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Abstract

Insulin action is impaired in type 2 diabetes. The functions of the hormone
are an integrated product of insulin secretion from pancreatic B-cells and in-
sulin clearance by receptor-mediated endocytosis and degradation, mostly in
liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues.
Substantial evidence indicates that genetic or acquired abnormalities of in-
sulin secretion or action predispose to type 2 diabetes. In recent years, along
with the discovery of the molecular foundation of receptor-mediated insulin
clearance, such as through the membrane glycoprotein CEACAM1, a con-
sensus has begun to emerge that reduction of insulin clearance contributes
to the disease process. In this review, we consider the evidence suggesting a
pathogenic role for reduced insulin clearance in insulin resistance, obesity,
hepatic steatosis, and type 2 diabetes.
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THE PHYSIOLOGY OF INSULIN CLEARANCE

Insulin regulates glucose concentrations by promoting glucose uptake and metabolism in most
peripheral tissues (mainly skeletal muscle and adipose tissue) and suppresses gluconeogenesis (in
the liver). In contrast, other organs, such as the brain, do not need insulin to metabolize glucose,
but its action is impaired in the presence of insulin resistance (1).

Insulin is secreted by pancreatic B-cells in response to changes in glucose concentrations. Thus,
when B-cells sense an increase in glucose concentrations (e.g., after a meal), insulin is released in
pulses and proportionally to the change in glycemia, in part potentiated by other hormones (e.g.,
incretins) and nutrients (e.g., amino acids and fatty acids) (2). In contrast, when glucose concen-
tration is reduced (e.g., during fasting), insulin secretion is decreased to basal levels to maintain
life. Glucose tolerance is preserved until peripheral insulin concentrations are high enough to
overcome the defect in insulin action (2, 3).

The pancreas releases pulses of insulin into the portal vein to be delivered to hepatocytes via
fenestrae in the capillaries of the liver, where it is endocytosed receptor-bound and targeted to
its degradation (Figure 1). In this manner, most of the secreted insulin is cleared (extracted) by
the liver during its first pass (~60-70%). Insulin that is not extracted by the liver appears in the
systemic circulation, where it is used in part by peripheral tissues and then further extracted by
the liver during the second pass through the hepatic artery (Figure 1). Among peripheral tissues,
the kidney is responsible for ~25% of endogenous insulin clearance (4) and ~30% of peripherally
infused insulin (5, 6). Muscle extraction was also reported to be at ~6% (7), and the other periph-
eral insulin-sensitive tissues (including adipose tissue) account for the remaining ~7-14% of total
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Figure 1

The journey of insulin. The pancreas releases insulin into the portal vein in a pulsatile manner to be
delivered to hepatocytes. The liver is the first organ exposed to insulin secretion and where most insulin is
degraded during the first pass (~60-70%). The remaining insulin appears in the systemic circulation, where
it is used in part by peripheral tissues (mainly muscle, adipose tissue, and kidneys) and then further extracted
by the liver during the second pass through the hepatic artery.
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Natural history of T2D. The deterioration of glucose tolerance from NGT, to IGT, to T2D, and the
resulting hyperglycemia are due to an imbalance between insulin secretion and tissue sensitivity to this
hormone. Not all of the insulin secreted by the pancreas reaches the peripheral tissues because most of it is
used and degraded by the liver soon after it is secreted. It is well established that in the progression from
NGT to IGT to T2D, insulin secretion increases to overcome insulin resistance. At the same time, there is a
decrease in insulin clearance (mainly hepatic), resulting in higher peripheral insulin concentrations. IGT
subjects have higher insulin concentrations than NGT subjects (mainly owing to higher insulin secretion),
but it is still insufficient (B-cell dysfunction) to lower both fasting and postprandial blood glucose. T2D
develops when B-cells are unable to increase insulin secretion in response to increased glucose
concentrations (B-cell failure) and overcome peripheral insulin resistance. Abbreviations: IGT, impaired
glucose tolerant; NGT, normal glucose tolerant; T2D, type 2 diabetes. Adapted with permission from
Reference 16; copyright 2019 Elsevier.

insulin clearance. In this respect, the liver acts as a modulator of insulin delivery to extrahepatic
peripheral tissues.

