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Abstract

The human lung cellular portfolio, traditionally characterized by cellular
morphology and individual markers, is highly diverse, with over 40 cell types
and a complex branching structure highly adapted for agile airflow and gas
exchange. While constant during adulthood, lung cellular content changes
in response to exposure, injury, and infection. Some changes are temporary,
but others are persistent, leading to structural changes and progressive lung
disease. The recent advance of single-cell profiling technologies allows an
unprecedented level of detail and scale to cellular measurements, leading to
the rise of comprehensive cell atlas styles of reporting. In this review, we
chronical the rise of cell atlases and explore their contributions to human
lung biology in health and disease.
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1. INTRODUCTION

The primary function of the lung is the exchange of atmospheric oxygen with the carbon diox-
ide generated throughout the body’s tissues. Air is delivered through the nasal passages, into
the airways, in multiple generations of bifurcations of the bronchial tree and then into respi-
ratory units composed of the respiratory bronchioles, the alveolar duct, and the alveolar sac,
where gas exchange occurs (1). The airways, which are multilayered tubes, have evolved to reg-
ulate air flow, temperature, and humidity and to provide protection from particles and infectious
agents, whereas the alveolar unit evolved to allow for unimpeded gas exchange, with single layers
of cells and thin interstitium. The normal structure of the lung is achieved through highly dis-
tinct and coordinated stages during embryonic and early neonatal life and remains relatively
stable through most of adult life. Morphological studies have identified cell populations char-
acteristic of each anatomical region in the lung, and the number of discrete cell population types
in the lung have been estimated at >40 (2). To maintain air flow and gas exchange the lungs
have the capacity to rapidly shift their cellular repertoire in response to injury. Most acute and
chronic lung diseases are characterized by extensive changes in the lung cellular repertoire, with
the difference being that some conditions resolve spontaneously or after treatment without sub-
stantial sequelae, whereas others lead to permanent and frequently progressive changes in this
repertoire (3).

Historically, the characterization of the cellular repertoire of the lung evolved with the avail-
ability of novel technologies, such as electron microscopy, immunofluorescence, lineage tracing,
and monoclonal antibodies. Cells were defined based on their morphology, location, and the
expression of a few molecular markers, most derived from careful lineage studies in mice. The
recent emergence of high-throughput single-cell profiling technologies such as single-cell RNA
sequencing (scRNA-seq) created a unique opportunity to improve the resolution of previous
characterizations of discrete cell populations into a high-throughput signature, function, and
systems-based cellular state and phenotype characterization to create comprehensive catalogs of
all the cells in an organ system and, eventually, the whole organism (4).The opportunities weremet
with enthusiasm in nearly every organ system.Publications describing cell atlases have proliferated
(Figure 1a,b), providing an unprecedented view of the complexity of cellular repertoires of distinct
organs. Cell atlases have revealed unexpected outcomes, including new cell types and undiscov-
ered cell states that challenge prior assumptions about cell types, and have provided an outlet for
biologists to computationally compare cell behavioral patterns across tissues and experiments in
ways previously impossible. Ambitious consortium-lead projects like The Human Cell Atlas or
Tabula Muris are seeking to succeed the Human Genome Project by describing all cells found in
the healthy human or mouse, respectively (4, 5).

In respiratory research, cell atlas reports have transformed our perception of the lung cellular
portfolio and identified previously unrecognized cellular populations in health and disease. The
possibility of creating a collection of catalogs of all cells in the lung, as well as their phenotypes,
markers, interactions, and specific locations, through different stages of life and in disease, is now
more feasible than ever. Such a collection—comprehensive and exhaustive but approachable and
accessible—would be the lung cell atlas, a highly useful blueprint for lung health and disease. In
this review, we reflect on the technological advances behind the advent of cell atlas reporting and
highlight examples where discoveries from cell atlases have disrupted our understanding of lung
cellular biology and pathophysiology.
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Figure 1

Trends in cell atlas
reporting.
(a) Scatterplot
representing the
number of cells
profiled per cell atlas
experiment over time
(51). Cell atlas reports
that introduced key
influential single-cell
RNA sequencing
methods are labeled.
(b) Line chart showing
the annual proportion
of PubMed citations
for the terms “atlas,”
“cell atlas,” and “brain
atlas” (52). (c) Step plot
visualizing the
cumulative number of
human lungs and
human lung cells that
have been profiled
across cell atlases (51).
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2. A HISTORICAL TIME LINE OF CELL ATLASES

2.1. From World Mapping to Tissue Mapping

The term atlas is broadly defined as a bound collection of maps, tables, charts, or plates. This
definition is derived from the sixteenth-century cartographer Gerardus Mercator, whose atlas
compiled various maps of the world at different granularities (6). Mercator considered the har-
mony of geography, topology, and geology to be divine; his atlas provided an accessible visual
guide of the vastness of known cosmography. During the eighteenth century, use of the term atlas
would be generalized beyond charts of the physical world to include visual descriptions of more
abstract statistical relationships. The Commercial and Political Atlas by Scottish economist William
Playfair and colleagues nearly exclusively comprises multivariate time-series graphics, the lone
exemption being the first documented example of a bar graph (7).

In modern bioscience, the term atlas can be used to describe any comprehensive description of
a complex structure or system.Metabolic atlases model all molecular reactions in an organism (8);
the Human Protein Atlas provides spatial mapping of all proteins across human tissues (9). Cell at-
lases provide comprehensive perspectives on how an ensemble of cells collaborates to perform ad-
vanced tasks such as the function of an organ, its process of development, or its behavior during dis-
ease.Where Mercator’s atlas reconciled geographic and political boundaries to explain Earth, and
Playfair’s atlas reconciled time and financial data to explain the world economy, today’s cell atlases
reconcile the molecular and spatial properties of cells to provide a global understanding of tissue.

2.2. Brain Atlases: Pioneers of Tissue Atlases

The philosophy behind cell atlases can largely be linked to brain atlas projects spearheaded by
neurologists in the late 1990s and early 2000s. Utilizing magnetic resonance imaging (MRI)
or functional MRI two-dimensional (2D) scans of serial sections, brain atlases offered three-
dimensional (3D) reconstructions of the brain for applications in education and neurosurgery and
for assessing functional relationships between neurons (10). Instrumental to the success of early
brain atlas projects was the ability of others to interactively explore them. Programs for viewing
brain atlases were made available through CD-ROM (11) and later through web-based tools (12),
impressive feats given the scale of data and limitations in computer hardware at the time.

