypol-dependent ER aggregation (66), but the mechanism is not clear. Membrane contact sites between the lysosomes and the ER/sarcoplasmic reticulum would regulate Ca^{2+} release by lysosomes, but the mechanism is not clearly understood (67). The ER also makes contacts with the other organelles such as phagosomes, peroxisomes, endosomes, and vacuoles (68, 69), but the functional roles of the IP₃R in these contact sites remain unknown.

IP3R STRUCTURE AND FUNCTIONAL DOMAINS

The genes for three IP₃R subtypes (IP₃R1–3) were cloned from various vertebrates (5, 70–73). All vertebrate IP₃R genes encode a large cytosolic domain and a small Ca²⁺ channel domain (**Figure 2***a*). Approximately 55% of amino acid residues in the full-length mouse IP₃R1 are conserved among the three isoforms, particularly in the critical regions responsible for IP₃R function. Molecular cloning uncovered alternative splicing sites (SI–SIII) (**Figure 2***a*) in rodents (73–75) and humans (76), giving rise to phenotypic diversity of IP₃R channels, and RNA processing at these splicing sites is controlled during development and differentiation (74, 75, 77).

The cytosolic domain contains key functional domains, including an IP₃-binding core (IBC) (78), an adjacent amino (N)-terminal suppressor domain (SD) that reduces the affinity of IP₃ binding (79), and large regulatory/coupling domains containing various allosteric sites for phosphorylation, binding proteins, and regulators including Ca²⁺ (**Figure 2***a*). IBC is the minimum region required for specific IP₃ binding and is mapped within residues 226–578 of mouse type-1 IP₃R (IP₃R1). The crystal structure of IBC (residues 224–604) in a complex with IP₃ was determined at a resolution of 2.2 Å (80). Early electron microscopy (EM) studies predicted that the IBC could be located at the top surface distant from the channel domain (81, 82). The most recent cryo-EM studies clarified the precise location of IBC (**Figure 2***b*) (83–85). Eleven amino

(Caption appears on following page)

Figure 2 (Figure appears on preceding page)

IP₃R structures and allosteric gating. (a) Schematic primary structures of IP₃R. The upper panel shows functional domains and critical residues in IP₃R1 (78, 79, 116), and proteolytic fragments of IP₃R1 are drawn below (6). Each domain is depicted in a different color: suppressor domain (SD) in yellow (amino acid residues 1–225); IP₃-binding core (IBC) in red (residues 226–604); the large regulation/coupling domain in tan, including α-helical domain 1 (HD1; residues 605-1,009), α-helical domain 2 (HD2; residues 1,026-1,493), α -helical domain 3 (HD3; residues 1,593–2,217), and channel domain in pale blue (residues 2,218–2,749). The bottom panel shows structural domains of IP₃R (84), and IP₃/Ca²⁺-binding sites are indicated by arrows. Alternative splicing sites are indicated by SI, SII, and SIII. (b) The 3D structure of IP₃R1. The left panel shows a cryo-EM map (EMD9244) with a model (6MU2) of structural domains. The right model delineates functional domains and critical residues. (c) Conformational changes induced by IP₃. Comparison of an X-ray crystal structure resolved in the absence (colored) or presence (gray) of IP₃. Two X-ray crystal structures of IP₃R2217 were superimposed by fitting the N-terminal β -rich domain (residues 7–430) (112). (d) Ca^{2+} -dependent conformational changes demonstrated by IP₃-bound and IP₃/Ca²⁺-bound cryo-EM structures of hIP₃R3 (85). (e) Conformational ensemble in IP₃-bound states. Structures of Apo-state, IP3 class 1, IP3 class 3, IP3 class 4, IP3 class 5, and IP3 class 2. The relocated HD2/ARM2 domain of each subunit (*blue*) is indicated by an arrow (85). (f) Allosteric gating and its regulation. Schematic model in the absence of Ca^{2+} in which IP₃ can bind, resulting in an ensemble of distinct conformations, but it cannot open the channel gate (top). In contrast, IP₃ can open the channel gate in the presence of low Ca^{2+} that can bind to a Ca^{2+} sensor, probably the JD- Ca^{2+} site near E2100 and the leaflet (*middle*). In case of high Ca^{2+} , IP₃ cannot open the channel gate because Ca^{2+} binds to the inhibitory Ca^{2+} site, presumably the CD-Ca²⁺ site, which could induce large conformational changes and subunit dissociations (bottom).

acid residues, including K508/R511 in the IBC domain, are responsible for the correct recognition of IP₃; all of these residues except Gly268 are conserved in the other IP₃R isoforms (72, 86). Molecular dynamics simulation of IBC suggests that the conserved Arg241-Glu439 salt bridge determines flexibility of the IBC domain in the ligand-free state (87).

The SD functions as a suppressor for IP₃ binding, and the deletion of SD results in a significant enhancement of IP₃ binding (78, 79). The atomic resolution structure of the SD of mouse IP₃R1 was determined using X-ray crystallography at a resolution of 1.8 Å (88). The location of the SD was unexpectedly different from some predictions of the direct coupling of the SD to the channel domain (**Figure 2b**). Mutagenesis indicated that the residue Y167/W168 in the SD is critical for IP₃-induced Ca²⁺ release, but not for IP₃-binding (89). Thus, the Y167/W168-containing hot-spot loop (HS-loop) was proposed to be located near the channel. However, all structures determined by recent cryo-EM studies have demonstrated that the HS-loop is far from the channel domain and is located close to the interfaces between subunits (**Figure 2b**). Therefore, the HS-loop should be considered necessary for subunit interaction rather than direct coupling to the channel.

Because the SD inhibits IP₃ binding within the IBC domain, the SD was considered to bind and mask the IP₃-binding pocket directly. The N-terminal 604 residues containing the SD and IBC domain showed ~50 nM of dissociation constant for IP₃ (IP₃R1), ~14 nM for IP₃R2, and ~160 nM for IP₃R3 (90). These values are close to those of the full-length IP₃Rs (73), whereas the IBCs of all subtypes show identical affinities (~2 nM) for IP₃, suggesting that the subtype-specific IP₃-binding affinities should be due to each SD. Analyses of site-directed mutagenesis on the SD of mouse IP₃R1 showed that seven conserved amino acid residues are critical for the suppression of IP₃ binding (88) and that eleven IP₃R3 specific loops were critical for the IP₃R3-specific IP₃binding affinity (90). Therefore, direct association of these residues to the IP₃-binding pocket was proposed. The first X-ray crystal structures (3.8 Å) showing IP₃-dependent conformational changes were solved using the N-terminal domain of rat IP₃R1 (residues 7–602 and 322–336 were removed) and then recombinant protein (residues 1–604) with mutated cysteine residues. In both X-ray crystal structures, unexpectedly the SD did not mask the IP₃-binding pocket itself (91, 92), suggesting that these critical residues for suppression of IP₃ binding may fix IBC conformation. All-atom molecular dynamics simulations of the N-terminal domains, including the SD and IBC, demonstrated the characteristic twist motion of the SD and revealed the correlated dynamics of IBC with IP₃ binding (93). These reports could elucidate the mechanism of how the SD affects the conformational changes of IBC. However, the role of the HS-loop, including Y167/W168, still remains unknown. Ca^{2+} imaging using IP₃R-null HeLa cells generated by genome editing revealed that mutations in a genetic brain disorder, spinocerebellar ataxia 29 (SCA29), identified within or near the IBC completely abolished channel activity (94). Interestingly, a major part of these mutations showed impaired IP₃ binding to IP₃R1, whereas the T579I and N587D mutations disrupted channel activity without affecting IP₃ binding, suggesting that these two residues should be involved in allosteric regulation.

Although Bikonta IP₃R does not have completely conserved critical residues in the IP₃-binding site, and the endogenous IP₃R of *Trypanosoma cruzi* is localized in acid Ca²⁺ stores but not in the ER (40), they exhibit IP₃-binding activity in *Paramecium* (95) and *T. cruzi* (96). The IP₃-evoked Ca²⁺ release activities in *Paramecium* tetraurelia (95), *T. brucei* (41), and *T. cruzi* (96) have been confirmed. *T. cruzi* is the pathogenic parasite of Chagas disease, whereas *T. brucei* causes African trypanosomiasis or sleeping sickness. Therefore, they should be drug targets because IP₃R controls cell death events in parasites (97).

CONFORMATIONAL CHANGES IN IP₃R

To date, the basic mechanism by which local conformational changes in the IBC can open the Ca^{2+} channel in the IP₃R remains elusive because of difficulties associated with studying allosteric mechanisms over the long distance between IP₃-binding sites and the Ca^{2+} channel. Among the known ligand-gated ion channels whose atomic structures have been solved by X-ray crystallog-raphy or cryo-EM, such as the nicotinic acetylcholine receptor (98), NMDA (99), AMPA (100), GABA_A (101), 5-HT₃ (102), P₂X (103), and ryanodine receptor (RyR) (104), the distance from ligand-binding sites to the Ca^{2+} channel in IP₃R is the longest.

Early EM studies on tetrameric IP₃R structure were performed by negative staining of purified IP₃R (81, 105–107), and cryo-EM studies were published from several groups (82, 108, 109); however, their published maps showed different structures, and the discrepancies have been discussed in review papers (110, 111). Thereafter, the IP₃ receptor structure at a 17-Å resolution was published, followed by the recent revolution of cryo-EM technology that uncovered the structure of IP₃R at a 3- to 5-Å resolution (83–85). These high-resolution maps of IP₃R show the mushroomshaped structure consistent with early negative-stained images (81), whereas the cryo-EM structure in the presence of Ca²⁺ shows an opened structure with disrupted subunit interactions (85), which is in line with the early negative staining studies (81, 106).

