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Abstract

Normal aortic valves are composed of valve endothelial cells (VECs) and
valve interstitial cells (VICs). VICs are the major cell population and have
distinct embryonic origins in the endocardium and cardiac neural crest cells.
Cell signaling between the VECs and VICs plays critical roles in aortic valve
morphogenesis. Disruption of major cell signaling pathways results in aor-
tic valve malformations, including bicuspid aortic valve (BAV). BAV is a
common congenital heart valve disease that may lead to calcific aortic valve
disease (CAVD), but there is currently no effective medical treatment for
this beyond surgical replacement. Mouse and human studies have identified
causative gene mutations for BAV and CAVD via disrupted VEC to VIC
signaling. Future studies on the developmental signaling mechanisms un-
derlying aortic valve malformations and the pathogenesis of CAVD using
genetically modified mouse models and patient-induced pluripotent stem
cells may identify new effective therapeutic targets for the disease.
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CAVD: calcific aortic
valve disease

BAV: bicuspid aortic
valve

VEC: valve
endothelial cell

VIC: valve interstitial
cell

EMT: epithelial to
mesenchymal
transformation

NCC: neural crest cell

OFT: outflow tract

ECM: extracellular
matrix

AVC: atrioventricular
canal

INTRODUCTION

The aortic valve ensures the unidirectional systemic circulation of blood flow from the left ventricle
to the aorta during the cardiac cycle. Homeostasis of aortic valves is critical for durable valve
function throughout life. Disruption of valve maintenance may lead to calcific aortic valve disease
(CAVD). CAVD is a major health problem with risk of severe morbidity and mortality that has no
effective medical treatment beyond surgical valve replacement (1–5). Aortic valve malformations,
including the bicuspid aortic valve (BAV), are present in ∼2% of newborns (6). Malformed aortic
valves are associated with the high incidence of CAVD later in life, suggesting developmental and
genetic origins of aortic valve disease.

The aortic valve is made of valve endothelial cells (VECs) and valve interstitial cells (VICs), with
the latter derived from embryonic endocardial cells through epithelial to mesenchymal transfor-
mation (EMT) during development (7–10). The cardiac neural crest cells (NCCs) also contribute
to a subpopulation of the aortic VICs (11). The EMT process gives rise to the valve mesenchymal
progenitor cells in the endocardial cushions of the proximal cardiac outflow tract (OFT), whereas
the cushion mesenchyme of the distal OFT originates from NCCs. These endocardial cushions
function as the valve primordium for unidirectional blood flow in the early embryonic heart. The
cushions then undergo a complicated and underappreciated remodeling process that sculptures
the primitive valve primordia into the mature aortic valve leaflets with three distinct extracellular
matrix (ECM) layers necessary for normal valve structure and function (12–14).

Both endocardial cushion formation and valve remodeling require proper cell functions and
interactions supported by ECM and regulated by signals from multiple molecular pathways (TGF-
β/BMP, NOTCH, WNT, VEGF, FGF, and EGFR) (14, 15). Evidence emerging from mouse
studies indicates that aberrant signaling in VECs or VICs or between the two cell populations
can account for abnormal formation of the aortic valve and may lead to CAVD over time (16–
19). Human genetic studies have also uncovered genetic mutations in major signaling as well as
ECM genes that are strongly associated with BAV, a predisposition of CAVD (20, 21). Advanced
mouse genetics, induced pluripotent stem cells (iPSCs), and tissue engineering technologies offer
unprecedented opportunities for scientists and physicians to reveal the molecular signals underly-
ing aortic valve development and disease. These combined approaches may identify the disease-
specific targets that can be used to develop novel therapies for aortic valve malformations and
calcification.

