
PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

Annual Review of Physiology

Genetics of COPD
Edwin K. Silverman
Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston, Massachusetts 02115, USA; email: ed.silverman@channing.harvard.edu

Annu. Rev. Physiol. 2020. 82:413–31

First published as a Review in Advance on
November 15, 2019

The Annual Review of Physiology is online at
physiol.annualreviews.org

https://doi.org/10.1146/annurev-physiol-021317-
121224

Copyright © 2020 by Annual Reviews.
All rights reserved

Keywords

COPD, genetic association, sequencing, network medicine, subtyping

Abstract

Although chronic obstructive pulmonary disease (COPD) risk is strongly
influenced by cigarette smoking, genetic factors are also important deter-
minants of COPD. In addition to Mendelian syndromes such as alpha-1
antitrypsin deficiency, many genomic regions that influence COPD sus-
ceptibility have been identified in genome-wide association studies. Simi-
larly, multiple genomic regions associated with COPD-related phenotypes,
such as quantitative emphysema measures, have been found. Identifying the
functional variants and key genes within these association regions remains a
major challenge. However, newly identified COPD susceptibility genes are
already providing novel insights into COPD pathogenesis. Network-based
approaches that leverage these genetic discoveries have the potential to assist
in decoding the complex genetic architecture of COPD.

413

mailto:ed.silverman@channing.harvard.edu
https://doi.org/10.1146/annurev-physiol-021317-121224
https://www.annualreviews.org/doi/full/10.1146/annurev-physiol-021317-121224


PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

1. INTRODUCTION

Although COPD risk is strongly influenced by cigarette smoking, there has been long-standing
interest in identifying genetic determinants of COPD susceptibility. COPD is a complex disease,
influenced by genetic and environmental factors acting in a developmental context. Understand-
ing the genetic determinants of COPD could provide an unbiased assessment of key molecular
determinants of disease pathobiology, which could lead to important new insights into COPD
pathogenesis. Complex diseases such as COPD are not caused by single genetic variants; rather,
they develop due to perturbations of biological networks consisting of genes and proteins. COPD
genetics could provide critical information to build and refine these biological networks.

Defining the genetic determinants of COPD, and the genes and proteins with which they in-
teract, could provide new targets for drug development. Nelson and colleagues (1) demonstrated
that 8% of US Food and Drug Administration (FDA)-approved drugs targeted molecules with
genetic support from genome-wide association studies (GWAS) or Mendelian syndromes (from
the Online Mendelian Inheritance in Man database). However, only 2% of Phase 1 drugs, which
have not yet been subjected to the full gauntlet of drug development, had such genetic support.
The higher rate of genetic support in FDA-approved drugs suggests that targeting genes and pro-
teins identified by genetic studies for new drug development may have a higher rate of treatment
efficacy.

COPD is a heterogeneous syndrome,with variable contributions of lung parenchymal destruc-
tion (emphysema) and airway disease in different COPDpatients. In addition,COPDpatients vary
widely in other clinical manifestations, including the frequency of COPD exacerbations, level of
exercise capacity, and the development of cachexia. Genetic determinants may influence COPD
heterogeneity as well as susceptibility.

COPD genetic studies over the past 25 years have occurred in a series of scientific waves of
varying impact, based on technological advances in the assessment and analysis of genetic vari-
ation. Early studies of COPD genetics focused on finding shared regions of the genome among
affected relatives using linkage analysis (2). Although these linkage-based approaches were highly
successful inmonogenic syndromes such as cystic fibrosis, they weremuch less effective in complex
diseases such as COPD. Many candidate genes, selected based on what was thought to be known
about COPD pathobiology, were assessed in case-control association studies (3). These candidate
gene association studies were largely irreproducible, likely due to small sample sizes and failure
to utilize an adequately stringent adjustment for multiple statistical testing. This humbling era of
candidate gene association studies also emphasized our limited understanding of COPD patho-
biology. More recently, COPD genetics has focused on GWAS, which are a major focus of this
article. As the cost of whole exome and whole genome sequencing has fallen, these more com-
prehensive assessments of rare genetic variation are increasingly being used in COPD genetics
research.Ultimately, an integrated approach that includes genetic variants along with other omics
data types (e.g., transcriptomics, epigenetics, proteomics, etc.) in a network context will likely be
required to provide a comprehensive view of the genetic architecture of COPD.

2. FAMILIAL AGGREGATION OF COPD

Many early studies demonstrated that COPD clusters in families (4).Of course, this does not prove
that genes influence COPD risk, since cigarette smoking also clusters in families (likely for both
genetic and environmental reasons). In the Boston Early-Onset COPD Study, which enrolled
extended pedigrees of individuals with severe COPD at a young age [and without severe alpha-1
antitrypsin (AAT) deficiency], significant familial aggregation of airflow obstruction was identified
in response to smoking. Compared to smokers in the general population, smoking first-degree
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relatives (parents, siblings, and children) of severe, early-onset COPD cases had approximately a
threefold increased risk for airflow obstruction (5). However, nonsmoking first-degree relatives of
severe, early-onset COPD cases had no increased risk for COPD compared to nonsmokers from
the general population. Similar results were found by McCloskey and colleagues (6), suggesting
that genetic determinants may interact with cigarette smoking to influence COPD susceptibility.

Twin studies can be utilized to estimate heritability, the fraction of phenotypic variation due to
genetic factors, by comparing disease prevalence in monozygotic (identical) twins who share all
of their genes, and dizygotic (fraternal) twins who share approximately half of their genes. Inge-
brigtsen and colleagues (7) studied 22,422 Danish and 27,668 Swedish twin pairs; they estimated
COPD heritability to be approximately 60%.

An alternative approach to estimate heritability is based on the low, but nonzero, levels of relat-
edness in population-based samples. Using this approach, Zhou et al. (8) estimated the heritability
for FEV1 to be approximately 40%, and the heritability for quantitative computed tomography
(CT) emphysema to be approximately 30%. Thus, COPD and COPD-related phenotypes are
influenced by genetic determinants. The challenge is to identify those genes and the functional
variants that influence them.

3. ALPHA-1 ANTITRYPSIN DEFICIENCY

Severe AAT deficiency was the first proven genetic determinant of COPD. It remains the most
well-established genetic risk factor for COPD, and it is the only genetic subtype of COPD with a
specific treatment (9).AAT,encoded by the SERPINA1 gene, is themajor plasma protease inhibitor
of leukocyte elastase, a powerful enzyme located in the azurophil granules of neutrophils. The
most common cause of severe AAT deficiency is homozygosity for the SERPINA1∗Z allele, which
results from a single base pair change in the coding sequence of the SERPINA1 gene and leads to a
single amino acid substitution that causes AAT polymers to form in the hepatocytes that synthesize
most AAT. Reduced circulating AAT levels result from this protein production abnormality. In
addition to homozygosity for the Z allele, severe AAT deficiency can be caused by heterozygosity
of one Z allele and one null allele (null alleles lead to the absence of AAT production); ZZ and
Znull individuals are often referred to as PI Z. Approximately 1 in 3,000 people in the United
States inherit severe AAT deficiency, which substantially increases their risk for COPD, as well as
for liver disease (including hepatitis, cirrhosis, and hepatocellular carcinoma).