Recently, crystallization of a truncated IP₃R1 including 2,217 residues (IP₃R2217) was reported (112). Rod-shaped diffracting crystals of IP₃R2217 and the bipyramidal crystals of a truncated IP₃R1 including 1,585 residues (IP₃R1585) were obtained, and X-ray crystal structures of the mouse IP₃R1 cytosolic domain were determined at a resolution of 5.8 to 7.4 Å. The crystal structure of the large cytosolic domain of IP₃R2217 could assign five domains: an N-terminal SD, IBC, and three curvature helical domains (HD1–3) (**Figure 2***c*). Comparison of IP₃R2217 structures in the absence and presence of IP₃ shows conformational changes by IP₃ (112).

Among the various regulators, which modulate IP₃-dependent channel opening by binding to discrete allosteric sites, Ca^{2+} is the most important regulator for IP₃R (6, 9, 10). In 2002, the first article about Ca^{2+} -induced global structural changes in tetrameric IP₃R1, revealed by negative-staining EM and limited enzymatic proteolysis, was published (106). The results were confirmed

SCA: spinocerebellar ataxia

RyR: ryanodine receptor

JD-Ca²⁺: juxtamembrane domain Ca²⁺

CD-Ca²⁺: cytoplasmic domain Ca²⁺ by Ca^{2+} -dependent accessibility with large polyethylene glycol maleimide molecules (113). This finding was confirmed in living cells using fluorescence resonance energy transfer between two fluorescent proteins fused to the N terminus of individual subunits (114). Ca²⁺ rigorously determines the channel activity of IP₃R and a low Ca^{2+} level acts as an essential coagonist for IP₃-gated Ca^{2+} release, whereas a high Ca^{2+} level inversely acts as a feedback inhibitor (9, 10). This bell-shaped regulation suggests the existence of an activation site and an inhibitory site for Ca^{2+} binding in the IP₃R. Early biochemical analyses using Ca^{2+} overlay suggest various Ca^{2+} -binding sites (115). Accordingly, Ca²⁺-binding sites should be distributed not only in the IBC/SD or channel domains but also in the large regulatory/coupling domains. A recent cryo-EM study uncovered the molecular detail upon the global conformational changes in the tetrameric human IP_3R3 (Figure 2d) (85). Notably, the cytosolic domain of hIP_3R3 solved by cryo-EM in the presence of high Ca^{2+} concentrations is almost consistent with the X-ray crystal structure of mIP₃R1 (112). The cryo-EM structures in the presence of Ca^{2+} reveal two Ca^{2+} -binding sites in the regulatory/coupling domains, and a high concentration of Ca²⁺ induces the disruption of numerous interactions between subunits, which confirmed the earlier studies and clarified the Ca^{2+} -dependent inhibition mechanism at a high resolution (85). The juxtamembrane domain (JD)-Ca²⁺, near the residue corresponding to E2100 of IP₃R1 (116), should be presumably critical for Ca^{2+} -dependent activation. By contrast, the cytoplasmic domain (CD)- Ca^{2+} -binding site is located between two structural domains, an armadillo-repeat domain 2 (ARM2) and a central linker domain, suggesting that CD- Ca^{2+} should stabilize the spatial relationship between these domains and that this conformational change should be a causal factor for subunit interaction. The large structural change by dissociation between subunits has never been reported in RyR, even though RyR is regulated by Ca^{2+} in a bell-shaped manner similar to IP_3R . This difference could be due to the distinct property between RyR and IP₃R, and we could speculate that the intersubunit interaction in the IP₃R tetramer should be weaker than that in RyR. The large-scale structural change by Ca²⁺ could elucidate the inhibitory mechanism of high Ca^{2+} concentration, but how the low concentration of Ca^{2+} could induce conformational changes to activate the IP₃-dependent channel gating remains unclear.

A recent study about IP₃R in unicellular organisms demonstrated the important features of Ca^{2+} -dependent regulation. Many putative IP₃R genes in unicellular organisms encode the conserved amino acid sequence at the pore, and critical amino acid residues within IP₃-binding sites are also conserved in Holozoa, including *Capsaspora*, but not in fungi and earlier organisms. The most recent study of IP₃R in *Capsaspora owczarzaki* demonstrated that IP₃R targets the ER, binds IP₃, exhibits Ca^{2+} release activity, and forms hetero-oligomers (117). Therefore, the *C. owczarzaki* gene should be a common ancestor of vertebrate IP₃R is not activated by Ca^{2+} that activates vertebrate IP₃R, although important residues that coordinate with JD-Ca²⁺ (E1882, E1946, Q1949, and T2581 in hIP₃R3) are all conserved. Phylogenic analyses demonstrated that IP₃R genes should predate RyR genes because Bikonta cells have IP₃R but not RyR genes (117). These findings suggest that the Ca²⁺-induced Ca²⁺ release function common among IP₃R and RyR was acquired during the evolution between Holozoa and vertebrates.

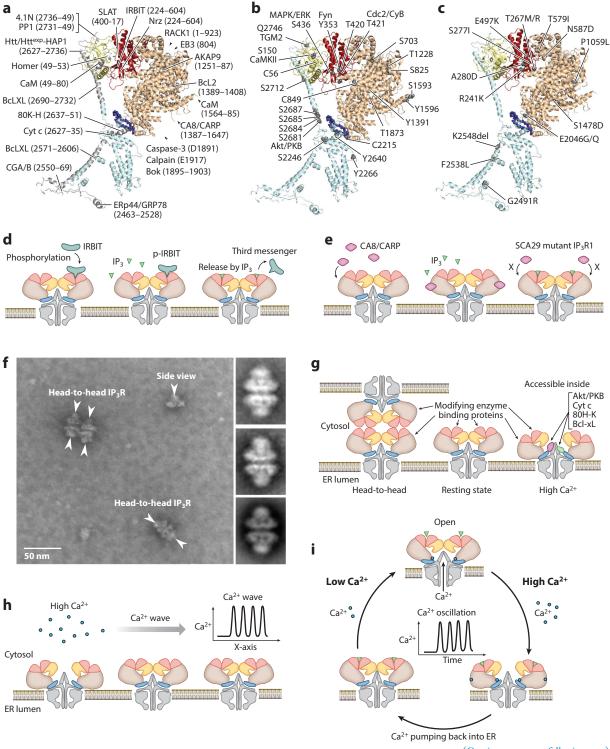
ENSEMBLE OF IP₃-BOUND STATES IN THE TETRAMERIC IP₃R

Given the lack of cooperativity of IP₃-binding events in the tetramer (79, 118), each subunit would behave independently. Therefore, the conformations of four subunits in the tetrameric channel structure is probably stochastic due to the number of bound IP₃ molecules. Strong evidence for stoichiometry recently showed that the tetrameric IP₃R requires four IP₃ molecules to open the channel (119). The diverse states of IP₃-bound conformations in the tetrameric IP₃R were

recently revealed by three-dimensional classification using cryo-EM (Figure 2e) (85). The location of the HD2/ARM2 domain was variable in these states, and showed a 17-Å shift, consistent with the large-scale motion predicted by comparing cryo-EM structure with X-ray crystal structure (112). Importantly, global conformational changes from IP₃-binding sites to near the channel domain were shown in fourfold symmetry structure, of which four IP₃-binding sites were fully occupied with IP₃. In these conformations, the α -helical domain near IP₃-binding sites moves relative to the β -domain ring stabilized by the HS-loop including Y167/W168. This structural change is consistent with the proposed global conformational changes from the IP₃-binding site to the channel domain (112). The five states of IP₃-bound IP₃R suggest that the structural trajectory concerted movements upon IP3 binding; local conformational change near the IBC, coupled with movement of the large curvature helical domains that results in a 5° rotation of the JD-Ca²⁺ site, and a 17-Å movement of HD2/ARM2, which coordinates with the CD-Ca²⁺ at the interface with HD1/central linker domain (85). The HD2/ARM2 domain could move in each subunit because the cryo-EM data show asymmetric tetramers; the four IP3-binding sites are even occupied (Figure 2e). The possible conformational changes in Ca^{2+} -binding sites by IP₃ suggest that IP₃ binding should presumably cooperate with the JD and CD Ca²⁺-binding activities.

Cryo-EM also revealed the 4.1-Å structure of rat IP₃R1 bound to an IP₃ analogue and adenophostin A, a metabolite that was discovered in *Penicillium breviocompactum* as a potent agonist of IP₃R (120). This demonstrates the ligand-induced conformational changes within the IBC, which are basically consistent with the conformational changes on IP₃ binding (83). The presence of 100 nM of adenophostin A and 300 nM of Ca^{2+} activates IP₃R channels, but no opening of a Ca^{2+} pore gate was determined in the cryo-EM. In the *apo*-state, the diameter of the selective filter was too large to select hydrated ions, but the diameter of adenophostin A-IP₃R1 was narrow enough to accomplish this. In this report, the authors obtained no Ca^{2+} matching density near the site corresponding to the JD Ca^{2+} -binding site and no sufficient dilation to allow a hydrated Ca^{2+} ion to pass through (83). Therefore, the ways in which adenophostin A and Ca^{2+} can cooperate to open the Ca^{2+} channel remain unclear.

