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Abstract

Urinary tract infection (UTI) is the most common type of urogenital dis-
ease.UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of
women, 2.3% of men, and 3.4% of children in the United States will require
treatment for UTI.Traditionally, bladder (cystitis) and kidney (pyelonephri-
tis) infections are considered independently. However, both infections in-
duce host defenses that are either shared or coordinated across the urinary
tract. Here, we review the chemical and biophysical mechanisms of bacte-
riostasis, which limit the duration and severity of the illness.Urinary bacteria
attempt to overcome each of these defenses, complicating description of the
natural history of UTI.
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UTI: urinary tract
infection

NGAL: neutrophil
gelatinase-associated
lipocalin, also known
as siderocalin or
lipocalin-2

INTRODUCTION

Scope of the Problem

The urinary system’s susceptibility to infection is illustrated by a lifetime risk of urinary tract
infection (UTI), exceeding 60% in the United States (1). Some patients even have six or more
infections per year (2, 3). The high incidence rate translates to an annual expense of ∼US$1.6 bil-
lion for community-acquired UTI (2), and these numbers may increase further because of the
emergence of broad-spectrum antimicrobial drug resistance now posing significant treatment
challenges (4). Novel insights into the microbiology of UTI pathogenesis will enable alternative,
antibiotic-sparing therapeutic approaches.

Definition

The definitions of pyelonephritis and UTI are obvious in general outline but are quite difficult
to ascertain at the lower limit of presentation. In addition, the symptoms (e.g., pain, burning on
urination) and signs (e.g., hematuria and pyuria) of these infections cannot be quantitatively com-
pared to the bacterial burden, their virulence factors, or even the precise location of the infection
within the urogenital system. A recent summary (5) of diagnostic criteria of pyelonephritis high-
lighted the most convincing clinical findings, including (a) flank tenderness or pain; (b) potential
fever; (c) potential urgency, frequency, and dysuria; (d) pyuria and bacteriuria; and (e) quantitative
cultures containing>10,000 colony-forming units (CFU)/mL urine (5). Although thesemeasures,
taken together, almost certainly suggest pyelonephritis, the diagnosis is uncertain when a patient
presents with only some of these metrics (6), for example, if a patient lacks voiding symptoms or
had an initial dose of antibiotics. In addition, the problem of diagnosis is confounded by non-
specific screening tests, utilizing dipsticks that measure the concentration of leukocytes (also a
marker of kidney disease) and nitrites (that have a brief half-life and are not produced by all uri-
nary pathogens). Perhaps clarification of the diagnosis of UTI could involve measuring bacterially
induced bladder and kidney proteins (e.g., lipocalins, defensins, and RNases) that are otherwise
present at low concentration in the urine. For example, urinary neutrophil gelatinase-associated
lipocalin (NGAL) distinguished betweenUTI, colonization, and noUTI with an area under curve
of the receiver operating characteristic curve (AUC-ROC) of 0.89, 95% CI (0.80–0.98) (7) by
log-order changes in gene expression. NGAL distinguished active versus treated UTI and gram-
positive from gram-negative UTI (8). A second problem is that most criteria for pyelonephritis
also describe cystitis. Imaging may help, but these tests define only a subset of the patients sus-
pected of pyelonephritis, such as pediatric cases with renal scaring (identified byDMSA scintiscan),
obstruction (identified by ultrasound), and stones or abscess (identified by computed tomography).
Perhaps the large defensin family includes members that are tissue specific, although this hypoth-
esis is currently unsupported.

Types of Defensive Maneuvers

The urinary tract (composed of the kidneys, ureters, bladder, and urethra) deploys multilayered,
intrinsic, bacteriostatic mechanisms of defense prior to the entry of dedicated immune cells. The
bacteriostatic defenses draw on biophysical forces such as peristalsis and urine flow, bizarre de-
coy molecules, chelators that attempt to starve bacteria of nutrients, and the cellular mechanisms
that alter the chemical composition of the urine. Finally, when all else fails, the infected cells are
sacrificed. Every one of these mechanisms plays an essential role in restricting the severity and
duration of bacterial infection.
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IC: intercalated cell

Location, Location, Location

A critical subject, currently understudied, is the location and coordination of different defenses in
different urinary organs. For example, many of the antimicrobial molecules under investigation
by our lab are expressed by both bladder urothelium and pelvic and duct epithelia of the kidney.
One plausible explanation for the coexpression is that urogenital organs may signal one another.
For example, work from our lab demonstrated robust expression of inflammatory molecules in the
kidney, even in a cystitis model of infection (C57BL6 mice). These mice have no demonstrable
reflux of luciferase-expressing bacteria, and bacteria were not cultured from the kidney (Figure 1).
We hypothesized that circulating cytokines released by the infected bladder induced inflammatory
molecules in the kidney. While still a viable hypothesis, given that the bladder secretes cytokines
such as granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), IL-
8, keratinocyte-derived chemokine (KC) (9–11), and C–C chemokine ligand 2 (CCL2), sensitive
polymerase chain reaction (PCR) directly from kidney sections (K. Xu, T. Shen, M. Werth, A.
Levitman, J. Barasch, unpublished data) revealed the presence of bacterial DNA, perhaps likely
due to reflux of small numbers of nonviable bacteria failing to reach culture threshold. This find-
ing provides a simple mechanism that can coordinate bladder and kidney host responses even
without overt infection of the kidney. In this view, cystitis is not an isolated disease localized to
the bladder, but rather a systemic illness that induces gene expression in the kidney. Perhaps co-
ordination between the kidney and bladder is promoted by the expression of transcription factors
downstream of these signals.Tfcp2l1 controls the differentiation of principal and intercalated cells
(ICs) from a bipotential double positive or transitional cell type (12, 13) in the collecting ducts.
Bladder urothelium also expresses Tfcp2l1. In summary, approaches examining multiple urinary
organs are required to investigate the coordinated defense against UTI and to determine whether
the coordination optimizes the expression of antimicrobials throughout the urinary tract.