THE INTERPLAY BETWEEN INSULIN SECRETION, CLEARANCE,
AND RESISTANCE

Type 2 diabetes (T2D) is characterized by insulin resistance in insulin target tissues (skeletal mus-
cle, liver, and adipocytes), B-cell dysfunction, and reduced insulin clearance rates (Figure 2) (8-16).
Thus, the pancreas-liver axis plays a central role in regulating the concentration of circulating in-
sulin, as determined by insulin secretion (from pancreatic p-cells) and clearance (by hepatocytes in
the liver) (Figure 2). This axis is integral to the regulation of insulin action in health and disease
7).

Itis now well established that in the natural history of T2D, alterations in glucose tolerance are
mainly due to B-cell dysfunction, i.e., impaired insulin secretion in response to changes in glucose
concentration, and secondarily to insulin resistance. This phenomenon is evident in both adults
and children (3, 18-20).

Subjects with peripheral insulin resistance need higher insulin concentrations (due to the
defect in insulin action), and this determines an increase in insulin secretion and a reduction in
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whole-body insulin clearance (9, 21). Several studies have shown that the percentage of hepatic
extraction is reduced with insulin resistance but quite stable at normal physiological insulin
concentrations, consistent with insulin clearance being strictly related to insulin secretion and
action (9, 12, 21).

EFFECT OF AGE ON INSULIN CLEARANCE

Insulin sensitivity and secretion are quite variable across age groups. Decreasing insulin sensitivity
during pubertal maturation is an important physiological phenomenon across species (22-28). In
humans, using hyperinsulinemic-euglycemic clamp analysis in a cross-sectional study, Amiel et al.
(22) first described the development of insulin resistance at puberty. Similarly, Moran et al. (29)
confirmed the transient fall in insulin sensitivity using hyperinsulinemic-euglycemic clamps in a
large nonobese group of boys and girls at puberty. The decline in insulin sensitivity was found
to be compensated for by increased insulin secretion, as documented by hyperglycemic clamp
analysis in prepubertal, pubertal, and postpubertal subjects (25).

Few longitudinal studies have focused on deciphering the effect of in vivo insulin sensitivity
with detailed and accurate measurements of an insulin effect on changes in sensitive fuels during
the transition from prepuberty to puberty (30-32). In a very small group of prepubertal subjects
with healthy weight, followed longitudinally during the progression to puberty, Hannon et al.
(33) found that puberty-induced changes in insulin-stimulated fuel metabolism include reduction
in peripheral glucose uptake. In oxidative and nonoxidative glucose metabolism, changes include
decreased adiponectin levels but spared hepatic insulin sensitivity. The preserved effect of insulin
on hepatic glucose production was also found during puberty in a cross-sectional study (23). In
humans, the pubertal decline in insulin sensitivity and compensatory increase in insulin secretion
have been attributed to increased circulating levels of growth hormone, accretion of body fat, and
possibly increased adrenal androgen secretion after adrenarche (34, 35).

Despite the importance of these early studies, no attention was dedicated to changes in insulin
clearance in puberty. Therefore, whether insulin clearance contributes significantly to insulin re-
sistance at puberty and whether it acts as an independent risk factor for diabetes during this critical
developmental stage remain unclear.

With age, glucose tolerance progressively declines (36). However, circulating insulin levels af-
ter glucose challenge are often similar to those in younger subjects with the same degree of glucose
tolerance, but insulin secretion and B-cell function were found to be not different (37), reduced (38,
39), or increased (40) compared to younger counterparts. Lower insulin concentrations were asso-
ciated with reduced insulin clearance (due mainly to hepatic insulin extraction) to compensate for
reduced insulin sensitivity and secretion (38, 39). Although not investigated, it is possible that this
is mechanistically mediated by reduced levels of hepatic carcinoembryonic antigen—related cell ad-
hesion molecule 1 (CEACAMLI) and activity of insulin-degrading enzyme with age, as suggested
by compromised insulin clearance in a mouse model of aging (41, 42). However, not all elderly
subjects display a reduction in insulin clearance, as shown by Ahren & Pacini (40). In these stud-
ies, elderly subjects with normal glucose tolerance and insulin sensitivity had higher glucose and
lower second-phase insulin secretion in response to the frequently sampled intravenous glucose
tolerance (FSIGT) test. This was partly due to increased (not reduced) hepatic insulin extraction
with no changes to fasting insulin clearance and first-phase insulin secretion (40).