AORTIC VALVE DEVELOPMENT

Overview of Cardiogenesis

During embryogenesis, the heart is the first organ to develop and function. The embryonic heart
arises from mesodermal cells located in the anterior part of the primitive streak (22, 23). These
cardiac progenitor cells migrate from the streak to the splanchnic mesoderm to form the cardiac
crescent or the first heart field (24, 25). As the embryo grows, the crescent of the first heart
field fuses at the ventral midline to form a heart tube composed of an external myocardial cell
layer surrounding an internal endocardial layer (14, 26). The primitive heart tube elongates at
the arterial and venous pools through the addition of progenitor cells from the secondary heart
fields located medially and posteriorly to the first heart field (27–30). The elongated heart tube
then undergoes rightward looping that forms morphologically distinct atria, the atrioventricular
canal (AVC), ventricles, and the OFT. It is during this looping stage that the cardiac valves begin
to develop concurrently with cardiac septation to eventually form a four-chamber heart with the
separation of systemic and pulmonic circulations.
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Figure 1
Schematic summary of aortic valve morphogenesis. Aortic valve morphogenesis in mouse embryo starts at
embryonic day (E) 9.5 with the formation of matrix-rich and acellular tissue swellings, named endocardial
cushions. Both myocardial ( yellow) and endocardial (blue) cells of the proximal cardiac OFT region are the
sources of ECM proteins. At approximately E10.5, a subpopulation of endocardial cells begins to delaminate
from the epithelial layer of the cushions, in response to myocardial signals such as BMP4, and invade the
ECM-rich cushions via a classic process of EMT. By E11.5 the OFT cushions are already fully cellularized.
This EMT process occurs mainly in the proximal OFT cushions, whereas the distal end is populated by
cardiac neural crest cells ( purple). The OFT cushion mesenchyme formation is controlled by signals from
myocardium, endocardium, and neural crest cells. Subsequently, these cushions undergo complicated
remodeling through balanced proliferation and apoptosis, as well as ECM rearrangement, which shape the
mesenchymal cushions into mature valves with fine defined leaflets. Abbreviations: ECM, extracellular
matrix; EMT, epithelial to mesenchymal transformation; OFT, outflow tract.

Aortic Valve Morphogenesis

The first sign of valve development during vertebrate embryogenesis is the formation of tissue
swellings, termed endocardial cushions, in the OFT and AVC regions of the looped heart tube
(Figure 1). These cushions are formed by the accumulation of hyaluronan-rich cardiac jelly
between the endocardium and myocardium, which is initially acellular. The cushions are then
populated by mesenchymal cells derived from the endocardial cells by EMT (7, 9, 31). The EMT
process is induced by myocardial signals to the endocardial cells (32, 33). The mesenchymal
progenitor cells from EMT contribute to most VICs of adult valves (9, 34). In the OFT, the
cushion mesenchymal cells come from two distinct origins. The endocardial cells contribute to
the proximal cushions by EMT, whereas the distal cushions contain mesenchymal cells derived
from the cardiac neural crest that has migrated into the OFT from the dorsal neural tube (11).

The EMT process gives rise to the mesenchymal progenitor cells that are initially highly
proliferative in a loosely organized ECM (35). This allows these cells to quickly cellularize the
cushions. The mesenchymal cushions perform the valve-like function as primitive valves to drive
unidirectional blood flow in the embryonic heart (36). The cushions of the AVC then fuse medially
and contact the ventricular septum from below and the protruding dorsal mesocardium from above
that completes the septation of the heart into left and right sides (37–39).

The OFT contains the proximal and distal cushions according to their location. The two parts
of cushions have distinct cellular origins and spatiotemporal configurations, and they undergo
septation in different ways (40, 41). The septation of the OFT into the aortic and pulmonic
outlets requires correct fusion of the two main OFT cushions (42). The downward migration of
cardiac NCCs from the aortic sac and their expansion give rise to the aorticopulmonary septum
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that divides the distal OFT (43) and separates the distal OFT cushions into two sets of three-leaflet
primordia (40–42), which later remodel into respective mature aortic and pulmonic valves, each
with three leaflets. The process involves the proper contributions of two mesenchymal progenitor
populations (44–46), elongation of the distal cushions by balanced proliferation and apoptosis
(16, 47), and remodeling of the ECM into layers rich in elastin (ventricularis), fibrillar collagen
(fibrosa), and proteoglycans (spongiosa) (13, 48). The fibrosa side of the aortic valve cushions gets
sculpted through an invagination process driven by apoptosis (49), and the free leading edge of the
valve cushion is elongated by highly proliferative VECs (45). The correct formation and function
of the aortic valve ensure that blood flows in one direction from the left ventricle to the aorta in
the adult heart.

