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Abstract

The generation of an internal body model and its continuous update is es-
sential in sensorimotor control. Although known to rely on proprioceptive
sensory feedback, the underlying mechanism that transforms this sensory
feedback into a dynamic body percept remains poorly understood. How-
ever, advances in the development of genetic tools for proprioceptive circuit
elements, including the sensory receptors, are beginning to offer new and
unprecedented leverage to dissect the central pathways responsible for pro-
prioceptive encoding. Simultaneously, new data derived through emerging
bionic neural machine–interface technologies reveal clues regarding the
relative importance of kinesthetic sensory feedback and insights into the
functional proprioceptive substrates that underlie natural motor behaviors.
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INTRODUCTION

Proprioception is the sense of the movement and position of the body and limbs in space (1).
It derives from dedicated peripheral proprioceptive receptors, the cell bodies of which reside in
dorsal root ganglia, trigeminal ganglia, and the mesencephalic trigeminal nucleus. Proprioceptive
neurons are pseudounipolar with a single axon that extends from the cell body and splits into
two branches. One branch innervates peripheral receptive tissues to read changes in body po-
sition, while the other projects toward neural targets in the spinal cord to relay this information
onto spinal or supraspinal sensory-motor circuits. Proprioceptive feedback is transmitted to spinal
reflex circuits to help stabilize posture, coordinate state transitions between limb positions to en-
sure fluidic movements, or enable adaptations to the motor plan when unexpected factors derail
an intended motor goal (2–4). At the same time, proprioceptive information from the periphery is
routed to supraspinal sensory and motor centers, including cortex, where it informs a consciously
accessible (yet not always attended to) internal model of the movements and positions of the body
and limbs. A continuously updated internal body model contributes to motor planning and learn-
ing. This internal body model also helps form the basis of a sense of the embodied self that is
separate from others and the external world.

We have gained an appreciation for the essential role that proprioception fulfils in most if not
all aspects of motor control, yet its function beyond the level of simple spinal reflexes remains
poorly understood and much debated (2, 3, 5). Two developments are giving a new impetus for
settling these discussions. Despite an incomplete understanding of the proprioceptive system at
a circuit level, the integration of proprioceptive feedback has become increasingly relevant in the
design of prosthetic limbs.Although initially centered on feedback from cutaneous receptors (6, 7),
advanced rehabilitation technologies are now incorporating closed-loop proprioceptive feedback
into their designs (8–18). Such strategies are providing a window into the features of propriocep-
tion that are salient to functional recovery while also offering a new systems-level perspective on
how proprioception may update internal body maps.

Simultaneously, the transcriptomic age has caught up with the proprioceptive field and offers
unprecedented insight into the transcription factors, membrane receptors, and ion channels that
shape the identities of proprioceptive neurons across spine, thalamus, and cortex (19–24). Along
with advances in mouse genetic and viral resources, unique transcriptional insights into proprio-
ceptor cell types offer new genetic strategies to test or refine new hypotheses regarding the role
of proprioception in motor control and the sense of self-versus-other. In line with our own areas
of expertise, this review highlights some of these new developments against the backdrop of the
present knowledge and questions related to the peripheral and central neural elements that un-
derlie the proprioceptive sense. In an effort to include more recent publications in our discussion,
we focus less on the foundational studies that have propelled this field.

RELEVANT SOURCES AND TYPES OF PROPRIOCEPTIVE FEEDBACK

Proprioception includes the senses of joint and body position, the kinesthetic sense of their move-
ment through space, and the sense of muscle force (2–5). Any tissue imbued with mechanical
sensors that exhibits a change in shape or tension as a consequence of passive or self-generated
motor actions may serve as a source of proprioceptive information. By this definition, proprio-
ceptors include afferents that innervate skeletal muscle and tendons, joint ligaments, connective
tissues surrounding muscles, and skin (Figure 1a).

Muscle proprioceptors include muscle spindle and Golgi tendon organ (GTO) afferents (25,
26) (Figure 1a,b). Muscle spindles are encapsulated sensory end organs that consist of specialized
intrafusal muscle fibers innervated by primary (group Ia) and secondary (group II) proprioceptive
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Figure 1 (Figure appears on preceding page)

Proprioceptive sensory neurons and their movement-evoked activity patterns. (a, c, e) Schematic renderings
of elbow flexor ([f]) and extensor ([e]) muscles with innervation by group Ia and II muscle spindle (MS)
afferents and group Ib Golgi tendon organ (GTO) afferents, elbow joint Pacinian (P) afferents, and elbow
skin Ruffini (R) afferents. (b, d, f ) Fictive electrophysiological traces representing afferent activities
[impulses/second (i/s)] during basic (a) passive, (c) active, and (e) illusionary movements. During passive
elbow flexion from position A to B (a, b), muscle spindle afferents, but not GTO afferents, are activated
within the stretched elbow extensor. Rapidly adapting Pacinian afferents only show temporal activity near
the maximum extend of joint rotation, while slowly adapting Ruffini endings in skin gradually increase their
activity with increasing skin stretch. During active elbow flexion from position A to B (c, d), increased muscle
tension in the contracting flexor muscle scales with increased activity of group Ib GTO afferents. In panel d,
the solid lines represent group Ib activity in the absence of added weights (tension); dashed lines represent
group Ib activity in the presence of added weights. Activities of extensor afferents are essentially the same as
in panel b. Stimulation of the elbow flexor muscle tendon (e) with vibration in the 70–115 Hz frequency
bandwidth can evoke the illusion of elbow extension from position A to A′. The kinesthetic illusion is
thought to be mediated by the activity of group Ia muscle spindle afferents ( f ); activity of other afferents is
unchanged for the arm that remains stationary.

neurons (for a recent review on muscle spindle structural features and associated afferents, see 27).
Both afferent types are responsive to stretch of the intrafusal fibers, such that voluntary or passive
changes in limb position (with muscle length as the readout) result in increased or decreased firing
rates (28, 29). Muscle spindle group Ia afferents, because of their relative ease of physiological
access, have long been the proprioceptor of choice for experimental examination, perhaps leading
to an outsized view of their relevance in sensorimotor control.