Substantial variability in the development of lung disease in PI Z subjects has been observed
(10), with some PI Z individuals living to advanced age without developing significant COPD.
Because most PI Z individuals are identified due to COPD or liver disease, determining the nat-
ural history of AAT deficiency has been challenging. A newborn screening study performed in
Sweden in 1972–1974 identified 129 PI Z subjects; the most recent follow-up report of 41 PI
Z subjects from this cohort revealed that some current or ex-smokers revealed evidence for hy-
perinflation and reduced diffusing capacity at ages 37–39 (11). Genetic modifiers likely influence
this variability in COPD risk among PI Z individuals, but they have not yet been definitively
identified. Augmentation therapy for AAT deficiency is available in the United States as a weekly
intravenous infusion. Randomized controlled trials have demonstrated reduction in the rate of
emphysema development in response to AAT augmentation therapy (12).

There has been long-standing controversy regarding the risk of COPD in heterozygotes for
the SERPINA1 Z allele (13). Several studies in the past decade have supported increased risk for
carriers of one normal SERPINA1 M allele and one SERPINA1 Z allele, who are often referred
to as PI MZ (14). Sorheim and colleagues (15) included both COPD cases and controls from the
GenKOLS study in Norway and families ascertained through COPD subjects in the International
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COPDGenetics Network.They found that FEV1/FVCwas significantly lower in PIMZ subjects
from both studies, but only the GenKOLS study showed a significant association of PI MZ with
quantitative CT emphysema. Molloy and colleagues (16) performed a study of families in Ireland
ascertained through a PIMZ subject with COPD; after excluding the PIMZ proband subjects, the
remaining PI MZ ever-smokers were shown to have reduced lung function and an increased risk
for COPD compared to PIMM ever-smokers, with a likely gene-by-environment interaction.Re-
cent work in the COPDGene study demonstrated increased risk for reduced FEV1 and increased
emphysema in PI MZ current and ex-smoking individuals (17). Similarly, the SPIROMICS inves-
tigators recently showed that PI MZ smokers have significantly reduced FEV1 and FEV1/FVC
(18). Thus, the evidence is now compelling that PI MZ smokers are at increased risk for COPD
compared to PI MM smokers. It remains unclear whether PI MZ nonsmokers have any increased
risk for COPD.

4. GENOME-WIDE ASSOCIATION STUDIES OF COPD

As shown in Figure 1, GWAS begin by assembling a large study population, typically of cases
and controls—although population-based and family-based samples are also frequently utilized.
Phenotypes for GWAS often include disease affection status (e.g., case versus control), although
other quantitative or categorical disease-related phenotypes can also be analyzed. Standardized
genome-wide single nucleotide polymorphism (SNP) genotyping of panels, including hundreds
of thousands of genetic variants, has become commoditized. Quality control is performed at the
level of the study subject (excluding subjects with high rates of missing genotypes, suggesting
low-quality DNA samples, or gender inconsistencies, suggesting possible sample mix-ups) and
the level of the genetic marker (excluding markers with high rates of missing data, deviations
from expected genotype distributions in control subjects based on Hardy-Weinberg equilibrium,
etc.). Genetic association analysis is performed with regression analysis (e.g., logistic regression
for categorical phenotypes andmultiple regression for quantitative phenotypes).Mixed regression
models can be used to adjust for subject relatedness.The genotyped SNPs can be utilized to impute
likely genotypes at other SNPs with which they are correlated (termed linkage disequilibrium) by
using statistical imputation approaches with standard reference panels such as the 1,000 Genomes
Project or Haplotype Reference Consortium. Due to the large number of genetic variants tested,
stringent adjustment for multiple statistical testing is required, with p-values <5 × 10−8 typically
utilized to demonstrate genome-wide significance. Meta-analysis of multiple study populations is
often required to achieve statistical significance, and replication of association results substantially
increases confidence in the validity of the associations.

The first GWAS of COPD were published in 2009; Pillai and colleagues (19) found genome-
wide significant associations of theCHRNA3/CHRNA5/IREB2 region on chromosome 15q25with
COPD. In a concurrently published GWAS from the Framingham Heart Study (20), the HHIP
region was associated with FEV1/FVC, and this same region nearly reached genome-wide signifi-
cance withCOPD susceptibility in the Pillai et al. study (19). Studies from large general population
samples have provided strong support for the association ofHHIP SNPs with FEV1/FVC (21, 22).
The CHARGE Consortium also found evidence of association of FEV1/FVC with the FAM13A
locus (21), which has been strongly associated with COPD susceptibility (23). Subsequently, the
COPDGWAS of the full COPDGene cohort of 10,192 smokers was combined in a collaborative
meta-analysis with the ECLIPSE, GenKOLS, and NETT-NAS populations (24). In GWAS of
moderate-to-severe COPD cases (postbronchodilator FEV1 <80% predicted with FEV1/FVC
<0.7) versus control smokers, a novel region near RIN3 was associated with COPD. Additional
severe COPD (FEV1 <50% predicted) GWAS regions were found nearMMP12 and TGFB2.
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Figure 1

The overall approach for genome-wide association studies of complex diseases. DNA samples and phenotypic information are obtained
from cases and controls, families including affected individuals, or subjects from the general population. Subsequently, standard single
nucleotide polymorphism (SNP) genotyping panels are tested. Quality control is performed at the level of both the subject and the
SNP, and then statistical associations between genotypes and phenotypes are assessed. Adjustment for genetic ancestry is necessary in
case-control or population-based studies. To achieve genome-wide statistical significance, meta-analysis of multiple study populations is
often required. Adapted with permission from Reference 85.

The International COPD Genetics Consortium (ICGC) was created to facilitate collabora-
tive research in COPD genetics (25). Using COPD affection status as the phenotype, Hobbs and
colleagues (26) performed GWAS in 15,256 COPD cases and 47,936 controls from 26 collab-
orating studies in the ICGC; they identified 22 genome-wide significant loci for COPD. More
recently, a combined COPD GWAS of samples from the ICGC and UK Biobank identified 82
loci associated with COPD at genome-wide significance (Figure 2) (27). Many of these COPD
GWAS loci were previously associated with spirometric values in general population samples (see
below). Of 35 novel loci (not previously associated with COPD or lung function), 27 loci were
at least nominally associated with FEV1 or FEV1/FVC in the SpiroMeta cohort. Interestingly,
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Figure 2

International COPD Genetics Consortium and UK Biobank genome-wide association studies for COPD. Manhattan plot
demonstrating 82 genome-wide significant associations to COPD. Novel associations (not previously reported for COPD or lung
function) are labeled with the nearest gene, and replication in the SpiroMeta cohort for lung function phenotypes is indicated. Adapted
with permission from Reference 27.

some of the COPD GWAS loci were more strongly associated with emphysema, while others
were more strongly associated with airway phenotypes. Thus, COPD genetic loci may influence
the heterogeneous manifestations of COPD.