The location of the infection and the expression pattern of antimicrobial responses should
be compared. While well established in bladder urothelium (11), the natural history of bacte-
rial infection in the kidney is uncharted. Bacteria are known to localize initially to the collecting
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Figure 1

(a) C57BL/6 (nonrefluxing) and C3H/HeN (refluxing) mice were inoculated with CFT073-UPEC-Lux.
Mice were imaged on both the dorsal and ventral sides. Note that UPEC-Lux remained in the bladder (Blad)
of C57BL/6 mice (cystitis model), but ascended to the kidney (Kd) in C3H/HeN mice (pyelonephritis
model). (b) Although the C57BL/6 kidney is culture negative, inoculation with CFT073 activated Lcn2
(NGAL)-Luciferase2 in the pelvis and medulla of the kidney, demonstrating that cystitis activates gene
expression in the kidney. Figure adapted with permission from Reference 8. Abbreviation: UPEC,
uropathogenic Escherichia coli.
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HlyA: α−Hemolysin

Atp6v1b1
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Figure 2

Inoculation of C3H/HeN mice with UTI89-GFP Escherichia coli demonstrated the distribution of bacteria in
the collecting ducts and anchorage at the surface of an intercalated cell. E. coli were identified by both green
fluorescent protein (GFP) fluorescence and immunostaining with E. coli antibody (yellow). Intercalated cells
were identified by immunostaining for Atp6v1b1 (white).

ducts where they may associate with ICs preferentially (8, 14, 15) (Figure 2). However, a recent
study showed that the bacterial receptors, glycosphingolipid and mannosylated glycoproteins, are
present throughout the collecting duct (16), implicating the spread of bacteria from the surface of
ICs to surrounding principal cells (16). Bacteria may then traverse the epithelial layer in a Toll-like
receptor 4 (TLR4)- and lipid-raft-dependent fashion (17). Alternatively, the expression of viru-
lence factor α-hemolysin (HlyA) and the cytotoxin Sat results in the disruption of tight junctions
and the paracellular passage of bacteria into the interstitium (18). Other investigators have found
that bacteria can arrive in the cortex of the kidney even soon after infection (19). These new data
have identified pathways of bacterial arrival in the kidney, but thereafter the natural history of dis-
persal of bacteria has not been carefully tracked. Although HlyA has been found to be necessary
for the spread of bacteria beyond the urogenital tract (20), even the source of bacterial urosepsis is
unknown, but it presumably involves migration of bacteria from the collecting duct into lymph or
venous blood (e.g., the medullary vasa recta or cortical peritubular capillaries). New inquiries are
needed to compare the evolving location of infection with the evolving location of the epithelial
response.

In summary, although many types of defenses have been identified, their locations and coor-
dination between different urogenital organs have not been mapped. Readily available tools for
spatial transcriptomics will help. For example, our lab has adapted a cell- and time-specific method
of isolating RNA without the need for tissue or cell dissociation, fluorescence activated cell sort-
ing, or other destructive measures. The technique utilizes acute labeling of nascent RNA with
thio-uracil at the time of choosing after the initiation of UTI, and in a cell-type-specific man-
ner by activating a phosphoribosyl-transferase with Cre recombinase (T. Shen, J. Stauber, K. Xu,
A. Jacunski, N. Paragas, et al., unpublished manuscript). A second method for spatial localization
is based on the genetic response of tubule epithelial cells to the kidney’s cortical-medullary os-
motic gradients (21). The same requirement to localize bacteria applies to the natural history of
pyelonephritis, particularly given that bacteria associate with different nephron cells in entirely
different chemical/osmotic environments during infection. Bacteria encoding luciferase or phys-
iological beacons (22) can help with localization. Perhaps these inquiries will demonstrate that
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UPEC: uropathogenic
Escherichia coli

unique antimicrobial mechanisms accommodate the continuous flow of urine in the upper tracts
compared with hours-long stasis in bladder.

INVADERS FROM THE INTESTINE

Escherichia coli is by far themost common cause of acuteUTI.Other Enterobacterales, in particular
Klebsiella spp. (∼7%) andProteus spp. (5%), contribute to the burden ofUTI.Other organisms such
as Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus bovis, and the fungus Candida albicans
contribute to UTIs, particularly in the healthcare setting (23–25). However, the vast majority of
infections are caused by uropathogenic E. coli (UPEC).

UPEC are characterized by a unique set of virulence factors encoded on four phylogroups
(A, B1, B2, D) of pathogenicity islands, harboring adhesins, toxins, surface polysaccharides, flag-
ella, and iron-acquisition systems. Years of research have established that these molecular factors
uniquely enable UPEC to first colonize the urethra, ascend into the bladder lumen, and subse-
quently adhere to the surface of the bladder and kidney epithelia via chaperone–usher pathway
(CUP) pili, such as the type 1 pilus containing FimH.Adherence is followed by biofilm formation,
invasion, and replication by forming bladder intracellular bacterial communities. These are qui-
escent intracellular reservoirs growing in the underlying urothelium. Much less is known about
the sequence of infection in the kidney.

UPEC have unique properties to form a colonizing reservoir in the gut preceding urinary
colonization. Spaulding et al. (26) systematically deleted each CUP operon present in the model
UT189UPEC isolate.This revealed that the fim operon (encoding type 1 pili) and ucl pilus operon
(encoding F17-like pili) were key contributors to gut colonization.When both were deleted, col-
onization was even further decreased, suggesting that they serve nonredundant roles in gut colo-
nization. Importantly, the deletion of ucl did not impact the severity of bladder infections, defining
its primary role in gut colonization. An important role for type 1 fimbriae in gut colonization was
supported by studies by Sarkar et al. (27) in ST131 EC958.

The binding of UclD was visualized in the lower portion of colonic crypts, whereas FimH
bound to the upper region. Molecular correlates suggested that these pili promote binding of
UPEC to different carbohydrate structures. Interestingly, the F17-like pili ucd is structurally re-
lated to F17-like pili from enterotoxigenic E. coli.Moreover, it was mainly present in the B2 phy-
logroup and was frequently described in UPEC isolates from women with recurrent infections. As
a proof-of-principle that these molecular features can be leveraged for treatment, oral exposure
of mice to a mannose M4284 (specific for FimH) significantly reduced colonization with UPEC
in the gut, bladder, kidneys, and urine. Novel nonantibiotic-based treatment modalities will be
increasingly important given the increasing emergence of both fluoroquinolone- and extended-
spectrum beta-lactamase resistance in the global multilocus sequence type UPEC lineage ST131.

Despite potential differences in clinical presentation between lower and upper urinary tract
infections, our understanding of microbial molecular determinants of these disparate infections
remains limited. Biggel et al. (28) leveraged genome-wide association and phylogenetic ap-
proaches. The authors took advantage of a well-curated collection of over 900 isolates, separated
into groups of severe UTI (i.e., pyelonephritis or urinary-source bacteremia) compared with
noninvasive UPEC, defined as isolates associated with asymptomatic bacteriuria or bladder infec-
tion (cystitis). The P fimbriae–encoding papGII locus was the key feature distinguishing invasive
UPEC. Further, multiple invasive UPEC lineages emerged, probably through the repeated
horizontal acquisition of diverse papGII-containing pathogenicity islands. Future studies might
identify patients at risk for more invasive disease by applying these molecular findings to urinary
isolates.
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dRTA: distal renal
tubular acidosis

NKCC2: Na-K-Cl
triple cotransporter

CHEMICAL BARRIERS: URINE IS POISONOUS

Chemical Decoys

UPEC bind to glycosylated membrane proteins to establish anchorage and initiate the infection
(29). In turn, mammalian cells take advantage of bacterial tropism by secreting decoys, which
mimic the binding site (30). Uromodulin serves as a decoy because it presents mannose residues.
It has two high mannose N-glycan sites, one of which was directly visualized by cryo-electron to-
mography binding to FimH, the adhesin in type I piliated UPEC. Binding could be blocked with
excess mannose. Consistently, urine uromodulin reduced the incidence of human UTI (31) and,
conversely, the knockout of uromodulin increased mouse susceptibility to UTI (32). Accordingly,
the removal of the critical mannose residues suppressed the bacterial-binding activity of uromod-
ulin (33). It is likely that the high mannose site is exposed by proteases at the cell surface (34).
Hence, the first step in defeating colonization by gut organisms is to block bacterial binding to
epithelia, surprisingly including mannosylated desmoglein-2 (16) in the collecting duct.