GTO afferents represent a second class of proprioceptive muscle afferents. They are large-
caliber, low-threshold sensory neurons, termed group Ib, that innervate GTO mechanoreceptive
organs that are located atmyotendinous junctions,where extrafusal muscle fibers attach to tendons
or aponeuroses (26).Group Ib afferents are extremely responsive to small contractions in extrafusal
muscle fibers, which increase their firing rates (29–31) (Figure 1b). As such, they are primarily
considered as the sensors of muscle force.

Proprioceptors also include various joint and skin receptors (Figure 1a). Joint receptors are
activated at the extreme ends of joint rotation and appear to act as limit detectors; however, they
likely also regulate joint/limb stiffness (3, 32, 33). Joint receptors include Pacinian/Paciniform cor-
puscles, Ruffini endings, and sometimes GTO afferents (34, 35). These afferents can be observed
throughout the body but are considered joint receptors by virtue of their association with articular
ligaments. Skin proprioception can also be mediated by the same group of sensory receptors, but
in this case, they are embedded in the skin and deep connective tissues overlying moving joints
or contracting muscles. Tactile sensory neurons, including Meissner and Merkel cell afferents, are
activated by a movement or touch across the skin (36, 37). Skin sensation is critical in motor tasks
such as prehension during object manipulation (38).

A critical feature of all proprioceptive afferents is the expression of themechanoreceptive trans-
duction channel Piezo2. Studies in mice demonstrated that Piezo2 localizes to the sensory endings
of muscle proprioceptors and tactile receptors, and in both mouse and human, the loss of Piezo2 is
associated with severe impairments in motor coordination (39, 40). Although Piezo2 is critical for
the initial depolarization of most proprioceptive sensory endings, it may act in conjunction with
other molecules (e.g., glutamate, voltage-gated sodium channels) to pattern the overall impulse
activity of proprioceptor peripheral endings (41–43). Other basic physiological features of these
muscle, joint, or skin proprioceptors are also beginning to be understood (25–27, 36), yet how
their combined feedback synthesizes into a dynamic proprioceptive percept, which is needed for
motor planning and adaptation, has been difficult to study.
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ASCENDING PROPRIOCEPTIVE PATHWAYS AND FEEDBACK
MODULATION

Integrating and processing information from different proprioceptor subtypes hinge on conver-
gence in ascending neural pathways. Yet, the relationship between proprioceptor subtypes and the
extent to which information content changes depending on transmission route, or muscle or body
segment of origin, have proven difficult to disentangle with available technologies.With a look to-
ward bridging peripheral proprioceptive receptors and cortical representations of limb dynamics
in future genetic experiments, we provide an overview of the main anatomical trajectories through
which proprioceptive sensory feedback reaches higher-order processing centers.

The neural architecture for ascending proprioceptive pathways is broadly consistent across ro-
dents, cats, nonhuman primates, and humans (44). Proprioceptive information primarily reaches
the cortex through the cerebello-thalamo-cortical pathway and the dorsal column–medial lem-
niscus cortical pathway (44–46). The first relay stations in both pathways are the ascending
second-order spinal projection neurons that transmit sensation to the cerebellum and/or brain
stem dorsal column nuclear (DCN) complex (Figure 2a).These spinal ascending neurons primar-
ily project through the dorsal columns (cuneate and gracilis fasciculi), the dorsal spinocerebellar
tract (DSCT), the spinomedullothalamic tract (traveling through the dorsolateral funiculus), and
the ventral spinocerebellar tract (traveling through the ventral funiculus) (Figure 2b). Spinal pro-
jection neurons that transmit proprioceptive information to supraspinal nuclei in the medulla also
include the spino-to-lateral reticulus neurons and the spino-olivary tract neurons (47, 48). Al-
though the lateral reticulus and inferior olive also have important sensory-motor control functions
(49, 50), here, we focus on the cerebellar and DCN complex pathways.

Cerebello-Thalamo-Cortical Pathway

Anatomical and electrophysiological studies of proprioceptive spinocerebellar projection neurons
indicate the existence of multiple subtypes distributed along the rostral caudal extent of the spinal
cord (24, 51, 52). Some are grouped into discrete clusters (e.g., central cervical nucleus, cervical
LVII neurons, Clarke’s column, spinal border cell nucleus), while others appear more randomly
distributed. Many proprioceptive spinocerebellar projection neurons link directly to the cerebel-
lum through dedicated tracts that terminate as mossy fibers on granule cells (Figure 2b) (52, 53).
Proprioceptive information also reaches the cerebellum through second-order projection neurons
within the DCN complex through the cuneocerebellar pathway (44) (Figure 2b).

Owing to the heterogeneity of spinocerebellar tract (SCT) neurons, how qualitatively distinct
proprioceptive information flows across the various spinocerebellar projection neurons remains
poorly understood. Nevertheless, electrophysiological analyses indicate that SCT neurons can
relay information from various receptor types, including cutaneous mechanoreceptors (51, 54–
57).Consistent with their wide-ranging inputs, SCT neurons (e.g., the central cervical nucleus and
Clarke’s column) are thought to encode whole limb kinematics rather than features of individual
muscles (55, 56, 58), although it is unclear whether this is true for all SCT neurons. Less is known
about themore randomly distributed SCT neurons, but somemay constitute cerebellar projection
neurons that collateralize to the DCN complex (unlike Clarke’s column neurons) (47, 48). Recent
transcriptomic studies have begun to provide molecular signatures for many of the different SCT
neurons (24, 48). It is likely that this work will yield new genetic opportunities to examine SCT
neuron input/output selectivity.