METABOLIC CONTRAST BETWEEN YOUTH AND ADULTS

Insulin resistance and B-cell dysfunction in both youth and adults are early precursors of T2D (43,
44). However, the progression of dysglycemia appears to be more aggressive in youth than in adults
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(45, 46). In contrast to the well-characterized pathophysiology of T2D in adults, that of youth
onset is poorly understood. Studies comparing youth to adults with prediabetes or T2D showed a
far more aggressive disorder in youth, based on marked differences in the severity of insulin resis-
tance, B-cell dysfunction, and insulin clearance (46). The Restoring Insulin Secretion (RISE) study
provided a unique opportunity to compare the physiologic features that underlie dysglycemia in
youth and adults. RISE is the first large study that included youth and adults and applied identical,
sophisticated, and quantitative methodologies, including performance of the hyperglycemic clamp
with arginine and the use of central laboratory for all assays, which allowed direct comparisons of
p-cell function and insulin sensitivity between youth and adults. In these studies, insulin clearance
was evaluated by the fasting C-peptide-to-insulin molar ratio (46). Insulin sensitivity was lower in
youth than adults (P < 0.001). In contrast, acute, steady-state and arginine-stimulated C-peptide
and insulin response to glucose were higher in youth than adults (46). After adjusting for insulin
sensitivity, B-cell response was greater while insulin clearance was lower (P < 0.001) in youth
compared to adults. The reduced insulin clearance in youth may contribute to their peripheral
hyperinsulinemia (45).

The mechanisms underlying this age difference in insulin clearance remain unclear, but several
mechanisms were proposed (46). It is plausible that hepatic insulin extraction is reduced to limit
the workload on B-cell function, particularly in the presence of greater insulin resistance, such as
that seen during puberty (46). It is also conceivable that regulators of hepatic insulin extraction
differ between youth and adults. This hypothesis remains to be tested further.

ETHNIC DIFFERENCES IN INSULIN CLEARANCE: A POTENTIAL
CAUSE FOR HIGHER RATES OF TYPE 2 DIABETES IN AFRICAN
AMERICANS

Several longitudinal studies performed in large cohorts of >500 subjects have identified low in-
sulin clearance rate as an independent risk factor predicting T2D in nondiabetic Hispanics, African
Americans, and Native Americans (47, 48). African Americans are at an increased risk for T2D,
with an incidence per 1,000 person-years that is 2.4-fold greater in African American women and
~1.5-fold greater in men compared with their white counterparts (49). Higher fasting and stimu-
lated insulin levels have been described particularly in African American children and adults (10,
50-53). Several studies have shown that African Americans, especially women, have higher insulin
concentrations during the FSIGT test due to both increased insulin secretion (i.e., C-peptide lev-
els) and reduced insulin clearance compared to their European white counterparts (10, 50-54).
In a large cohort of subjects, Bizzotto et al. (10) have shown that insulin clearance is negatively
associated with the African American or Hispanic race, female sex, and female age. However, Koh
et al. (52) showed that despite African Americans exhibiting higher insulin secretion and lower
insulin clearance rates during the FSIGT test, the metabolic response to glucose ingestion [the
oral glucose tolerance test (OGTT)] was similar across ethnic groups. There were no significant
differences in peripheral insulin concentrations, insulin secretion, and insulin clearance (which
were all slightly reduced in African American versus non-Hispanic white subjects).

Using a longitudinal study design, Ball et al. (30) compared changes in insulin sensitivity and p-
cell function during puberty in white versus black youth. They observed reduced insulin sensitivity
during puberty followed by a rebound by the end of puberty, with a significant fall in the disposi-
tion index (DI), a marker of B-cell function, across puberty in black but not white subjects (30).

The hyperinsulinemia described in African American children has been considered as an
adaptive mechanism to compensate for the lower insulin sensitivity by increased insulin secretion
(55, 56). Alternatively, reduced insulin clearance described in these subjects could contribute
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to hyperinsulinemia. Studies by Arslanian et al. (50) found that African American adolescents
had lower C-peptide-to-insulin ratios and, hence, reduced insulin clearance. Studies from the
Bogalusa Heart Study (24) showed that African American children had higher fasting insulin
levels and lower C-peptide-to-insulin ratios, suggesting that their elevated fasting insulin levels
likely resulted from decreased insulin clearance and not increased secretion. However, whether
the higher fasting insulin level in African American children is secondary to reduced hepatic
clearance, is due to induced basal insulin secretion, or is caused by a combination of increased
secretion and reduced clearance remains debatable.