Long-Range Allosteric Coupling from IP₃ to Ca²⁺ Gates


The aforementioned structural studies demonstrated several conformations bound to IP₃, Ca²⁺, and adenophostin A, but the structures of opened channels were never obtained. To discuss the mechanism of channel opening, we should consider not only structures but also functional data. In the past 30 years, two models for the gating mechanism were proposed: One is that the IBC and SD directly bind to the channel domain for gating (121), whereas the other is long-distance coupling from the IBC to the channel (81, 122). Recently, the latter long-distance allosteric coupling theory was supported by cryo-EM analyses, which demonstrated that the IBC/SD is located \sim 90 Å away from the Ca²⁺ conducting gate. Cryo-EM has showed direct contacts of a C-terminal domain through a long helical bundle connecting to the sixth pore-forming transmembrane helix (84), so the authors proposed that the IBC should directly move the C-terminal helical bundles to open the channel. However, functional analyses of IP₃R1 did not indicate that the IP₃R function was impaired by the deletion of C-terminal residues that directly bind to the IBC in the cryo-EM structure (112, 123). Moreover, a chimera IP₃R swapped with the C-terminal region of RyR, which has no homology with IP₃R C-terminal domain, can release Ca^{2+} in response to IP₃ (92). On the basis of these functional data, contact of the IBC to C-terminal helices should not be essential for the IP₃-dependent gating mechanism. Undoubtedly, the C-terminal coiled regions near the C terminus, which has no contact with the IBC/SD in the cryo-EM, should be pivotal for tetramer formation and/or domain interaction, as indicated by previous reports (123, 124).

The mutagenesis of full-length mouse IP_3R1 has revealed the small structure constructed by 21 amino acid residues, referred to as the leaflet (Figure 2) (112). The leaflet directly contacts a linker domain (83); therefore, this leaflet-linker domain interacting site should be a key functional pathway of allosteric coupling from the IBC to the Ca^{2+} channel. The sequence alignment of IP_3R and RyR indicates that the equivalent leaflet region in the RyR intervenes into the Ca²⁺- and Zn^{2+} -binding sites in the three-dimensional structure revealed by cryo-EM (104). This finding has been confirmed by a recent study (85) suggesting integrative roles of the leaflet region underlying channel activation. Cryo-EM revealed that Ca²⁺ coordinates with side chains of four amino acid residues in RyR, corresponding to E1977, H1979, E2041, and Q2044 residues in IP₃R1. This was confirmed by a recent study in which the atomic density of JD Ca^{2+} was obtained in this binding site (85). Considering the essential role of the E2100 residue in the Ca^{2+} dependent activation (116), we can suppose that this JD Ca^{2+} binding site should be essential for channel opening by IP₃. In the RyR, the Zn^{2+} -binding pocket constructed by critical residues corresponding to C2610 and C2613 residues in IP₃R1 is conserved in the IP₃R of all unicellular and multicellular organisms. The functional role of Zn²⁺ ions in the IP₃R remains largely unknown, but a mutagenesis study demonstrated a complete loss of IP₃R function with a C2610 or C2613 mutation (79), suggesting that Zn²⁺ may be an essential cofactor for stabilizing the structure around these residues; this is referred to as the gatekeeper domain (79). Therefore, this leaflet region linking the regulatory/ coupling and channel domains should transmit the IP₃-dependent conformational changes to the Ca^{2+} channel. This idea is also supported by an X-ray crystallography study that demonstrated how IP₃ physically opens the Ca^{2+} channel over a long distance (112). During activation of IP₃R, the movement of the leaflet region could shift the pore-forming transmembrane helix to open the Ca^{2+} pore consequently. In particular, the face of the leaflet contacting the linker domain contains highly conserved isoleucine (I2195), glutamate (E2196), and isoleucine (I2197) residues in IP₃R of all isoforms, various animals, and all known unicellular organisms, including T. cruzi and T. brucei. Thus, this region is a plausible candidate for mediating the allosteric gating transmission to the channel domain.

Importantly, the IP₃ never opens the channel of IP₃R without Ca^{2+} . Previous functional analysis indicates that a low Ca^{2+} level acts as an essential coagonist for IP₃-gated Ca^{2+} release (9, 10). The requirement of dual ligands is an important basis for signaling cross talk between IP_3 signaling and Ca^{2+} signaling. However, global conformational changes by IP₃ can be induced by IP_3 only and require no Ca^{2+} , as suggested by X-ray crystallography and cryo-EM studies (81, 85). In this case, we suggest that IP₃ can cause global structural changes, but the channel cannot open (Figure 2f, top). By contrast, Ca^{2+} concentration is sufficient to bind to the JD Ca^{2+} binding site near the leaflet, and Ca^{2+} binding should stabilize the spatial configuration between regulatory/ coupling and channel domains to efficiently transmit a force from the IBC to the channel (Figure 2f, middle). In the presence of high Ca^{2+} , CD Ca^{2+} stabilizes the HD2/ARM2 domains and induces the large-scale structural changes associated with broken interaction between subunits (81, 85) (Figure 2f, bottom). In this structure, locally IP₃-dependent conformational changes take place, but the fixed end formed at the subunit interface is broken, and the torque force from IBC should still show no transmission to the channel via the leaflet region, even though IP₃ is produced in the cell. The structural basis of the activation mechanism by Ca^{2+} is quite important, warranting further investigation.

REGULATORY MECHANISMS OF IP₃R

To understand the IP₃R regulatory mechanisms, we mapped the known sites for binding proteins (**Figure** 3a), posttranslational modifications (**Figure** 3b), and mutations causing human brain

(Caption appears on following page)

Figure 3 (Figure appears on preceding page)

Model for IP₃R plasticity. The map of the sites for binding proteins (*a*), posttranslational modifications (*b*), and mutations in genetic diseases (*c*). Amino acid numbers in panels *a* and *b* are represented in the number of mouse IP₃R1 (P11881), and those in panel *c* are shown in the number of human IP₃R1 isoform 2 (splicing sites SI, SII, SIII) (NP_002213.5). (*d*-*i*) Structural plasticity in IP₃R assembly. We propose structural plasticity that involves dynamic structural changes of IP₃R assembly, including transformation of IP₃R itself and association/dissociation of binding proteins. (*d*) P-IRBIT and IP₃R form a complex and (*e*) IP₃ dissociates it. CA8/CARP and IP₃R form a complex, but the SCA29 mutant IP₃R cannot build it because the mutant cannot bind to CA8/CARP (94). (*f*) In the stacked endoplasmic reticulum (ER), IP₃R makes head-to-head structures. The micrograph of negatively stained IP₃R1 was obtained by electron microscopy. Each arrow indicates a particle of tetrameric IP₃R. In boxes to the right, characteristic class averages of head-to-head IP₃R1 are shown. (*g*) A model for transformations of IP₃R. On the left is a head-to-head arrangement of tetrameric IP₃R. (*b*) Ca²⁺ waves and Ca²⁺ oscillation (*i*) should determine structural plasticity of IP₃R at each microdomain.

diseases (Figure 3c) in the IP₃R1 structural model. Cytochrome c (cyt c), a mitochondrial hemoprotein involved in the electron transfer system, is released during mitochondria-dependent apoptosis and binds proximally to the leaflet region (125, 126), suggesting that cyt c should affect the leaflet-mediated gating transmission. Another important regulator, Bcl-xL (127), also binds near the leaflet region. A recent report showed that in biphasic regulation, the low concentrations of Bcl-xL activated the channel, whereas high concentrations inhibited it; furthermore, BclxL bound to two distinct sites, H1 (residues 2,571–2,606) and H4 (residues 2,690–2,732) (128). Near the leaflet region is also a target area for alternative splicing variants of the α isoform of the transient receptor potential 4 (αhTRP4) channel but of the other isoform βhTRP4 channel, which associates with the C terminus of IP₃R (residues 2,556–2,713 of IP₃R1) (129). C2214 of rat IP_3R1 is one of the three candidates for the palmitovlation site as the triple mutations (C56A/C849A/C2214A) reduced palmitovlation to 25% in wild-type IP₃R1 and impaired Ca²⁺ release by T cell receptor stimulation in Jurkat T cells (130). The palmitoyl acyl transferase enzyme interacting with Selk proteins would catalyze palmitoylation (130). The S2681 residue of IP₃R1 is phosphorylated by protein kinase B, which is known as Akt kinase (Figure 3b); this phosphorylation should suppress Ca^{2+} release from IP₃R because the S2681A mutant increased the Ca^{2+} release and the mitochondrial Ca^{2+} uptake and apoptosis (131), and staurosporine-induced caspase-3 activation in the S2681A mutant was more significant than in the wild-type or S2681E mutant (132). Around this site, S2684, S2685, S2687, and S2712 of mouse IP₃R1 were phosphorylated as determined by mass spectrometry and shown in a database for phosphorylation (133). S2246 located near the leaflet was phosphorylated (134), and T2056, Y2640, and Y2266 of mouse IP_3R_1 could be phosphorylated (133). Interestingly, these sites should be accessible for the modifying enzymes, but how they will affect IP₃R function and apoptosis remains elusive. In human genetic diseases, previous reports demonstrated mutations in the IP_3R (Figure 3c), and major mutation sites are located at the IBC to impair the IP_3 -binding activity, as shown recently (94). The E2046 residue is substituted to G or Q [E2094G/Q in hIP₃R1 (NP_001161744.1)] in Gillespie syndrome (135). A three-base-pair deletion at K2548 showed no IP₃R function as measured in the triple knockout cells lacking IP₃R1-3 (136). The mutation of F2538L [F2552L in the hIP₃R1 $(NP_001093422.2)$] has no functional characterization, but it might impair IP₃R function (136). The mutations of E2046 or its presence outside the IBC should affect allosteric gating transmission, whereas the G2491R residue [G2539R in the hIP₃R1 (NP_001161744.1)] at the Ca^{2+} pore should result in failure of Ca^{2+} permeation (135).