Acidity

UPEC that are not entrapped and expelled in the urine by filamentous uromodulin confront acid-
ified urine, which represents a key bacteriostatic defense that suppresses the growth of gram-
negative E. coli and Klebsiella. These data were first published in the Journal of Urology in 1917
(35) and have been confirmed in principle using many additional organisms, even gram-positive
Staphylococcus saprophyticus (36).

Consistent with these findings, suppression of acidification is associated with more frequent
or more severe infections. For example, children with urinary reflux come to medical attention
because of repetitive urinary infections with E. coli (89%), Klebsiella pneumoniae (3%), and Proteus
mirabilis (2%) (37). Half of these patients demonstrate urinary alkalinization, accompanied by sys-
temic acidosis in association with interstitial infiltrates, kidney scarring, and fibrosis (38, 39). In
these patients, urine did not maximally acidify during ammonium loading, the urine anion gap
remained positive, and bicarbonaturia was found. This disturbance is called a distal renal tubular
acidosis (dRTA) consistent with malfunction of the collecting duct ICs.

Similar to vesiculo-ureteral reflux, obstruction also predisposes to UTI and is accompanied by
apparent dRTA, defective ammonium excretion, and a positive anion gap (40) in as many as 50%
of infants with unilateral or bilateral hydronephrosis. Similar data were obtained in mice, rats,
dogs, and nonhuman primates exposed to different obstructive methodologies. Indeed, autopsy
specimens of human and nonhuman primate neonates demonstrated that the number of ICs varied
inversely with the degree of duct dilation, reducing the number of ICs in the obstructed kidney
by two-thirds (41). Similar data were obtained in a postnatal unilateral ureteral obstruction model
(42). Nielsen’s group (43) found that multiple acid base transporters were reduced during 24 h
of obstruction, including transporters in the proximal tubule (NHE3, NBCe1) and transporters
in the thick ascending limb of Henle (TALH) and collecting ducts such as the Na-K-Cl triple
cotransporter NKCC2 and the H+-ATPase, identifying a response throughout the nephron, even
though the dRTA phenotype dominated. Surprisingly, even brief obstruction caused persistent
(>4 days) downregulation of NKCC2 and H+-ATPase in the inner strip of the outer medulla
and in the inner medulla displaying persistent impairments of H+ secretion (lasting >4 days)
(44). Even when outer medullary collecting tubules were extracted and microperfused or when
membrane vesicles were analyzed, defective H+ secretion persisted, implying a prolonged defect
in ICs (45). A cell autonomous defect was also shown by Gluck’s group (46), who found that brief
obstruction inhibited the apical positioning of H+-ATPase and that prolonged obstruction led
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Ent: enterochelin

to the loss of these cells altogether, particularly in the outer medulla. All of these entities share a
strikingly reproducible phenotype, linking UTI with flow abnormalities and defects in ICs.

Although the association of H+ physiology and repetitive UTIs is a compelling correlation, the
chance identification of the transcription factor Tfcp2l1 by our lab strengthened the association.
Deletion of Tfcp2l1 (8) prevented the development of ICs and at the same time resulted in higher
colony counts throughout the urinary system.Given that only ICs can reduce urine pH sufficiently
to achieve bacteriostasis, these data explain why patients with distal renal tubular acidosis are at
risk for urinary infections (47).

There are many reasons why acidification can suppress microbial growth. It has been found
that the transcription of bacterial adhesive fimbriae is suppressed (48) by acidification. In addition,
the antimicrobial peptides cathelicidin and the defensins are upregulated in collecting duct cells
by acidification (49). But perhaps an even stronger observation is that while urine H+ suppresses
E. coli, urine alkalinization positively selects for other pathogens. In a 14-year retrospective cohort
study of 5,201 patients, urine pH 8 was associated with growth of P. mirabilis and P. aeruginosa in
25% of children older than 12 months (50). Each of these examples supports the notion that urine
pH is a determinant of UTI and indicates an important area of ongoing research.

Starvation: Nutritional Immunity

Starvation is a second mechanism that limits the growth of UPEC. Although iron is the fourth
most common element in the Earth’s crust and is abundant in mammalian cells, iron’s chemistry
prevents direct transfer across aqueous spaces. This is because the common oxidized form of iron,
called ferric iron, is insoluble in water (51) (Ksp = 10−9 M), particularly in phosphate solutions
(Ksp = 10−13 M) (51), whereas in its reduced form, ferrous iron is unstable and decays into fer-
ric iron with the production of toxic hydroxyl radicals. As a result, iron must be shepherded by
specialized carriers. Mammals use high-affinity proteins (e.g., transferrin; 10−20 M) and organic
molecules [e.g., heme, citrate, catecholates (52)] to solubilize and deliver iron. Nutritional im-
munity (53) is the concept that mammals suppress the growth of bacteria by chelating iron. In
turn, microbes must outcompete mammalian chelators to claim iron from limiting sources [urine:
mouse = 0.8 μM, human = 0.7 μM (8)].

Genome-wide and targeted screens have repeatedly demonstrated that bacterial virulence
depends on expressing specialized tools to capture iron. To steal our iron, bacteria produce
siderophores, which are organic molecules (54) with astronomical affinity for ferric iron [e.g.
enterochelin ∼Ka = 1050 (55)]. The most impressive and widespread are the catecholates, such
as enterochelin and its relatives, salmochelin, bacillibactin, agrobactin, corynebactin, fluvibactin,
and vibriobactin, all of which utilize six catechol hydroxyl groups to supply electrons to the par-
tially filled orbitals of iron. Even simplifications and fragments of these siderophores, such as
monomeric catechol, 2,3 dihydroxybenzoate, pyrogallol, and 3-methyl catecholate, are partially
competent siderophores (52, 56). The iron-loaded siderophores are recaptured by cognate re-
ceptors (57) [Iha and FepA for Ent:Fe; IroN for salmochelin (58)], which E. coli upregulate upon
infection of mouse or human urinary tracts.

It is conceivable that the mammalian urinary system can overcome the tris-catecholate
siderophores with acidified urine. Protonation of the hydroxyl groups reduces affinity of Ent for
Fe by converting catecholate into salicylate mode binding,which in turnmay promote iron release
(51). If acidification was effective, iron lost into the urine would bind to pH-insensitive lactofer-
rin. Rather, the kidney and bladder have devised an entirely novel mechanism to overcome the
catecholate siderophores. Roland Strong and colleagues (59) identified that a mammalian pro-
tein called NGAL, also known as lipocalin 2 or siderocalin, bound the catecholate siderophore
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Figure 3

(a) Neutrophil gelatinase-associated lipocalin (NGAL; lipocalin 2 or siderocalin) with bound siderophore 2,3
dihydroxybenzoic acid. Iron is indicated by the red sphere. Crystal structure solved by R. Strong, Fred
Hutchinson Cancer Research Center, Seattle, Washington. Photo provided by R. Strong. (b, left) The
NGAL:siderophore:Fe complex generates a red color that is stable for years even with repetitive washing.
(b, right) NGAL:siderophore is colorless.