Within cerebellum, proprioceptive sensory feedback is thought to be assessed against a dy-
namic forward body model constructed on the basis of motor efference copies (59). Sensory
feedback that deviates from the predicted forward model is extracted as an error/suggestions
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Ascending proprioceptive pathways. (a) The DCN complex is located in the medulla and consists of multiple
nuclei that are bilaterally positioned near the obex (∗). The core dorsal column nuclei are formed by the Gr
and Cu nuclei; the DCN complex also includes the eCu nucleus, nucleus Z, and nucleus X (44). All DCN
complex nuclei relay proprioceptive information from muscle (muscle spindles and Golgi tendon organs)
and deep tissues (joints, tendons, skin), with the exception of eCu, which appears mostly restricted to muscle
afferent feedback. Within Gr (hindlimb) and Cu (forelimb and neck) nuclei, proprioceptor-responsive
neurons (including joint receptors) are mainly confined to the rostral domains (hatched area) (44, 65).
(b) Ascending proprioceptive muscle afferent trajectories from forelimb (green) and hindlimb (red) levels.
Muscle afferent feedback from the neck, forelimb, and upper thoracic segments reaches the DCN complex
via the direct (Gr and Cu fasciculi) and indirect pathways (through collaterals of the DSCT and
spinomedullary tract). Muscle afferent feedback from below th6 segments and hindlimb reaches the DCN
complex only through the indirect DCN pathway. Note that feedback from hindlimb cutaneous
proprioceptors to the gracile nucleus is relayed through the direct pathway (Gr fasciculus; not shown). The
extent to which collaterals from DSCT projecting axons innervate multiple DCN complex nuclei remains
poorly characterized (but see 48). Ascending DCN complex projections to the VPL thalamic nucleus and
CB are represented by blue and brown lines, respectively; CB to VPL projections are represented by a dark
red line. Line format (solid versus dashed, thin versus thick) indicates relative prominence of connections as
globally observed across rodents, cats, and nonhuman primates (44). Abbreviations: CB, cerebellum; CC,
Clarke’s column; Cu, cuneate; DCN, dorsal column nuclear; DHSCT, dorsal horn spinal cerebellar tract
neurons; DSCT, dorsal spinocerebellar tract; eCu, external cuneate; Gr, gracile; S, solitary nucleus; SB,
spinal border cell nucleus; th6, mid-thoracic segment 6; VPL, ventroposterior lateral nucleus; VPM,
ventroposterior medial nucleus; VSCT, ventral spinal cerebellar tract neurons; X, nucleus X; Z, nucleus Z.
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for improvement signal and—among other targets—relayed back to cortex through the deep
cerebellar nuclei and thalamus (45, 60, 61). Considering this cerebellar role, it may make sense
that Purkinje neurons could only need sensory information about global limb kinetics such as
that provided by Clarke’s column inputs. However, some Purkinje neurons may multiplex and
simultaneously encode muscle- or joint-specific features (62).

Dorsal Column-Medial Lemniscus-Cortical Pathway

Proprioceptive information is relayed throughmost nuclei of theDCNcomplex, including gracile,
cuneate, external cuneate, nucleus Z, and nucleus X (44). Within the gracile and cuneate nu-
clei, muscle proprioception is confined to the rostral and ventral domains (63–65) (Figure 2a).
Although rostral gracile and cuneate neurons also show responses to low-threshold cutaneous
neurons, cutaneous feedback primarily maps to the mid and caudal domains. Afferents with larger
receptor fields (e.g., from Pacinian corpuscles) are mostly represented within the caudal do-
mains of these nuclei (44, 64–66). In contrast to all other DCN complex nuclei, external cuneate
is thought to receive exclusively noncutaneous muscle-sensory information, although previous
studies reported some non-Pacinian rapidly adapting responses (63, 64).

The distribution of proprioceptive feedback across the DCN complex follows a roughly to-
pographic organization, with rostroventral cuneate and external cuneate biased to transmitting
feedback from neck and forelimb levels, and rostroventral gracile and nucleus Z mostly relay-
ing information from lower limb and axial muscles (44, 63, 65, 67–69) (Figure 2b). Nucleus X
receives proprioceptive (and cutaneous) inputs from both the fore- and hindlimb. Afferent infor-
mation reaches the DCN complex through either the direct dorsal column pathway or collaterals
from the spinocerebellar and/or spinomedullary tracts in the dorsal lateral funiculus (67, 70)
(Figure 2b). Recordings from DCN complex neurons (including cuneate, external cuneate, nu-
cleus X, and nucleus Z) demonstrate that the majority of neurons exhibit selective responses for
individual muscles, with a few showing convergent input frommultiple muscles acting at the same
joint (64, 67, 71–74). The predominantly selective muscle responses in DCN complex neurons
suggest that DSCT neurons collateralizing to gracile, cuneate, nucleus Z, or nucleus X transmit
more selective information than Clarke’s column DSCT neurons. The functional relevance of the
complex organization of the input trajectories to the DCN complex is not yet understood but is
beginning to be explored with genetic tools (47, 48).

Several studies have mapped receptor-specific DCN inputs that distinguished between
group Ia muscle spindles, group II muscle spindles, Ib GTO afferents, and Pacinian afferents
(64, 71). Responses from all muscle afferents were observed in cuneate, external cuneate, and nu-
cleus Z, with many neurons responding to either group Ia or group Ib stimulation but not to both
(71, 73). These data suggest that for many DCN complex nuclei, proprioceptive inputs are both
muscle and submodality specific. Recent observations suggest that, with respect to tactile inputs,
cuneate also performs significant subcortical preprocessing such that its output can resemble a
multimodality representation of touch similar to observations in cortex (75).Whether propriocep-
tive submodalities are similarly preprocessed inDCN complex nuclei remains unexplored (74, 76).