Among known binding partners, only P-IRBIT competitively inhibits IP₃ binding (**Figure 3***a*). P-IRBIT binds to the IP₃-binding site via 10 critical amino acid residues that coordinate with a phosphorous group of IP₃ between the β - and α -rich domains and prevents IP₃ from accessing the binding pocket. P-IRBIT itself has never behaved as an agonist (137); therefore, negative charges

CA8/CARP: carbonic anhydrase-related protein

of the phosphate groups in the disordered region of P-IRBIT (137) and a Long-IRBIT splicing variant (138) are probably attracted to the critical residues with positive charges but could not stabilize these conformations to open the channel, similar to a nonspecific inhibitor, heparin. The IP₃-binding core is also a target for a Bcl-2-like 10 (Nrz) that is required for Ca²⁺ signaling during epiboly and gastrulation in zebrafish (139) (Figure 3a). The Nrz protein requires E255 but not the critical amino acid residues for IP₃ binding and molecular docking simulation, suggesting that E255 of zebrafish IP₃R1 most likely contacts Nrz C20. Because the Nrz protein inhibits the IP₃-binding activity, the Nrz should affect the conformational dynamics or stability around the interface between β - and α -rich domains in a different manner from P-IRBIT. In contrast to inhibition by P-IRBIT and Nrz, the guanine nucleotide exchange factor SWAP-70-like adaptor of T cells (SLAT) activated IP₃R1 in T cells by binding to the IP₃-binding domain (140). Disruption of the SLAT-IP₃R1 interaction inhibited T cell receptor-stimulated Ca²⁺ signaling, activation of the transcription factor called nuclear factor of activated T cells (NFAT), and production of cytokines, suggesting that this interaction is required for T cell activation. The critical site for SLAT binding (residues 400-417) (Figure 3a) is near the IP₃-binding pocket and the interface between subunits. Thus, SLAT would facilitate the IP₃-mediated conformational change and/or stabilize the subunit interface. These proteins should differentially regulate IP₃R function, raising the question of how they affect dynamic changes and/or stability in the IBC by an induced fit mechanism and/or conformational selection during IP₃-binding events. Homer (141) and CaM (142) also bind to the SD region (Figure 3a). Many other proteins, such as receptor of activated protein C kinase 1 (RACK1) (7), EB3 (143), AKAP9A-kinase anchor protein 9 (AKAP9) (144), Bcl-2 (145), CaM (146), carbonic anhydrase-related protein (CA8/CARP) (147), caspase-3 (148), calpain (149), and Bok (150), bind to the large regulatory/coupling domain (Figure 3a), suggesting the regulation of conformational status within this domain to control the allosteric gating. The SCA29 mutation of V1538M within the CA8/CARP-binding site of IP₃R1 completely eliminated its interaction with CA8 and CA8-mediated IP₃R1 inhibition. Furthermore, pathological mutations in CA8/CARP decreased CA8/CARP-mediated suppression of IP₃R1 by reducing the interaction with IP₃R1 (94). These results suggest the mechanisms by which pathological mutations cause aberrant assembly changes in IP₃R1.

Residue S436 of IP₃R1 is phosphorylated by a mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) pathway (151, 152), which enhances the activity of IP₃R1 (152). This site at the transitional zone from β - and α -rich domains faces to the inside of tetrameric IP₃R (83) (Figure 3b). Thus, this modification requires conformational changes to expose it to the surface. Around the IBC, Y353 is exposed to the surface and phosphorylated by Fyn kinase (153), T420 (154) is located in the IBC, and the SD contains a S150 phosphorylation site and presumed palmitoylation site C56. Two phosphorylation sites, S421 and T799, are phosphorylated by cyclin-dependent kinase (Cdc2/CyB), which increases the IP₃-binding activity (155). S421 is close to Y353 and exposed to the top surface; T799 (equivalent to T795 in IP_3R3) is close to the CD- Ca^{2+} site (85). Phosphorylation of S150 by CaMKII, but not the S150A mutant, leads to inhibition of IP₃R channel activity, and a phosphomimetic mutant S150E exhibits a constitutively low open probability (156). The S150 residue is not exposed to the surface (83, 85), suggesting that CaMKII requires conformational changes in IP₃R. The S703 residue located in the regulatory/coupling domain (HD1) is phosphorylated (157). The regulatory/coupling domain is also phosphorylated at the amino acid residues equivalent to S825, S1228, S1593 (158), Y1391 (159), Y1596, and T1873 (133) in the mouse IP₃R1. In addition to these phosphorylation sites, the ubiquitination (160, 161) and acetylation (162) of lysine residues were also reported in the IP₃R, although the roles of major parts of these sites were uninvestigated. In cells expressing the T930A mutant, IP₃R function and IP₃ binding affinity are activated more than the wild-type receptors, whereas cells expressing the T930E mutant oppositely show a decreased Ca^{2+} release in response to IP₃ uncaging (163). The Ca^{2+} content in ER is due to a modest overexpression of IP₃R1 and a threefold increased phosphorylation of IP₃R1 on S1716, a protein kinase A consensus site, is implicated in the ER Ca^{2+} leak (164). Glycogen synthase kinase 3 β should modify S1756 and regulates mitochondrial Ca^{2+} transfer via IP₃R at the MAM (165). These phosphorylation sites within the regulatory/coupling domain (equivalent to T945 and S1755 of mouse IP₃R) are involved in important functions, but their X-ray crystal or cryo-EM structures remain unknown.

Causative mutation sites in spinocerebellar ataxia and related diseases are localized near the IP₃-binding site at the interface between the β - and α -rich domains and in the α -helical domain (**Figure 3***c*), including four residues of human IP₃R1: R241K (166), T267M/R (167, 168), S277I (168), and A280D (166). Human E497K (166) (equivalent to E512 of mouse IP₃R1) is next to the critical residue R511 of mouse IP₃R1, which coordinates with the phosphorus group of IP₃ (80). Human T579I (168) and N587D (169) are neighboring the helix binding with the phosphorus group of IP₃ (80). Human P1059L (170) (equivalent to P1049 of rat IP₃R1) is located at the HD1/ARM2 of regulatory/coupling domains (83). The P1059L mutation resulted in higher IP₃-binding affinity than the wild type (171), suggesting that the P1059L mutation (172) is located at the edge of HD3/ARM3 distal from the HD1/ARM2 domain, and V1538M [V1547M in hIP₃R1 (NP_00161744.1)] (169) lies at the region with unsolved structure. Interestingly, IP₃R1 function was impaired by almost all SCA29 mutations but not by CA8/CARP-related S1478D and V1538M mutants (94), suggesting that the SCA29 disease should occur by two different mechanisms in the IP₃R1.

PROPOSED IP₃R PLASTICITY UNDERLYING DIVERSE FUNCTIONS

The recent progress in cryo-EM and X-ray crystallography have strongly contributed to understanding the *apo*-state or IP₃/Ca²⁺-bound state. Static views of these structures are important for considering the abovementioned regulation by binding partners, posttranslational modifications, and genetic mutations in IP₃R. Moreover, they teach us regulation mechanisms of how binding partners control IP₃R and how enzymes directly modify buried residues. To provide a framework for elucidating regulation of the IP₃R in various cell types, we propose here a model for protein plasticity within IP₃R (**Figure 3***d***-***i*). This concept is based on the diverse conformational changes of IP₃R per se, a large number of binding proteins, and various posttranslational modifications. We also define that protein plasticity includes allosteric gating and structural changes by IP₃ or Ca²⁺, which can confer a discrete function to each IP₃R assembly at each cellular microdomain. Importantly, the proposed IP₃R plasticity is also supported by the fact that transglutaminase enzymatically locks the conformation to impair IP₃R functions by cross-linking between subunits (173); that is, plasticity should be necessary for functions. Our proposed concept indicates that the signaling hub of IP₃R itself can be transformable due to spatiotemporal signaling at microdomains for short or long periods.

Given the function of IP₃R at the MAM or ER-PM, the IP₃R at ER-ER contact sites should regulate certain functions, such as Ca²⁺ transport from ER to mitochondria, or other functions, such as a scaffold of IP₃R binding proteins. In the IP₃R tetramer, the top surface of IP₃R should be accessible so that binding proteins, including P-IRBIT, Nrz, SLAT, Homer, CaM, RACK1, EB3, and Sig-1R near the MAM, would easily access but compete for their binding sites. Binding efficiency should be due to the structure of IP₃R assembly. In particular, the IP₃R assembly with P-IRBIT is controlled by IP₃, and local IP₃ signaling including production and diffusion should determine the structure of individual IP₃R assembly (**Figure 3***d*). hTRP3 at the PM associates with human IP_3R_3 through two sites (174), which are located in the regulatory/conduction domain, suggesting that these associations should be dependent on structural states of IP_3R assembly at PM-ER contact sites. Several phosphorylation sites, including Y353 and S150, are located at the top of IP_3R tetramers (Figure 3b), so this phosphorylation should be also affected by the status of IP₃R assembly. In the case of CA8/CARP, formation of the IP₃R-CA8/CARP complex is dependent on the point mutation (Figure 3e). This genetic mutation in IP₃R should affect the protein plasticity of IP₃R-CA8/CARP assembly and is probably critical for the cerebellar ER, where both IP₃R and CA8/CARP are enriched. These structural modifications that occur through binding proteins, modifying enzymes, and generating genetic mutations should locally or temporally determine each assembly structure and result in rapid or chronic protein plasticity at cellular microdomains. Ubiquitination is also an important posttranslational modification of IP₃R at the microdomains. Recent studies have clearly demonstrated that ubiquitin-regulated IP₃R3 plasticity could control IP₃R3 functions at the microdomain (175, 176), probably near the MAM, indicating its role in cancer cell apoptosis. The F-box protein FBXL2 binds IP₃R3, and the PTEN competes with FBXL2 for IP₃R3 binding. These assembly structures control proteasome-mediated degradation to limit Ca^{2+} flux from ER into mitochondria (176). BRCA1-associated protein 1 (BAP1), a potent tumor suppressor gene product, localizes at the ER and binds to deubiquitinate IP_3R_3 ; consequently, BAP1 modulates Ca²⁺ release from the ER into mitochondria to promote apoptosis (175).