Ent. The affinity of NGAL for Ent was subnanomolar and was resistant to low pH. Indeed, the
NGAL:Ent:Fe complex maintains its red coloration at pH 4.5 for many years (Figure 3). The
interaction of Ent with NGAL suppressed bacterial growth and induced gene activation in bac-
teria, mimicking the application of the medicinal iron chelator, DFO (Figure 4). Hence, NGAL
caused bacterial iron starvation and bacteriostasis. Suppression of bacterial growth can be demon-
strated in vivo by inoculating mice with a mutant form of NGAL that bypasses megalin-based
capture mechanisms in the proximal tubule and enters the urine. Consequently, K3Cys mutant
NGALmay be useful to augment nutritional immunity (60). Conversely, in mouse NGAL knock-
out models, clearance of urinary infection was delayed.Hence, bacteria steal our iron, and we steal
its siderophores (61).

An additional type of siderophore can also bind to NGAL: Urine contains nonsulfated
catechols (1–10 μM) that can occupy the internal cavity of NGAL and dock iron by forming a
quaternary complex at subnanomolar affinity (52). The chelation of iron is a terminal reaction
when bacterial Ent is available (NGAL:Ent:Fe is pH insensitive), but it is reversible when the
pocket is occupied by catechols (NGAL:Catechol:Fe dissociates <pH 6.3) (52, 59, 62, 63).
NGAL:Catechol3:Fe can serve as an iron transport protein, but in the setting of urinary infection
in the acidified urine, the catechol metabolites are replaced by Ent.

NGAL differs in many respects from the cathelicidins, defensins, and RNases (64). NGAL
(urine 20 ng/mL) is intensely upregulated in patients by tubular and tubulointerstitial damage
(urine up to∼5,000 ng/mL) (65, 66), particularly when associated with infection, sepsis, or urosep-
sis. In fact, the presence of urinary NGAL in neonates—at the time of first clinical suspicion—
predicted which blood cultures would grow pathogenic bacteria and which would not (67). In
mice, cecal ligation and puncture models produced a 531-fold increase in kidney NGAL. UTI
in humans with gram-negative organisms induces NGAL expression, which was reversible with
antibiotics. In the setting of acute tubular injury (ATI) of the kidney of any cause in humans or
mice, urinary NGAL (uNGAL) levels may rise 10–100 fold.

To evaluate the sources of uNGAL,we created aNGAL-Luc2-mCherry reporter mouse to con-
tinuously detect NGAL in real time in whole-body scans (68).We evaluated ischemia-reperfusion,
systemic sepsis, and more recently,UTI. Ischemia-reperfusion induced reporter expression within
3 h: NGAL bioluminescence and uNGAL were proportional to the intensity of the stimulus and
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Figure 4

(a) Addition of neutrophil gelatinase-associated lipocalin (NGAL; lipocalin 2 or siderocalin) to uropathogenic Escherichia coli (UPEC)-
stimulated bacterial iron gene expression. (b) Addition of DFO, the medicinal iron chelator, stimulated the same bacterial iron gene
expression. Figure adapted with permission from Reference 8.

identical in timing to the appearance ofNGAL protein in the urine.NGAL bioluminescence orig-
inated in the kidneymedulla and in situ showed that TALH and collecting ducts expressedNGAL.
ICs consistently expressed NGAL when mice were treated with Gram-negative lipopolysaccha-
ride (LPS), but few if any responses were generated by treatment with Gram-positive Pam3C.
In fact, medullary cells isolated from NGAL reporter kidneys responded to UPEC by expressing
NGAL, and conversely, antibiotics squelched NGAL induction. In short, bacteria/ligands acti-
vate NGAL expression. In human kidney biopsies, NGAL expression was more widespread than
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in mouse, occupying the entire collecting duct, and in the case of severe injury, the proximal tubule
as well.Taken together, crystal structure, biophysical measurements,mouse knockouts, and in vitro
growth assays demonstrate that NGAL is a bacteriostatic agent utilizing cognate recognition of
an organic molecule originating from bacteria. NGAL differs from other antimicrobials in its
limited expression at baseline, its intensive induction by both septic and aseptic tissue damage, its
mass amount in urine (1–10 μM), and the specificity of its targeting (nonglycosylated catecholate
siderophores).

Finally, it should be noted that urinary and serum NGAL may be coexpressed, but human
serum NGAL forms large heterogeneous disulfide binding complexes (>100 KDa) (69, 70) of
unclear relevance to urinary defense.

More than Ent

The characteristics of NGAL provided additional insights into infection by urinary bacteria.
Although many of the catecholate siderophores listed above can be decommissioned by NGAL,
serving as a catecholate-specific decoy receptor (52, 59), urinary E. coli overcome the NGAL
blockade by glucosylating Ent, creating salmochelin, a stealth siderophore that cannot bind
NGAL (71). E. coli also benefit from synthesizing noncatecholate siderophores [e.g., the hydrox-
amate aerobactin (IucABCD genes) and carboxylate yersiniabactin (Ybt genes) (72)] that target
distinct receptors [IutA and FyuA for aerobactin and yersiniabactin, respectively (73)]. Indeed,
sampling urinary bacteria collected from patients demonstrated the extensive diversity of iron
capture mechanisms. Examples range from uniquely Ent+ve bacteria (NR4685, NR7715) to
complex strains such as UTI89 that encode many iron and heme capture pathways (e.g., heme
receptors: ChuA+ve, Hma+ve; siderophore receptors: Ent+ve, FyuA+ve, IroN+ve, IroB+ve, SitA+ve,
and SitB+ve) (Figure 5). In short, each urinary infection differs in the mechanisms of iron capture.
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Figure 5

The genetic diversity of urinary bacteria: a sampling of urinary bacteria collected from patients, sequenced
and biobanked at Columbia University by the Microbial Genomics Biomedical Core. The heat map
demonstrates the extensive diversity of iron capture mechanisms employed by bacteria infecting different
patients. Examples range from uniquely Ent+ve bacteria (NR4685, NR7715) to complex strains such as
UTI89 that encode many iron capture pathways (heme receptors: ChuA+ve, Hma+ve; diderophore
receptors: Ent+ve, FyuA+ve, IroN+ve, IroB+ve, SitA+ve, and SitB+ve).
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An important note concerns the relative worth of a specific siderophore type. Some data sug-
gested that Ent was not essential for the pathogenesis of UTI, as other siderophores could com-
pensate for Ent deletion. However, prior to our report (8), it was not known that Ent was already
auto-inhibited by uNGAL. Hence, Ent deletion was not contextualized because the urothelial
response to infection was unknown (54, 72, 74, 75). In summary, the data show that rather than
expressing a hierarchy of siderophores, each infection expresses a different multiplicity of iron
transport pathways. Indeed, enterochelin−ve/aerobactin−ve bacteria are still viable, implying alter-
natives to iron transport.