Modulation of the Central Proprioceptive Stream

Ascending proprioceptive feedback is regulated by descending control at many levels, beginning
in the peripheral muscle. Muscle spindles are subject to efferent motor control through dynamic
and static gamma motor neurons that innervate the contractile polar ends of the intrafusal fibers
and effectively set the gain for group Ia/II afferent discharge frequency (27, 77, 78). Propriocep-
tive feedback is also regulated by descending control through presynaptic inhibition of muscle
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spindle or GTO afferent terminals that contact the spinal second-order projection neurons (79,
80). In addition, descending inputs from cortical, reticulospinal, or vestibular supraspinal areas can
directly control the excitability of proprioceptive projection neurons (56, 73, 81).

Proprioceptive streams within the DCN complex are modulated through descending input
from sensory and motor cortices (44, 82, 83). With most neurons receiving modality-selective
inputs (in contrast, see 83), the DCN complex is an important target for sensory gain modulation
to influence which sensory features to strengthen and which to attenuate in higher processing (74,
75). With regard to the integration of proprioceptive and tactile inputs, descending modulation
may favor proprioceptive over tactile feedback. Cortical input is largely excitatory to the rostral
proprioceptive cuneate, but inhibitory to the middle cuneate, where most neurons respond to
tactile stimuli (44, 66). Consistent with this observation, muscle afferent input is favored during
active movement, whereas cutaneous input is repressed (74).

Thalamus and Cortex

Closer to cortex, the model system of choice tends to shift from rodents and cats to nonhuman
primates and humans. All dorsal column nuclei project to both cerebellum and thalamus, but indi-
vidual nuclei of the DCN complex exhibit different output preferences for each of the subcortical
structures (70, 84, 85) (Figure 2b). Proprioceptive thalamic projections from the DCN complex
are primarily directed to the ventroposterolateral (VPL) thalamic nucleus (69, 86). Information
from lower trunk and hindlimb to thalamus (routed through nucleus Z, nucleus X, and rostral
gracile) is mainly found in the VPL shell (87). From the VPL thalamic nucleus, proprioceptive
afferents connect primarily to S1 somatosensory cortical areas 3a and 2 (88, 89), as well as to cor-
tical area 4, also referred to as primary motor cortex (M1) (90). Primate studies have revealed that
sensory areas 3a, 2, and M1 are highly interconnected (87) (Figure 3a). These interconnectivity
results are corroborated in human diffusion tensor imaging brain area connectome analyses (91).

Following proprioceptive connectivity beyond the direct thalamo-cortical connections to
sensory-motor primary and early association areas of the cortex becomes more challenging.
Nevertheless, human brain imaging combined with vibration-induced illusory joint movements
offers the potential of revealing important facets of proprioceptive organization across cortical
association areas. Vibrating the tendons of skeletal muscles between 70 and 115 Hz generates il-
lusory sensations of limb movement without the corresponding physical movement of the joint
itself (92) (Figure 1c). The illusion of movement is strong enough to give the perception of limbs
assuming impossible positions (93, 94), and the illusions can be used to produce sensation of com-
plex three-dimensional arm movements by simultaneously addressing multiple joints (95). Using
the kinesthetic illusion to amplifymuscle sensory input provides an avenue to disambiguate the po-
tential organizational differences between kinesthesia and confounds from the effects of action on
perception [the efferent process (96)] through either executed or imagined movements. In accor-
dance with electrophysiological results in primate studies, kinesthetic illusion-inducing vibration
applied to the tendons of the wrist in humans shows brain activation, through positron emis-
sion tomography and functional magnetic resonance imaging, in areas M1, 2, cerebellum, and 3a
(97–101).

The use of kinesthetic illusion-inducing vibration to reveal potential cortical network organi-
zation of proprioception provides evidence of at least two different ways that kinesthetic muscle
sensation is handled in central networks (102). The first central network seems to align with a
bilaterally distributed motor planning and execution focused system with apparent connections
between M1, premotor cortex, supplementary motor area, middle cingulate cortex, and both sen-
sory and motor areas of the ipsilateral cerebellum (98, 100–103) (Figure 3a). The organization of
this network is further corroborated by electroencephalography and magnetoencephalography
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evidence from corticokinematic coupling experiments examining the relationship between
sensory-motor brain activity and movement-related velocity signals from the peripheral proprio-
ceptors (104, 105). Corticokinematic coupling shows brain activity in contralateral sensory-motor
cortex (including the supplementary motor area), dorsolateral prefrontal cortex (overlapping with
premotor cortex), posterior parietal cortex, and ipsilateral cerebellum (106–108). These regions
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Figure 3 (Figure appears on preceding page)

Cortical areas involved in kinesthetic sensation. (a) Schematic rendering of the cortical brain regions
identified with imaging (functional magnetic resonance imaging and positron emission tomography)
through the application of kinesthetic illusion-inducing vibration (70–115 Hz) to the wrist and forearm
tendons of human participants. The brain regions are divided into three groupings. (Orange) The primary
and early association areas including primary motor cortex (M1), area 2 (2), area 3a (3a), and second
somatosensory area (SS2). Areas 3a, M1, and 2 are connected to the thalamus [ventroposterior lateral nucleus
(VPL) and ventroposterior superior nucleus (VPS)] through the thalamocortical projection (TCP) fibers
(165, 166). Areas 3a, M1, and 2 are also interconnected through local short association fibers (LSAF) (91).
(Blue) A sensory-motor execution network including the premotor cortex (PMC), supplementary motor area
(SMA), middle cingulate cortex (mid-cingulate), and cerebellum. (Purple) A likely higher-order multisensory
integration system including the superior parietal lobule (SPL), inferior parietal lobule (IPL), intraparietal
sulcus (IPS), inferior frontal gyrus (IFG), and anterior insula. The IPS, IPL, and IFG appear to be connected
with the large superior longitudinal fasciculus III (SLF III) (102, 109). The cerebellum shares connectivity
with the primary early association areas and the sensory-motor execution network. The IPS and PMC
(purple dashed outline) are involved in a comparator network containing multimodality neurons that retune
depending on visual and proprioceptive input with critical involvement in self-identification (113).
(b) A schematic representation of the relative location of the brain areas and functional groupings of
vibration-induced illusory kinesthesia in the human brain. Colors correspond to those in panel a.

are in alignment with the proposed vibration-induced illusory kinesthetic network suggested
above. Similarly, the cingulate motor area, dorsal premotor cortex, supplementary motor area, and
cerebellum are likely involved with possible neurophysiological mechanisms for comparing a neu-
ral proxy of motor intent commands (efference copy) with reafferent proprioceptive feedback (96).