IP₃R assembly is formed not only by binding proteins but also by IP₃R itself, according to actual images of purified IP₃R visualized by early EM studies (81, 106). A view with twofold symmetry represents the first true side view of the IP₃R (81) and indicates the presence of a head-to-head state of IP₃R (**Figure** 3f); the head-to-head structure was sensitive to Ca²⁺. The dimensions of head-to-head assembly are consistent with the suggested structures at ER-ER membrane contact sites (23, 59–62). How the head-to-head assembly forms with the twofold symmetry is unknown, but we suggest that a specific mechanism should form this ordered binding interface to act at the ER-ER membrane contact sites. This large-scale protein plasticity of IP₃R assembly should confer peculiar functions at the microdomain.

Early observations of purified IP₃Rs also provided real images of the windmill-shaped tetramers of IP₃R1 and demonstrated that relative amounts of windmill structures were dependent on Ca²⁺ (81). A recent cryo-EM study clarified the molecular mechanism at atomic resolutions (85). The phosphorylation of S2681 located at the inner helical bundle (Figure 3b) was also enhanced by Ca^{2+} (113), suggesting that the Akt/PKB kinase could efficiently access the S2681 residue to the Ca^{2+} -bound conformations. The other protein-binding sites for cyt c, Bcl-xL, and other modification sites around the leaflet may be inaccessible for these associating proteins and modifying enzymes in the structure in the absence of Ca^{2+} (Figure 3g). The sites of functional phosphorylation by CaMKII and MAPK/ERK pathways also face to the inside of tetramer. These facts cannot be explained without large-scale structural plasticity in IP₃R. The Ca²⁺-bound windmill state is a disadvantage for gating transmission, as the ring structure with β -rich domains that should serve as a fixed point during allosteric gating transmission is disrupted. However, this transformation by Ca^{2+} should be reversible (106), and thus modification or binding proteins should reversibly affect IP₃R functions. In particular, the cyt c bound to IP₃R should be released from mitochondria (125, 126), and Bcl proteins should localize at the surface of the mitochondrial membrane (127, 128); therefore, these associations should be mainly assembled near the MAM microdomain. Experimental data demonstrated that nonfunctional IP₃R with Ca²⁺ pore mutations (177) or with deletion of large cytosolic domains, including IP₃-binding sites (177), could regulate staurosporine-induced apoptosis in chicken B cells. Therefore, the high Ca²⁺ state with inactivated IP₃-induced Ca²⁺ release should present discrete functions in the regulation of apoptotic processes.

Our proposed IP₃R plasticity can aid in adapting individual functions at each microdomain, and spatiotemporal IP₃ or Ca^{2+} signaling at the microdomain should dynamically regulate the incidence of IP₃R plasticity. In the past 20 years, genetically encoded protein indicators were developed for monitoring spatiotemporal patterns of IP₃ and Ca²⁺ concentrations in numerous cell types. Although the mechanism of these dynamics should be probably due to the cell types or stimulants (178), the spatiotemporal dynamics of IP₃ and Ca^{2+} concentrations play important roles in regulating diverse functions, including gene expression, synaptic plasticity, fertilization, and cell death (6, 8). Considering its intrinsic property, IP_3R plasticity should be regulated by the spatiotemporal pattern of local IP₃ and Ca^{2+} concentrations. Previous studies on Ca^{2+} signaling have demonstrated Ca^{2+} puffs (179) and Ca^{2+} wave phenomena (178, 180). This polarized and spatially defined Ca²⁺ signaling could determine the cellular distribution of Ca²⁺-dependent plasticity in IP₃R (Figure 3b), as Ca^{2+} -dependent structural changes in IP₃R requires no IP₃ (81, 106). During Ca^{2+} oscillation evoked by IP₃, IP₃R should change into at least three states (Figure 3*i*). In the presence of low Ca^{2+} , Ca^{2+} can bind to a high-affinity Ca^{2+} sensor site or a JD-Ca²⁺ site (Figure 2a and d); IP₃ can also bind to IP₃R, which could release Ca²⁺. However, once Ca^{2+} concentrations could reach sufficiently high levels to bind to low affinity sites, most likely CD-Ca²⁺ sites, this high Ca²⁺ relocates HD2/ARM2 domains and causes an opening of the β -ring structure and closure of the Ca²⁺ channel gate by a flapping motion (106), as indicated by cryo-EM (85). Then, the concentration would be decreased by pumping back to the ER or out of cells, and the structure would transform into the resting state because the Ca^{2+} -dependent conformational changes are reversible (106). Thus, it is conceivable that temporal dynamics in IP_3R structures should occur under recurrent Ca^{2+} oscillation, and oscillatory dynamics should provide the incidence of rearrangements in IP₃R assembly at local microdomains. The property of oscillatory changes of Ca²⁺ concentration could determine biological consequences; for example, Ca^{2+} oscillation determines gene expression (181, 182), and temporal patterns of Ca^{2+} oscillation should determine cell apoptosis (183). The temporal pattern of Ca^{2+} concentrations should also determine the temporal behavior of IP₃R structures that could affect the accessibility of binding proteins and modifying enzymes. Importantly, IP₃R plasticity could determine not only the association of these regulatory molecules but also the dissociation of binding molecules regulated by these Ca^{2+} and/or IP₃ temporal patterns. In this case, the dissociated molecules could be considered presumable third messengers, such as P-IRBIT. These properties of protein plasticity within IP₃R may confer an ability to regulate cellular plasticity in response to various cellular stimuli.

CONCLUSION

In the past 40 years, from its discovery to recent research progress, numerous studies have demonstrated that IP₃R mediates diverse functions at cellular microdomains, and its aberrant regulation results in a variety of human diseases. IP₃R genes and IP₃-mediated gating mechanisms already existed when multicellular organisms evolved from unicellular ancestors 800 million years ago, and these primitive genes have subsequently evolved into three vertebrate isoforms. In mammals, further translational variants have since evolved, and posttranslational modifications and binding proteins have added further dimensions to mammalian IP₃R regulation. This increasing regulation of IP₃R probably conferred plasticity to IP₃R in order to adapt to diverse environments at cellular microdomains of pathophysiological states. The structures of IP₃R determined by recent emerging structural analyses, including cryo-EM and X-ray crystallography, provide a new structural basis for allosteric gating to understand the core mechanism of IP₃-gated Ca²⁺ release and a new conceptual framework for protein plasticity underlying diverse functions in ligand-gated ion channels and other functional proteins. The next steps should be to observe these protein dynamics in action to decipher the regulatory mechanisms deeply. Our proposed concept of IP₃R plasticity should not only explain how binding partners or enzymes can target inaccessible sites but also provide a mechanistic basis for the specific function regulated by spatiotemporal IP₃ and Ca²⁺ signaling at each microdomain. To observe such protein dynamics, concrete cellular examples are needed. In particular, knowledge of protein plasticity will require high-quality assessment of protein components and posttranslational modification of protein assembly at each microdomain. In the future, empirical observations of dynamic motions in action will require new imaging technologies, and analyses of molecular behavior at the microdomains will be necessary to better understand the physiological roles of structural plasticity at discrete microdomains. We suggest that these structural plasticity mechanisms triggered by dynamic transformations of the IP₃R assembly at each microdomain, including Ca²⁺-dependent regulation, binding proteins, and posttranslational modifications, are involved in state-dependent properties of locally diverse functions. In case of differentiated and polarized cells, we can assume that these protein mechanisms presumably control local plasticity at cellular microdomains in many bodily organs, including the brain.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

K.H. was supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research C (15K06791) and Innovative Areas (Brain Protein Aging and Dementia Control; 17H05711). K.M. was supported by Scientific Research S (25221002) from the Japan Society for the Promotion of Science; and by ICORP/ICORP-SORST from the Japan Science and Technology Agency.