The question as to why insulin clearance is lower in African American children has been ad-
dressed by Piccinini et al. (57) by employing a novel modeling approach based on measurements
of insulin and C-peptide collected during the FSIGT tests to estimate hepatic versus extrahepatic
insulin clearance rates. These studies were conducted on a multiethnic cohort of 203 nonobese
boys and girls at 7-13 years of age. The results demonstrated that hepatic insulin clearance is
74% lower in African American than in European African children. Despite the importance of
this study, these results do not explain causality. Both genetic and lifestyle differences likely con-
tribute to these significant ethnic differences in hepatic insulin clearance. It should also be noted
that no information regarding the intrahepatic fat content, a known modulator of hepatic insulin
clearance, was obtained.

LOWER INSULIN CLEARANCE: IS IT DUE TO SATURABILITY?

It is not established whether the decrease in insulin clearance observed after a glucose load is
simply an adaptation to the need for more insulin in the periphery (9) or whether it is due to a
saturation of hepatic insulin receptors, as recently suggested (58, 59). Insulin clearance is deter-
mined by the rate of receptor-mediated insulin endocytosis (41, 60) and, for this reason, it is likely
to be a saturable process.

Polidori et al. (11) have recently proposed a model for estimating hepatic and extrahepatic in-
sulin clearance in humans. The model predicted saturability of hepatic extraction at relatively low
peripheral insulin concentrations, whereas previous data indicate that hepatic insulin extraction
does not reach saturability until the prehepatic insulin concentrations rise into supraphysiologic
range (5, 61-63). Comparing intraportal versus peripheral insulin infusion in dogs, Edgerton
et al. (63) have shown a high liver-to-periphery-insulin ratio (with portal concentrations up to
400 pmol/L) in association with higher hepatic extraction in absolute, but not relative, terms.
Using insulin clamps in combination with renal vein catheterizations to evaluate hepatic insulin
extraction, Ferrannini et al. (5) showed that hepatic extraction is constant up to a plasma insulin
concentration of ~500 pU/mL. Therefore, even though obese nondiabetic subjects may display
a markedly higher insulin secretion after a glucose load, it is unlikely that insulin concentration
in their portal vein exceeds 500 wU/mL (5). Thus, factors other than hepatic insulin saturability
must explain the decrease in hepatic insulin clearance following glucose ingestion.

Moreover, in insulin-resistant states, insulin clearance is rapidly reduced as soon as insulin
secretion increases, but it remains reduced even when insulin secretion rates return close to fasting
levels (9). This indicates that saturation of receptors is not the only explanation for reduction in
insulin clearance. Instead, it points toward a mechanism against -cell stress in the postprandial
state (by reducing hepatic insulin clearance), while preventing hypoglycemic events during fasting
conditions.

Most of the results of saturation of hepatic insulin clearance are derived from the model of
Polidori et al. (11). In the modeling analysis, only hepatic extraction was considered saturable,
whereas constant fractional insulin extraction was assumed for extrahepatic tissues (i.e., insulin
extraction was predicted to be linear) (11). We cannot exclude that peripheral extraction is limited
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by insulin receptors, as suggested by the decline in the extraction fraction and clearance of insulin
in skeletal muscle during a 2-h hyperinsulinemic-euglycemic clamp (1 mU/kg/min), indicating
saturability of muscle insulin uptake at physiological hyperinsulinemia (64). Thus, not only hepatic
but also extrahepatic extraction may account for a reduction in insulin clearance due to saturation.

LOWER INSULIN CLEARANCE IN OBESITY AND NONALCOHOLIC
FATTY LIVER DISEASE

Several studies in humans and animal models have provided convincing evidence that impaired
hepatic insulin clearance is a major cause of hyperinsulinemia in obesity (14, 65-70). Reduced
insulin clearance has been described in obese adults and youth with insulin resistance (59, 71),
even in the absence of dysglycemia. In animal models, reduction in hepatic insulin clearance has
been proposed as an early homeostatic mechanism to preserve B-cell function in the context of
increased insulin resistance (72).