Importantly, many of the COPD GWAS loci have been replicated by other investigators in
other study populations.For loci includingHHIP (28–30) andFAM13A (31–33), the same top SNP
(or a nearby SNP in linkage disequilibrium) has been replicated with the same direction of effect.
The results on chromosome 15q25 have been more complicated, with some evidence supporting
the existence of two COPDGWAS loci in that region—one related to nicotine addiction (related
to the nicotinic acetylcholine receptor genes such as CHRNA3 and CHRNA5) and one unrelated
to nicotine addiction (related to IREB2) (34). Although the effect sizes of COPD GWAS loci are
individually modest, their impact is more substantial when combined into a genetic risk score. For
example, Busch and colleagues (35) created a simple genetic risk score based on the first seven
COPD GWAS loci; they applied this risk score to the International COPD Genetics Network
(which had not been used for the GWAS). After adjustment for relevant covariates, each additional
COPD risk allele was associated with a 1.9% decrease in FEV1 (as % predicted), which could be
clinically significant.

Although COPDGWAS have identified multiple genome-wide significant associations, much
of the estimated heritability for COPD remains unexplained. This missing heritability could be
related to common variants of very small effect and/or rare variants of either small or large effect.
One of the most interesting findings in COPDGWAS is the identification of five genomic regions
that are also associated with idiopathic pulmonary fibrosis (IPF), but with opposite directions of
effect (the risk allele for COPD protects from IPF and vice versa) (27). Although risk for both of
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these pulmonary diseases is influenced by cigarette smoking, these genetic clues could point to
molecular switches that influence the distinct pathological patterns of COPD and IPF.

5. GENOME-WIDE ASSOCIATION STUDIES OF LUNG FUNCTION

As noted above, several of the initially discovered COPD GWAS loci, including HHIP and
FAM13A, were also found to be genetic determinants of spirometric values in general popula-
tion samples. As the sample sizes for both COPD and lung function GWAS analyses have steadily
increased, this overlap has become even more substantial. For example,Wain et al. (36) performed
GWAS for FEV1, FVC, and FEV1/FVC in 48,943 subjects selected from the extremes of lung
function in the UK BiLEVE cohort, with follow-up genotyping in 95,375 additional subjects.
They identified 97 GWAS loci for lung function, many of which showed at least nominal as-
sociation with COPD. Burkart and colleagues (37) found several novel genome-wide significant
regions of association with spirometric measures (including ZSWIM7 and HAL) in the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL) cohort, as well as support for previous
regions associated with lung function in European populations. Wyss and colleagues (38) stud-
ied 90,715 subjects from ethnically diverse cohorts in the CHARGE consortium, including 8,429
African ancestry, 9,959 Asian ancestry, and 11,775Hispanic ancestry subjects.They found 60 novel
loci associated with FEV1, FVC, and/or FEV1/FVC. The studies by Burkart’s and Wyss’s groups
demonstrate the importance of assessing genetic associations in multiple ancestries. In the largest
general population GWAS of lung function yet reported, Shrine and colleagues (39) analyzed
more than 400,000 participants in either the UK Biobank or SpiroMeta Consortium, identifying
279 genome-wide significant loci for spirometric measures. A genetic risk score based on these 279
lung function variants was significantly associated with COPD in independent cohorts, including
in non-European ancestries.

Perhaps it is not surprising that genetic determinants of COPD and lung function levels show
substantial overlap. After all, COPD is defined based on lung function. COPD is a common dis-
ease, and a substantial number of COPD cases are included in general population samples used
for lung function GWAS analyses—especially for the UK BiLEVE study, which selected sub-
jects from the extremes of lung function. Because COPD is defined by thresholds of lung func-
tion, one could easily envision a lung function variant that caused one person to have FEV1/
FVC = 0.69 (who would be diagnosed with COPD), while a carrier of the alternate allele who had
FEV1/FVC = 0.71 (who would not be diagnosed with COPD) would be associated with COPD.
In addition, there is growing recognition that a sizeable proportion of COPD cases relates to
abnormal growth and development rather than rapid decline in lung function (40). However, it
remains difficult to understand how the pathological processes that characterize advanced COPD,
including emphysema, small airway destruction, and small airway fibrosis, would be influenced by
genetic determinants of normal lung growth and development. Further studies to determine if
lung function genes are involved in COPD-related lung inflammation, tissue destruction, and
inadequate repair are warranted.

Although the search for genetic determinants of lung function levels has been quite fruitful,
identifying genetic determinants of lung function decline has been considerably more challenging.
Tang and colleagues (41) performed a GWAS meta-analysis of FEV1 change in 27,249 European
ancestry subjects from 14 cohorts in the CHARGE and SpiroMeta consortia; no genome-wide
significant associations were found. John et al. (42) performed GWAS of longitudinal change in
FEV1 and FEV1/FVC in 4,167 subjects; they did not identify any genome-wide significant associ-
ations.Moreover, none of the 26 previously identified genetic determinants of lung function level
was associated with lung function decline. Genetic determinants of longitudinal change in lung
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function are quite likely to exist; however, variability in technical assessment of lung function lev-
els over time as well as the possibility that lung function changes are episodic rather than gradual
will make it difficult to identify such genetic determinants. Focusing on longitudinal trajectories
may provide a more powerful approach to find genetic determinants of lung function decline (43).

6. GENETIC DETERMINANTS OF COPD-RELATED PHENOTYPES

In addition to genetic determinants of COPD and lung function, many other COPD-related
phenotypes have been assessed using GWAS. These genetic analyses in the COPDGene study
were recently summarized by Ragland and colleagues (44) and are shown in Figure 3. In contrast
to GWAS of COPD and lung function, the limited availability of these COPD-related pheno-
types has led to smaller sample sizes and/or lack of available cohorts for replication. Some COPD
GWAS loci, such as TGFB2, FAM13A,HHIP,CYP2A6, and CHRNA3/IREB2, are associated with
multiple COPD-related phenotypes. Other COPD GWAS loci, such as MTCL1 and SFTPD,
have only been associated with COPD. Whether these differences reflect the overall strength of
association to COPD or the impact on different aspects of COPD pathogenesis remains to be
determined.

Chest CT phenotypes are especially promising assessments to understand COPD hetero-
geneity, as the presence, severity, distribution, and pattern of emphysema can be determined.
Manichaikul and colleagues (45) analyzed quantitative CT emphysema in a multiethnic general
population sample of 7,914 subjects, the MESA (Multi-Ethnic Study of Atherosclerosis) Lung
Study. They found genome-wide significant associations near SNRPF and PPT2. With additional
fine mapping, the most strongly associated SNP in the PPT2 region was located within an intron
of the AGER gene. AGER encodes the sRAGE protein biomarker, which has been strongly asso-
ciated with emphysema (46). Cho and colleagues (47) performed GWAS of chest CT phenotypes
in the COPDGene, ECLIPSE, GenKOLS, and NETT studies. Five genome-wide significant as-
sociations with quantitative emphysema (percentage of low attenuation areas below −950 HU)
were identified, including two previously identified COPD GWAS loci (HHIP and CHRNA3).
The AGER region, previously associated with lung function, was also associated with quantitative
emphysema, and it was subsequently associated with COPD in the ICGC analysis (26). A region
near the SERPINA1 gene was also associated with emphysema, and it appeared to be driven by the
Z allele; thus, with a highly specific phenotype (CT emphysema), even rare variants of large effect
can be identified in genetic association studies. In addition, a region nearDLC1,which has not been
associated with lung function levels, was implicated in emphysema. Finding genetic determinants
of CT airway wall phenotypes has been more challenging than emphysema phenotypes, poten-
tially because only relatively large airways can be visualized due to the limits of CT resolution.