Embryonic Origins of Aortic Valve Cells

Multiple cells of distinct embryonic origins contribute to the formation of the aortic valve. The
VECs that surround the aortic valve leaflets are part of the cardiac endocardium and form a
continuous epithelial cell layer with the ventricular endocardium on the ventricular side and with
the aortic endothelium on the aortic side. Cell lineage tracing in mice shows that the progenitors
of OFT VECs are derived from the secondary heart field (50). In vivo lineage tracing in mouse
embryos and ex vivo culture of early chick and mouse valve tissues also show the existence of two
distinct aortic valve mesenchymal lineages arising separately from the endocardium and the cardiac
NCCs (34, 51). As outlined above, the endocardium-derived lineage contributes primarily to the
mesenchymal cushions of the proximal OFT endocardial cushions via EMT, whereas the cardiac
NCC lineage contributes to the mesenchyme of the distal OFT cushions through invasion and
transdifferentiation. Overall, lineage-tracing studies in mice demonstrate that most VICs of the
mature aortic valve arise from endocardially derived mesenchymal cells in the OFT endocardial
cushions, whereas the NCC-derived valve mesenchymal cells contribute to only a small part of
VICs in the adult aortic valve leaflets (13, 45, 46, 52) (Figure 1). These observations suggest specific
spatiotemporal functions of distinct valve progenitor cells in the morphogenesis of the aortic valve.
In the adult aortic valve, VICs from the VEC origin are important for valve homeostasis. Whether
the VICs of different origins may have specific roles in the homeostasis and function of adult valves
is currently unknown. Of additional note, as well as the two embryonic origins of VICs discussed
above, circulating CD45-positive hematopoietic stem cells are recruited to the adult valves and
become part of VICs, thus serving potential functions in valve homeostasis (53).

MECHANISMS OF AORTIC VALVE DEVELOPMENT

Molecular Mechanisms of Endocardial Cushion Formation

Previous studies have focused on EMT in the AVC, with an assumption that similar mechanisms
may underlie the formation of OFT cushions. These studies show that multiple molecular and
cellular signaling pathways have critical functions in the EMT process. In mice early tissue swelling
from the production of hyaluronic acid–rich ECM in the OFT and AVC requires localized signals
from myocardial VEGF (54–57). In addition, BMP4 (and BMP2) signaling from the myocardium
to the endocardium in the OFT and AVC is required for the initial induction of EMT (32).
Canonical WNT (58, 59) and NOTCH signaling pathways (60–64) are also required for EMT
and the proliferation of mesenchymal endocardial cushion cells. Notably, recent studies show
that VEGF and WNT signaling pathways differentially regulate EMT in the AVC and OFT
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(65, 66). Only a small subset of endocardial cells undergoes EMT, with the majority requiring
NFATC1 to maintain an endocardial endothelial phenotype and also to promote proliferation of
the epithelial monolayer covering the growing endocardial cushions (45). The mesenchymal cells
of the endocardial cushions also are highly proliferative and express TWIST1, MSX1/2, SOX9,
and TBX20 transcription factors that promote cell proliferation, migration, and ECM synthesis
in the endocardial cushions (64, 67–69). Together, the proliferation of transformed mesenchymal
cells with increased ECM production rapidly cellularizes the endocardial cushions, which project
into the lumens of OFT and AVC and control the direction of blood flow.

Molecular Mechanisms of Aortic Valve Remodeling

Shortly after EMT ceases, the mesenchymal cushions undergo a series of changes, including
condensation and extension into the mature leaflets. The molecular mechanisms underlying this
transition and subsequent changes are understudied compared to the EMT process. Hence, the
process of valve maturation is broadly called remodeling. The formation of OFT valve leaflets oc-
curs by the downward invagination of the distal OFT cushions and a selective growth of free edges
to form a characteristic semilunar shape (49). As outlined above, it is known that the OFT cushions
include progenitor cells from the secondary heart field endocardium and cardiac neural crest. Both
mesenchymal lineages coordinately apply spatiotemporal cellular and molecular mechanisms in
OFT valve remodeling (Figure 2b) (44–46, 70). The cardiac NCC-derived mesenchymal progen-
itors in the distal OFT cushions form a tissue boundary with the endocardially derived proximal
OFT cushions that likely delineates the anatomic location where the OFT valves will eventually
form. Correct tissue contact is regulated by endocardial NFATC1 (45, 46) and NOTCH signaling
in the second heart field as well as cardiac neural crest lineages (44, 70).