In a recent study, our group, led by Galderisi (71), examined changes in insulin clearance in
young individuals with different levels of glucose tolerance and insulin sensitivity. Sera insulin and
C-peptide concentrations were simultaneously measured during hyperinsulinemic-euglycemic
and hyperglycemic clamps, and a model-based method was used to assess insulin clearance. This
allowed for not only the estimation of several parameters of insulin clearance, but also the de-
termination of its effect on B-cell function (71). The study enrolled 110 participants who had
a baseline OGTT together with hyperglycemic and hyperinsulinemic-euglycemic clamp analy-
ses followed by a second OGTT two years later (71). Based on the insulin sensitivity measured
during the hyperinsulinemic-euglycemic clamp, subjects were stratified into four groups: 43
Ob-NGT-IS (obese-normal glucose tolerant-insulin sensitive), 43 Ob-NGT-IR (obese-normal
glucose tolerant-insulin resistant), 14 Ob-IGT (obese-impaired glucose tolerant), and 10 lean
NGT (normal glucose tolerant). Whole-body insulin clearance did not differ between lean and
Ob-NGT-IS participants. In contrast, it was ~20% lower in Ob-NGT-IR (P < 0.001) and
Ob-IGT (P < 0.001) participants compared to Ob-NGT-IS participants. This difference was
supported by a reduced fractional hepatic extraction in Ob-NGT-IR and Ob-IGT participants
compared to the Ob-NGT-IS group (P = 0.025), with similar fractional hepatic extraction in
the lean and Ob-NGT-IS groups (71). Extrahepatic insulin clearance was comparable among the
four groups. This suggests that changes in insulin clearance could precede the overt impairment
in glucose tolerance (71). Of note, we observed the longitudinal effect of baseline clearance on the
oral disposition index (oDI) calculated using C-peptide at 0-30 min of the OGTT. The follow-up
oD, was significantly influenced by the baseline hepatic but not extrahepatic insulin clearance,
with a lower hepatic clearance associated with a reduction of the DI independently of the other
clinical and metabolic variables (71). In youth with obesity and insulin resistance, hepatic insulin
clearance appears to play a major role in the decline of B-cell function in these subjects (71). Failure
to regulate the liver-insulin gate may represent a major step toward the progression to diabetes in
youth (71).

In addition to obesity, nonalcoholic fatty liver disease (NAFLD) is associated with systemic
and hepatic insulin resistance (73, 74) and is reported to be significantly linked to adipose tissue
insulin resistance and a rise in its proinflammatory state (75, 76). Subjects with nonobesity or
moderate obesity have similar insulin clearance rates in the presence of very different insulin
secretion rates regardless of whether or not they are glucose tolerant. However, very high insulin
concentrations are often observed in subjects with NAFLD, consistent with their more robust
hepatic and peripheral insulin resistance than subjects without NAFLD, as we have recently
reported (77). In this study, we could not evaluate insulin secretion or clearance because no
C-peptide data were available, but we observed that the DI in subjects with normal glucose
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tolerance and NAFLD or nonalcoholic steatohepatitis (NASH) was much higher than the DI
in insulin-sensitive NGT subjects without NAFLD/NASH (77). This finding agrees with those
of Smith et al. (21), who showed reduced fractional hepatic insulin extraction and much higher
insulin concentrations during the OGTT in obese subjects with NAFLD compared to nonobese
and obese subjects without NAFLD. Similarly, Kotronen et al. (78) observed lower hepatic insulin
clearance in T2D Finnish patients exhibiting more hepatic steatosis with hepatic and adipose
tissue insulin resistance than nondiabetic subjects, similar to our findings in T2D US patients
with NAFLD (79). Bril et al. (80) showed that in subjects with biopsy-proven NASH, there was
a stepwise decrease in whole-body insulin clearance as subjects progress to simple steatosis and
then to NASH, whereas the presence of steatosis was associated with a decrease in hepatic insulin
extraction independently of the severity of liver disease. Moreover, Matsubayashi et al. (81) have
reported a stronger deleterious effect of fat deposition in the liver on hepatic insulin clearance
than adiposity, per se, in T2D Japanese patients.

MECHANISMS UNDERLYING THE EFFECT OF OBESITY
ON INSULIN CLEARANCE

Most T2D patients exhibit abdominal obesity (82) that is commonly associated with insulin resis-
tance in liver and extrahepatic peripheral tissues (83—86). Obesity represents a chronic subacute in-
flammatory state (87-89) thatis characterized by the elevated release of adipokines with adverse ef-
fects on insulin action (90-92) and reduced adiponectin production in the abdominal fat depot (93).

Abdominal obesity is also associated with elevated lipolysis-derived plasma free fatty acids
(FFAs) in the portal vein (85, 94), thus forming an independent risk factor for glucose intoler-
ance and its progression to T2D (95-98) and for NAFLD and hepatic inflammation and injury
independently of obesity and T2D (75).