Emphysema distribution was also studied in GWAS of 11,532 subjects from COPDGene,
ECLIPSE, and GenKOLS (48). Five genome-wide significant associations were found, including
HHIP and chromosome 15q25 as well as three novel loci (near SOWAHB, TRAPPC9, and
KIAA1462). Genetic determinants of emphysema pattern based on local histogram textural
analysis in COPDGene were studied by Castaldi et al. (49). In addition to several novel associ-
ations (VWA8 with panlobular emphysema and MYO1D with severe centrilobular emphysema),
multiple previously identified COPD GWAS loci were associated with textural emphysema
patterns: CHRNA3/AGPHD1 (moderate centrilobular, severe centrilobular, and panlobular),
TGFB2 (moderate centrilobular), MMP12 (moderate centrilobular), and CYP2A6 (moderate
centrilobular). The associations of the chromosome 15q25 region with multiple different emphy-
sema patterns could relate to the impact of nicotine addiction on all emphysema patterns and/or
the existence of several COPD-related genetic determinants at that locus.
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Studying genetic determinants of COPD-related phenotypes is one approach to understand
COPD heterogeneity. An alternative is to define COPD subtypes using machine learning, imag-
ing patterns, or other clinical features, and then to assess genetic associations to those subtypes.
Castaldi and colleagues (50) used K-means clustering to define four COPD subtypes based on
FEV1 (% predicted), emphysema at −950 HU, emphysema distribution (upper lung field/lower
lung field), and segmental airway wall area. A cluster with mild upper lung–predominant em-
physema was associated with an SNP near HHIP, while a severe emphysema cluster was most
strongly associated with the chromosome 15q25 locus.

7. FINDING FUNCTIONAL VARIANTS IN GENOME-WIDE
ASSOCIATION STUDIES LOCI

Although GWAS have successfully identified susceptibility loci for many complex diseases (51),
functional variant identification post-GWAS has been quite slow (52, 53), because (a) many func-
tional variants are likely regulatory variants of moderate effect (54) rather than highly penetrant
Mendelian variants that often impact protein structure (55); (b) gene transcriptional regulation is
complicated by tissue specificity as well as dynamic temporal and spatial controls (56); and (c) the
impact of genetic variation on gene expression may escape detection in available tissue samples
(57). Importantly, genetic variants associated with a phenotype of interest often do not regulate
the closest gene (58, 59). Most GWAS variants are located in noncoding regions, and they can
regulate genes based on long-range chromatin interactions. Thus, the discovery of a region of
interest using GWAS is just the beginning of an odyssey that includes fine mapping of associated
regions, identifying long-range chromatin interactions, and assessing variants for functional activ-
ity. An additional challenge is posed by the linkage disequilibrium between genetic variants, which
assists in the identification of a GWAS signal but makes the identification of a functional variant
more challenging.

Geneticists debate the importance of finding the functional variant in a region of association.
Some argue that as long as the key gene is found, the functional variant is not important.However,
efforts to identify functional variants can be advantageous for the following reasons. First, con-
firming the functional variant (or variants) can assist in determining that the right gene (or genes)
in a GWAS region has been found. Second, the functional variant can point to the biological
mechanism for an association, such as altering an enhancer’s activity, a transcription factor’s bind-
ing site, or another gene regulatory event. Finally, the functional variant may regulate multiple
genes, and those insights can assist in building biological networks relevant for disease.

In an early example of functional variant identification in a COPDGWAS locus, Zhou and col-
leagues (29) studied theHHIPGWAS region on chromosome 4q31.Within the chromosome 4q31
COPD GWAS locus, chromosome conformation capture (3C) studies in Beas2B (lung epithe-
lial) and MRC5 (lung fibroblast) cell lines identified a 7-kb region approximately 85 kb upstream
from the HHIP gene that showed a long-range interaction with the HHIP promoter (Figure 4).
Subsequently, enhancer activity was detected within a 500-bp subset of this genomic region. By
resequencing, two common SNPs located inside this enhancer region were found (rs6537296 and
rs1542725). Electrophoretic mobility shift assays demonstrated that the COPD-associated allele
at rs1542725 binds more avidly to the transcription factor Sp3, likely leading to reduced HHIP
gene expression levels (29). Thus, this work identified a common functional variant influencing
COPD and demonstrated that it influenced HHIP through long-range chromatin interactions.

TheHHIPwork described above was laborious and low throughput.One of the key limitations
in assessing potential functional regulatory variants has been the low throughput of traditional
laboratory assays of gene regulation, such as luciferase reporter assays. Melnikov, Mikkelsen, and
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Figure 4

Long-range interaction detected between the COPD GWAS region and HHIP promoter (labeled as Anchor). Chromosome
conformation capture assay demonstrated a 7-kb region of interaction upstream from the HHIP gene with the HHIP promoter. This
upstream interacting genomic region is located within a frequently replicated COPD GWAS locus. Abbreviation: GWAS,
genome-wide association study. Adapted with permission from Reference 29.

colleagues (60, 61) proposed a potential solution to this limitation with the development of mas-
sively parallel reporter assays (MPRAs), which enabled the simultaneous assessment of hundreds
or even thousands of potential regulatory variants. InMPRAs, oligonucleotides containing poten-
tial regulatory sequences are linked to specific sequence tags, cloned into plasmids that include a
promoter element (e.g., SV40) and an open reading frame of DNA sequence along with the po-
tential regulatory sequence and sequence tag, and generated into a library of reporter constructs
(61). After multiplexed transfection of these constructs into mammalian cells of interest, the ex-
pression levels of the potential regulatory sequences are assessed by sequencing both the mRNA
of those cells and the library of plasmids. Specific regions are identified by their sequence tags,
and the relative expression levels of different regulatory sequences are compared by determining
the sequence counts in the plasmid pools and the mRNA. With these data, the expression levels
of regulatory constructs containing alternate SNP alleles can be compared. Thus, allele-specific
enhancer (and potentially silencer) effects can be assessed.