The first transcriptome-wide brain atlas was generated by researchers at the Allen Institute
using an automated, industrialized process of in situ hybridization for more than 20,000 genes
(13). Despite the value and excitement surrounding such projects, several limitations prohibited
widespread adoption of the technique. First, the costs remain prohibitively expensive. Second,
there are persistent limitations in the reliability of cell segmentation algorithms used to estimate
boundaries between cells in 3D space based on 2D images (14). Despite their high-resolution
scans, the Allen Institute’s 2006 brain atlas article describes their resolution as “cellular, but not
single cell” (13, p. 169). As detailed and groundbreaking as the early brain atlases were, the single-
cell technologies required to generate cell atlases would still be many years away.

2.3. The Transcriptomic Road Toward Cell Atlases

The ambition to capture the transcriptome of single cells largely paralleled the evolution of tran-
scriptional profiling, moving from serial analysis of gene expression (SAGE) and microarrays
to massive parallel sequencing. The development of SAGE in 1995 revolutionized whole-
transcriptome analysis by allowing assessments of messenger RNA (mRNA) abundance without
prior knowledge of their sequences (15). SAGE’s demand for high amounts of input mRNA (16,
17) and poor scalability (18) made applications of single-cell analysis impractical. In contrast,
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DNA microarrays that emerged simultaneously (19, 20) offered substantially improved scalabil-
ity and sensitivity, with the limitation of only targeting known sequences (17, 18). While DNA
microarrays allowed analysis of small numbers of cells identified by microscope and isolated
by micromanipulation, such as Reed-Sternberg cells from patients with Hodgkin’s disease (21),
single-neuronmicrodissections frompatients with schizophrenia (22) andAlzheimer’s disease (23),
or embryonic stem cells (24, 25) in the lung, both technologies were adapted early (26, 27) but
were mostly applied to bulk analyses of tissue. The rapid development and superior performance
of next-generation sequencing platforms (28) led to their implementation on single cells. The
first report of scRNA-seq profiled a single mouse blastomere cell (29). Despite relying on meth-
ods optimized for single-cell microarray analysis (24), this RNA-seq experiment returned many
more genes than what had previously been possible.

Though most early attention surrounding RNA-seq was focused on its unbiased assessment
of transcripts, another key advantage over microarrays would soon emerge and become instru-
mental to all single-cell experiments: the ability to append synthetic sequences to complementary
DNA (cDNA) strands to serve as a barcode of read metadata. Indeed, the earliest and most com-
monly used application of cDNA barcoding was sample multiplexing. By adding known barcode
sequences to each end of a cDNA fragment from each sample, Bar-seq would support pooling
up to 96 samples for downstream sequencing in parallel. Reads are later computationally de-
multiplexed by assigning them to samples based on their respective barcode identity (30). The
single-cell tagged reverse transcription (STRT) protocol was the first single-cell method to im-
plement this technique. After isolating individual cells into wells of a 96-well plate, a cell-specific
barcode is added during the reverse-transcription step at the beginning of the experiment. By
pooling all tagged cDNA before amplification steps, STRT reduced amplification biases in down-
stream reactions while supporting an unprecedented degree of sample scalability (31). The need
to isolate individual cells at the start of each experiment was a limitation to the scalability of
such experiments. The C1 platform from Fluidigm offered a solution to this problem by isolat-
ing individual cells from suspension into chambers using a sophisticated valve-based microfluidic
system via subtle changes in pressure actuation (32). The very first lung cell atlas consisted of 198
embryonic murine lung epithelial cells profiled by using this platform (33).

Improvements in library construction methods and barcoding (34) and the invention of unique
molecular identifiers (UMIs), randomly generated barcodes that are appended to transcripts be-
fore amplification, were critical to improving the fidelity of sequencing because they prevent
nonlinear distortions caused by amplification and decouple measurements of transcript abundance
from technical metrics like sequencing depth (35, 36). With this breakthrough, the stage was
set for increasing the numbers of cells profiled. Cyto-seq (37) and Microwell-seq (38) achieved
low-cost scalability by using an agarose-based microwell array and magnetic beads covered by
DNA oligos featuring randomly assignedUMI barcodes. Bead-specific cell barcodes generated via
split-pooled combinatorial indexing, Drop-seq (39), and inDrop (40) use microfluidics systems to
rapidly encapsulate dissociated cells within nanoliter-sized droplets alongside uniquely barcoded
polymer or hydrogel beads. Cell lysis and subsequent mRNA hybridization to barcodes occur
within the boundaries of each droplet, after which barcoded material is pooled and collectively
processed. The droplet-based methods inherit Cyto-seq’s appeal to probability for matching cells
with barcodes but avoid partitioning cells into wells by partitioning them into an infinitely scalable
number of oil-based droplets that comprise an emulsion. Split-pool ligation-based transcriptome
sequencing (SPLiT-seq) avoids the need to isolate single cells by generating combinatorial bar-
codes for transcripts within the membranes of cells themselves (41). This is achieved by applying
a suspension of cells to a split-pool combinatorial barcoding approach similar to the one used
for generating the barcoded beads used in Cyto-seq or Drop-seq (37, 39). The number of cells
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that can be profiled simultaneously is only limited by the number of split-pooling rounds and the
length of the barcode the user is willing to sequence.

Techniques pioneered for scRNA-seq have been adapted to assess different cell compartments
or types of molecular information; single-cell multi-omics assays measure more than one. Single
nuclear RNA-seq sacrifices sensitivity in exchange for less-biased representations of dissociated
cells, a necessary approach for capturing information from neurons or frozen biobanked tissue,
which are virtually impossible to assess via scRNA-seq. Methods like CITE-seq (cellular index-
ing of transcriptomes and epitopes by sequencing) (42) and REAP-seq (RNA expression and
protein sequencing) (43) allow scRNA-seq assays to simultaneous measure protein levels by la-
beling cells with protein targeting antibodies conjugated to DNA barcodes that can be captured
alongside each cell’s mRNA. The assay for transposase-accessible chromatin with sequencing
(ATAC-seq) measures cell epigenetics by assessing regions of chromosome accessibility and has
been adopted for single-cell implementations. sci-CAR (single-cell combinational indexing) (44)
and SNARE-seq (single-nucleus chromatin accessibility and mRNA expression sequencing) (45)
perform ATAC-seq and RNA-seq on nuclei or cells in parallel. Single-cell copy number variant
assays detect chromosomal duplication events in cancer cells. Single-cell whole genome sequenc-
ing can assess single-nucleotide variations that arise from genetic and somatic mutations across
cells. Mitochondrial sequencing is used to lineage trace relationships between cells based on
somatic mutations and to detect heteroplasmy events: the presence of multiple mitochondrial
DNA (mtDNA) variants in the same cell. mtscATAC-seq (mitochondrial single-cell ATAC) (46)
simultaneously profiles chromatin accessibility and mtDNA in the same cells by modifying a pro-
prietary droplet-based platform. ASAP-seq (ATAC with select antigen profiling by sequencing)
(47) combines mtscATAC-seq with REAP-seq, thus supporting protein, epigenetic, and mtDNA
measurements for each cell. DOGMA-seq (47) combines mtscATAC-seq with scRNA-seq and
CITE-seq’s protein capture strategy. Nature Methods chose scRNA-seq as method of the year in
2013 (48), single-cell multimodal omics in 2019 (49), and spatial transcriptomics in 2020 (50). The
comprehensive perspectives of cell identity and tissue composition that these technologies afford
form the foundation of today’s cell atlases.