The second central network appears to be a multisensory integration-focused system with rel-
evant areas in lateral parietal lobe and frontal lobe, including inferior parietal lobule, secondary
somatosensory area (SS2, OP1), anterior insula, and inferior frontal gyrus (102, 109) (Figure 3a).
Vibration-induced kinesthetic illusory input specifically activates the right inferior frontoparietal
brain areas (99, 110) that reside within the connective domain of the third branch of the supe-
rior longitudinal fasciculus (109). The connection of brain areas that are processing kinesthetic
information from the muscles to a large fascicular network suggests the capacity for rapid commu-
nication between the relevant nodes within the inferior frontoparietal network (102).The speed of
information transfer may be important for the online comparison between intent and sensations
of resulting actions (e.g., comparison between expected and observed states, or action monitor-
ing) (110). For example, the inferior parietal lobule and areas of the temporoparietal junction
appear to monitor discrepancies between intent and multisensory feedback (including vision and
proprioception) (110–112).

Multisensory integration is a complex and evolving concept in functional neural organization.
Touch, hearing, vision, and proprioception converge in specialized networks centered in the
parietal lobe that involve multiple cortical areas across different lobes of the brain (113, 114)
(Figure 3b). The multisensory integration system appears to function as a Bayesian comparator to
continuously monitor and correct for errors between the individual’s internal model of predicted
reality and actual external reality as ascertained through the senses (115). Kinesthesia appears to
play a central role in mediating the interaction between intent and outcome that is necessary for
establishing a framework for self-reference (103) and seems to share a primary comparator sub-
network (premotor cortex–intraparietal sulcus) that is also important for visual-tactile integration
and body ownership (113) (Figure 3a). The ability to artificially induce kinesthetic perception
paired with methodologies for systematically modulating and controlling multiple feedback
streams offers new ways to explore these systems within the context of advanced imaging and
high-density electrophysiological recordings in humans. As methodologies develop, resolving the
individual functional units within the multisensory integration system becomes more realistic.
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TOWARD AN UNDERSTANDING OF THE PROPRIOCEPTIVE SENSE
THROUGH GENETIC ANALYSES

Advanced transcriptomics in mice presents opportunities to help resolve some of the questions
raised in the prior sections. Genetic analyses of molecularly defined subsets of spinal projec-
tion neurons offer new insight into the dissemination of proprioceptive feedback to cerebellum
and the DCN complex (24, 48, 116). Genetically empowered viral strategies paired with behav-
ioral tests also enable the dissection of the DCN complex circuitry (66), and thalamic and cortex
transcriptomic data are actively being mined and exploited for genetic interrogation (22, 117).

Until recently, the diverse sources of proprioceptive feedback made it challenging to probe in-
dividual receptors within the operational framework for the proprioceptive sense.This was mainly
because it is difficult to assess the function of one class of afferents in isolation, especially under
normal physiological conditions (i.e., in awake behaving animals or humans) (118). The reliance
on electrophysiological analyses,while extremely informative, also presents limitations when seek-
ing systematic insight into proprioceptive control systems. Now, however, with combined genetic
tools, proprioceptive afferents can be marked with fluorescent proteins to facilitate their isolation
from other sensory neurons in dorsal root ganglia (19, 20). Using these strategies in combination
with advanced single-cell transcriptome analyses has permitted a detailed view of all the genes that
are expressed in developing or mature proprioceptors. A subsequent comparison of single muscle
afferent transcriptomes has enabled the identification of transcripts that distinguish between mus-
cle spindle and GTO afferent subtypes. Such studies are offering new insights into the molecular
underpinnings of the development and physiological properties of the individual proprioceptor
subtypes (19, 20).Moreover, the differential expression of gene products selective for eithermuscle
spindle or GTO afferent subtypes can serve as a foundation for a systematic genetic interrogation
of their spinal and supraspinal targets or their roles in movement control (119). Similar strategies
have already provided genetic access to individual types of cutaneous receptors (23, 36).

Proprioceptor transcriptome studies provided distinct molecular signatures for not only
muscle spindle and GTO afferents but also spindle afferent subtypes. Instead of the expected
group Ia and II muscle spindle afferent populations, transcriptional analyses in adult mice revealed
multiple (perhaps as many as seven) distinct muscle spindle afferent subtypes (19, 20). Although
the exact number of (molecularly) distinct muscle spindle afferent subtypes remains a topic of
debate, these studies demonstrated that the diversity among muscle spindle afferent subtypes is
larger than previously appreciated. Together these muscle proprioceptor transcriptional studies
lead to two main findings. First, group Ib GTO afferents are represented by a single molecular
class, suggesting that their feedback (e.g., information regarding muscle force) is relatively
invariable, irrespective of peripheral muscle targets or intramuscular location (29). Second,
muscle spindle afferents are represented by multiple different molecular subtypes. The diversity
in muscle spindle afferent subtypes appears to further emphasize the importance of kinesthetic
information in proprioception, as it suggests a need to be able to optimally tune this feedback.