Castaldi et al. (62) utilized MPRAs to implicate potential regulatory variants in the FAM13A
COPD GWAS region. They included all SNPs in the FAM13A GWAS locus associated with
COPD at p < 0.02 in the initial GWAS (24); in total, 606 SNPs were tested. They compared
the output-to-input ratios of the two alleles for each SNP in the MPRA to identify allele-specific
expression differences in Beas2B cells. Using a false discovery rate of 0.05, 45 SNPs demonstrated
significant allele-specific regulatory activity in MPRA. Based on COPD GWAS p-values and
enhancer/silencer effect size, six SNPs were prioritized for validation in reporter assays. Three
(rs2013701, rs7671167, and rs1795739) out of six SNPs demonstrated significant allele-specific
activity in 16HBE cells. Using 3C, researchers showed that rs2013701 and rs1795739 interacted
with the FAM13A promoter. CRISPR-based studies provided functional support for rs2013701
as at least one of the functional variants in this COPD GWAS region. Although MPRAs have
led to important progress in identification of functional variants, there is a clear need for higher-
throughput assessments of functional variants.
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8. SEQUENCING-BASED APPROACHES TO IDENTIFY COPD
GENETIC DETERMINANTS

Although GWAS are highly effective at identifying common genetic determinants of complex
diseases such as COPD, they are substantially less useful for the identification of rare genetic
determinants. Fortunately, the cost of whole exome and whole genome sequencing studies has
fallen substantially, and these assessments are now feasible in large numbers of subjects. Stanley
and colleagues (63) utilizedwhole exome sequencing data in theCOPDGene study to demonstrate
that rare variants in the TERT gene were associated with emphysema. In small numbers of severe
COPD subjects and resistant smokers, Radder et al. (64) performed whole genome sequencing
and identified several suggestive associations, including the PTPRO gene.

In the Boston Early-Onset COPD Study, Qiao and colleagues (65) performed whole exome
sequencing in extended pedigrees of individuals with severe, early-onset COPD but without AAT
deficiency. Although 69 genes had potentially functional variants segregating with COPD in at
least two families, there were no genes that had variants segregating in more than three families.
Coding variants in a single gene could, at most, only explain a small percentage of severe COPD
cases. Thus, if coding variants are the cause of severe, early-onset COPD without AAT deficiency
in these families, they are apparently genetically heterogeneous.

Large numbers of COPD subjects are undergoing whole genome sequencing in the National
Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for PrecisionMedicine (TOPMed) pro-
gram. In 821 severe COPD cases and 973 control smokers with normal spirometry, whole genome
sequencing revealed significant associations near the previously reported COPD GWAS locus
near HHIP. Several novel suggestive associations to COPD were also observed, including a vari-
ant near SERPINA6 in African Americans, which was not explained by the SERPINA1 Z allele. In
addition, this study found inconsistent evidence for previously described rare variants in COPD,
underscoring the need for further studies in this area.

What can we expect to learn from large-scale whole genome sequencing studies of COPD?
Except in other ethnicities, such as African Americans, for whom the genotyping and imputation
panels have been suboptimal, additional common variant associations are unlikely. However, sta-
tistical fine mapping of COPD GWAS regions will be facilitated (59). Importantly, association of
rare variants with COPD and COPD-related phenotypes will be enabled. In addition, these whole
genome sequencing data will provide insights into genetic determinants of omics data types col-
lected on the same subjects, which will empower systems and network-based analyses.

9. BIOLOGICAL INSIGHTS FROM COPD GENETICS

Cell-based and animal model studies of genes located within COPD GWAS loci have provided
novel insights into COPD pathobiology. Demonstrating a COPD-relevant phenotype in an ani-
mal model, such as increased (or decreased) emphysema in gene-targeted mice exposed to chronic
cigarette smoke, increases the likelihood that a gene within a COPD GWAS region is functional
in COPD pathogenesis. As shown in Figure 5, there are currently approximately 119 genes that
demonstrate a COPD-related phenotype in a murine transgenic or knock-out model, and there
are currently approximately 84 COPD and/or emphysema loci. The eight genes that are located
within a COPD/emphysema GWAS locus and also show a murine COPD phenotype [HHIP (66),
FAM13A (67), IREB2 (68), AGER (69),MMP1 (70),MMP12 (71), SFTPD (72), and FBLN5] are
likely COPD susceptibility genes that could provide valuable clues to COPD pathogenesis. Some
of these biological pathways, such as protease-antiprotease balance (MMP1 and MMP12) and
extracellular matrix (FBLN5), have been known for decades. Studies of COPD GWAS genes
have revealed novel roles in COPD-related processes, such as FAM13A in WNT/β-catenin
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Figure 5

Venn diagram demonstrating the overlap of genes implicated by murine emphysema models and genes
located near genome-wide significant associations to COPD. Out of a total of approximately 20,000
mammalian genes, only eight are located in both COPD genome-wide association regions and have been
supported by a gene-targeted murine model of emphysema.

signaling (67). However, other biological processes, such as mitochondrial iron (related to IREB2)
and hedgehog signaling (related to HHIP, although HHIP may also have other biological func-
tions) (66), were not widely studied before the COPDGWAS era. Surfactant protein D [encoded
by SFTPD (73)] and sRAGE (encoded by AGER) are promising blood biomarkers that have been
associated with COPD (46).

10. NETWORKS AND COPD GENETICS

Investigators studying complex disease genetics are beginning to recognize the value of network-
based approaches in defining complex disease genetic architecture. For example, Boyle and col-
leagues (74) recently proposed an omnigenic model for complex diseases in which many loci of
very small effect influence genes of larger effect through network connections. Morrow et al. (75)
found that COPD susceptibility genes typically did not show substantial differences in lung tis-
sue gene expression between COPD cases and controls, but the genes that they interact with (for
example, based on protein–protein interactions) are often associated with COPD or lung func-
tion. Thus, COPD genetics research would likely benefit from increased used of network-based
approaches.

Although genetics, transcriptomics, metabolomics, proteomics, and epigenetics can provide
large-scale resources for COPD research, the methods used to analyze these data types need to
evolve to take advantage of the multifaceted information available. Standard association analy-
ses assess a single outcome with individual potential predictor variables, using approaches such as
linear or logistic regression.Multivariable models can include multiple predictor variables, but in-
tegration of multiple omics data remains challenging, and assumptions about linear relationships
persist. Interactions are often ignored or analyzed simply with cross-product terms in the regres-
sion analysis. The development and application of methods to recognize and quantify nonlinear
relationships and interactions will be necessary to analyze Big Data effectively in complex diseases
such as COPD, especially in the context of age-related effects.

Network science, based on methods from graph theory, provides approaches that can assist in
the analysis of Big Data in complex diseases. Networks provide a useful framework to visualize
and analyze relationships—both linear and nonlinear—and interactions between variables of
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interest. Networks are composed of entities, represented by nodes and edges, which indicate
a relationship between specific nodes. For example, in a protein–protein interaction network,
the nodes represent individual proteins, and an edge is placed if there is a physical interaction
detected between those two proteins (e.g., based on affinity purification/mass spectrometry
or yeast 2-hybrid assays). In addition to visualizing relationships between nodes, properties
of the network, such as the number of connections to different nodes, can provide important
information about network structure and response to perturbations. The multiple interac-
tions encoded within networks can lead to network behaviors that cannot be predicted from
studying isolated nodes or pairs of nodes; these complex responses are referred to as emergent
properties.

The term networkmedicine has been used to describe the application of network science to the
study of disease (76–78). Network medicine is not limited to a single type of network or a single
source of data. Measuring and integrating multiple omics data types are key parts of network
medicine. Principled analysis can provide disease-related network models that then can be used to
reclassify diseases such as COPD based on their etiology instead of end-stage physiological and
pathological manifestations—our current approach for classifying most diseases.