2.4. Emergence of the Cell Atlas in the Twenty-First Century

Increasing access and cost scalability of single-cell assays over the past decade have triggered an
exponential rise in the number of cell atlas reports as well as the typical scale of the reports them-
selves. In 2013, 11 scRNA-seq papers were published, with a median number of 68 cells profiled,
and in 2017, 92 scRNA-seq reports profiled a median of 1,764 cells. The 168 reports in 2021
describe a median number of 27,353 cells (51) (Figure 1a). Concurrent with the rise in cell at-
lases reporting has been the rise in cell atlas engagement across the scientific community. In 2015,
the number of PubMed citations for cell atlas articles would surpass brain atlas citations for the
first time (52) (Figure 1b), and the relative contribution of cell atlas reports in the biomedical
literature has dramatically increased every year since. Between 2015 and 2021, the proportion
of annual PubMed citations corresponding to cell atlases underwent a fivefold increase, and
cell atlas representation among any cited article including the word “atlas” nearly doubled from
30.3% to 57.9% (52) (Figure 1b). Within a decade, cell atlases went from being a niche con-
cept to the primary form of atlases discussed across biomedicine. Unsurprisingly, lung biology has
participated in and benefited from the rising trend of cell atlases (Figure 1a,c). Currently, more
than 2.6 million cells have been profiled from over 500 human lungs (51) (Figure 1c). A new
preprint from theHumanCell Atlas consortium describes the integration of more than 2.2million
cells from 444 individuals into a common reference data set (53). Likewise, CellCards is a new
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project from the LungMAP consortium (54) for providing a unified framework of lung cell iden-
tity (55). Such efforts are critically necessary for our ability to understand the cellular makeup of
the lung.

3. CELL ATLASES OF THE HUMAN LUNG

The molecular detail and scalability of cell sampling afforded by single-cell technologies have
fundamentally changed the way we can view cells. For the first time, scientists can accurately re-
solve the genomic identity of cells without relying on assumptions about what cells to look for
or expectations of how specific cell types are supposed to be. Single-cell experiments thus have
the tremendous potential to disrupt the status quo of cell-type ontology. Not only can previously
unrecognized cell types be discovered, but the dogmas of known cell types can be revisited un-
der an unbiased lens. This new perspective also elevates old problems about cell identity that
were obscured by traditional binary marker-based cell identification schemes. Notably, what does
it mean when markers used to classify a given cell type become expressed by another? Or more
broadly, what level of phenotypic variation is sufficient to distinguish fluctuations in cell state from
changes in cell type? Cellular biology’s problem of defining a cell type is often compared to the
taxonomic problem of formalizing the definition of a species (3). In both cases, cognitive biases
toward pattern recognition and an overreliance on a limited amount of information can lead to
spurious interpretations.One noteworthy zoological example is the goose barnacle myth, where it
was believed that the barnacle goose (Branta leucopsis) emerged from goose barnacles (Cirripedia)
(56) until ornithologists formalized the concept of bird migration. A limited understanding of
goose localization patterns and the morphological similarities between goose necks and barnacle
stalks was all it took for this myth to persist for 500 years. Though geese and barnacles can now
easily be distinguished by differences in their DNA, cells from the same organism cannot. All
cells have access to the same genetic playbook; any perception of reliability ascribed to genetic
markers for classifying cell types is derived from a combination of prior experience and faith that
cells will remain committed to adhering to a transcriptional homeostatic state. In the evolution of
the lung cell atlases, the most notable observation was that profiling of normal (disease-free tis-
sue) and abnormal (diseased tissue) occurred in parallel. Thus, instead of a rigid process in which
first the normal cellular repertoire of the lung is defined and then a catalog of aberrations from
the normal is laid, the study of normal, often as control for the abnormal, was interspersed with
the abnormal. This is of course a result of practicalities; lung tissue is usually obtained through the
course of diagnostic or therapeutic procedures, and research focused on disease is more readily
funded. However, the wide availability of known cellular markers, and the surprising robustness
of the results, allowed the creation of atlases of both healthy adults and most advanced lung
diseases (Figure 2). As more data are added, we expect that the extent of the phenotypic diver-
sity of healthy human lung cells and the pathological cell states that exist beyond the bounds of
known healthy cell states will be better defined. In the following section, we highlight novel, unex-
pected, and pathological lung cell phenotypes revealed by lung cell atlases, as well as the cell-type
incongruencies that arise between disease and control cell populations. Instead of proceeding by
disease, we proceed by general cell families, interweaving disease data in each relevant section.

3.1. Stromal Cells

Lung tissue contains a diverse array of stromal tissues comprised of smooth muscle and pericyte
and fibroblast cells; however, the actual number of distinct stromal cell types, their characterizing
features, and their ontogenic relationships are still unclear. Single-cell atlases both provided
better definition of distinct stromal cell groupings in health and disease and allowed better clarity
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of what is unknown. Below are some of the insights obtained from single-cell profiling of lung
stromal cells.

3.1.1. Fibroblasts in development and disease. The number of distinct fibroblast types, their
features, and their ontogenic relationships are still unclear, as many commonly used molecular
hallmarks of fibroblast subtypes like collagen or α-smooth muscle actin are more prominent in
vitro and may only transiently occur under normal homeostasis or pathological conditions. One
particularly confusing example includes cells referred to as myofibroblasts. During lung develop-
ment, cells called myofibroblasts proliferate in the distal lung and function as scaffolds during the
development of the alveolar walls. In the adult lung, the termmyofibroblast is typically used to de-
scribe a pathological phenotype of fibroblast that accumulates in the distal lung during pulmonary
fibrosis. In both cases, myofibroblasts are primarily described based on a very limited number
of nonspecific marker genes: ACTA2, TAGLN, and PDGFRA. Indeed, much of what is known
about fibroblasts, myofibroblasts, and other fibroblast subpopulations emerges from studies of
PDGFRA-expressing cells during lung development and response to injury (57, 58).