Heme

An alternative to ferric iron:siderophore biology is ferrous iron:heme biology. Evidence for the
heme system includes the following. (a) Uropathogenic E. coli, including commonly studied
CFT073 and UTI89 (76) and most clinical urinary isolates, produce HlyA, a virulence factor (77),
which kills urothelium and lyses red blood cells (78, 79). (b) The American Urological Association
(80) reports that normal urine contains ∼3 million cells/day (the Addis count) (81, 82), potentially
providing iron (3 × 1015 atoms/day) adequate to support the growth of 3 × 1010 bacteria (83). In
fact, UTI further upregulates hematuria (3- to 5-fold) (84). (c) Hemoglobin, haptoglobin bound
with iron, and heme are found in postinfectious urine (85–87). (d) Heme can be captured from
these proteins by secreting an equivalent of a siderophore, called a hemophore [HasA and related
Hux and Hus (88, 89)]. E. coli instead directly capture heme bound to hemoglobin, haptoglobin,
and albumin using two high-affinity receptors (90, 91) called ChuA and Hma. (e) We confirmed
that ChuA-Hma double mutants (92) and Hma single mutants (93) are growth restricted (90)
and respond poorly to exogenous heme, while conversely, wild-type bacteria respond to urinary
hemoglobin/heme (from phenylhydrazine lysis of RBC). In summary,UPEC grow in the presence
of urinary RBC and hemoproteins.

Downstream of ChuA and Hma are complex machines that liberate iron from heme. Heme is
driven across the periplasmic space by the energy-transducing TonB, ExbB, and ExbD (91) com-
plex. In E. coli (94), the traffic is assisted by heme-binding protein ChuT, permease ChuU, and
ATP-binding ChuV (95). Heme is then captured by cytochromes or destroyed by hemoxygenases
[HemO (96), HmuO (97), cyano-HO-1,HO-2 (98), and PigA/BphO (99)].E. coli heme oxygenase
ChuS binds heme rings, accepts reducing equivalents, and releases fragments of heme (hematinic
acid and tripyrroles) (100–102). ChuS-deleted (103) bacteria, like other HO knockouts, are unable
to use heme as an iron source (96) and are not competitive in growth assays. ChuS homologs are
found in many other heme-utilizing bacteria, including ShuS [Shigella (91, 104)], EhuS (Enterobac-
ter), HemS (Yersinia), and BhuS (Bordetella). ShuS and ChuS were reported to be upregulated by
iron deficiency.

The operation of bacterial heme metabolism can be directly observed by detecting the release
of two metabolic products with potentially opposing effects.While the release of iron from heme
supports bacterial growth, and at low levels, the release of carbonmonoxide (CO) can serve as a sig-
naling molecule (103), higher levels of CO (105) abolish the growth of new bacterial colonies and
stunt the growth of established colonies (105). Electron paramagnetic resonance studies demon-
strated that after 10 min of CO exposure, total cell iron decreased by 50% and, in response, Ent
synthetic genes were upregulated 30-fold via fur regulation (106). These data demonstrate a po-
tential limit of the heme nutrient pathway (CO toxicity) and that heme metabolism can cross talk
with iron siderophore pathways.

DNA sequencing and acute transcriptomics of bacteria recovered from the urinary tract
identified the principle that urinary bacteria utilize varying combinations of heme and ferric iron
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transport. Two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry
(107) demonstrated prominent and consistent upregulation of heme transporters ChuA and
Hma and variable expression of catecholate siderophore receptors IroN, Iha, and FepA. In two
different cross-sectional studies, Hma and FyuA (yersiniabactin receptor) were most prominently
upregulated in patients with cystitis with lower urinary tract symptoms (LUTS) compared
with the same bacteria in the same patient’s stool, whereas IutA predominated in those with
pyelonephritis (108, 109). In colonizer E. coli, ChuA, IutA, FyuA, and FepE were upregulated
compared to the same strain grown in the urine (110). In virulent urinary organisms collected
and curated by Anne-Catrin Uhlemann at Columbia University, we found that some clones
utilized only heme transport, some only catecholate Ent transport, and others a combination of
heme and ferric iron transport (Figure 5). This analysis is exciting because we recognize (a) that
the heme nutritional pathway is pervasive in human UTI isolates; (b) nearly all isolates express
Ent (subject to NGAL blockade) and, in fact, two clones express Ent as the single iron transport
pathway; (c) one clone expresses heme capture and Ent alone; and (d) other clones express limited
(UTI-89) or wide-ranging combinations (CFT073 and others).

Similar in purpose to the prevention of ferric iron theft (61), Iqbal Hamza and colleagues
discovered a pathway to secure heme-iron, called Slc48a1: (a) Slc48a1 (111, 112) is localized to
plasma and endosomal membranes (113, 114), including apical and basolateral surfaces of different
cells (115); (b) Slc48a1 is modulated by heme levels (112) in a Bach1 (heme transcription factor)
suppressible manner (116), and (c) overexpression of Slc48a1 in mammalian cells increases the
import rate of heme analog,ZnMP (112, 114),while Slc48a1 suppression by siRNA reduces uptake
(114). Slc48a1 is expressed in both the collecting ducts and the urothelium of the bladder.

In summary, for each attempt at iron capture by bacteria, urinary epithelia express competitive
mechanisms. In the case of heme, it is reasonable to propose that urinary epithelia repurpose a
metabolic role (clearing the urine of heme, hemoglobin, and iron) into an immune defense. The
proposed mechanism capitalizes on low UpH, as Slc48a1 is a Heme/H+ symporter (114).

Secondary Responses of Bacteria to Starvation: The Role
of Two-Component Systems

Iron levels regulate many bacterial functions including resistance to defensins via two-component
systems (TCS). TCS are ubiquitous and provide important mechanisms for bacteria to respond
quickly to environmental signals relevant to the acquisition of nutrients, cell growth and division,
the expression and regulation of virulence factors, and rapid defenses against environmental haz-
ards, such as the host immune system.Moreover, TCS also play a role in cellular processes leading
to antibiotic resistance in Gram-positive and -negative bacteria (117–119). This includes intrinsic
tolerance of E. coli to polymyxins (120). TCS are notably absent from mammalian cells and thus
potentially interesting novel targets for antimicrobial treatments.

In general, TCS consist of a membrane-embedded histidine kinase that acts as the sensor and
signal receiver, whereas the response regulator is located in the cytoplasm.The rapid transmission
of the signaling cascade is mediated by the sensor kinases that autophosphorylate at a conserved
histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a
cognate response regulator. In some select cases, the histidine residue is also essential for response
regulator dephosphorylation via a reverse-phosphotransfer reaction.