LITERATURE CITED

- Mikoshiba K, Changeux JP. 1978. Morphological and biochemical studies on isolated molecular and granular layers from bovine cerebellum. *Brain Res.* 142:487–504
- 2. Mikoshiba K, Huchet M, Changeux JP. 1979. Biochemical and immunological studies on the P₄₀₀ protein, a protein characteristic of the Purkinje cell from mouse and rat cerebellum. *Dev. Neurosci.* 2:254–75
- Crepel F, Dupont JL, Gardette R. 1984. Selective absence of calcium spikes in Purkinje cells of staggerer mutant mice in cerebellar slices maintained in vitro. *J. Physiol.* 346:111–25
- Maeda N, Niinobe M, Nakahira K, Mikoshiba K. 1988. Purification and characterization of P₄₀₀ protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum. *7. Neurochem.* 51:1724–30
- Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P₄₀₀. *Nature* 342:32–38
- Foskett JK, White C, Cheung KH, Mak DO. 2007. Inositol trisphosphate receptor Ca²⁺ release channels. *Physiol. Rev.* 87:593–658
- Patterson RL, Boehning D, Snyder SH. 2004. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73:437–65
- Berridge MJ. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. *Physiol. Rev.* 96:1261–96

- Iino M. 1990. Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. *J. Gen. Physiol.* 95:1103–22
- 10. Bezprozvanny I, Watras J, Ehrlich BE. 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature* 351:751–54
- Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, et al. 1996. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. *Nature* 379:168–71
- Inoue T, Kato K, Kohda K, Mikoshiba K. 1998. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. *J. Neurosci.* 18:5366–73
- Hisatsune C, Kuroda Y, Akagi T, Torashima T, Hirai H, et al. 2006. Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. *J. Neurosci.* 26:10916–24
- Hisatsune C, Miyamoto H, Hirono M, Yamaguchi N, Sugawara T, et al. 2013. IP₃R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. *Front. Neural Circuits* 7:156
- Sugawara T, Hisatsune C, Le TD, Hashikawa T, Hirono M, et al. 2013. Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of purkinje cells in adult mice. *J. Neurosci.* 33:12186–96
- Sugawara T, Hisatsune C, Miyamoto H, Ogawa N, Mikoshiba K. 2017. Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ. PNAS 114:E5256–65
- Tsuboi D, Kuroda K, Tanaka M, Namba T, Iizuka Y, et al. 2015. Disrupted-in-schizophrenia 1 regulates transport of *ITPR1* mRNA for synaptic plasticity. *Nat. Neurosci.* 18:698–707
- Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, et al. 2016. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. *Nat. Commun.* 7:11100
- Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, et al. 2013. *In vivo* stimulus-induced vasodilation occurs without IP₃ receptor activation and may precede astrocytic calcium increase. *J. Neurosci.* 33:8411– 22
- Petravicz J, Fiacco TA, McCarthy KD. 2008. Loss of IP₃ receptor-dependent Ca²⁺ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. *J. Neurosci.* 28:4967–73
- Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, et al. 2017. Astrocytic IP₃Rs: contribution to Ca²⁺ signalling and hippocampal LTP. *Glia* 65:502–13
- Okubo Y, Kanemaru K, Suzuki J, Kobayashi K, Hirose K, Iino M. 2019. Inositol 1,4,5-trisphosphate receptor type 2-independent Ca²⁺ release from the endoplasmic reticulum in astrocytes. *Glia* 67:113– 24
- Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, et al. 1990. The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. *J. Cell Biol.* 111:615–24
- Pinton P, Pozzan T, Rizzuto R. 1998. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store, with functional properties distinct from those of the endoplasmic reticulum. *EMBO J*. 17:5298–308
- Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. 1995. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca²⁺ from the nuclear envelope. *Cell* 80:439–44
- Stehno-Bittel L, Perez-Terzic C, Clapham DE. 1995. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca²⁺ store. *Science* 270:1835–38
- Huh YH, Yoo SH. 2003. Presence of the inositol 1,4,5-triphosphate receptor isoforms in the nucleoplasm. FEBS Lett. 555:411–18
- Fadool DA, Ache BW. 1992. Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. *Neuron* 9:907–18
- Kuno M, Maeda N, Mikoshiba K. 1994. IP₃-activated calcium-permeable channels in the inside-out patches of cultured cerebellar Purkinje cells. *Biochem. Biophys. Res. Commun.* 199:1128–35
- Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH. 2003. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. *Nat. Cell Biol.* 5:440–46

- 31. Bading H. 2013. Nuclear calcium signalling in the regulation of brain function. *Nat. Rev. Neurosci.* 14:593-608
- Ondrias K, Lencesova L, Sirova M, Labudova M, Pastorekova S, et al. 2011. Apoptosis induced clustering of IP₃R1 in nuclei of non-differentiated PC12 cells. *J. Cell Physiol.* 226:3147–55
- Ikebara JM, Takada SH, Cardoso DS, Dias NM, de Campos BC, et al. 2017. Functional role of intracellular calcium receptor inositol 1,4,5-trisphosphate type 1 in rat hippocampus after neonatal anoxia. *PLOS ONE* 12:e0169861
- Khan AA, Soloski MJ, Sharp AH, Schilling G, Sabatini DM, et al. 1996. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. *Science* 273:503–7
- El-Daher SS, Patel Y, Siddiqua A, Hassock S, Edmunds S, et al. 2000. Distinct localization and function of ^{1,4,5}IP₃ receptor subtypes and the ^{1,3,4,5}IP₄ receptor GAP1^{IP4BP} in highly purified human platelet membranes. *Blood* 95:3412–22
- Guillemette G, Balla T, Baukal AJ, Catt KJ. 1988. Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction. *J. Biol. Chem.* 263:4541– 48
- Vazquez G, Wedel BJ, Bird GS, Joseph SK, Putney JW. 2002. An inositol 1,4,5-trisphosphate receptordependent cation entry pathway in DT40 B lymphocytes. *EMBO J*. 21:4531–8
- Dellis O, Dedos SG, Tovey SC, Taufiq-Ur-Rahman, Dubel SJ, Taylor CW. 2006. Ca²⁺ entry through plasma membrane IP₃ receptors. *Science* 313:229–33
- Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN. 2005. Acidocalcisomes—conserved from bacteria to man. Nat. Rev. Microbiol. 3:251–61
- Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. 2016. CRISPR/Cas9-mediated endogenous C-terminal tagging of *Trypanosoma cruzi* genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 291:25505–15
- Huang G, Bartlett PJ, Thomas AP, Moreno SN, Docampo R. 2013. Acidocalcisomes of *Trypanosoma brucei* have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. *PNAS* 110:1887–92
- Li FJ, He CY. 2014. Acidocalcisome is required for autophagy in *Trypanosoma brucei*. Autophagy 10:1978– 88
- Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca²⁺ responses. *Science* 280:1763–66
- Csordas G, Renken C, Varnai P, Walter L, Weaver D, et al. 2006. Structural and functional features and significance of the physical linkage between ER and mitochondria. *J. Cell Biol.* 174:915–21
- Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, et al. 2006. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca²⁺ channels. *J. Cell Biol.* 175:901–11
- Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. 2013. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. *PNAS* 110:12526–34
- Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, et al. 2013. Autophagosomes form at ERmitochondria contact sites. *Nature* 495:389–93
- Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. 2013. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. *Trends Biotechnol.* 31:581–93
- 49. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. 2011. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. *EMBO J*. 30:556–68
- Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, et al. 2016. Selective vulnerability of cancer cells by inhibition of Ca²⁺ transfer from endoplasmic reticulum to mitochondria. *Cell Rep.* 14:2313–24
- Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K. 2016. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. *eLife* 5:e19896
- Hayashi T, Su TP. 2007. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca²⁺ signaling and cell survival. *Cell* 131:596–610

- Brailoiu E, Chakraborty S, Brailoiu GC, Zhao P, Barr JL, et al. 2019. Choline is an intracellular messenger linking extracellular stimuli to IP₃-evoked Ca²⁺ signals through sigma-1 receptors. *Cell Rep.* 26:330–37.e4
- Petkovic M, Jemaiel A, Daste F, Specht CG, Izeddin I, et al. 2014. The SNARE Sec22b has a nonfusogenic function in plasma membrane expansion. *Nat. Cell Biol.* 16:434–44
- Fernandez-Busnadiego R, Saheki Y, De Camilli P. 2015. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. PNAS 112:E2004–13
- Lur G, Sherwood MW, Ebisui E, Haynes L, Feske S, et al. 2011. InsP₃ receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. *Biochem. J.* 436:231–39
- Okeke E, Parker T, Dingsdale H, Concannon M, Awais M, et al. 2016. Epithelial-mesenchymal transition, IP₃ receptors and ER-PM junctions: translocation of Ca²⁺ signalling complexes and regulation of migration. *Biochem. J.* 473:757–67
- 58. Wang Q, Wang Y, Downey GP, Plotnikov S, McCulloch CA. 2016. A ternary complex comprising FAK, PTPα and IP₃ receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca²⁺ signalling in fibroblasts. *Biochem. J.* 473:397–410
- Otsu H, Yamamoto A, Maeda N, Mikoshiba K, Tashiro Y. 1990. Immunogold localization of inositol 1, 4, 5-trisphosphate (InsP₃) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. *Cell Struct. Funct.* 15:163–73
- Yamamoto A, Otsu H, Yoshimori T, Maeda N, Mikoshiba K, Tashiro Y. 1991. Stacks of flattened smooth endoplasmic reticulum highly enriched in inositol 1,4,5-trisphosphate (InsP₃) receptor in mouse cerebellar Purkinje cells. *Cell Struct. Funct.* 16:419–32
- Rusakov DA, Podini P, Villa A, Meldolesi J. 1993. Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic-reticulum subcompartment rich in inositol 1,4,5-trisphosphate receptors. *J. Neurocytol.* 22:273–82
- Takei K, Mignery GA, Mugnaini E, Sudhof TC, De Camilli P. 1994. Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. *Neuron* 12:327–42
- Banno T, Kohno K. 1996. Conformational changes of smooth endoplasmic reticulum induced by brief anoxia in rat Purkinje cells. *J. Comp. Neurol.* 369:462–71
- Ikemoto T, Yorifuji H, Satoh T, Vizi ES. 2003. Reversibility of cisternal stack formation during hypoxic hypoxia and subsequent reoxygenation in cerebellar Purkinje cells. *Neurochem. Res.* 28:1535–42
- Varadarajan S, Bampton ET, Smalley JL, Tanaka K, Caves RE, et al. 2012. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. *Cell Death Differ*. 19:1896–907
- 66. Varadarajan S, Tanaka K, Smalley JL, Bampton ET, Pellecchia M, et al. 2013. Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis. *PLOS ONE* 8:e56603
- Morgan AJ, Platt FM, Lloyd-Evans E, Galione A. 2011. Molecular mechanisms of endolysosomal Ca²⁺ signalling in health and disease. *Biochem. J.* 439:349–74
- Prinz WA. 2014. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. *J. Cell Biol.* 205:759–69
- 69. Elbaz Y, Schuldiner M. 2011. Staying in touch: the molecular era of organelle contact sites. *Trends Biochem. Sci.* 36:616–23
- Mignery GA, Newton CL, Archer BT 3rd, Sudhof TC. 1990. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 265:12679–85
- Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A. 1992. Three additional inositol 1,4,5trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. *PNAS* 89:4265–69
- Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K, et al. 1994. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. *Recept. Channels* 2:9–22
- 73. Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, et al. 2005. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. *J. Biol. Chem.* 280:10305–17

- Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K. 1991. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. *PNAS* 88:6244–48
- Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S, et al. 1991. Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. *PNAS* 88:2951–55
- Yamada N, Makino Y, Clark RA, Pearson DW, Mattei MG, et al. 1994. Human inositol 1,4,5trisphosphate type-1 receptor, InsP₃R1: structure, function, regulation of expression and chromosomal localization. *Biochem. J.* 302(Part 3):781–90
- Regan MR, Lin DD, Emerick MC, Agnew WS. 2005. The effect of higher order RNA processes on changing patterns of protein domain selection: a developmentally regulated transcriptome of type 1 inositol 1,4,5-trisphosphate receptors. *Proteins* 59:312–31
- Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K. 1996. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 271:18277– 84
- Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. 2003. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 278:16551–60
- Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, et al. 2002. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. *Nature* 420:696–700
- Hamada K, Terauchi A, Mikoshiba K. 2003. Three-dimensional rearrangements within inositol 1,4,5trisphosphate receptor by calcium. *J. Biol. Chem.* 278:52881–89
- Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K, et al. 2004. Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. *J. Mol. Biol.* 336:155–64
- Fan G, Baker MR, Wang Z, Seryshev AB, Ludtke SJ, et al. 2018. Cryo-EM reveals ligand induced allostery underlying InsP₃R channel gating. *Cell Res.* 28:1158–70
- Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, et al. 2015. Gating machinery of InsP₃R channels revealed by electron cryomicroscopy. *Nature* 527:336–41
- Paknejad N, Hite RK. 2018. Structural basis for the regulation of inositol trisphosphate receptors by Ca²⁺ and IP₃. *Nat. Struct. Mol. Biol.* 25:660–68
- Sudhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA. 1991. Structure of a novel InsP₃ receptor. *EMBO J*. 10:3199–206
- Ida Y, Kidera A. 2013. The conserved Arg241-Glu439 salt bridge determines flexibility of the inositol 1,4,5-trisphosphate receptor binding core in the ligand-free state. *Proteins* 81:1699–708
- Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M. 2005. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. *Mol. Cell* 17:193– 203
- Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K. 2010. Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. *J. Biol. Chem.* 285:36081–91
- Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K. 2007. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 282:12755–64
- Lin CC, Baek K, Lu Z. 2011. Apo and InsP₃-bound crystal structures of the ligand-binding domain of an InsP₃ receptor. *Nat. Struct. Mol. Biol.* 18:1172–74
- Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, et al. 2012. Structural and functional conservation of key domains in InsP₃ and ryanodine receptors. *Nature* 483:108–12
- Chandran A, Chee X, Prole DL, Rahman T. 2019. Exploration of inositol 1,4,5-trisphosphate (IP₃) regulated dynamics of N-terminal domain of IP₃ receptor reveals early phase molecular events during receptor activation. *Sci. Rep.* 9:2454
- Ando H, Hirose M, Mikoshiba K. 2018. Aberrant IP₃ receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. PNAS 115:12259–64
- Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H. 2006. An Ins(1,4,5)P₃ receptor in *Parame-cium* is associated with the osmoregulatory system. *J. Cell Sci.* 119:3705–17

- Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, et al. 2013. Inositol 1,4,5trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist *Trypanosoma cruzi*. Mol. Microbiol. 87:1133–50
- Hashimoto M, Doi M, Kurebayashi N, Furukawa K, Hirawake-Mogi H, et al. 2016. Inositol 1,4,5trisphosphate receptor determines intracellular Ca²⁺ concentration in *Trypanosoma cruzi* throughout its life cycle. *FEBS Open Bio* 6:1178–85
- Morales-Perez CL, Noviello CM, Hibbs RE. 2016. X-ray structure of the human α4β2 nicotinic receptor. Nature 538:411–15
- Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, et al. 2016. Mechanism of NMDA receptor inhibition and activation. *Cell* 165:704–14
- Chen L, Durr KL, Gouaux E. 2014. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. *Science* 345:1021–26
- 101. Miller PS, Aricescu AR. 2014. Crystal structure of a human GABAA receptor. Nature 512:270-75
- Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, et al. 2014. X-ray structure of the mouse serotonin 5-HT3 receptor. *Nature* 512:276–81
- Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E. 2016. X-ray structures define human P2X₃ receptor gating cycle and antagonist action. *Nature* 538:66–71
- 104. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, et al. 2016. Structural basis for gating and activation of RyR1. *Cell* 167:145–57.e17
- Chadwick CC, Saito A, Fleischer S. 1990. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. *PNAS* 87:2132–36
- Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K. 2002. Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. *J. Biol. Chem.* 277:21115–18
- 107. da Fonseca PC, Morris SA, Nerou EP, Taylor CW, Morris EP. 2003. Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. PNAS 100:3936–41
- Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. 2002. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 Å resolution. *EMBO J*. 21:3575–81
- Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, Mignery GA. 2003. Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. *J. Biol. Chem.* 278:21319– 22
- Henderson R, Sali A, Baker ML, Carragher B, Devkota B, et al. 2012. Outcome of the first electron microscopy validation task force meeting. *Structure* 20:205–14
- Henderson R. 2013. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. PNAS 110:18037–41
- 112. Hamada K, Miyatake H, Terauchi A, Mikoshiba K. 2017. IP₃-mediated gating mechanism of the IP₃ receptor revealed by mutagenesis and X-ray crystallography. *PNAS* 114:4661–66
- Anyatonwu G, Khan MT, Schug ZT, da Fonseca PC, Morris EP, Joseph SK. 2010. Calcium-dependent conformational changes in inositol trisphosphate receptors. *J. Biol. Chem.* 285:25085–93
- 114. Shinohara T, Michikawa T, Enomoto M, Goto J, Iwai M, et al. 2011. Mechanistic basis of bell-shaped dependence of inositol 1,4,5-trisphosphate receptor gating on cytosolic calcium. PNAS 108:15486–91
- 115. Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R. 1997. Molecular and functional evidence for multiple Ca²⁺-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 272:25899–906
- 116. Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, et al. 2001. Ca²⁺-sensor region of IP₃ receptor controls intracellular Ca²⁺ signaling. *EMBO J*. 20:1674–80
- 117. Alzayady KJ, Sebe-Pedros A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI. 2015. Tracing the evolutionary history of inositol, 1,4,5-trisphosphate receptor: insights from analyses of *Capsaspora owczarzaki* Ca²⁺ release channel orthologs. *Mol. Biol. Evol.* 32:2236–53
- Nunn DL, Taylor CW. 1990. Liver inositol, 1,4,5-trisphosphate-binding sites are the Ca²⁺-mobilizing receptors. *Biochem. J.* 270:227–32
- Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI. 2016. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca²⁺ release. *Sci. Signal.* 9:ra35

- Takahashi M, Tanzawa K, Takahashi S. 1994. Adenophostins, newly discovered metabolites of *Penicillium brevicompactum*, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 269:369–72
- 121. Boehning D, Joseph SK. 2000. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. *EMBO J*. 19:5450–59
- 122. Hamada K, Mikoshiba K. 2012. Revisiting channel allostery: a coherent mechanism in IP₃ and ryanodine receptors. *Sci. Signal.* 5:pe24
- 123. Schug ZT, Joseph SK. 2006. The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. *7. Biol. Chem.* 281:24431-40
- Galvan DL, Mignery GA. 2002. Carboxyl-terminal sequences critical for inositol 1,4,5-trisphosphate receptor subunit assembly. *J. Biol. Chem.* 277:48248–60
- 125. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. 2003. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. *Nat. Cell Biol.* 5:1051–61
- Boehning D, van Rossum DB, Patterson RL, Snyder SH. 2005. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. PNAS 102:1466–71
- 127. White C, Li C, Yang J, Petrenko NB, Madesh M, et al. 2005. The endoplasmic reticulum gateway to apoptosis by Bcl-X_L modulation of the InsP₃R. *Nat. Cell Biol.* 7:1021–28
- 128. Yang J, Vais H, Gu W, Foskett JK. 2016. Biphasic regulation of InsP₃ receptor gating by dual Ca²⁺ release channel BH3-like domains mediates Bcl-x_L control of cell viability. *PNAS* 113:E1953– 62
- Mery L, Magnino F, Schmidt K, Krause KH, Dufour JF. 2001. Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the Inositol 1,4,5-trisphosphate receptors. *FEBS Lett.* 487:377–83
- Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, et al. 2014. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. *PNAS* 111:16478–83
- Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, et al. 2008. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca²⁺ release and apoptosis. *PNAS* 105:2427–32
- Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C, Joseph SK. 2006. Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. *J. Biol. Chem.* 281:3731–37
- 133. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, et al. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined posttranslational modifications in man and mouse. *Nucleic Acids Res.* 40:D261–70
- 134. Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, et al. 2014. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. *Mol. Cell. Proteom.* 13:1690–704
- McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A, et al. 2016. A restricted repertoire of de novo mutations in *ITPR1* cause Gillespie syndrome with evidence for dominant-negative effect. *Am. 7. Hum. Genet.* 98:981–92
- Gerber S, Alzayady KJ, Burglen L, Brémond-Gignac D, Marchesin V, et al. 2016. Recessive and dominant de novo *ITPR1* mutations cause Gillespie syndrome. Am. J. Hum. Genet. 98:971–80
- 137. Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K. 2006. IRBIT suppresses IP₃ receptor activity by competing with IP₃ for the common binding site on the IP₃ receptor. *Mol. Cell* 22:795–806
- Kawaai K, Ando H, Satoh N, Yamada H, Ogawa N, et al. 2017. Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. *PNAS* 114:3921–26
- 139. Bonneau B, Nougarede A, Prudent J, Popgeorgiev N, Peyrieras N, et al. 2014. The Bcl-2 homolog Nrz inhibits binding of IP₃ to its receptor to control calcium signaling during zebrafish epiboly. *Sci. Signal.* 7:ra14