When single-cell analysis was applied to human lungs, a more complex picture emerged; the
myofibroblast cells described in both murine and human lung development are more closely re-
lated to smooth muscle cells (58, 59) based on reported expression of classical smooth-muscle
markersMYH11 and ACTG2. In contrast, the pathological myofibroblasts of pulmonary fibrosis
more closely resemble adult resident alveolar fibroblasts based on global gene expression pat-
terns and coexpression of resident alveolar fibroblast (also referred to as lipofibroblasts or PLIN2+

fibroblasts) markers ITGA8, MYLK, and TNC (60–62). An unbiased assessment of phenotypic
concordance between developmental and adult pathological myofibroblast should be conducted
because the limited number of nonspecific markers used to describe these cells create a risk of
spurious inference. Several independent single-cell analyses of fibrotic lungs have highlighted the
poor sensitivity and specificity ofACTA2 as a classical marker for pathological lung myofibroblasts
(63–65). Taken alongside ACTA2’s poor correlation with collagen expression levels among patho-
logical fibroblasts in idiopathic pulmonary fibrosis (IPF) (61), expression of the geneCTHRC1may
serve as a more reliable marker for the pathological fibroblasts closely associated with fibrotic
lesions (60, 66). A similar pathological fibroblast phenotype was recently reported in end-stage
coronavirus 2019 (COVID-19) patients (67). Similar to the cells described in lesions of chronic
pulmonary fibrosis patients, these cells express high levels of CTHRC1 alongside other pathologi-
cal hallmarks such as COL1A1, COL3A1, and POSTN (67). An integrated analysis of pathological
fibroblasts that identifies the same gene signature is found in pathological fibroblasts of ulcera-
tive colitis and both pancreatic and lung cancers (68); a recent study finds these cells similar to
those in synovial tissues of patients with rheumatoid arthritis (69). Such distinctions are critically
important, as traditionally, many drug screens aiming to target fibrosis focus on putative inter-
ventions to suppress the expression of ACTA2 in fibroblasts in vitro. Given the poor specificity of
ACTA2 to human pathological lung cell populations, it would be prudent to consider replacing
this single marker-based outcome with a more comprehensive disease-related signature gleaned
from single-cell data.

3.1.2. A distinct pathological stromal cell. The possibility of discovering completely novel
cell populations emerges with scRNA-seq, as has been the case in lymphangioleiomyomatosis
(LAM), a rare disease caused by TSC1 and TSC2mutations. scRNA-seq assessment of both lungs
and uterus of LAM patients led to the identification of a disease-restricted mesenchymal cell that
presented a common molecular and morphological phenotype in both organs (70) with a po-
tential mechanistic role in the disease. This finding highlights the potential power of single-cell
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profiling, but also a common limitation. Because of dissociationmethods,most scRNA-seq studies
now do not contain a large enough number of mesenchymal cells in humans, which allow only
identification of the significant effects but not detailed and granular analyses. Methods that are
independent of dissociation biases, larger numbers of tissues, and potentially cross-tissue analyses
are required to expand on the observations mentioned above to create a truly detailed atlas of lung
mesenchymal cells in health and disease.

3.2. Endothelial Cells

The primary function of the lung is to perform gas exchange on behalf of the respiratory sys-
tem. Fittingly, the lung is a highly vascularized organ and the only mammalian organ with two
circulatory systems: The ordinary systemic vasculature that supplies oxygen to tissue is nor-
mally restricted to major bronchial airways and lung pleura, while pulmonary circulation extends
throughout the distal lung alveoli, exchanging carbon dioxide for oxygen. The diverse physio-
logical and anatomical properties of lung endothelial cells make them compelling subjects of cell
atlases. Vascular endothelial (VE) cells found in the lung can broadly be classified under three
groups. Arterial VE cells transport blood away from the heart and can be molecularly identified
by gap junction proteins GJA4 andGJA5 and venule VE cells transport blood back to the heart and
express genes that facilitate immune cell recruitment such as ACKR1 and SELP. VE capillary cells
are microvessels that connect arterioles in venules in circulation and perform “last mile” trans-
portation to tissues. VE capillary cells in the lung can collectively be identified by expression of
CA4 and PRX. scRNA-seq allowed better classification of known cell populations and distinction
between previously indistinguishable cell populations (71).

3.2.1. New distinctions of vascular endothelial capillary cells. scRNA-seq revealed that the
lung is populated by two distinct phenotypes of capillary cells: a generic capillary cell and a spe-
cialized capillary cell called an aerocyte. Aerocyte cells are dedicated to alveolar gas exchange and
possess a phenotype that is uniquely found in lung alveoli (71–74). Molecularly, these cells can
be distinguished from other capillary cells by expression of endothelin receptor EDNRB, trans-
forming growth factor beta (TGF-β) inhibitor SOSTDC1, and the transcription factors TBX2
and FOXP2 (71, 74). Curiously, aerocytes uniquely express the prostaglandin metabolizing gene
HPGD and completely lack expression of key coagulation and thrombosis mediators VWF, SELP,
and THBD (71), suggesting that aerocytes constitutively repress inflammation and have a rela-
tively limited ability to induce clotting after injury when compared to other lung endothelial cells.
The macrolevel distribution of general and aerocyte capillary cells in lung parenchyma appears
mosaic-like (71, 74), but on the microscale, aerocyte capillary cells each interface directly with an
alveolar epithelial cell type 1 (AT1) epithelial cell (74), presumably where molecular oxygen and
carbon dioxide are rapidly exchanged. In a large scRNA-seq study comparing chronic obstruc-
tive pulmonary disease (COPD) lungs, the authors noted an increased expression of inflammatory
markers in capillary VEs, with the largest number of differentially expressed genes in general
capillary cells. Connectomic analysis highlighted the expression of CXCL12 by general capillary
cells in COPD lungs, highlighting their potential role as regulators of lung inflammation in this
disorder (75).

3.2.2. New distinctions of venular vascular endothelial cells. Lung cell atlases have also re-
vealed that venous endothelial cells in the lung can also be separated into two distinct groups
based on molecular phenotype. Pulmonary venous VE cells uniquely express CPE, DKK3, and
prostaglandin synthases PTGS1 and PTGIS and are found in the pulmonary-perfused lung
parenchyma. In contrast, venule VE cells that are localized to systemically perfused bronchi and
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visceral pleura of the lung have a distinct molecular phenotype based on expression of the connec-
tive tissue collagenCOL15A1, as well as other distinct genes such asVWA1,PLVAP, andZNF385D
(71). A large scRNA-seq study comparing IPF and control lungs identified a significant increase
in fibrotic lungs of the proportion of venule VE cells that have the phenotype associated with
the systemically perfused, peribronchial venules. Cells with this phenotype were localized around
lesions in affected regions of the distal lung parenchyma (61). It remains unclear whether these
vessels are in fact systemically perfused, or perhaps the vasculature of affected tissues assumes
this phenotype due to bronchiolization of the distal lung or because of mechanical stiffening in a
fibrotic environment.