A challenge for future studies is to understand the functional correlates of the different molecu-
larly definedmuscle spindle afferent subtypes.Theremay be a difference in physiological or circuit
properties. The latter could include differences in contacts with intrafusal muscle fibers (chain,
bag1, bag2), differences in the type of muscle targets (e.g., fast or slow fatigue, axial or limb), or
differences in central targets (27). For example, it is not inconceivable that information from axial
muscle may need to be distributed to different neural circuits than distal limb muscles, thus neces-
sitating a molecular mechanism through which muscle spindle afferents can recognize the correct
downstream targets. Indeed, when proprioceptors are molecularly profiled at earlier developmen-
tal time points (in embryos and neonates) they exhibit molecular identities that correlate with
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the type of muscle target they innervate (120–122). Conceivably, the newly recognized diversity
in muscle spindle afferent subtypes may increase the complexity of an already complex sense.Nev-
ertheless, genetic access to these individual receptors should help resolve some of the unexplained
observations that result from the pooling of diverse sensory inputs.

FUNCTIONAL DECONSTRUCTION OF PROPRIOCEPTIVE PERCEPTS

What is the relative importance of the various receptors for the proprioceptive sense? In other
words, which information best serves the motor system to function optimally, with optimal de-
fined as achieving themotor goal with the lowest energy expenditure yet highest sense of fulfilment
(123)? The answers to these questions can be partially derived from animal studies (124, 125),
patients afflicted by sensory neuropathies that impair proprioceptive neurons (40, 126, 127), func-
tional imaging studies (102), and more recently, work with amputees with experimental prostheses
that use bionic neural-machine interface strategies (9, 10, 17, 18). Two important observations are
beginning to emerge from these studies: the relatively outsized role for dynamic kinesthetic feed-
back and the context-dependent relationship between exteroceptive (tactile) and interoceptive
(proprioceptive) feedback in motor control. We explore these concepts in more detail below.

The Kinesthetic Movement Sense

Kinesthetic information about limb movement and position is thought to derive primarily from
group Ia and II muscle spindle afferents (2, 5, 25, 27). Group Ia muscle spindle afferents have
low activation thresholds, are ranked among the somatosensory neurons with the fastest conduc-
tion velocities, and possess a high dynamic sensitivity. The latter underlies the 1:1 firing response
of Ia muscle spindle afferents to vibratory inputs from 10 to ∼100 Hz (92, 128). The dynamic
sensitivity of Ia muscle spindle afferents enables them to signal muscle length and length change
velocity (i.e., displacement). Group II muscle spindle afferents exhibit less dynamic sensitivity but
higher discharge levels during the static phase of muscle stretch, suggesting that they are more
reliable in encoding steady-state limb position than group Ia muscle spindle afferents (27, 129).
Muscle spindle afferent activities are constantly measured against a central feedforward model of
body/limb state such that changes in the predicted spindle afferent discharge frequencies serve as
error detectors when a planned movement is perturbed and deviates from its intended trajectory.
In addition, it is postulated that the difference in discharge between afferents of dedicated antago-
nistic muscle pairs is the basis for how the central nervous system computes relative limb position
and movement (2).

Of the two proprioceptive senses (movement and position), the kinesthetic movement sense
appears to provide the most significant input to proprioception. This is perhaps most powerfully
demonstrated through vibration of muscle tendons, which generates illusory sensations of limb
movement without a corresponding movement of the joint itself (see above) (92) (Figure 1c). The
kinesthetic illusion is considered to be generated by the vibration-induced activation of group Ia
primary muscle spindle afferents (92, 130). Afferents that innervate Pacinian corpuscle receptors
in joints and deep tissues such as the interosseus membrane possess a similar dynamic sensitiv-
ity as observed for group Ia muscle spindle afferents (36, 37) (Figure 1a). However, because
kinesthetic illusions can be generated when skin or joints are anesthetized or after lesions of the
dorsal columns (through which the afferent information from Pacinian receptors is transmitted
centrally), it is likely that Pacinian or other skin or joint afferents are not primary contributors
to kinesthetic illusions (5). In addition, the degree of movement illusions are influenced by the
prior activity (thixotropic conditioning) of the vibrated muscle and on the level of engagement
of the fusimotor system (131–133). Thixotropy and fusimotor control are specific to muscle and
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muscle spindles, respectively, supporting the notion that the sensory origin of the kinesthetic
sense is intrinsic to muscles.

Although it is undisputed that group Ia muscle spindle afferents can provide kinesthetic move-
ment information, some observations raise the question of whether this is a property of all or just
a subset of these afferents and/or whether there are other muscle afferents that can sense muscle
vibration. For instance, the kinesthetic illusion is associated with a selective frequency bandwidth
(∼70–115 Hz), yet group Ia muscle spindle afferents are sensitive to vibration across the entire
1–100 Hz frequency range (92, 130). In addition, while some participants report the kinesthetic
illusion following tendon vibration, they do not always exhibit the expected concomitant Ia reflex
response that results in muscle contraction (134, 135). Similarly, reports of kinesthetic illusions are
often difficult for participants to articulate and prone to priming, and they can switch direction
(136–138).Taken together, these studies reveal the dominance of kinesthesia in the construction of
proprioceptive percepts, yet they also raise questions about the mechanisms by which kinesthetic
signals can outweigh other proprioceptive feedback streams during illusionary movements.

Interactions Between Tactile and Proprioceptive Feedback

Proprioceptive feedback from cutaneous or joint receptors appears to serve a relevant supporting
role in motor control (102) and perception of movement (139). Based on experiments coupling
vibration-induced, muscle-sensory activation and skin stretch, it appears that the two information
streams are continuously integrated and likely contribute to the identification of specific joint
movements (138). For example, Collins et al. (138) stretched skin at the metacarpophalangeal
joint while vibrating the corresponding digit tendons on the dorsum of the hand, which sepa-
rated stretch from the vibrational input and likely aided in potentiating the synergistic kinesthetic
percepts. Similarly, if care is taken to couple vibration at the residual tibialis anterior with skin
stretch on the dorsum of the knee, individuals with below-knee amputations can have enhanced
perception of illusory joint movements (140). However, simply vibrating muscle tendons through
the intact skin of the corresponding joint often leads to ambiguity and confusion when reporting
movement illusions (137, 141).