Multiple types of network models can be used in network medicine. Protein–protein interac-
tions within the molecular interactome (79) have been utilized to identify interconnected sub-
sets of interacting proteins related to specific diseases, known as disease network modules. One
approach to identify such disease network modules is based on genetic association evidence. Us-
ing the dmGWAS method (80), McDonald and colleagues (81) found a consensus module for
COPD within the protein–protein interaction network that was enriched in interleukin (IL)-
7 pathway members. GWAS genes can also be used as seed genes in random walk approaches
within the molecular interactome of protein–protein interactions to define disease network mod-
ules; Sharma et al. (82) identified a first-generation COPD disease network module of 163 genes
using this approach. Correlation networks based on gene expression levels can identify gene net-
work modules having similar gene expression patterns using approaches such as weighted gene
coexpression network analysis (WGCNA) (83). Correlation-based network analysis of COPD
and control lung tissue gene expression data demonstrated that B cell–related pathways differ-
entiate COPD cases and controls (75). Gene regulatory networks have been developed based
on relating transcription factor binding site information and gene expression levels using ap-
proaches such as PANDA (84). PANDA analysis using mice heterozygous for deficiency of the
COPDGWAS geneHhip demonstrated network rewiring related to the Klf4 transcription factor
(66).

These network medicine modeling approaches can be described as top-down efforts to use
Big Data to identify disease-related networks related to COPD pathogenesis. However, bottom-
up approaches to build disease networks by identifying the biological mechanisms and molecular
interactions of well-supported COPD susceptibility genes such as HHIP and FAM13A can also
be used to create disease networks. Ideally, the top-down and bottom-up network-building ap-
proaches will synergistically identify biological interactions between key molecules involved in
COPD pathobiology, as shown in Figure 6.

11. FUTURE DIRECTIONS FOR COPD GENETICS

Although the rapidly expanding number of genetic loci associated with COPD is encouraging,
many areas of investigation will need to be pursued to translate these discoveries into new models
of COPDpathogenesis.The key genes and functional variants within theseCOPDGWAS regions
need to be identified. The measurement of omics data could provide important biological clues,
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Comparison of top-down and bottom-up approaches to build biological networks. Biological networks can
be built from the bottom up, starting with GWAS regions and identifying the key genes and the functional
variants that impact those genes. Networks can be extended from those genes using tools that assess binding
with other proteins (e.g., tandem affinity purification, coimmunoprecipitation) as well as hypothesis-based
molecular biology experiments. Top-down approaches begin with Big Data assessments of key biological
molecules such as DNA, RNA, proteins, and metabolites. Various types of networks can be built, including
correlation-based networks, gene regulatory networks, and protein–protein interaction networks. Ultimately,
bottom-up and top-down approaches may converge to give insights into gene regulation, biological function,
and disease pathobiology relevant to COPD. The top-down approach is encompassed by the omics data and
network methods shown above the rectangles labeled “Understand gene regulation,” “Determine biological
function,” and “Define disease pathobiology,” whereas the bottom-up approach includes the components
below those rectangles. Abbreviations: AP-MS, affinity purification–mass spectrometry; GWAS, genome-
wide association study; SNP, single nucleotide polymorphism.

but effective multi-omics integration methods will be required. Variable relationships of COPD
genetic determinants to COPD-related phenotypes suggest a genetic contribution to COPD het-
erogeneity, but greater understanding of the mechanisms for those variable associations is needed.
Ultimately,we need to perform disease subtyping based on biological mechanisms instead of phys-
iology and pathology. We also need to translate the biological understanding of COPD into new
treatments. Treatments tailored to COPD subtype would be ideal, and systems pharmacology
approaches that focus on multiple treatment targets, potentially in a dynamic fashion, may be
beneficial.

DISCLOSURE STATEMENT

In the past three years, the author has received grant support from GlaxoSmithKline.

www.annualreviews.org • Genetics of COPD 427



PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

ACKNOWLEDGMENTS

The author thanksDr.Michael Cho for helpful comments on this article.This work was supported
byUSNational Institutes of Health grants U01HL089856,R01HL113264, P01HL114501,R01
HL133135, and R01 HL137927 to E.K.S.

LITERATURE CITED

1. NelsonMR,TipneyH,Painter JL, Shen J,Nicoletti P, et al. 2015.The support of human genetic evidence
for approved drug indications.Nat. Genet. 47:856–60

2. Silverman EK, Mosley JD, Palmer LJ, Barth M, Senter JM, et al. 2002. Genome-wide linkage analysis
of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis
phenotypes.Hum. Mol. Genet. 11:623–32

3. Hersh CP, Demeo DL, Lange C, Litonjua AA, Reilly JJ, et al. 2005. Attempted replication of reported
chronic obstructive pulmonary disease candidate gene associations. Am. J. Respir. Cell Mol. Biol. 33:71–78

4. Hersh CP,DeMeoD, Silverman EK. 2005.COPD. In Respiratory Genetics, ed. EK Silverman, SD Shapiro,
DA Lomas, ST Weiss, pp. 253–96. London: Hodder Arnold

5. Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, et al. 1998. Genetic epidemiology of
severe, early-onset chronic obstructive pulmonary disease: risk to relatives for airflow obstruction and
chronic bronchitis. Am. J. Respir. Crit. Care Med. 157:1770–78

6. McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA. 2001. Siblings of patients
with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am. J.
Respir. Crit. Care Med. 164:1419–24

7. Ingebrigtsen T, Thomsen SF, Vestbo J, van der Sluis S, Kyvik KO, et al. 2010. Genetic influences on
chronic obstructive pulmonary disease—a twin study. Respir. Med. 104:1890–95

8. Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM. 2013. Heritability of chronic ob-
structive pulmonary disease and related phenotypes in smokers.Am. J. Respir. Crit. Care Med. 188:941–47

9. Silverman EK, Sandhaus RA. 2009. Alpha1-antitrypsin deficiency.N. Engl. J. Med. 360:2749–57
10. DeMeo DL, Sandhaus RA, Barker AF, Brantly ML, Eden E, et al. 2007.Determinants of airflow obstruc-

tion in severe alpha-1-antitrypsin deficiency. Thorax 62:806–13
11. Mostafavi B, Diaz S, Piitulainen E, Stoel BC,Wollmer P, Tanash HA. 2018. Lung function and CT lung

densitometry in 37- to 39-year-old individuals with alpha-1-antitrypsin deficiency. Int. J. Chron. Obstruct.
Pulmon. Dis. 13:3689–98

12. Chapman KR, Burdon JG, Piitulainen E, Sandhaus RA, Seersholm N, et al. 2015. Intravenous augmenta-
tion treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind,
placebo-controlled trial. Lancet 386:360–68

13. Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK. 2004. Chronic obstructive
pulmonary disease in α1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax 59:843–49

14. Silverman EK. 2016. Risk of lung disease in PI MZ heterozygotes. Current status and future research
directions. Ann. Am. Thorac. Soc. 13(Suppl. 4):S341–45