A recent multi-omics lung cell atlas study validates the paradigm of pulmonary and systemic
venule VE cells being both spatially and molecularly distinct from one another. Interestingly, the
authors used similar spatial-omics localization patterns to distinguish pulmonary and systemic ar-
terial cells as well, but they did not report any notable differences in molecular phenotype between
the two populations of arterial cells (76).

Together, these observations highlight the discovery potential of single-cell atlases but also
their limitations. As the lung environment is distinct in its mechanical pressure and compliance
gradients, it is possible that some of the characteristics are driven by the lung environment or
blood supply, whereas others may be cell autonomous. A detailed analysis of VE cells in distinct
lung compartments and regions, as well as in multiple pathological conditions, is needed.

3.2.3. Pulmonary lymphatic endothelium. The lymphatic system plays a complementary role
to the blood circulatory system by draining interstitial fluid back to blood vascular veins and as
channels for transporting immune cells between lymph nodes and peripheral tissues. A multi-
cohort assessment of pulmonary endothelial cell atlases found that lymphatic endothelial cells
share many core gene expression patterns with blood VE cells, including classical endothelial
markers PECAM1 (CD31), CDH5 (VE-Cadherin), and CLDN5 but are readily distinguished
by expression of canonical features PROX1, LYVE1, PDPN, and FLT4 and the chemotactic cy-
tokine CCL21 (71). scRNA-seq analysis of lungs from patients with LAM observed lymphatic
endothelial-specific upregulation of vascular remodeling genesUNC5B, ESAM, and ENG, as well
as immunomodulating genes CD200 andNECTIN2 (70), consistent with the disease’s titular aber-
rant lymphangiogenesis that arises secondarily to the disease’s characteristic stromal metastases. A
detailed description of lymphatic endothelial cells in lung health and disease, as well as in distinct
lung compartments, is not yet available.

3.3. Lung Epithelial Cells

Although airway and alveolar epithelial cells are probably among the best characterized cells in the
lung, single-cell atlases revealed numerous exciting novel findings, including novel cells, cellular
phenotypes, and their role, leading to a new appreciation of the phenotypic plasticity and diversity
of lung epithelial cells in humans and mice.

3.3.1. An overview of airway epithelial cells. Human airways comprise a diverse array of
epithelial cells with specialized functions, and basal airway stem cells give rise to ciliated cells
alongside many hyperspecialized types of secretory cells of different rarities. These disparate cells
operate in close harmony with each other to form a protective barrier from the environment and
constantly clear debris away from the lower lung. Diseases such as asthma, ciliary dyskinesia, and
cystic fibrosis are characterized by dysfunctional behavior of specific cells residing in this tissue. In
addition to their diversity, airway epithelial cells make attractive candidates for cell atlases because
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they are relatively accessible. Upper airway and nasal brushings are only marginally invasive.
Moreover, the airway liquid interface (ALI) in vitro model allows primary basal cells to differenti-
ate into their diverse array of cell progeny in a similar pseudostratified pattern as the in vivo airway
wall. ALI is a powerful tool for studying multicellular airway epithelial function and development.
Several single-cell atlas studies characterized potential airway cell subpopulations, including the
distinct phenotypes of airway basal cells (77). Below, we focus on novel cells and disease states
(53, 73, 78, 79).

3.3.2. Ionocytes. Perhaps the most widely influential contribution to lung biology made by
single-cell atlases was the discovery of airway epithelial ionocyte cells. These rare cells are named
for their role in regulating fluids at the epithelial surface via ion transport, are found in bronchial
gland ducts of airways in both humans and mice, and can be identified by the transcription factor
FOXI1/Foxi1 (80, 81). These cells express the highest levels of CFTR of any cell in the lung, and
mutations in this gene cause cystic fibrosis. Genetic knockout of Foxi1 results in increased mucous
viscosity and ciliary beat frequency similar to Cftr knockout models of cystic fibrosis in mice (81),
further underscoring the ionocyte’s putative relevance to cystic fibrosis. FOXI1 knockout in a hu-
man ALI model resulted in increased ionic transmembrane potential similar to CFTR knockout
models of cystic fibrosis (82), supporting the role of these cells in maintaining the ion transport
potential of airway epithelium. A recent cell atlas of end-stage cystic fibrosis and control airway
epithelium observed the increased expression of mutant CFTR among ionocytes from cystic fi-
brosis lungs (83). However, the relative rarity of ionocytes and the lack of cell-type specificity of
CFTR expression indicated that the aggregate CFTR levels found in the lung primarily come from
the abundance of basal and secretory cells (83), an observation also made in human control ALI
(82).

3.3.3. Airway epithelial dysfunction in asthma. The number of mucin-secreting goblet cells
was much higher in asthmatic airways than controls, and MUC5AC—a gel-forming mucin pro-
tein normally specific to secretory cells—was found expressed among a population of ciliated cells
among asthma patients. Though mucous-ciliated cells are a known hallmark of remodeled asth-
matic airways, global transcriptomic relationships between these cells and other airway epithelial
cells indicated that this population represents ciliated cells that have acquired specific mucosal fea-
tures, rather than a distinct transdifferentiation event between secretory and ciliated cell types (78).
Many similar findings are described, including a shared inflammatory response signal across se-
cretory and ciliated cells of POSTN1 and CST1 (Figure 2). The gain of MUC5AC expression was
also observed among interleukin 13 (IL-13)-treated ciliated cells (84). No MUC5AC protein was
detected, and other genes associated with functional gel mucosa formation such as FCGBP, ITLN1,
and SCIN were absent from mucosal ciliated cells. One hypothesis for this phenomenon involves
ciliated cells attempting to generate mucin protein without the necessary machinery, leading to
endoplasmic reticulum stress and subsequent cell death. While this is an interesting explanation
for the decline in ciliated cells and reduced mucosal clearance in asthma, it remains unknown
whether this finding is relevant to asthmatic ciliated cells in vivo.