The transition from endocardial cushion to remodeling valves requires the NFATC1 transcrip-
tion factor, which promotes the expression of the ECM-remodeling gene cathepsin-K in VECs
during valve elongation (66, 71). Cathepsin K is also expressed by the osteoclasts in remodeling
bone. Indeed, cushion mesenchymal progenitors are able to undergo osteogenic-like differenti-
ation (72). Subsequent valve maturation requires cushion condensation, involved in remodeling
of ECM and changes in mesenchymal cell phenotypes. This process begins with a tissue-specific
gene programming driven by SOX9 and TWIST1, which also promote the expression of car-
tilage genes. BMP2 signaling activates the SOX9 transcription factor, aggrecan gene expression
in cartilage precursors, and the proliferation of valve progenitors (67, 73). BMP/TGF-β sig-
nals also regulate the maturation of the embryonic valve mesenchymal cells from an activated
myofibroblast-like progenitor to a quiescent adult-like fibroblast phenotype of VICs in vitro (74).
FGF and WNT signaling is activated in the developing valves and promotes expression of genes
characteristic of the collagen-rich fibrosa layer in cultured VICs (73, 75). It is worth noting that
the expression of osteogenic genes is present in the calcified adult aortic valves, suggesting a re-
activation of embryonic gene programming underlying the pathogenesis (76). In addition, mouse
genetic studies show that disruption of key signaling factors such as SMAD6, an inhibitor of BMP
signaling (77), and NOTCH1 in the NOTCH pathway (16) can predispose valves to bone-like
formation and early calcification. Together, these observations show that the signaling molecules
and transcription factors that control differentiation of connective tissues also regulate the expres-
sion of ECM genes in the developing valves. Besides ECM remodeling and transdifferentiation
of cushion mesenchymal progenitor cells, the process of cushion elongation requires VEGF and
NFATC1 expressed in the endocardium to maintain a high proliferation of endocardial cells at
the leading edge while suppressing EMT (12, 45, 65).
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Figure 2
Schematic summary of molecular pathways underlying aortic valve development. (a) Molecular pathways
regulate EMT during outflow tract cushion development. After receiving a signal from the adjacent
myocardium, the VECs located within the outflow tract region start to undergo EMT at approximately
embryonic day (E) 10.5 in mouse embryo. The EMT process is regulated by myocardial signals, including
TGF-β, BMP4, VEGF, FGF, and NOTCH. TGF-β induces EMT, and FGF signaling can induce BMP4
expression that then promotes VEC EMT. Later, VEGF secreted by cardiomyocytes represses EMT but
promotes VEC proliferation. Within VEC, NOTCH1 signaling promotes EMT by repressing VE-cadherin
expression via SNAIL/SLUG. In contrast, NFATC1 represses EMT by inhibiting SNAIL/SLUG
expression. NFATC1 also mediates VEGF function to promote VEC proliferation. WNT/β-catenin
signaling in VECs is required for EMT. (b) Molecular pathways regulate post-EMT cushion remodeling
into mature heart valves. During valve remodeling, VICs receive multiple signals from VECs and
myocardium that collectively regulate the balanced proliferation and apoptosis of VIC. VICs also produce
ECM proteins regulated by myocardial BMP4 and critical for stratifying the valve leaflets. NOTCH1 in
VECs coordinates the aortic valve remodeling by controlling the balanced proliferation and apoptosis of
VICs through HBEGF and TNF-α, respectively. VEGF in VECs regulates VEC proliferation through
NFATC1. In addition, TBX20 promotes VEC proliferation through regulating WNT/β-catenin signaling.
A WNT/β-catenin-FGF8-BMP4 signal in the myocardium regulates VIC proliferation and differentiation.
Abbreviations: EC, valve endothelial cell; ECM, extracellular matrix; EMT, epithelial to mesenchymal
transformation; HBEGF, heparin-binding epidermal growth factor; VE-Cad, vascular endothelial-cadherin;
VIC, valve interstitial cell.

Hemodynamic Regulation of Valve Formation

The proper formation of valves requires hemodynamic stimuli. During heart looping, shear stress
is greatest in the inner curvature and sites of lumen constrictions in the AVC and OFT where
endocardial cushions form and valves arise (78). Later in development, the cushions elongate to
form thin fibrous leaflets with stratified ECM proteins and greater mechanical stiffness (79, 80).
Regulation of the valve leaflet formation is likely heavily influenced by mechanotransduction.
VECs lining the endocardial cushion surface may promote valve morphogenesis by coupling me-
chanical stimuli and molecular signaling pathways (81). A number of studies demonstrate that
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the shear stress controls the valve morphogenesis in vivo. Shear stress and shear stress–induced
molecular signals regulate the remodeling of the endocardial cushions (82). The expression of
signaling molecules critical for valve formation, such as TGF-β, BMP, and VEGF, is spatiotem-
porally regulated by hemodynamic forces (74, 83). Altered hemodynamic flow patterns during
critical periods of development are shown to lead to a variety of cardiac abnormalities, many of
which influence valve formation (83).