Mobilization of FFAs to the liver during excess energy supply causes hepatic insulin resistance
and increased gluconeogenesis (portal hypothesis) (99-101) via several mechanisms. These include
activation of the Jun N-terminal kinase (JNK) pathway and increasing tumor necrosis factor-alpha
(TNF-a) secretion (102) in addition to promoting protein kinase C (PKC) epsilon and lambda
enzymatic activities (103). High levels of circulating FFAs reduce insulin binding to its receptor
and degradation in isolated rat hepatocytes (104), thus contributing to impaired hepatic insulin
clearance in obesity (105). Consistently, infusion of FFAs (106) and intralipid-heparin (107) in the
portal vein causes reduction in hepatic insulin removal in aged rats and normal dogs, respectively.
Similarly, a rise in plasma FFAs by splanchnic intralipid-heparin infusion in adult women sup-
presses endogenous insulin clearance independently of glucose and without significantly affecting
the insulin secretion rate (108).

However, the regulation of insulin clearance by lipolysis-derived fatty acids in obesity-
associated insulin resistance in human subjects is still under debate. Results obtained early after
bariatric surgery, i.e., after massive stimulation of lipolysis and fatty acid overflow, have shown
increased rather than reduced insulin clearance. Bojsen-Meller et al. (109) have shown that fast-
ing hepatic insulin clearance (measured as the fasting C-peptide-to-insulin ratio) increased at one
week and lasted for 1 year post Roux-en-Y gastric bypass (RYGB) in 32 obese T2D and NGT
Danish patients. Similarly, morbidly obese Austrian patients with T2D responded within a week
post-RYGB with an increase in hepatic insulin clearance and loss of body weight (110). In a cohort
of Italian patients, insulin clearance increased one week after RYGB or gastric banding surgery
(111). This earlier improvement in hepatic insulin clearance and sensitivity is consistent with im-
proved insulin extraction in parallel to the loss of abdominal fat in women 18-51 years of age
undergoing caloric restriction (112). In contrast, Kim etal. (113) showed that the insulin clearance
rate is lowered in obese subjects secondarily to insulin resistance but not to excess adiposity, per se.
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Nonetheless, our studies on CEACAM], a transmembrane glycoprotein that is highly ex-
pressed in liver, provides a novel mechanistic underpinning for the effect of obesity-associated
FFAs on hepatic insulin clearance (114-116). CEACAM1 promotes the rate of receptor-mediated
insulin uptake and its targeting to the degradation process in hepatocytes and renal proximal
tubule cells (114, 117). Feeding wild-type mice a rich high-fat diet causes a progressive decrease in
hepatic CEACAMLI transcription via an FFA-activated peroxisome proliferator-activated receptor
alpha (PPAR«a)-mediated mechanism (118, 119). This removes the negative effect of CEACAM1
on fatty acid synthase (FASN) activity (120) to reduce malonyl-CoA levels and promote long-
chain fatty acyl-CoA transport to the mitochondria for fatty acid B-oxidation (FAO) (116). When
the loss of CEACAMI reaches >60% (after ~3 weeks of high-fat intake), hepatic insulin clear-
ance is impaired to cause chronic hyperinsulinemia, which in turn drives hepatic insulin resistance
(114, 116), at least in part by downregulating insulin receptor numbers in hepatocytes (121, 122)
(Figure 3). Hyperinsulinemia can also activate the sterol regulatory element-binding protein-1c
(SREBP-I1c) transcriptional activity in the liver (123) to induce lipogenic gene expression and
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1 FAO 1 FASN level/activity

and insulin resistance

| Malonyl-CoA Chronic
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[N 3 CEACAM1 o <
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Figure 3

The effect of obesity-induced reduction of hepatic CEACAMLI levels. In response to high-fat feeding,
visceral obesity develops, and the mobilization of FFAs from adipocytes to hepatocytes occurs to trigger
FAO. FFAs cause a reduction of CEACAMLI expression by activating PPARa. The early reduction of
CEACAMLI facilitates FAO by increasing FASN activity and producing the endogenous ligands of PPARa.
Upon sustained high-fat intake for >3 weeks, CEACAM1 levels are lowered by >50-60%. This reduces
hepatic insulin clearance followed by chronic hyperinsulinemia that, in turn, leads to the downregulation of
insulin receptor and hepatic insulin resistance. It also activates SREBP-1c to induce the transcription of
lipogenic genes and, subsequently, re-esterification. This leads to fat accumulation in hepatocytes and
hepatic steatosis. It can also induce redistribution of VLDL triglycerides to adipocytes to be stored,
providing a positive feedback mechanism on visceral obesity. Abbreviations: CEACAM1, carcinoembryonic
antigen-—related cell adhesion molecule 1; FAO, fatty acid B-oxidation; FASN, fatty acid synthase; FFA, free
fatty acid; PPARa, peroxisome proliferator-activated receptor alpha; SREBP-1c, sterol regulatory
element-binding protein-1¢; VLDL, very-low-density lipoprotein.
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tip the balance toward re-esterification rather than B-oxidation, leading to hepatic steatosis. It
also causes redistribution of very-low-density lipoprotein (VLDL) triglycerides to white adipose
tissue to cause visceral adiposity (116). These diet-induced metabolic abnormalities were all pre-
vented by forced liver-specific transgenic overexpression (114) and exclusive CEACAMI rescue
in Ceacam]-null mice (124) and by adenoviral-mediated redelivery of CEACAM]1 (116). Collec-
tively, the data further demonstrate a regulatory role for lipolysis-derived FFAs in diet-induced
metabolic derangements in the liver.