3.3.4. Alveolar epithelial cells. Alveolar epithelial cells continuously cover 99% of the surface
area of the lung (∼100 m2) and comprise mainly two cell types, AT1 and alveolar epithelial cell
type 2 (AT2) (85). Because of functional constraints—gas exchange requires an extremely thin
layer—the alveolus cannot contain a multitude of cells; thus, these two cell types are tasked with
the complex functions of gas exchange, maintenance of alveolar stability, and fluid balance and
local repair. AT1 cells that occupy 96% of the lung surface are extremely thin cells overlying
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capillaries and characterized by the expression of AGER, AQP5, and PDPN. AT2 cells make and
secrete pulmonary surfactant to keep the alveolus open during breathing, are the progenitor cells
for AT1 cells, absorb fluid from the alveolus, and regulate lung innate immunity (86, 87). Charac-
teristically, they are large cuboidal cells located in the alveolar corners and contain lamellar bodies.
Their most common markers include surfactant proteins, especially SFTPC. Single-cell connec-
tomic analysis of mammalian lungs identified a role for AT1 in the homeostatic regulation of the
alveolar niche (88), which has also been observed in lung development (89). A later analysis of
human lungs suggested that alveolar epithelial cells may exhibit a diversity of cell states and phe-
notypes, potentially including two subtypes of AT2 cells. One subtype, AT2B, that expresses high
levels of surfactant genes WIF1, HHIP, and CA2+, potentially represents an AT2 subpopulation
with a role in alveolar maintenance, and another subtype called AT2S that expressesWNT signal-
ing genes is potentially representative of a group with more stem cell properties (73). The COPD
cell atlas study mentioned above identified the same subclasses of AT2 cells. AT2B had the highest
number of differentially expressed genes when compared to controls (Figure 2) and the greatest
enrichment for the expression of genes with polymorphisms associated with COPD-related traits
among epithelial cells. Among the genes reduced in AT2B in COPD lungs was NUPR1, a cellular
stress response gene and positive regulator of antioxidants (75). In IPF, scRNA-seq revealed a sub-
stantial decrease in AT1 and AT2 in the distal lung parenchyma and an increase in airway epithelial
cells (61), highlighting the loss of gas exchange units caused by the aberrant lung remodeling in
the disease.

3.3.5. Terminal airway secretory cells as alveolar progenitors. Two recent studies describe
how a unique subset of terminal airway secretory cells serve as progenitors to alveolar epithelial
cells. Terminal respiratory bronchial stem cells (90) or respiratory airway secretory (91) cells are
characterized by coexpression of SFTPB and SCGB3A2 and are only found in the distal airways
at the junction of bronchioles and alveoli. Histological exploration of these cells across tissues
of various lung diseases revealed an enrichment of these cells in severely affected regions of IPF
lungs (90), supporting the idea that abnormal bronchiolization occurs in place of ordinary alve-
olar epithelial repair (Figure 2). In lungs of patients with COPD, a subpopulation of AT2 cells
found featuring the expression of SCGB3A2 were enriched (91), suggesting an abnormal, incom-
plete differentiation process from secretory to alveolar epithelium (Figure 2). This phenomenon
of partial AT2 status in lungs was further observed in exposure models of cigarette smoke in fer-
rets (91), indicating that smoking-induced injuries to lung epithelium are an explanation for this
phenomenon in COPD.

3.3.6. Aberrant basaloid cells in advanced lung disease. Two of the largest lung cell atlas
papers simultaneously reported the existence of a distinct cell state exclusive to the affected tissue
regions of patients with advanced lung disease (61, 62). Aberrant basaloid cells express a conflict-
ing signature of features normally restricted to either airway or alveolar epithelial cells. Similar
to airway basal cells, they express TP63 and KRT17, but unlike airway basal cells, they have min-
imal downstream expression of the TP63-induced hallmark genes KRT5, KRT15, orMIR205HG.
Similar to alveolar epithelial cells, they express high levels of SOX9, NAPSA, ITGB6, and colla-
gen type IV genes, but lack canonical AT1 or AT2 markers such as AGER or SFTPC. Notably,
these cells demonstrated a wide variety of pathogenic features, including epithelial-mesenchymal
transition features; CDH2, VIM, FN1, and COL1A1; markers of injury such as MDK, GDF15,
and PTGS2; senescence features such as CDKN1A, CDKN2A, CDKN2B, CCDN2, MDM2, and
HMGA2; the TGF-β-activating integrin genes ITGB6, ITGB8, and ITGAV; and MMP7, an IPF
biomarker. These cells have been detected in the lungs of several different advanced lung diseases
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including IPF, non-specific interstitial pneumonia (NSIP), hypersensitivity pneumonitis, and sys-
temic scleroderma, and rarely in COPD (61, 62, 92–94). In IPF, these cells spatially localize to
the surface of fibroblastic foci (61, 62) (Figure 2). In COPD, analysis of clonally expanded p63+

epithelial cells revealed similar basaloid cells that show elevated CLDN4, SOX9, FN1, PTGS2,
MMP7,CDKN2B, and CCND2. Immunohistochemistry of end-stage COPD distal lung localized
these cells to the surface of metaplastic lesions (95). Similar cell phenotypes have also been de-
scribed lining the cysts of transplanted lungs from two patients with severe COVID-19 (96) as
well as in COVID-19 autopsy samples (97).

In an effort to explain the cellular source of aberrant basaloid cells, it has been proposed that
these cells most closely resemble a transitional intermediate state between AT2 and AT1 cells
observed in murine models (98). Pre-alveolar type-1 transitional cell state (PATS) (99) or Krt8+

transitional cells (100) lack canonical markers of murine AT1 or AT2, but similar to aberrant
basaloid cells, they show elevated Cldn4,Cdkn1a,Ccdn1, and Fn1. Importantly, these murine inter-
mediate cells belong to a normal process of lung repair and resolution, whereas aberrant basaloid
cells have only been identified in advanced parenchymal lung disease. The signature that includes
expression of airway basal markers such asTP63 andKRT17—but notKRT5—senescence markers
(CDKN1A, CDKN2A), epithelial to mesenchymal transition (CDH2, COL1A1), as well as others
listed above and previously (61) remains unique to aberrant basaloid cells, and their origins in
humans are unclear. The unexpected novel finding of the aberrant basaloid cells underscores the
discovery power of single-cell profiling technologies. While some features of these cells were
observed, their existence as a distinct entity with a unique combination of markers was not ex-
pected or hypothesized, and their discovery opens new pathways for the development of novel
therapeutics and diagnostics.

3.4. Immune Cells

Although the lung has a wide and rapidly changing repertoire of inflammatory cells, many of the
insights into this organ have been on macrophages and monocytes. We expect this repertoire to
widen and expand as more samples, conditions, and compartments are studied. Below, we describe
some of these insights, mostly in the context of fibrosis and acute respiratory distress syndrome.