AORTIC VALVE COMPONENTS AND FUNCTION

Valve Endothelial Cells

The endothelial cells of the aortic valve form an endothelium surface covering the valve leaflets.
The VECs are a special endothelial population with unique functions in aortic valve development
and disease. They play critical roles in valve homeostasis, and their dysfunction is the initial step in a
cascade of events leading to CAVD, with some similarities to the process that occurs in atheroscle-
rosis (84). Recent studies indicate that the VECs have unique functions compared to other vascular
endothelial cell populations. For example, the aortic VECs align perpendicularly to the direction
of flow (85), whereas the vascular endothelium aligns in parallel to the flow direction (86). The
different cellular orientations relative to the flow direction are associated with different mechan-
otransduction pathways in each type of endothelium. The luminal surface of VECs senses the
flow change and communicates it to the cytoskeleton to activate several signaling pathways, such
as the secretion of nitric oxide (NO) and endothelin-1 (ET-1) in response to sheer stress (87, 88).
Transcription profiling for the VECs versus vascular endothelium shows a set of genes with differ-
ential expression, and those genes with a higher expression in the VECs are transcription factors
associated with higher proliferation rates (89, 90). In addition, VECs express more genes involving
chondrogenesis, whereas vascular endothelial cells express more genes associated with osteogen-
esis. Shear stress reduces the expression of osteogenic genes (90). Therefore, signaling molecules
released from the VECs can transmit the flow change to the underlying VICs and impact valve
function.

Valve Interstitial Cells

The VICs are the main cellular component of the aortic valve and consist of at least two different
subtypes: smooth muscle α-actin (SMA)-positive and SMA-negative cells. SMA-expressing VICs
are activated myofibroblasts that express contractile proteins, whereas the SMA-negative VICs
are the quiescent fibroblasts. The active VICs are involved in valve calcification (91, 92). The
change in the phenotypes of VICs is thought to be part of normal valve homeostasis as well as
the pathogenesis of calcifying valves, as aortic VICs are able to activate gene profiles related to
osteoblasts, adipocytes, and chondrocytes during calcification (93, 94). Cell–cell communication
among VICs is essential to regulate their phenotypes and function (95, 96). For example, overex-
pression of cadherin-11 in the mouse heart valves results in hemodynamically significant CAVD
that is associated with upregulation of the osteoblastic and myofibroblastic markers in VICs and
extensive pathogenic ECM reorganization (97).

Extracellular Matrix

The aortic valve is a delicate, yet strong and durable tissue due partly to its precise ECM com-
position and organization. Different hemodynamic stresses contribute to valve deformation or
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Figure 3
(a) Movat’s pentachrome staining of one leaflet of human aortic valve shows valve extracellular matrix
(ECM) structure and composition. Three stratified ECM layers compose the collagen-rich fibrosa layer, the
elastin-rich ventricularis layer, and the proteoglycan-rich spongiosa layer. (b) Sirius red staining for collagens
shows the three layers of a human aortic valve leaflet.

displacement of the valve tissue (98). These deformation forces are counterbalanced by different
ECM deposition. The aortic valve is thicker with increased collagen fibers compared to the pul-
monic valve (99). Clinically, aortic valve disease may result from predisposing genetic variants and
valve malformations that alter its response to hemodynamic stress, thus impacting valve mainte-
nance. Histologically, the aortic valve is composed of three distinct layers: the fibrosa, spongiosa,
and ventricularis (Figure 3). The fibrosa lies on the aortic side of the leaflet and the ventricularis
on the ventricular-facing side with the spongiosa between these two layers. The fibrosa represents
nearly half of the thickness of the leaflet and is rich in collagens, mainly types I and III, provid-
ing structural strength to the leaflet and stretching stiffness to the leaflet (100). In contrast, the
ventricularis is the thinnest layer of the leaflet and composed mainly of elastin fibers that confer
elasticity on the valve and facilitate valve motion by allowing extension and recoil during the car-
diac cycle (101). The spongiosa layer is rich in proteoglycans and glycosaminoglycans with a high
hydrous content that provides tissue compressibility, allowing smooth sliding of the fibrosa and
ventricularis layers during the cardiac cycle (102). The annulus, composed mainly of collagens,
fastens the leaflets to the aortic root and supports the movement of the leaflets (13). The mature
aortic valve requires a fine balance between stiffness and flexibility to close and open properly.
This function relies on proper stoichiometry and the distribution of ECM components. The VICs
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express genes that encode collagens, chondroitin sulfate proteoglycans, and elastin, associated with
the stratified ECM of the valve leaflets (47, 48), as well as ECM-remodeling enzymes, such as
matrix metalloproteases and tissue inhibitors of matrix metalloproteases (47, 91). Note that VICs
are largely quiescent in normal adult valves; they are not proliferative and only produce basal levels
of ECM synthesis needed for valve homeostasis (47).