E. coli, including UPEC, harbor over 60 TCS genes; many have not been evaluated in the
context of UTI (Supplemental Table 1). The best characterized examples are the BarA-UvrY
and QseBC systems.

The BarA-UvrY system regulates carbon storage and accessing carbon sources from the urine
(121) and regulates virulence.Mutations in either of the two components decreased hemolysin and
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LPS production and dampened proinflammatory cytokine and chemokine responses. The BarA-
UvrY TCS also regulates the expression of noncoding regulatory CsrB and CsrC RNAs. CsrB
and CsrC are in control of CsrA protein activity and have been shown to regulate key virulence
functions in E. coli that are also relevant to UTIs, namely flagellar biosynthesis (122), biofilm
formation, and carbon metabolism (123).

In contrast, the QseBCTCS regulates pili and membrane lipids and is sensitized by iron levels.
Deletion of QseC (but not QseB or the entire operon) results in a major attenuation of virulence
(124, 125) through decreased expression of motility genes, CUP systems (type 1 pili, curli fibers),
and several metabolic pathways. Guckes et al. (120) showed that the QseB response regulator
can interact with the PmrAB TCS. Specifically, PmrB (sensor kinase) was shown to constitutively
phosphotransfer to QseB in the absence of the QseC sensor. In this setting, the constitutive acti-
vation results in the attenuation of virulence through the repression of QseC.

PmrAB and QseBC regulate resistance to the innate immune responses of the host. Recent
evidence from UTI and many other types of models demonstrates that resistance is conferred by
the interaction of two iron-dependent kinases in Enterobacterales with the property of mutual
inhibition (PmrA−PmrB). These enzymes regulate the charge of cell surface LPS from anionic
(defensin sensitive) to cationic (defensin resistant). PmrB responds to ferric iron and mediates
alterations to the LPS layer of the outer membrane to protect the cell against cationic polypeptide
stress. In the setting of acidosis and iron, the PmrA component directs the cell membrane to
resist defensins (antimicrobial peptides) or its surrogate used in the lab, the antibiotic polymyxin.
In UPEC, ferric iron activates both PmrA and QseB response regulators in a PmrB-dependent
manner (120). Conversely, iron starvation is predicted to result in bacterial sensitivity to defensins.
Consequently,PmrA and PmrBmutants should demonstrate reciprocal survival in iron-poor (such
as iron chelation by siderophores and mammalian iron transport) and iron-rich settings, such as
HMOX1 and Slc48A1 knockouts.

BIOPHYSICAL BARRIERS TO THE KIDNEYS

As can be seen from this brief review, many host defenses, including capture, starvation, and poi-
soning, are bacteriostatic and not bactericidal. Hence, mechanisms to expel the disabled UPEC
are required.

Peristalsis

Peristaltic activity of the ureter is a barrier to ascending bacteria. Bacteria in turn can paralyze this
mechanism.Research points to the hyperpolarization-activated cation (HCN) and T-type calcium
channels (TCCs) as drivers of peristalsis (126).HCN channels mediate an inward cationic current
that gradually depolarizes the cell and triggers activation of TCCs, which completes cellular de-
polarization (126) and regulates their frequency (127). Evidence points to HCN+ (128) interstitial
cells of Cajal as the pacemakers. Alternatively, smooth muscle cells located in the human minor
calyx and porcine calices (126) may serve as pacemakers, while the same activity locates in the
ureter-pelvic junction in mice (127). The consensus from different articles points to HCN3 as the
main HCN channel in mice, whereas HCN4 and HCN1 (128) are the main channels in human
ureters.

The importance of ureteric peristalsis in preventing infection is suggested by depot-
medroxyprogesterone acetate therapy.Data show that women taking depot-medroxyprogesterone
acetate have higher rates of UTIs (129). Depot-medroxyprogesterone induces ureteric relaxation
by promoting the expression of β2/3-adrenoreceptors (130, 131). It is thought that disruption of
flow dynamics promotes urinary stasis and the proliferation of bacteria (129).
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To further evaluate the relationship between peristalsis and UTIs, it is worth studying the mat-
uration of flow dynamics in infants. Newborns display immature monophasic Doppler waveform
patterns (MDWPs) of ureteric jets at the vesicoureteral junction (132). The MDWPs resolve by
four years of age when biphasic, triphasic, or polyphasic patterns of the ureteric jet are found
(132). Persistence of MDWPs correlates with UTIs in young children (132). Children suffering
fromUTIs (without vesiculo-ureteral reflux) had an incidence of unilateral and bilateral MDWPs
that was 1.7 and 2.5 times greater, respectively, than healthy controls (132). Hence, even simple
alterations in ureteric peristalsis modify flow dynamics and encourage bacterial proliferation.

Additional data confirm the role of ureteral peristalsis in preventing kidney infection. Urinary
pathogens appear to abrogate peristalsis, even causing hydronephrosis in humans (133, 134). Ex-
periments conducted on cats and dogs demonstrated that chronic infection with uropathogens can
abolish peristaltic activity of the ureters (135). Pathogenic strains reduced peristalsis by decreasing
the Ca2+ transients (87) by various mechanisms including possible endogenous Ca2+ ionophores
(133). Nonpathogenic bacteria, in contrast, did not cause uroplegia. In summary, peristalsis plays
a vital role in urogenital defense, because its disruption or inappropriate functioning leads to UTI
exacerbation. It also seems that by causing uroplegia, bacteria can initiate a cyclical relationship
between dysfunction and infection. Careful documentation of the premorbid phenotype is re-
quired to help resolve whether ureteral dysfunction precedes and provides a risk for infection or
whether infection causes ureteral dysfunction.

Urine Flow, Volume, and Obstruction

A reflexive response to UTI is to tell patients to drink plenty of fluids (e.g., water). Does a greater
flow of urine provide a second type of barrier for ascending bacteria? Unexpectedly, the data
are inconsistent (136). For example, a recent meta-analysis of recurrent UTIs (rUTIs) showed
that an increase in oral fluids for 12 months produced an inadequate statistical difference with
control patients (p = 0.06). In contrast, studies that measured increased fluid consumption for
≤6 months demonstrated a strong positive effect (OR 0.13, 95% CI, 0.07–0.25; p < 0.001) (137).
In premenopausal women who suffer from recurrent cystitis and consumed <1.5 L of water per
day, increasing water intake significantly decreased rUTIs, with a mean reduction of 1.5 cases
of recurrent cystitis (95% CI, 1.2–1.8; p < 0.001) (138). In nursing home residents, increased
consumption of fluid by 200–400 mL daily decreased UTIs from 51 to 37, albeit statistically
insignificant (p = 0.625) (139).