3.4.1. Macrophages. There are two phenotypically distinct macrophage populations com-
monly identified in the healthy human lung. Tissue-resident alveolar macrophages (r-AM) arise
from embryonic progenitor cells, can maintain themselves through self-renewal, and play special-
ized roles as both sentinels and custodians of the distal lung by phagocytosing foreign particles
and recycling surfactant proteins. r-AM can be transcriptionally distinguished by a stereotypic
gene expression signature of the lipid-interacting genes FABP4, APOC, and PPARG and delin-
eated fromothermacrophages by expression of SIGLEC1 (CD163). In contrast,monocyte-derived
macrophages have a less stereotypic phenotypic signature and can be observed assuming rela-
tively extremal phenotypes of inflammation or wound repair when needed. While many other
findings have been described, we focus here on two populations: profibrotic macrophages found
in fibrotic lung diseases and inflammatory myeloid populations found in severe COVID-19 lung
disease.

3.4.2. Profibrotic macrophages. scRNA-seq analysis of end-stage pulmonary fibrosis and con-
trol lung dissociates performed by Reyfman et al. (101) described a distinct subpopulation of
macrophages only in fibrotic lungs with elevated expression of profibrotic genes, a phenomenon
that has since been confirmed across many subsequent cell atlases of human pulmonary fibro-
sis, including human systemic scleroderma, hypersensitivity pneumonitis, and IPF (61, 101, 102).
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These cells are defined by elevated expression of extracellular matrix–interacting genes SPP1,
MMP9, SPARC, and FN1; elevated expression of lysosomal activity genes LPL, LIPA, LGMN, and
CTSK; and coexpression of genes MERTK, PLA2G7, SIGLEC15, CHIT1, and CHI3L1. These
cells were observed coexisting in the same alveolar spaces of fibrotic lungs among typical FABP4+

r-AM (101), though seen in higher frequency in the lower, more affected lobes of IPF patients
(102). scRNA-seq analysis of lung immune cells from West Highland terriers with canine IPF
describes a similar macrophage phenotype based on overexpression of SPP1, FN1, and CXCL8
(103). scRNA-seq and bulk RNA-seq of sorted cells of murine lung fibrosis models have like-
wise revealed a similar phenotype among macrophages based on coexpression of Chil3, Il18, Ctsk,
Sparc, andMertk (104, 105). Murine lung macrophages with this phenotype arise from newly re-
cruited monocyte-derived macrophages.Monocyte depletion preceding injury attenuates fibrosis,
whereas r-AM depletion has no effect, indicating an active role of these cells during wound repair.
Following recruitment and activation, these cells persist in the lung indefinitely, gradually losing
their profibrotic phenotype until becoming functionally indistinguishable from r-AM (105, 106).
Acute injuries from both bleomycin and influenza are shown to irreversibly disrupt the relative
makeup of embryonically derived r-AM (105). Recent cell atlases have identified a similar profi-
brotic macrophage population in bronchial alveolar lavage fluid from severe COVID-19 patients
(107, 108) and in tissue dissociates of end-stage COVID-19 lung explants (96). scRNA-seq inter-
rogation of a COVID-19 infection model in ferret lungs describes the arrival of CHIT1+/SPP1+

macrophages alongside inflammatory, IL1B-expressing macrophages two days after infection.
These persist after inflammatory macrophage proportions decline (109), which is consistent with
the latent wound repair process associated with this cell phenotype. Impressively, human mono-
cyte exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sufficient
to induce a profibrotic macrophage phenotype in vitro but not type A influenza or ligands of viral
RNA sensors (108). Collectively, these findings indicate that SARS-CoV-2 has a distinct capacity
to induce a fibrotic phenotype among myeloid cells, and this profibrotic phenotype is a common
hallmark of many different types of severe lung injury.

3.4.3. Inflammatory myeloid cells in COVID acute respiratory distress syndrome.
scRNA-seq analysis of bronchoalveolar lavage (BAL) frommoderate, severe, and critical COVID-
19 patients shows a common inflammatory signature of IL1B, IL6, TNF, CCL2, CCL3, CCL4,
CCL7,CXCL9,CXCL10, and CXCL11 that correlates with disease severity. This signature was ev-
ident among both classical monocytes (CD14, FCN1, S100A8 expressing) and monocyte-derived
macrophages (SPP1, CCL2, CCL3, CXCL10 expressing) (107), with the T cell recruiting of
CXCL16 highest among inflammatory macrophages in moderate COVID-19 patients, perhaps
representative of a transition from innate to adaptive immunity response. A similar scRNA-seq
study of COVID-19 BAL from differentially affected patients reported a similar disease severity–
associated phenotype among classical monocytes (CD14, FCN1, S100A8/9). Both inflammatory
monocytes and macrophages increase with disease severity (110). A multi-tissue COVID-19 cell
atlas comprising nasopharyngeal brushings, bronchial brushings, and BALs of COVID-19 pa-
tients with various disease severity also identified this inflammatory myeloid signature (111). A
reference atlas comparing immune cells from COVID-19 patients with separate inflammatory
or interstitial lung diseases determined that these FCN1+ and CXCL10+/CCL2+ inflammatory
myeloid cells found abundantly in the lungs of patients with severe COVID-19 are remark-
ably similar to inflammatory myeloid cells found in synovial tissue of patients with rheumatoid
arthritis or in the intestinal walls of patients with inflammatory bowel diseases (112). Such
cross-tissue, cross-disease comparisons may provide important insights for drug repurposing.No-
tably, the presence of these inflammatory macrophages and monocytes was not observed among
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COVID-19 cell atlases that used samples collected following either transplant or autopsy, sug-
gesting that the inflammatory mechanisms driving acute respiratory distress syndrome (ARDS)
severity and fibrosis may differ (113).

4. IMPACT AND CAVEATS OF LUNG CELL ATLASES

The impact of lung cell atlases on the understanding of the cellular repertoires and potential
mechanisms of advanced lung disease has been transformative (Figure 2). As foreshadowed by the
early discovery of ionocytes, scRNA-seq studies of human lungs are loaded with novel findings.
No field has been more influenced than pulmonary fibrosis, as perception of the disease has been
completely transformed by multiple novel insights. The extent of the loss of specialized alveolar
epithelial and capillary endothelial cells, reflecting the loss of gas exchange units, and the proxi-
malization of the distal lung were not appreciated before. The presence of previously undescribed
cell populations such as systemic venular VE cells, aberrant basaloid cells, and the profibrotic
macrophages was unknown before scRNA-seq was applied to human lungs. And the need to re-
define the molecular signature of the hallmark cell of pulmonary fibrosis, the myofibroblast, has
never been more acute than now. Impressively, similar findings were found in all pulmonary fibro-
sis cell atlases (61, 62, 101, 102, 105, 108), as can be gleaned in the IPF Cell Atlas data sharing and
dissemination portal (http://www.IPFCellAtlas.com; 114). In COPD, the multitude of insights,
including the potential specific involvement of AT2B and the role of endothelial inflammation
and metallothionein-expressing macrophages, are all important; some are completely novel, and
some are confirmatory but with an unprecedented depth and detail (75). In the airway, the discov-
ery of ionocytes, theMUC5AC-expressing ciliated cells, and the depth of immune cell population
asthma and cystic fibrosis is shifting our understanding of the airways and their complex response
stimuli in common and rare disease (78, 81, 84, 115). Thus, even at this early phase, it is hard not
to be excited about the progress and potential future impact of single-cell lung atlases but also to
recognize the challenges they pose. Perhaps the biggest challenge relates to cell types.