In addition to defining physical characteristics of the valve leaflets, the ECM also provides
microenvironments that modulate the function of VICs. Thus, the interaction between the ECM
and VICs, as well as with the surface VECs, is crucial to valve homeostasis. The ECM is responsible
for transmitting the mechanical forces experienced by the VECs to the VICs. The VICs express
integrin proteins known to have dual functions in cellular anchoring to the ECM and signal
transduction (103). Indeed, mice lacking major ECM proteins have developmental defects in
valve formation and function (13). For example, mice lacking elastin do not survive after birth due
to vascular obstruction, and heterozygous elastin mice have aortic valve abnormalities in adulthood
(104–106). Therefore, the expression and organization of diverse ECM components are essential
to the morphogenesis and structural integrity of the valves. Mature aortic valve composition and
biomechanics reflect underlying hemodynamics (107, 108).

DEVELOPMENTAL AND GENETIC ORIGINS OF AORTIC
VALVE DISEASE

Aortic Valve Disease

The prevalence of aortic valve disease is 2.5% of the general population in the United States (109).
CAVD is present in more than 25% of the aged population in the United States and may cause
significant complications, ultimately compromising cardiac function when the disease progresses
irreversibly (110). Currently, there is no effective medical treatment for CAVD, and the present
standard of care is surgical replacement of the diseased valves, with potential complications or
contraindications, especially in elderly patients. Therefore, the public health impact of aortic
valve disease is quite significant.

In the past, the progressive degeneration of the valve due to “wear and tear” was thought to
cause the structural changes in the stenotic aortic valve. The diseased valve is characterized by
increased fibrosis with collagen accumulation, proteoglycan degradation, and elastic fiber frag-
mentation. CAVD is further characterized by sclerosis, progressive fibrosis, and calcification.
These changes result in a stiff valve with restricted movement. In recent years, CAVD has been
considered as an active cell-driven process that shares some similarities with atherosclerosis, such
as endothelial dysfunction, lipid deposition, and inflammatory cell infiltration. However, lipid
lowering by statin therapy that is used for atherosclerosis does not impact the valve calcification or
prevent the need for aortic valve replacement (111). CAVD is now recognized as a disease entity
different from atherosclerosis (112). Therefore, research to better understand the developmental,
genetic, and molecular bases of the disease may identify new disease-specific targets for effective
therapeutics.

Cellular Mechanisms of Aortic Valve Disease

VECs and VICs of the aortic valve were recently the focus of research because their biology
plays important roles in valve development and maintenance. At the cellular level, CAVD is
characterized by VIC activation, increased ECM production, and ECM-remodeling enzyme ac-
tivity (47, 48, 92). Activated VICs are proliferative and express the myofibroblast marker SMA,
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resembling valve progenitor cells during development. These observations indicate that activated
VICs in diseased valves represent a developmental phenotype. In addition, TWIST1, critical in
endocardial cushion mesenchyme, is expressed in human diseased valves (68). Similarly, calcific
human aortic valves express transcription factors SOX9 and RUNX2 as well as osteoblastic cell
markers involved in osteogenesis and valve development (2, 113, 114). The origins and inductive
mechanisms of activated VICs in valve disease are not identified. Activated VICs may arise from
quiescent VICs resident in the valve leaflets. Valve progenitors arising during development are
present in the adult valves, but there is evidence that circulating CD45-expressing hematopoietic
stem cells are also recruited to the valves during disease (53, 115–117). Regardless of their ori-
gins, VICs with properties of osteogenic cells activate the expression of genes involved in bone
mineralization. This worsens valve sclerosis and stiffness, which in turn exacerbates the faulty
differentiation of VICs into osteoblast-like cells (118). In addition, damage to VECs, which is
understudied compared to VICs, may result in a loss of the maintenance mechanism necessary
for modulating VIC function via the secretion of paracrine mediators. One well-studied exam-
ple is the dysregulation of antioxidant mechanisms by hemodynamic changes that contributes
to increased oxidative stress in the calcified human aortic valves (119–123). Together, accumu-
lating evidence suggests that both VECs and VICs are actively involved in the pathogenesis of
CAVD.

Developmental and Genetic Mechanisms of Aortic Valve Disease

Studies show that the majority of patients with aortic valve disease have congenital valve malfor-
mation, indicating a genetic and developmental basis of adult aortic valve disease in many cases
(124–127). BAV is frequently associated with CAVD and regurgitation later in life. Studies sug-
gest a mechanosensory mechanism of CAVD in individuals with BAV due to the hemodynamic
abnormalities caused by abnormal valve leaflet structure (128).