Interestingly, vertical sleeve gastrectomy in a diet-induced mouse model was recently shown
to increase hepatic insulin clearance and improve hepatic insulin sensitivity, as it increases the
expression of CEACAMI and insulin-degrading enzyme independently of weightloss (125). Thus,
the regulation of CEACAM1-dependent hepatic insulin clearance by lipid metabolism along the
adipocyte-hepatocyte axis appears to play a paramount role in how visceral adiposity regulates
hepatic insulin clearance.

LOWER INSULIN CLEARANCE: CAUSE OR CONSEQUENCE
OF INSULIN RESISTANCE AND TYPE 2 DIABETES?

Since Broh-Kahn & Mirsky (126) first proposed an association between low insulin clearance
and T2D, data showing low insulin clearance rates in conditions of insulin resistance (9, 12, 59),
NAFLD (12,78, 127), and diabetes (79) have emerged. However, the cause-effect relationship be-
tween reduced insulin clearance and insulin resistance in metabolic syndrome has been a subject
of intense debate. Bergman et al. (128, 129) proposed the hypothesis that reduced insulin clear-
ance (mainly hepatic) can lead to T2D. However, this hypothesis is challenged by the observation
that in subjects with T2D, fasting insulin clearance is similar to that of subjects with normal or
impaired glucose tolerance, while the dynamic reduction in insulin clearance, in response to the
rise in insulin concentration (i.e., during OGTT or hyperinsulinemic-euglycemic clamp analy-
sis), is much lower than in nondiabetic subjects, thus limiting the level of insulin that reaches
peripheral tissues (9, 61). In general, the controversy stems partly from the heterogeneity of the
metabolic disease and also from the technical challenge to distinguish which defect initiates the
tightly connected myriad of these metabolic disturbances. Thus, in light of the limited available
clinical evidence supporting the notion that lower insulin clearance causes insulin resistance and
T2D, it has been more widely accepted that reduced insulin clearance is simply an adaptation to
the insulin resistance state.

In nondiabetic subjects, insulin resistance and glucose intolerance are associated with fast-
ing and postprandial hyperinsulinemia. Insulin clearance is inversely related to insulin action in
skeletal muscle during hyperinsulinemic-euglycemic clamp analysis (R = —0.52, P < 0.0001), inde-
pendently of obesity (9). The decrease in insulin clearance rates in obese insulin-resistant patients
relative to nonobese insulin-sensitive subjects was more pronounced during the OGT'T than in
the fasting state (9, 59). Subjects with normal glucose tolerance and insulin sensitivity had higher
glucose and lower insulin response to different challenges [during OGTT or a meal tolerance test
or by insulin infusion (during analysis by a hyperinsulinemic-euglycemic clamp or the intravenous
glucose tolerance test (9, 11, 130)]. However, as subjects become more insulin resistant (Figure 2),
their postprandial insulin clearance (in response to the OGTT or hyperinsulinemic-euglycemic
clamp) progressively drops (9, 12, 16, 59). These studies show that a reduction of insulin clearance
follows insulin resistance in T2D.