4.1. Challenges with Cell Classification

Borrowing from how taxonomists describe the species problem (116), the problem of defining cell
types can be thought of as the result of two conflicting goals of cellular biologists: to categorize
and label cell types as naturally distinct entities and learn the ways cells change or give rise to other
cells. It is important to consider that, when applying ontological constructs to classify cells and
their relationships to one another, distinctions between one ontological model and another will
not always translate. Many traditional cell classifiers have direct biological meaning, such as the
cell’s anatomical niche, physiological function, or developmental trajectory; heuristic approaches
such as marker genes are commonly used as surrogates for all of these attributes. However, such
marker genes may not necessarily represent the functional essence of a cell type or subpopulation
but represent a feature that can appear in different cell types with different functions as parts
of distinct developmental programs or response to injury. They are also dependent on technical
characteristics of the cell profiling technology. Indeed, using such markers in cell atlas data often
reveals that they only reflect large groupings of cells and miss granular subtypes, or worse, as in
the case of ACTA2, they may not even reflect or associate with the defining features of the cell
subpopulation. Such examples serve as the modern equivalent of the curved neck morphology
behind the barnacle goose myth. Simultaneous assessments of single chromatin accessibility and
protein markers may help to ameliorate this issue, but the most important answer is conceptual.
To fully capitalize on the power of lung cell atlases we must avoid the habit of defining cells based
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on small sets of markers often derived in vitro or in animal systems and instead prioritize cellular
signatures that are reproducible across multiple individuals.

This brings us to a second important point, which is the need to increase both the diversity
and number of individuals studied, as well as the number of cells profiled. The number of lung
cells profiled in a recent report of the comprehensive lung cell exceeds 2.2 million cells obtained
from more than 400 individuals (53). This is an impressive number, until one considers that the
average number of cells in one human lung is estimated at more than 20 × 1010 cells (117). It is
unclear that ∼5,000 cells represent an adequate sampling of the lung, especially when we move
beyond the large effect sizes of disease and try to create a real compendium of all the cells and
their states in the human lung. Similarly, the diversity of human attributes from race, ethnicity,
and sex; activity, altitude, and climate; environmental, occupational, and recreational exposures;
and non-respiratory medical conditions and medications is likely to influence the repertoire of
cellular states in healthy adults. Thus, approaches that do not minimize variance by integration
but instead embrace and capture the range of individual variance in health and disease are required.

4.2. The Importance of Integrated Biological and Computational Expertise

In this review we intentionally avoid detailed technical discussions of computational methods.
However, the role of computational approaches cannot be understated. Single-cell experiments
generate vast amounts of data that require substantial computational manipulation before inter-
pretation is possible. The tools and approaches to data quality control, normalization, correction,
feature selection, and dimensionality reduction as well as cell annotation and gene expression anal-
yses and result visualization are usually beyond the training of most experimental biologists (118).
Even for data scientists, single-cell profiling poses unique challenges, and the term single-cell data
science was coined because of the unique challenges posed by scRNA-seq that include data spar-
sity, uncertainty, varying resolution, and complexity (119). Add to that the rapid pace of analytical
tool development, the nontrivial computational power required to run these analyses, and the vast
amount of biological information associated with the results and it becomes clear that data sci-
entists, and potentially data science teams with expertise in computer science, biostatistics, and
bioinformatics, must play a central role in cell atlas teams. However, it is also important to resist
putting blind faith into computational methods when approaching the data. Qualitative assess-
ments of the results by biological and medical domain experts, as well as experimental validations
and iterative interactions in multidisciplinary teams, are required, as artifacts of computational
tools may lead to spurious interpretations or overlooking unexpected but important results. Thus,
the road toward generating each cell atlas is profoundly interdisciplinary and often benefits from
an iterative and collective approach to investigation rather than a jurisdictional baton pass between
biologists, clinicians, and computational researchers.

5. FUTURE ISSUES

The scale of data behind every cell atlas far exceeds what can be described in a scientificmanuscript,
requiring authors to make tactical decisions about what cell types or features to highlight while
leaving an inordinate amount of information unmentioned. This information is usually deposited
in publicly available databases but remains invisible to most of the scientific community, as sub-
stantial computational expertise and time commitment are required to mine it. Thus, it is critically
important that data sharing and dissemination portals are made available to allow researchers with
limited computational expertise to have exploratory access to cell atlas results. The recent success
of the online IPF Cell Atlas (114; http://www.IPFCellAtlas.com) highlights this unmet need;
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since its inception, 9,500 individual users looked for 15,595 genes in 314,000 sessions, indicating
the substantial demand for user-friendly, easily accessible, single-cell data portals.

In this review, we summarize the recent impressive insights generated by the human lung cell
atlases. Single-cell profiling technologies are already transforming biomedical research with novel
insights in all domains of lung health and disease. The incorporation of additional types of in-
formation, including proteomics, metabolomics, extracellular matrix composition, biomechanical
metrics, nitric oxide signaling patterns, and spatial technologies, will be necessary to achieve a
comprehensive, systems-level understanding of the lung as a multicellular organ. Similarly, to
create a real compendium of all cells and their states in the human lung, systematic expansion of
the diversity of samples analyzed is required. This must include information on race, ethnicity,
and sex; activity, altitude, and climate; environmental, occupational, and recreational exposures;
and medical conditions and medications that are likely to influence the repertoire of cellular states
across health and disease. Finally, cell atlas studies of complex in vitro models like cell organoids
or ex vivo models of precision cut lung slices can provide detailed perspectives of intercellular
relationships and tissue mechanics that cannot directly be modeled in humans.With the addition
of biological domains, enhanced diversity of samples, and use of such models, we can now start
envisioning a real comprehensive atlas of the human lung in health and disease that will serve as
a blueprint to develop approaches to cure advanced lung disease.
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