Genetics studies have identified multiple gene mutations and genetic variants associated with
human BAV, and many of these affected genes have previously known roles in valve development
(Table 1) (129, 130). Early studies demonstrate that mutations in a variety of ECM genes are
associated with genetic syndromes that include aortic valve malformations and progressive valve
dysfunction. Mutations in the FIBRILLIN-1 gene cause Marfan syndrome (131, 132), whereas
Williams syndrome is associated with heterozygous ELASTIN mutations (133, 134). Mutations
in COL1A1 are associated with the prolapse of aortic and mitral valves in patients with osteogen-
esis imperfecta (135). Mutations in the NOTCH1 gene are associated with some cases of BAV
and CAVD (20, 136). Notably, a recent study using targeted, combinatorial next-generation se-
quencing identified a large number of putative disease-causing variants in a cohort of patients
with BAV. Many of these genes are known to be involved in valve developmental signaling and
transcriptional programming, including NOTCH, EGFR, NFATC, SOX9, and NOS (Table 1)
(125). These findings support the notion that a developmental pathogenesis underlies BAV and
valve calcification.

Mouse and Inducible Human Pluripotent Stem Cell Models of Human
Bicuspid Aortic Valve and Aortic Valve Disease

The human genetic syndromes with aortic valve malformations and disease were phenocopied
in genetically modified mouse models using gene-specific targeted mutagenesis (Table 2). For
example, mice with deficient ELASTIN and NOTCH1, as well as with transcriptional program-
ming, are associated with aortic valve malformation and disease in mouse genetic models. Of note,
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Table 1 Human gene mutations associated with aortic valve disease, including bicuspid aortic valve

Gene Syndrome Valve phenotype(s) Reference

FIBRILLIN1 Marfan ARD, BAV, MVP 132

ELASTIN Williams SVAS, BAV, MVP 138

COLLAGEN3 Ehlers-Danlos ARD, BAV, MVP 139

NOTCH1 ND BAV, CAVD, CVM 20

ACTA2 ND AA, BAV 140

MYH11 ND AA, BAV 141

FLN-A ND BAV, MVP 142

GATA5 ND BAV 143

NKX2.5 ND BAV, ASD, TOF 144

NOS3 ND BAV 145

EGFR ND BAV 141

TGFBR2 Marfan, Loeys-Dietz BAV, AA, ARD 146

AXIN1 ND BAV 147

ENG ND BAV 143

PDIA2 ND BAV 147

TEX26 ND BAV 148

APC ND BAV 129

AXIN2 ND BAV 129

FLT1 ND BAV 129

GATA4 ND BAV 129

GLI1 ND BAV 129

JAG1 ND BAV 129

MCTP2 ND BAV 129

MSX1 ND BAV 129

NFATC1 ND BAV 129

NOS1 ND BAV 129

NOTCH2 ND BAV 129

NOTCH3 ND BAV 129

PAX6 ND BAV 129

PIGF ND BAV 129

PPP3CA ND BAV 129

PTCH1 ND BAV 129

PTCH2 ND BAV 129

SLC35B2 ND BAV 129

SNAI3 ND BAV 129

SOX9 ND BAV 129

TBX5 ND BAV 129

VEGFB ND BAV 129

VEGFC ND BAV 129

WNT4 ND BAV 129

ZNF236 ND BAV 129

Abbreviations: AA, aortic aneurism; ARD, aortic root dilation; ASD, atrial septal defect; BAV, bicuspid aortic valve; CAVD, calcific aortic valve disease;
CVM, cardiovascular malformation; MVP, mitral valve prolapse; ND; not defined; SVAS, supravalvular aortic stenosis; TOF, Tetralogy of Fallot.
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Table 2 Mouse models of aortic valve disease, including bicuspid aortic valve