- 140. Fos C, Becart S, Canonigo Balancio AJ, Boehning D, Altman A. 2014. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP₃ receptor 1 promotes Ca²⁺ signaling in T cells. *Sci. Signal.* 7:ra93
- 141. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, et al. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP₃ receptors. *Neuron* 21:717–26
- 142. Kang S, Kwon H, Wen H, Song Y, Frueh D, et al. 2011. Global dynamic conformational changes in the suppressor domain of IP₃ receptor by stepwise binding of the two lobes of calmodulin. *FASEB J*. 25:840–50
- 143. Geyer M, Huang F, Sun Y, Vogel SM, Malik AB, et al. 2015. Microtubule-associated protein EB3 regulates IP₃ receptor clustering and Ca²⁺ signaling in endothelial cells. *Cell Rep.* 12:79–89
- Tu H, Tang TS, Wang Z, Bezprozvanny I. 2004. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J. Biol. Chem. 279:19375–82
- 145. Ivanova H, Ritaine A, Wagner L, Luyten T, Shapovalov G, et al. 2016. The trans-membrane domain of Bcl-2α, but not its hydrophobic cleft, is a critical determinant for efficient IP₃ receptor inhibition. *Oncotarget* 7:55704–20
- 146. Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, et al. 1995. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. *Biochem. J.* 308(Part 1):83–88
- Hirota J, Ando H, Hamada K, Mikoshiba K. 2003. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. *Biochem. J.* 372:435–41
- Hirota J, Furuichi T, Mikoshiba K. 1999. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. *J. Biol. Chem.* 274:34433– 37
- 149. Kopil CM, Vais H, Cheung KH, Siebert AP, Mak DO, et al. 2011. Calpain-cleaved type 1 inositol 1,4,5trisphosphate receptor (InsP₃R1) has InsP₃-independent gating and disrupts intracellular Ca²⁺ homeostasis. *J. Biol. Chem.* 286:35998–6010
- Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJ. 2013. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. *J. Biol. Chem.* 288:25340–49
- 151. Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, et al. 2006. Phosphorylation of IP₃R1 and the regulation of [Ca²⁺]_i responses at fertilization: a role for the MAP kinase pathway. *Development* 133:4355–65
- Zhang N, Yoon SY, Parys JB, Fissore RA. 2015. Effect of M-phase kinase phosphorylations on type 1 inositol 1,4,5-trisphosphate receptor-mediated Ca²⁺ responses in mouse eggs. *Cell Calcium* 58:476–88
- 153. Cui J, Matkovich SJ, deSouza N, Li S, Rosemblit N, Marks AR. 2004. Regulation of the type 1 inositol 1,4,5-trisphosphate receptor by phosphorylation at tyrosine 353. *7. Biol. Chem.* 279:16311–16
- 154. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA. 2011. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. *Sci. Signal.* 4:rs5
- Malathi K, Kohyama S, Ho M, Soghoian D, Li X, et al. 2003. Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and modulation by Cdc2. *J. Cell. Biochem.* 90:1186–96
- Maxwell JT, Natesan S, Mignery GA. 2012. Modulation of inositol 1,4,5-trisphosphate receptor type 2 channel activity by Ca²⁺/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation. *7. Biol. Chem.* 287:39419–28
- 157. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, et al. 2008. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. *Mol. Cell* 31:438–48
- Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stockli J, et al. 2013. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. *Cell Metab.* 17:1009–20
- 159. Tsai CF, Wang YT, Yen HY, Tsou CC, Ku WC, et al. 2015. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. *Nat. Commun.* 6:6622
- Sliter DA, Aguiar M, Gygi SP, Wojcikiewicz RJ. 2011. Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. *J. Biol. Chem.* 286:1074–82

- Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, et al. 2012. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. *Mol. Cell. Proteom.* 11:1578–85
- 162. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, et al. 2012. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. *Cell Rep.* 2:419–31
- 163. Haun S, Sun L, Hubrack S, Yule D, Machaca K. 2012. Phosphorylation of the rat Ins(1,4,5)*P*₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)*P*₃. *Channels* 6:379–84
- 164. Boutin B, Tajeddine N, Monaco G, Molgo J, Vertommen D, et al. 2015. Endoplasmic reticulum Ca²⁺ content decrease by PKA-dependent hyperphosphorylation of type 1 IP₃ receptor contributes to prostate cancer cell resistance to androgen deprivation. *Cell Calcium* 57:312–20
- 165. Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, et al. 2016. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. *Cell Death Differ*. 23:313–22
- 166. Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G, et al. 2017. Mutations in the IRBIT domain of *ITPR1* are a frequent cause of autosomal dominant nonprogressive congenital ataxia. *Clin. Genet.* 91:86–91
- 167. Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, et al. 2013. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. *Neurogenetics* 14:225–32
- 168. Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H, et al. 2015. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J. Neurol. 262:1278–84
- 169. Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, et al. 2012. Missense mutations in *ITPR1* cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. *Orphanet 7. Rare Dis.* 7:67
- Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, et al. 2008. Total deletion and a missense mutation of *ITPR1* in Japanese SCA15 families. *Neurology* 71:547–51
- 171. Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K. 2011. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. *Biochem. Biophys. Res. Commun.* 410:754–58
- 172. Schnekenberg RP, Perkins EM, Miller JW, Davies WI, D'Adamo MC, et al. 2015. *De novo* point mutations in patients diagnosed with ataxic cerebral palsy. *Brain* 138:1817–32
- 173. Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, et al. 2014. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. PNAS 111:E3966–75
- 174. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, et al. 1999. Modulation of Ca²⁺ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP₃R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP₃R in store depletion-activated Ca²⁺ entry. *PNAS* 96:14955–60
- 175. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, et al. 2017. BAP1 regulates IP₃R3-mediated Ca²⁺ flux to mitochondria suppressing cell transformation. *Nature* 546:549–53
- 176. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, et al. 2017. PTEN counteracts FBXL2 to promote IP₃R₃- and Ca²⁺-mediated apoptosis limiting tumour growth. *Nature* 546:554–58
- 177. Khan MT, Bhanumathy CD, Schug ZT, Joseph SK. 2007. Role of inositol 1,4,5-trisphosphate receptors in apoptosis in DT40 lymphocytes. *J. Biol. Chem.* 282:32983–90
- 178. Matsu-Ura T, Shirakawa H, Suzuki KGN, Miyamoto A, Sugiura K, et al. 2019. Dual-FRET imaging of IP₃ and Ca²⁺ revealed Ca²⁺-induced IP₃ production maintains long lasting Ca²⁺ oscillations in fertilized mouse eggs. *Sci. Rep.* 9:4829
- 179. Lock JT, Alzayady KJ, Yule DI, Parker I. 2018. All three IP₃ receptor isoforms generate Ca²⁺ puffs that display similar characteristics. *Sci. Signal.* 11:eaau0344
- Prole DL, Taylor CW. 2019. Structure and function of IP₃ receptors. *Cold Spring Harb. Perspect. Biol.* 11. https://doi.org/10.1101/cshperspect.a035063
- 181. Uhlén P, Laestadius A, Jahnukainen T, Söderblom T, Bäckhed F, et al. 2000. α-Haemolysin of uropathogenic *E. coli* induces Ca²⁺ oscillations in renal epithelial cells. *Nature* 405:694–97
- Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI. 2017. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. *J. Biol. Chem.* 292:11714–26

- 183. Miyamoto A, Miyauchi H, Kogure T, Miyawaki A, Michikawa T, Mikoshiba K. 2015. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell. *Biochem. Biophys. Res. Commun.* 460:82–87
- Mikoshiba K, Okano H, Tsukada Y. 1985. P₄₀₀ protein characteristic to Purkinje cells and related proteins in cerebella from neuropathological mutant mice: autoradiographic study by ¹⁴C-leucine and phosphorylation. *Dev. Neurosci.* 7:179–87
- Pober JS, Sessa WC. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7:803–15
- 186. Minichiello L. 2009. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10:850-60
- De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, et al. 2013. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. *Prog. Neurobiol.* 108:1–20
- Feske S, Skolnik EY, Prakriya M. 2012. Ion channels and transporters in lymphocyte function and immunity. *Nat. Rev. Immunol.* 12:532–47