Tactile feedback appears to supersede proprioceptive information in the conscious perception
of sensation. For instance, kinesthetic illusions are diminished when there is direct tactile (or vi-
sual) feedback of the arm with the vibrated muscle. This suggests that when multiple feedback
systems are operating simultaneously the brain will integrate, but sometimes also prioritize, poten-
tially conflicting information from other feedback systems (142, 143). However, neural-machine
interfaces in individuals with amputation may help to provide insight into the synergistic (or po-
tentially antagonistic) relationship between sensory receptors in the skin and sensory receptors in
the muscle (see also below).

INSIGHTS INTO PROPRIOCEPTIVE PROCESSING THROUGH
THE USE OF APPLIED PROPRIOCEPTIVE FEEDBACK
IN ADVANCED PROSTHETICS

Targeted reinnervation is a technique that provides intuitive motor control and sensation of touch
and joint movement for advanced prosthetic limbs to individuals with amputation (10, 144, 145).
The sensory-motor feedback and control interface is created by surgically redirecting the am-
putated limb nerves to new proximal muscle and skin sites. The redirected nerves reinnervate
purposely denervated target muscles and target skin to provide biological amplifiers for the neural
motor control signals and sensory interfaces for neurorobotic touch and kinesthesia. Importantly,
with targeted reinnervation, the natural correspondence between the skin of the joints and their
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underlying muscle and tendon is altered through the surgical sensory-motor reassignment of the
amputated muscle and skin nerves (17). With this approach, it is possible to address kinesthesia
and touch individually.

Kinesthetic Perception in a Neural-Machine Interface

Vibrating the neurally reassigned muscles to induce kinesthetic illusions reveals highly complex
synergistic hand and finger movements that reflect functionally relevant grip conformations such
as cylinder grip, tripod grip (three-jaw chuck), fine pinch, and flat hand pinch (17). Uniquely, all
study participants consciously reported similar percepts. Interestingly, the illusory percepts re-
flect contraction, not elongation, of the muscles activated by vibration. Muscles reinnervated by
the median nerve provide clear percepts of finger/joint flexion when vibrated, whereas the mus-
cles reinnervated by the radial nerve provide clear percepts of finger/joint extension (17). These
percepts are the opposite of what would be predicted by sensory feedback of movement occurring
through activation of receptors sensitive tomuscle stretch (Figure 1c).This contrary finding is also
corroborated in neural-machine interfaces using electrical stimulation as the feedback modality,
where activation of the median nerves produces percepts of digit flexion (12, 146).

Although input from cutaneous joint receptors likely plays a central role in perception of
movement, kinesthesia seems to play a greater role in informing the function of motor control sys-
tems. For example, prosthetic touch alone, provided through various neural-machine interfaces,
improves function over insensate prosthetic limbs when identifying and grasping objects (8, 147–
152). However, providing kinesthetic perception allowed prosthetic users to achieve even greater
able-bodied level performance in a grasp prepositioning task (17). Similarly, participants showed
substantive improvements in achieving evenness of grip closure proportionality (four equal divi-
sions), their ability to track a moving grip aperture target, and their ability to adapt to intrinsic
error, even in the presence of vision (17). Interestingly, participants provided with kinesthetic sen-
sation alone were largely unaware of the improvement to their prosthetic usage. They did not
perceive the kinesthetic feedback as contributing to the effective use of their prosthetic device
although their testing results clearly demonstrated high levels of function with no training.When
the kinesthetic sensation was on, their performance was improved, in some instances to the level
of able-bodied function on the same task. When kinesthetic sensation was turned off, the effect
was abolished and they performed at levels reflecting basic prosthetic users. Together, these ob-
servations support the primacy of muscle-mediated kinesthetic feedback in movement control but
also suggest that it operates largely outside of conscious perception. Kinesthesia likely provides
online feedback to the internal model for more effective motor integration. This hypothesis was
corroborated in a study where amplifying kinesthetic feedback of the contracting muscles through
vibration-induced perceptual illusions improved reaching and pointing performance in individuals
with central sensory area strokes (153).

The Integration of Kinesthetic and Tactile Modalities

Neural-machine interfaces offer additional insight into the relationship between kinesthesia and
cutaneous tactile sensation. Decoupling kinesthetic sensation from joint-mediated cutaneous sen-
sation and then fusing kinesthetic feedback to the contextually appropriate touch events (contact
transients and proportional pressure) and motor intent returns natural behaviors to individuals
with amputation (10). The interaction between grip kinesthesia and proportional fingertip pres-
sure feedback allowed for a naturally balanced decision strategy (reflecting able-bodied behavior)
on a sorting task based on object durometer. With integrated touch and kinesthesia, participants
struck a natural balance between completing the sorting task quickly and taking the time to make
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as few mistakes as possible. Furthermore, providing contextually relevant touch and kinesthetic
feedback also released the participants from using vision to control their devices. In a reflection
of natural able-bodied behavior, they could look ahead toward the site of object placement in
anticipation of their next planned action. Again, these improvements in performance occurred
without learning. When the integrated system was on, the participant’s behaviors stratified with
able-bodied functionality. When the integrated systems were off, the participants stratified with
typical prosthesis users.