One would think that if flow were vital for combatting UTIs (140, 141), then disruption of
urine flow by obstructive uropathy (142–144) should led to higher rates of UTI. The observation
is not so simple, however, because obstruction may damage the antimicrobial activities of the
collecting duct (see above). In addition, the tools available to enhance flow are confounded. For
example, restoring flow by clean intermediate catheterization (CIC) in patients with spinal cord
injury (SCI) should enable proper clearance of bacteria. Yet, CIC is associated with recurrent or
continuous bacteriuria (145). The effect may be due to catheter-mediated damage of urothelium
(146) or the introduction of bacteria by the foreign body. In fact, a study of 369 SCI inpatients
showed that the use of any method of catheterization, as opposed to spontaneous voiding, was the
primary determinant of elevated UTI risk (147). Flushing the catheters also enhanced risk (148,
149). Hence, damage inflicted by catheters confounded the flow data.

Nonetheless, chronic bladder dysfunction in animal models is also associated with UTIs (150).
SCI-induced voiding dysfunction in rats resulted in pronounced inflammatory responses to sub-
acute infections and prolonged the UTI (151). The proximate reason for these findings may have
more to do with changes in the urothelium than flow disturbances, however, as post-void residuals
did not predict infection susceptibility or severity (151).
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A second line of reasoning attempting to illuminate the contribution of flow comes from the
evaluation of obstructive uropathy due to stone disease.Here again, there are a number of issues to
tackle before establishing causality. The central premise is that urine concentration results in su-
persaturation with either calcium, oxaloacetate, phosphate, and other inorganic compounds (152),
resulting in stone disease that obstructs flow and creates higher bacterial loads (153). This premise
leads to the well-known therapy of increasing oral water intake to diminish supersaturation and
reduce urinary obstruction and urinary infection.However, the literature suggests a more nuanced
pathogenesis that ties together urine concentration, stone formation, and UTI. First, calculi for-
mation was only modestly decreased by interventions that diminished supersaturability (154–156).
Second, subjects suffering from nephrolithiasis had overlapping urinalysis with normal patients
(157), implicating a missing component that triggered stone disease. Synergy between inorganic
components and urinary bacteria may be this missing component. At the initiation of the pathway,
neither calcium oxalate nor urinary bacteria themselves can catalyze stone formation (158), but
when the host is at saturation, uropathogenic bacteria trigger an innate immune reaction, which
forms the nidus for crystallization (158). Hence, it seems that infection triggers the obstruction,
rather than the obstruction initiating the infection (159).

In summary, the data suggest that flow is a biophysical component of innate immune de-
fense, and if not to inhibit initiation of infection then probably to suppress its amplification.
Yet, the precise interaction of flow and infection is likely mediated by complex cellular events,
beyond the biophysical nature of flow. It is possible that variability between studies hinges
on competing outcomes secondary to an increased flow of dilute urine. Oral rehydration is
based on the notion that increased flow enhances bacterial expulsion, but by regulating vaso-
pressin and suppressing medullary hypertonicity, chronic rehydration conceivably can suppress
immune regulation. A parallel consideration applies to obstructive uropathy, which is also asso-
ciated with vasopressin resistance (160). The details of this finely balanced system are discussed
below.

RENAL PHYSIOLOGY CALLS IN THE IMMUNE SYSTEM

Hyperosmolarity

It is remarkable that bacterial infection can take place in the hostile chemical environment of the
renal medulla. Some of this chemistry is central to the homeostatic functions of the kidney (e.g.,
Na gradient, pH gradient) but repurposed for bacteriostatic responses.

The kidney regulates water balance in part by removing NaCl from lumen and creating a
hyperosmotic interstitium in response to vasopressin receptor 2 (V2R) in human TALH and distal
convoluted tubules (161). Activation of V2R leads to the activation of NKCC2 and the thiazide-
sensitive Na+-Cl− symporter (NCC) by phosphorylation (162). These transporters play a crucial
role in the maintenance of the osmotic gradient.

The transport of Na and the creation of an osmotic gradient play surprising roles in immune
defense. Medullary Na signals nuclear factor of activated T cells 5 (NFAT5) in the collecting ep-
ithelia, which in turn express CCL2, a cytokine that generates CD14+ mononuclear cells that
will go on to phagocytize UPEC. The finding that Na concentration plays a role in immune de-
fense has extensive support. (a) Human kidney epithelia HK2 and HEK293 T exposed to concen-
trated solutions ofNa+ (up to 250mM) upregulatedNFAT5 and stimulated the downstream genes
CX3CL1 and CCL2 (163). Hyperosmotic sensing is mediated by protein kinase A–anchoring pro-
tein 13 (Brx), a guanine nucleotide exchange factor that functions as a positive regulator of small
G proteins (164). Brx in turn activates the small G proteins Cdc42 and Rac1, which mediate Brx
interactions with p38MAPK-specific scaffold protein c-JunN-terminal kinase ( JNK)–interacting
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protein 4 ( JIP4) (164). p38MAPK activation subsequently activates NFAT5 transcription.Hence,
Na hyperosmolarity translates to NFAT5 expression via p38 MAPK. In a kidney cell line NRK52,
hypersalinity consistently induced CCL2 through p38 MAPK, ERK. (b) Conversely, the suppres-
sion of the Na+ gradient in the human due to washout induced by diabetes insipidus reduced
medullary expression of NFAT5 and its dependent gene product chemokines such as CX3CL1
and CCL2 and reduced CD14+ cell migration to the renal medulla. (c) Induction of diabetes
insipidus by demeclocycline or tolvaptan in rats, which reduced urine concentration capacity, re-
sulted in the loss of expression of NFAT5-dependent genes and CCL2 and superinfection with
UPEC (163). In fact, mice whose V2Rs were pharmacologically blocked and whose medullary
Na+ gradient was disrupted had a higher incidence of bacteremia and death (163). Similar re-
sults were observed in humans, where there was a dose-dependent correlation of treatment with
tolvaptan, a V2R antagonist, and the incidence of UTIs (165). (d) Suppression of NKCC2 and
NCC transporters by diuretics may increase the incidence of UTIs. Although the literature on
the effects of diuretics on urinary infection is scant, some articles do report a correlation of the
use of loop and thiazide diuretics with lower urinary tract symptoms. In addition, a 5-year lon-
gitudinal study following up on renal transplant patients found an association between diuretics
and higher rates of UTIs (166). Patients who received higher doses of loop diuretics had a dimin-
ished ratio of M1/M2 macrophages in the medullary region of their kidneys (166), likely due to
reduced medullary Na+ gradients resulting from diuretic therapy. A diminished population of M1
macrophages (167) may explain the higher incidence of kidney infection. (e) A number of clini-
cal observations can now be interpreted as attempts to maximize the Na gradient in the setting
of UTI. For example, activation of intrarenal renin-angiotensin-aldosterone system activity (168)
following pyelonephritis in children results in a decrease in urinary Na+ (uNa), a decrease in uri-
nary Na+/K+ ratio (uNa/K), and decreased fractional excretion of Na+, conceivably contributing
to the medullary Na gradient by activating transport into the medulla. Indeed, this system may
drive the hypothesis that some patients suffering from pyelonephritis develop hypertension and
are unable to excrete Na+ appropriately (169, 170).