Gene Genotype BAV and valve phenotypes Reference

GATA5 Gata5−/− BAV 149

NKX2.5 Nkx2.5−/− ASD, stenotic BAV 150

eNOS eNOS−/− BAV 151

HDAC3 Mef2C-AHF-Cre, Cdh5-Cre AAD, BAV, VSD 152

Brg1 Endocardial Brg1-deficient Thickened semilunar valves 153

Robo1 Robo1−/−, Robo2−/− VSD, BAV 154

Robo2 Robo1−/−, Robo2−/− VSD, BAV 154

Matr3 Matr3Gt-ex13-mutant mice BAV, CoA, PDA, VSD 155

Smad2 Adamts5(−/−), Smad2(+/−) BAV, BPV 156

Alk2 (Acvr1) Alk2KOFX/Gata5-Cre+ BAV, VSD 157

Rac1 Mef2c-Cre, Rac1 f/f OFT defects 158

ADAMTS9 Adamts9+/− Aortic valve malformations 159

Elastin Eln+/− Aortic valve malformations 106

Fibulin-4 Fibulin4-R/R Thickened aortic valves 160

Periostin Postn−/− Valve defects 161

Notch1 Notch1flox/flox, Nfatc1-enCre/+ BAV, enlarged valve cusps 16

Jag1 Jag1flox/flox, Tie2-Cre/+ BAV, enlarged valve cusps 162

RBPJ RBPJflox/flox, Nkx2.5-Cre/+ BAV, enlarged valve cusps 162

Fgf8 Fgf8, MesP1Cre mutants BAV, BPV 163

Pbx1/2/3 Pbx1+/−, Pbx2+/−, Pbx3+/−, Pbx2−/− BAV 164

Abbreviations: AAD, ascending aortic dilatation; ASD, atrial septal defect; BAV, bicuspid aortic valve; BPV, bicuspid pulmonary valve; CAVD, calcific
aortic valve disease; CoA, coarctation of the aorta; OFT, outflow tract; PDA, patent ductus arteriosus; VSD, ventricular septal defect.

mouse inactivation of Notch1 in VECs, but not VICs, exhibits developmental defects in aortic valve
remodeling, BAV, and valve calcification that recapitulate human calcific BAV with NOTCH1 mu-
tations (16). This study supports a direct causal link between NOTCH1 deficiency and human
BAV and CAVD. Similarly, VEC-specific inactivation of Tgfβ1 results in reduced SOX9 nuclear
localization in VICs and increased calcification (17). These findings point to a crucial role in VEC
signaling necessary for VIC function in valve development and homeostasis.

In addition to advanced mouse genetics, human iPSCs and CRISPR genome editing tech-
nologies were recently used to identify a direct causal relationship between NOTCH1 mutations
and the progressive calcification of VICs (137). Human iPSC-derived VECs with heterozygous
nonsense mutations in NOTCH1 that cause aortic valve calcification have a disrupted epigenetic
architecture, resulting in the activation of osteogenic and inflammatory gene networks known
to be part of the pathogenesis of human disease. Together, these human and mouse studies
suggest that abnormal signaling pathways in valve cells interplay with ECM dysregulation as a
pathogenic mechanism underlying the aortic valve malformation and progressive valve calcifi-
cation later in life. Therefore, research focused on the common developmental signaling path-
ways and transcriptional programs shared in the pathogenesis of aortic valve malformations and
disease may identify new effective therapeutic targets. The full elucidation of genetic and de-
velopmental bases of valve malformation and disease will enhance the targeted development of
therapies based on specific mechanisms of disease in individual patients to intervene in the disease
progression.
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CONCLUSIONS

Aortic valve morphogenesis via the interaction of VECs and VICs as well as ECM synthesis
is tightly regulated by major developmental and mechanosensory signaling pathways. Normal
aortic valve development establishes the fine valve structure and function that are also maintained
by VECs, VICs, and ECM in adults. Abnormal aortic valve development results in aortic valve
malformations that are highly associated with CAVD, which is characterized by overactive VICs
and abnormal ECM with the reactivation of developmental valve programs and induction of
osteogenic processes. Therefore, a better understanding of molecular and cellular mechanisms
underlying aortic valve development may identify effective therapeutic targets for maintaining
valve homeostasis and preventing disease progression.

SUMMARY POINTS

1. The aortic valve is composed of VECs and VICs derived from endocardial cells via EMT
during development.

2. Aortic valve development is regulated by interactions of VECs, VICs, and cardiac NCCs.

3. Key developmental cell signaling modulates aortic valve development as well as
homeostasis.

4. Congenital BAV underlies CAVD, which has no effective medical therapy and often
requires surgery.

5. BAV has a clear genetic basis characterized by aberrant developmental programs resulting
from mutations in genes necessary for proper cell signaling and ECM production.

6. Understanding the developmental origins and genetics of aortic valve development may
lead to effective new therapies for aortic valve disease.

FUTURE ISSUES

1. Molecular and mechanical links between congenital aortic valve malformations and adult
CAVD need to be better defined.

2. Whether a subset of adult VECs reacquire embryonic functions for EMT to gener-
ate a unique population of VICs that is involved in calcification should be empirically
addressed.

3. Additional markers to distinguish VICs of embryonic or postnatal arising lineages are
needed to fully characterize normal (quiescent) and diseased (active) VICs.

4. Single-cell genetics and genomics may reveal cell type-specific makers to develop effective
therapeutics for early intervention.

5. Improved new durable valve bioprostheses based on a combination of developmental
signaling pathways, hemodynamics, and tissue engineering approaches need to be
developed.
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