Mechanistically, insulin action and clearance are linked (131) since both are mediated by insulin
signaling pathways: In hepatocytes, the binding of insulin to its receptor activates the tyrosine ki-
nase of the receptor as the complex enters the cell for insulin signaling to propagate and for insulin
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to be eventually delivered to its degradation compartments (132). This is tightly regulated by the
pulsatility of incoming insulin in the portal vein (133). An acute rise of insulin causes rapid ac-
tivation of the insulin receptor to phosphorylate the surface membrane CEACAMI followed by
its association with the insulin-receptor complex to increase its rate of endocytosis (41). We have
also shown that to facilitate dissociation of insulin from its receptor (so it can undergo degrada-
tion), phosphorylated and internalized CEACAM1 binds to FASN to mediate a negative effect
on its enzymatic activity (41, 120). This serves to protect the liver against the lipogenic action
of the physiologically higher levels of insulin in the portal vein that drive the high expression of
lipogenic genes in the liver (123). In this manner, the pulsatility of insulin release sustains insulin
sensitivity and prevents fat accumulation in the liver under normal physiologic conditions. Thus,
it is conceivable that when the insulin receptor in hepatocytes does not sense pulses of incoming
insulin in the background of supraphysiological levels of insulin in the portal vein, insulin sig-
naling and extraction are both blunted, causing hepatic insulin resistance and restricting hepatic
insulin clearance. Altered metabolic conditions that elevate insulin levels in the portal vein and
mask pulsatility include but are not limited to frequent food intake and hyperphagia, obesity (ab-
dominal adiposity), increased insulin secretion to compensate for genetic insulin resistance, and
p-cell dysfunction (134, 135).

On the other hand, some studies have proposed that hyperinsulinemia drives insulin resistance
(136-138), despite their being tethered to each other (139). Mechanistically, this could be medi-
ated at least partly by the downregulation of insulin receptors in response to chronically elevated
levels of insulin (121). This alternative paradigm is supported by the systemic insulin resistance
state that follows the early onset of reduced hepatic insulin clearance in mice with liver-specific
deletion of the Ceacam1 gene (140). In this mouse model, deleting Ceacaml in the liver reduces
hepatic insulin clearance to cause chronic hyperinsulinemia at 2 months of age followed by hepatic
insulin resistance at 6-7 months of age (as assessed by hyperinsulinemic-euglycemic clamp analy-
sis) (140). This is followed by visceral obesity and systemic insulin resistance at 9 months of age in
parallel to the onset of the release of adipokines and lipolysis-derived FFAs (140). In addition to
increased lipogenesis in the liver and redistribution of substrates to white adipose tissue, visceral
obesity also results from hyperphagia that arises following a hyperinsulinemia-driven increase
in hypothalamic FASN levels and activity, which induces food intake independently of leptin
(141-143). Pair-feeding experiments showed that hyperphagia contributes to the development of
systemic insulin resistance (140). Thus, reduced insulin clearance in the liver of these mice causes
chronic hyperinsulinemia and hyperphagia that contributes to the development of visceral obesity
and systemic insulin resistance. Of note, the metabolic phenotype, including insulin resistance and
hyperinsulinemia in liver-specific CeacamI-null mice, is much less severe than that of the LIRKO
mouse with liver-specific insulin receptor—null deletion that displays reduced insulin clearance
resulting from blunted insulin signaling and severe insulin resistance (144). The milder insulin
resistance in liver-specific Ceacamn I-null mice relative to LIRKO mice is reminiscent of the milder
insulin resistance and obesity observed in South Asian men relative to age-matched Caucasian
counterparts (145). Fed a high-caloric Western-style diet for 5 days, a group of healthy nonobese
young Asian (but not Caucasian) men exhibited a rapid reduction in insulin clearance and hepatic
insulin resistance (146). When healthy nonobese Japanese men were split into two groups based on
their basal insulin clearance, Kaga et al. (147) found that the group with low insulin clearance ex-
hibited mild insulin resistance in muscle in response to a two-step hyperinsulinemic-euglycemic
clamp. Collectively, this provided the impetus for Watada & Tamura (145) to propose the
provocative hypothesis that South Asians and Caucasians differ by the etiologies of their insulin
resistance. South Asians have impaired insulin clearance causing mild obesity and selective insulin
resistance and Caucasians have obesity causing more severe insulin resistance that is compensated
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for by increased insulin secretion and reduced insulin clearance. While this hypothesis remains to
be tested, it is interesting to note that hepatic CEACAM1 protein levels were found to be lower in
29% of South Korean insulin-resistant obese subjects with NAFLD independent of T2D (148).

CLOSING REMARKS

Because of the inverse relationship between insulin levels and receptor-mediated insulin endocy-
tosis and degradation, any chronic hyperinsulinemic state is bound to be a state of reduced insulin
clearance. However, we have observed a reduction in insulin clearance in response to a glucose
load that was similar in subjects with different degrees of glucose tolerance and insulin resistance.
Because these adaptations occur within minutes of insulin exposure, determining a time course of
which abnormality comes first in vivo is a tall order. Nonetheless, it is possible that genetic pre-
disposition plays a role in determining which abnormality comes first in common forms of T2D
with varying tissue-specific degrees of fat deposition and insulin resistance.
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