Medullary hypersalinity recruits CD14+ monocyte-derived mononuclear phagocytes (MNPs)
to the kidney medulla via CCL2. Recruitment of human CD14+ cells (163) is critical because
these cells are more efficient than cortical CD14− MNPs at phagocytizing UPEC and secreting
factors IL-6, IL-8, and tumor necrosis factor alpha (TNF-α). In fact, the Na gradient is directly
responsible for priming the responses of the CD14+ MNP, including the migration toward tis-
sues expressing high levels of the chemokines CX3CL1 and CCL2 and UPEC phagocytosis in
both human and murine monocytes. In addition, factors secreted by CD14+ cells secondarily in-
crease neutrophil response to UPEC, which makes the recruitment of medullary CD14+ cells
crucial for mounting a strong response. Hence, the Na+ gradient initiates epithelia cell signaling
to monocytes to guide their recruitment.

The Na gradient also has an effect in T cell maturation. Augmenting extracellular NaCl in
the presence of T helper (Th)17-inducing cytokines shifts naive human CD4+ T cells toward the
Th17 phenotype in both in vitro and in vivo experiments (171). These immune cells are involved
in host defense against different types of microbes. Under these hyperosmolar conditions, they
secreted not only IL-17 but also IL-2, TNF-α, IL-9, GM-CSF, TBX21, and CCR6 (171).

In summary, the medullary Na gradient profoundly enhances immune responses in the kidney.
This optimized immune response is strategically positioned because an ascending UPEC infec-
tion will first encounter the medullary hyperosmotic region of the kidney. High medullary Na+

concentration states, such as during dehydration, might optimize the system to suppress bacterial
growth.
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Fluid Therapy for Setting a Medullary Na Gradient

The physiologic data indicate that the Na gradient is repurposed to guide immune responses.
It is apparent from the prior argument that volume depletion should stimulate the Na gradient
across the inner medulla via stimulation of aldosterone and vasopressin. Volume depletion would
enhance the Na gradient and provide compensatory protection from UTI when flow rates are
diminished. In this case, chronic attempts at volume expansion and high flow rates (as we saw with
diabetes insipidus and diuretics or even possibly in some of the clinical studies listed above) might
diminish the Na gradient and hence are counterproductive to immune defense. However, one
can also imagine that volume depletion limits delivery of Na+ beyond the cortex so that limited
volume expansion may acutely protect medullary gradients by Na delivery.

Volume expansion can regulate other pathways that impact the medullary Na+ gradient. In
proximal tubular epithelial cells and in collecting ducts, the main pathway activated by flow-shear
stress (FSS) is transforming growth factor-β (TGF-β)/ALK5 receptor (172). TGF-β1 is relevant
in the context of UTIs because it can downregulate the immune system response (173) and en-
hance prostaglandin endoperoxidase synthase2, the COX-2 gene, which regulates the Na gradi-
ent by promoting natriuresis and inhibiting water reabsorption in the inner medullary collect-
ing duct. Indeed, in rats, COX-2 is activated by FSS-dependent neutral-sphingomyelinase (174),
which induces the production of prostaglandin E2 (PGE2). Subsequently, under high FSS, PGE2

production blunts Na+ reabsorption in the TALH and in the cortical collecting duct cells (175),
potentially contributing to the wash out of the interstitial Na+ gradient in the setting of high flow.
Conversely, COX-2 inhibition of the renal medulla leads to Na+ retention (176).

FSS also acts by simulating a second pathway that reduces Na+ retention. The nonselective
cation Piezo1 mechanoreceptors are activated through stretch and flow mechanisms (177, 178).
Piezo1 has been documented as responding to direct force on the lipid bilayer of the cell mem-
brane (179). Piezo mechanoreceptors are concentrated on the basolateral side of kidney epithelia,
implying that the receptors’ primary responsibility is to detect changes in tension within the uri-
nary system (180). They are highly expressed in the inner medullary collecting duct of the kidney
(180, 181), presumably measuring medullary mechanical forces.

Piezo1 induces an increase in intracellular Ca+2 concentration (177), which perhaps via PLA2
(182) results in the production of PGE2, creating a natriuretic effect. A recent study on murine
collecting ducts demonstrated that Piezo1 influences urine dilution following dehydration (180)
by the following sequence: Piezo1 induces Ca+2 influx, decreasing the production of intracellu-
lar cAMP, resulting in the retrieval of aquaporin 2 from the plasma membrane. Therefore, it is
proposed that Piezo1 plays the regulatory role in preventing excessive changes in the medullary
Na+ gradient upon acute rehydration by quickly withdrawing the aquaporin 2 channels, while
simultaneously increasing natriuresis. This concept would posit flow as an entity that maintains
the medullary Na+ gradient via Piezo channels and via the effect of prostaglandins.

In summary, an increase in water intake will suppress vasopressin release and hence vasopressin-
dependent Na reabsorption in the distal nephron. In addition, given the residual permeability
to water, even when vasopressin is suppressed, high flow can potentially diminish the medullary
Na+ gradient, which is an important signal for an optimal immune response. These results might
explain the variability in rehydration studies and suggest that careful urinary metrics referable to
medullary function could optimize the dose of directed fluid therapy in attempts to suppress UTI.

CONCLUSIONS

The invasion of the urinary tract by bacteria is met with a variety of defenses that limit their
growth (bacteriostatic) or cause their death (bactericidal). Bacteriostatic responses include
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physical capture by uromodulin; suppression of epithelial attachment and bacterial growth by
acidification; starvation by the capture of iron (e.g., lactoferrin), the capture and metabolism of
heme [e.g., HRG1 (Slc48a1)], and the capture of bacterial siderophores [NGAL (siderocalin)];
poisoning by CO gas; expulsion by urinary flow and ureteral peristalsis; and Na-dependent
signaling to bactericidal phagocytes. Each bacteriostatic mechanism shortens the duration of the
infection and reduces colony counts.

Yet, linkage and coordination between these defenses have not been unraveled. Compelling
examples include the expression of innate immune defense molecules by the kidney in models of
cystitis as well as the use of the Na gradient to summon phagocytes. The induction of IL-8 by
apo-Ent and NGAL (183, 184) is another example of coordination that should be examined in the
urinary tract.

A second critical area for analysis is revisiting the causal sequence. A fascinating example in-
cludes the observation that flow disturbances presage infection. Yet there is evidence that UPEC
suppress ureteral peristalsis and cause flow disturbances.Obstruction by stone disease is associated
with infection, but there is evidence that infection is a nidus for crystallization. Water hydration
should reduce the bacterial burden by increasing flow rate, but an increase in flow has been asso-
ciated with infection.

Unraveling these mechanisms has clinical consequences. These include the use of iron supple-
ments and iron chelation because excess iron stimulates bacterial growth and iron sequestration
is protective (e.g., NGAL, lactoferrin, anemia of chronic disease). Additionally, the TCS, which
determines sensitivity to defensins, is iron sensitive. Moreover, antibiotic therapy may play a role
in flow disturbances, as infection may initiate ureteral paralysis and seed stone formation. Finally,
even a simple therapy, hydration, requires reconsidering the context of bacteriostatic mechanisms
of the urinary tract.
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