15. Sorheim IC, Bakke P, Gulsvik A, Pillai SG, Johannessen A, et al. 2010. α;1-Antitrypsin protease inhibitor
MZ heterozygosity is associated with airflow obstruction in two large cohorts. Chest 138:1125–32

16. Molloy K, Hersh CP, Morris VB, Carroll TP, O’Connor CA, et al. 2014. Clarification of the risk of
chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am. J. Respir.
Crit. Care Med. 189:419–27

17. ForemanMG,Wilson C,DeMeo DL,Hersh CP, Beaty TH, et al. 2017. Alpha-1 antitrypsin PiMZ geno-
type is associated with chronic obstructive pulmonary disease in two racial groups. Ann. Am. Thorac. Soc.
14:1280–87

18. Li X, Ortega VE, Ampleford EJ, Graham Barr R, Christenson SA, et al. 2018. Genome-wide association
study of lung function and clinical implication in heavy smokers. BMC Med. Genet. 19:134

19. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, et al. 2009. A genome-wide association study in chronic
obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLOS Genet.
5:e1000421

428 Silverman



PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

20. Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, et al. 2009. A genome-wide association study
of pulmonary function measures in the Framingham Heart Study. PLOS Genet. 5:e1000429

21. Hancock DB, EijgelsheimM,Wilk JB, Gharib SA, Loehr LR, et al. 2010.Meta-analyses of genome-wide
association studies identify multiple loci associated with pulmonary function.Nat. Genet. 42:45–52

22. Repapi E, Sayers I,Wain LV,Burton PR, JohnsonT, et al. 2010.Genome-wide association study identifies
five loci associated with lung function.Nat. Genet. 42:36–44

23. ChoMH,Boutaoui N,Klanderman BJ, Sylvia JS, Ziniti JP, et al. 2010.Variants in FAM13A are associated
with chronic obstructive pulmonary disease.Nat. Genet. 42:200–2

24. ChoMH,McDonaldML,ZhouX,MattheisenM,Castaldi PJ, et al. 2014.Risk loci for chronic obstructive
pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir. Med. 2:214–25

25. Silverman EK, Vestbo J, Agusti A, Anderson W, Bakke PS, et al. 2011. Opportunities and challenges in
the genetics of COPD 2010: an International COPD Genetics Conference report. COPD 8:121–35

26. Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, et al. 2017. Genetic loci associated with
chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat.
Genet. 49:426–32

27. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, et al. 2019. Genetic landscape
of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.
Nat. Genet. 51:494–505

28. VanDurme YM,EijgelsheimM, JoosGF,Hofman A,Uitterlinden AG, et al. 2010.Hedgehog-interacting
protein is a COPD susceptibility gene: the Rotterdam Study. Eur. Respir. J. 36:89–95

29. Zhou X, Baron RM, Hardin M, Cho MH, Zielinski J, et al. 2012. Identification of a chronic obstructive
pulmonary disease genetic determinant that regulates HHIP.Hum. Mol. Genet. 21:1325–35

30. Wain LV, ShrineN,Miller S, Jackson VE,Ntalla I, et al. 2015.Novel insights into the genetics of smoking
behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association
study in UK Biobank. Lancet Respir. Med. 3:769–81

31. Young RP, Hopkins RJ, Hay BA, Whittington CF, Epton MJ, Gamble GD. 2011. FAM13A locus in
COPD is independently associated with lung cancer—evidence of a molecular genetic link between
COPD and lung cancer. Appl. Clin. Genet. 4:1–10

32. Xie J,WuH,Xu Y,WuX,Liu X, et al. 2015.Gene susceptibility identification in a longitudinal study con-
firms new loci in the development of chronic obstructive pulmonary disease and influences lung function
decline. Respir. Res. 16:49

33. Ziółkowska-Suchanek I, Mosor M, Gabryel P, Grabicki M, Zurawek M, et al. 2015. Susceptibility loci in
lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci. Rep. 5:13502

34. Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, et al. 2013. Dissecting direct and indirect
genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility.Hum.Genet. 132:431–41

35. Busch R, Hobbs BD, Zhou J, Castaldi PJ, McGeachie MJ, et al. 2017. Genetic association and risk scores
in a COPD meta-analysis of 16,707 subjects. Am. J. Respir. Cell Mol. Biol. 57:35–46

36. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, et al. 2017. Genome-wide association
analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential
druggable targets.Nat. Genet. 49:416–25

37. Burkart KM, Sofer T, London SJ, Manichaikul A, Hartwig FP, et al. 2018. A genome-wide association
study in Hispanics/Latinos identifies novel signals for lung function. The Hispanic Community Health
Study/Study of Latinos. Am. J. Respir. Crit. Care Med. 198:208–19

38. Wyss AB, Sofer T, Lee MK, Terzikhan N, Nguyen JN, et al. 2018. Multiethnic meta-analysis identifies
ancestry-specific and cross-ancestry loci for pulmonary function.Nat. Commun. 9:2976

39. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, et al. 2019. New genetic signals for
lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple
ancestries.Nat. Genet. 51:481–93

40. Lange P, Celli B, Agusti A, Jensen GB,Divo M, et al. 2015. Lung-function trajectories leading to chronic
obstructive pulmonary disease.N. Engl. J. Med. 373:111–22

41. Tang W, Kowgier M, Loth DW, Artigas MS, Joubert BR, et al. 2014. Large-scale genome-wide associa-
tion studies and meta-analyses of longitudinal change in adult lung function. PLOS ONE 9:e100776

www.annualreviews.org • Genetics of COPD 429



PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

42. John C, Artigas MS, Hui J, Nielsen SF, Rafaels N, et al. 2017. Genetic variants affecting cross-sectional
lung function in adults show little or no effect on longitudinal lung function decline. Thorax 72:400–8

43. Ross JC,Castaldi PJ, ChoMH,Chen J, Chang Y, et al. 2017. A Bayesian nonparametric model for disease
subtyping: application to emphysema phenotypes. IEEE Trans. Med. Imaging 36:343–54

44. RaglandMF,Benway CJ,Lutz SM,Bowler RP,Hecker J, et al. 2019.Genetic advances in COPD: insights
from COPDGene. Am. J. Respir. Crit. Care Med. 200:677–90

45. Manichaikul A,Hoffman EA, Smolonska J, GaoW,ChoMH, et al. 2014. Genome-wide study of percent
emphysema on computed tomography in the general population. TheMulti-Ethnic Study of Atheroscle-
rosis Lung/SNP Health Association Resource Study. Am. J. Respir. Crit. Care Med. 189:408–18

46. Yonchuk JG, Silverman EK, Bowler RP, Agusti A, Lomas DA, et al. 2015. Circulating soluble receptor
for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the
lung. Am. J. Respir. Crit. Care Med. 192:785–92

47. Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, et al. 2015. A genome-wide association study of
emphysema and airway quantitative imaging phenotypes. Am. J. Respir. Crit. Care Med. 192:559–69

48. Boueiz A, Lutz SM, Cho MH, Hersh CP, Bowler RP, et al. 2017. Genome-wide association study of the
genetic determinants of emphysema distribution. Am. J. Respir. Crit. Care Med. 195:757–71