Similar returns to natural reflexive behaviors without training are also seen in a proprioceptive
neural-machine interface based on coupling the agonist–antagonist relationship through a cap-
stan pulley system surgically constructed from muscles and tendons during amputation (18). The
agonist–antagonist myoneural interface system restores the lost reciprocal relationship between
contracting and elongating muscles. As such, participants were able to reflexively modulate ankle
joint angles in the proper context while climbing and descending stairs and also while intention-
ally everting their prosthetic foot to account for stepping on the edge of a small block. The two
neural-machine interface systems may reveal potential mechanistic differences between the tradi-
tional group Ia muscle spindle–mediated system of torque feedback in the antagonist myoneural
interface and the vibration-induced readout of active contraction of the agonist muscle in targeted
reinnervation. Further comparison between successfully implemented proprioceptive interfaces
provides the opportunity to resolve the facets of proprioceptive sensation that are most relevant
to function. Implementing these systems in human participants with amputation allows for insight
from the users to help answer questions, such as, what is the relationship between perception and
nonconscious utilization? Does the individual need to be in the loop perceptually, or are their
function and utilization more effective when they occur outside of perception and do not require
their attention? Furthermore, work in humans with neural-machine interfaces suggests that there
are different modes of proprioceptive sensation that provide different functional improvements.
These bionic systems could be used to guide new investigations into a poorly understood sensory
system.

MULTISENSORY INTEGRATION AND THE SENSE OF AGENCY

In humans, second somatosensory area (SS2/OP1) is considered to be a center for motor and mul-
tisensory integration (Figure 3a), including not only proprioception and touch but also vision and
pain (154). In corroboration with human studies (99), electrophysiological recordings in the ro-
dent transitional zone (the rodent homolog to second somatosensory area) show specific cortical
multiunit kinesthetic responses from muscle triggered by vibratory frequencies that are in align-
ment with the vibration-induced kinesthetic illusion in humans (155). Considering the second
somatosensory area as a confluence point for complex multisensory and motor information, it has
been proposed that this brain area may also be involved with a somatocentric (possibly perceptual)
mapping of the body in contextual relationship to its external environment (156, 157).

Multisensory integration and intent/action/outcome monitoring are key aspects of the ability
to discern whether intended actions result in their predicted outcomes. The sense of agency arises
from the experience of being in control of one’s actions and is often attributed to a comparator
mechanism that uses efference copy to reference an internal predictive model of movement in
comparison to sensory feedback arising from the movement itself (103). There appear to be two
primary subcomponents of agency. The first is a system for detecting unexpected external events
that are out of alignment with internal models (nonagency). The inferior frontoparietal network,
described previously, is a likely neural corollary for this proposed nonagency system (103, 158).
The second system relates to a retrospective inference about one’s own control over their actions
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(self-agency) (103, 158). The concept of self-agency, or the experience of being the author of one’s
actions (159), is less well understood. However, the anterior insula (Figure 3a) is activated with
kinesthetic illusion-inducing vibratory input (99, 102, 109) and is frequently implicated in studies
that specifically address the experimental induction of self-attribution (158). Overall, the insula
appears to be a brain region that serves as a functional integration center formultiple cognitive and
perceptual processes, whereas the anterior insula is considered to be involved with the awareness
of causing an action, general self-awareness, and time perception (160–162).

The sense of agency is intertwined with the sense of body ownership (the feeling of our body
and body parts as belonging to oneself ) (159). Several of the brain areas that appear to use kines-
thetic sensory information to build the cohesive experience of controlling one’s actions (inferior
parietal sulcus, superior parietal lobule, premotor cortex, temporoparietal junction, and insula)
overlap with dorsal frontoparietal multisensory integration areas that help mediate the experience
of body ownership (113) (Figure 3a,b). Future work will help to determine how the brain mech-
anisms of proprioception-mediated agency and visual-tactile-mediated body ownership combine
and interact to establish a multisensory integration-derived perception of the embodied self (the
experience of owning and controlling one’s body) (113).

Neural-machine interfaces utilizing vibration-induced kinesthetic feedback can be used to
modulate the sense of agency (159). When prosthesis user intent is matched to visual and kines-
thetic feedback of the intendedmovement, a sense of agency over actions is reported (17).There is
a certain malleability of attribution of agency where the visual percept can differ slightly (faster or
slower) from the perceived sensation of movement.However, visualized hands that move contrary
to intent and kinesthetic feedback (either moving in the opposite direction or moving with a 0.5-s
delay) do not generate a sense of agency over the movement. The effective alignment between
the internal predictive model and the observed outcome of the action (kinesthetic and visual) is
a key component of the sense of agency. Interestingly, kinesthesia does not appear to provide a
sense of ownership on its own (17). The concepts of agency and ownership appear to be two dif-
ferent multisensory integration mechanisms that combine together to form the overall sense of
the embodied self.

SUMMARY

In this review, we have provided a view on the state of the proprioceptive field with a look toward
the future, highlighting the potential of bionic prosthetic devices and genetics to explore some of
the many outstanding questions.With respect to the latter, we expect that the largest gains will be
made at the circuitry level, with new genetic tools enabling a systematic dissection of the central
pathways of the different types of proprioceptive afferents and spinal projection neurons, all the
way through the DCN complex, cerebellum, and thalamus to the cortex. Better genetic tools for
proprioceptive and tactile circuit elements should also facilitate high-resolution mapping of the
intersection of these twomodalities and testing their hierarchical relationship in diverse behavioral
contexts. Increasingly clever methods for quantitative natural behavioral assays, combined with
large-scale recordings, should further aid in these studies (66, 163, 164) and should be immensely
valuable in generating and testing new hypotheses about the basic principles of proprioceptive
encoding.We anticipate that many of these observations may also translate to nonhuman primates
and humans, despite some of the differences in circuitry. The experiences with bionic prostheses
in human participants, combined with imaging and electrophysiological approaches, likely will
continue to offer unique insights into the cortical areas involved in conscious and nonconscious
proprioceptive processing. In particular, the realization that kinesthetic information plays a central
role in the establishment of the sense of self-versus-other and the feeling of the whole self that is
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owned and controlled by the individual will help pave the way to explore these critical concepts
through neural-machine interfaces in humans.
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