49. Castaldi PJ, San Jose Estepar R, Mendoza CS, Hersh CP, Laird N, et al. 2013. Distinct quantitative
computed tomography emphysema patterns are associated with physiology and function in smokers.Am.
J. Respir. Crit. Care Med. 188:1083–90

50. Castaldi PJ, Dy J, Ross J, Chang Y, Washko GR, et al. 2014. Cluster analysis in the COPDGene study
identifies subtypes of smokers with distinct patterns of airway disease and emphysema.Thorax 69:415–22

51. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM,Mehta JP, et al. 2009. Potential etiologic and func-
tional implications of genome-wide association loci for human diseases and traits. PNAS 106:9362–67

52. Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, et al. 2011. Principles for the post-
GWAS functional characterization of cancer risk loci.Nat. Genet. 43:513–18

53. Juran BD, Lazaridis KN. 2011. Genomics in the post-GWAS era. Semin. Liver Dis. 31:215–22
54. Cooper GM, Shendure J. 2011. Needles in stacks of needles: finding disease-causal variants in a wealth

of genomic data.Nat. Rev. Genet. 12:628–40
55. Gibson G. 2011. Rare and common variants: twenty arguments.Nat. Rev. Genet. 13:135–45
56. Sanyal A, Lajoie BR, Jain G, Dekker J. 2012. The long-range interaction landscape of gene promoters.

Nature 489:109–13
57. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, et al. 2009. The 8q24 cancer risk variant

rs6983267 shows long-range interaction withMYC in colorectal cancer.Nat. Genet. 41:882–24
58. Baxter JS, Leavy OC, Dryden NH, Maguire S, Johnson N, et al. 2018. Capture Hi-C identifies putative

target genes at 33 breast cancer risk loci.Nat. Commun. 9:1028
59. Schaid DJ, Chen W, Larson NB. 2018. From genome-wide associations to candidate causal variants by

statistical fine-mapping.Nat. Rev. Genet. 19:491–504
60. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. 2012. Systematic dissection and opti-

mization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol.
30:271–77

61. Melnikov A, Zhang X, Rogov P, Wang L, Mikkelsen TS. 2014. Massively parallel reporter assays in cul-
tured mammalian cells. J. Vis. Exp. 90:e51719

62. Castaldi PJ, Guo F, Qiao D, Du F, Naing ZZC, et al. 2019. Identification of functional variants in the
FAM13A chronic obstructive pulmonary disease genome-wide association study locus by massively par-
allel reporter assays. Am. J. Respir. Crit. Care Med. 199:52–61

63. Stanley SE, Chen JJ, Podlevsky JD, Alder JK, Hansel NN, et al. 2015. Telomerase mutations in smokers
with severe emphysema. J. Clin. Investig. 125:563–70

64. Radder JE, Zhang Y, Gregory AD, Yu S, Kelly NJ, et al. 2017. Extreme trait whole-genome sequencing
identifies PTPRO as a novel candidate gene in emphysema with severe airflow obstruction. Am. J. Respir.
Crit. Care Med. 196:159–71

65. Qiao D, Lange C, Beaty TH, Crapo JD, Barnes KC, et al. 2016. Exome sequencing analysis in severe,
early-onset chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 193:1353–63

430 Silverman



PH82CH19_Silverman ARjats.cls January 20, 2020 15:11

66. Lao T, Glass K, Qiu W, Polverino F, Gupta K, et al. 2015. Haploinsufficiency of Hedgehog interacting
protein causes increased emphysema induced by cigarette smoke through network rewiring.GenomeMed.
7:12

67. Jiang Z,LaoT,QiuW,Polverino F,GuptaK, et al. 2016.A chronic obstructive pulmonary disease suscep-
tibility gene, FAM13A, regulates protein stability of β-catenin. Am. J. Respir. Crit. Care Med. 194:185–97

68. Cloonan SM, Glass K, Laucho-Contreras M, Bhashyam AR, Cervo M, et al. 2016. Mitochondrial iron as
a therapeutic target for IRP2-regulated cigarette smoke-induced bronchitis and emphysema. Nat. Med.
22:163–74

69. Sambamurthy N, Leme AS,Oury TD, Shapiro SD. 2015. The receptor for advanced glycation end prod-
ucts (RAGE) contributes to the progression of emphysema in mice. PLOS ONE 10:e0118979

70. D’Armiento J, Dalal SS, Okada Y, Berg RA, Chada K. 1992. Collagenase expression in the lungs of trans-
genic mice causes pulmonary emphysema. Cell 71:955–61

71. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. 1997. Requirement for macrophage elastase for
cigarette smoke-induced emphysema in mice. Science 277:2002–4

72. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, et al. 2000. Increased metalloproteinase activity,
oxidant production, and emphysema in surfactant protein D gene-inactivated mice. PNAS 97:5972–77

73. Lomas DA, Silverman EK, Edwards LD, Locantore NW, Miller BE, et al. 2009. Serum surfactant
protein D is steroid sensitive and associated with exacerbations of COPD. Eur. Resp. J. 34:95–102

74. Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic.
Cell 169:1177–86

75. Morrow J, Zhou X, Lao T, Jiang Z, Demeo DL, et al. 2017. Functional interactors of three genome-wide
association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung
tissue. Sci. Rep. 7:44232

76. Barabasi AL. 2007. Network medicine—from obesity to the “diseasome.”N. Engl. J. Med. 357:404–7
77. Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human

disease.Nat. Rev. Genet. 12:56–68
78. Loscalzo J, Barabasi AL, Silverman EK, eds. 2017. Network Medicine: Complex Systems in Human Disease

and Therapeutics. Cambridge, MA: Harvard Univ. Press
79. Vidal M, Cusick ME, Barabasi AL. 2011. Interactome networks and human disease. Cell 144:986–98
80. Jia P, Zheng S, Long J, Zheng W, Zhao Z. 2011. dmGWAS: dense module searching for genome-wide

association studies in protein-protein interaction networks. Bioinformatics 27:95–102
81. McDonald ML, Mattheisen M, Cho M, Liu Y-Y, Harshfield B, et al. 2014. Beyond GWAS in COPD:

probing the landscape between gene-set associations, genome-wide associations and protein-protein in-
teraction networks.Hum. Heredity 78:131–39

82. Sharma A, Kitsak M, Cho MH, Ameli A, Zhou X, et al. 2018. Integration of molecular interactome and
targeted interaction analysis to identify a COPD disease network module. Sci. Rep. 8:14439

83. Langfelder P, Horvath S. 2008.WGCNA: an R package for weighted correlation network analysis. BMC
Bioinform. 9:559

84. Glass K,Huttenhower C,Quackenbush J, Yuan GC. 2013. Passing messages between biological networks
to refine predicted interactions. PLOS ONE 8:e64832

85. Hardin M, Silverman EK. 2014. Chronic obstructive pulmonary disease genetics: a review of the past and
a look into the future. J. COPD Found. 1:33–46

www.annualreviews.org • Genetics of COPD 431




