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Abstract

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest
class of immune receptors in plants. They play a key role in the plant surveil-
lance system by monitoring pathogen effectors that are delivered into the
plant cell. Recent structural biology and biochemical analyses have uncov-
ered how NLRs are activated to form oligomeric resistosomes upon the
recognition of pathogen effectors. In the resistosome, the signaling domain
of the NLR is brought to the center of a ringed structure to initiate immune
signaling and regulated cell death (RCD).The N terminus of the coiled-coil
(CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1
likely forms a pore in the plasma membrane to trigger RCD in a way analo-
gous to animal pore-forming proteins that trigger necroptosis or pyroptosis.
NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling
domain may also employ pore-forming resistosomes for RCD execution. In
addition, increasing evidence supports intimate connections between NLRs
and surface receptors in immune signaling. These new findings are rapidly
advancing our understanding of the plant immune system.
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INTRODUCTION

Disease resistance genes protect plants from assault by a variety of pathogenic microbes and are of
great value in the breeding of crop plants. The isolation and characterization of various resistance
genes in the 1990s led to the realization that plants possess an innate immune system similar
to that of animals (4). The plant immunity field was further advanced by studies on elicitors,
also referred to as pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) (10), cell
surface immune receptors, and pathogen effector proteins (36, 98). These advances establish a
framework of a two-tiered plant immune system that monitors threats from pathogens and pests
(35, 70). Thus, cell surface immune receptors, consisting of transmembrane receptor kinases
(RKs) or receptor-like proteins (RLPs), form the first tier by detecting PAMPs or host-derived
damage-associated patterns to activate defenses, and this is called pattern-triggered immunity
(PTI). Adapted pathogens have evolved various effector proteins that are targeted to the host cell
to promote pathogenesis. Plants have evolved intracellular immune receptors, nucleotide-binding
(NB) leucine-rich repeat (LRR) receptors (NLRs), to intercept the activities of effector proteins
that are delivered inside the host cell and activate defenses, forming the second-tier immunity
referred to as effector-triggered immunity (ETI). ETI is often associated with hypersensitive
response (HR), a form of regulated cell death (RCD) at the site of infection (Figure 1). In-
creasing evidence supports the idea that ETI is an important part of the animal innate immune
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Figure 1

Microscopic cell death triggered by the activation of the NLR protein ZAR1.The main leaf veins of
Arabidopsis were inoculated by piercing with suspensions of Xanthomonas campestris pv. campestris strains
Xcc8004 and Xcc8004 (�avrAC). Two days later, the leaves were stained with trypan blue and photographed
under a microscope. Positive trypan blue staining indicative of cell death was observed in Col-0, which
carries ZAR1 that recognizes the effector protein AvrAC delivered by Xcc8004 bacteria. Deleting avrAC
(�avrAC) from the bacterium or knocking out ZAR1 from plants (zar1) abolished the cell death induction.
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system (43) as well, indicating a similar logic in the evolution of surveillance systems in plants and
animals.

The mechanism by which surface receptors activate plant immune responses is relatively
well understood and mostly involves activation of receptor-associated kinases, which further
activate downstream signaling components, including calcium channels, NADPH oxidases,
mitogen-activated protein kinases, heterotrimeric G proteins, and transcription factors (90, 95,
150, 187). Our understanding of ETI in plants has until recently been largely limited to how
NLRs perceive pathogen effector proteins (26, 71).

In the past two years, the field of plant NLR studies has advanced tremendously, spearheaded
by structural biology. The structures of three full-length NLRs in their active forms have been
solved (102, 110, 158, 159). Among these, studies on the NLR protein ZAR1 provide a unique
paradigm for our understanding of the plant immune system.We now know that ligand-triggered
formation of NLR resistosomes, in a way similar to inflammasome formation in animals, is critical
for the initiation of plant immunity. Furthermore, recent molecular studies indicated that the
link between PTI and ETI is much more intimate than previously known (115, 123, 176). This
review discusses new insights brought about by relevant studies and future challenges on effector
recognition, regulation of NLR activation, cell death control, and immune signaling.

REPRESENTATIVE EXAMPLES OF PLANT NLRs

NLR-coding genes first appeared in charophytes and exist in all land plants, with each species
possessing dozens, hundreds, or even more than 1,000 genes in the pangenome (49, 71, 143,
153). In the past two decades, many plant NLR genes and their cognate effectors from di-
verse pathogens have been characterized (79). Although they evolved independently, plant and
animal NLRs share a tripartite domain structure, including an N-terminal domain, a central
nucleotide-binding and oligomerization domain (NOD), and a C-terminal LRR domain. The
NOD is believed to function as a molecular switch, with an adenosine 5′-diphosphate (ADP)-
bound inactive state and an adenosine 5′-triphosphate (ATP)-bound active state. Based on their
N-terminal domains, Toll/interleukin-1 receptor (TIR), CC, and RPW8-like CC (CCR), NLRs
can be divided into three subclasses: TNLs (TIR-NB-LRRs), CNLs (CC-NB-LRRs), and RNLs
(RPW8-NB-LRRs) (71). The CC, CCR, and TIR domains are predicted to initiate downstream
signaling, as expression of these domains alone often triggers immune responses and HR (18, 24,
38, 45, 106).

Plant NLRs can be classified based on their roles in sensing effectors or the execution of im-
mune signaling. NLRs that play a dual role in effector sensing and immune signaling are called
singletonNLRs.Those specialized in effector sensing are referred to as sensorNLRs. SomeNLRs
that execute immune signaling are genetically linked to specific sensor NLRs and are referred to
as executor NLRs, whereas those unlinked to sensor NLRs are referred to as helper NLRs. Sensor
NLRs and singleton NLRs recognize pathogen effectors either directly through a physical inter-
action with cognate effectors or indirectly through additional host proteins that are associated
with NLRs. Readers are referred to several excellent reviews for relevant concepts (26, 72, 79).
Representative NLRs are discussed in the following sections.

NLRs That Directly Recognize Effectors

PERONOSPORA PARASITICA 1 (RPP1) is a TNL that specifically recognizes the Hyaloper-
onospora parasitica effector ATR1 (12, 142). The RPP1 C-terminal LRR domain directly binds
ATR1 to trigger immunity (52, 142). Similarly, the TNL protein RECOGNITION OF XOPQ
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1 (Roq1) directly associates with Xanthomonas XopQ and PseudomonasHopQ1, which are homol-
ogous effector proteins (134, 135, 160).

NLRs That Indirectly Recognize Effectors

Most of the reportedNLRs that indirectly recognize effectors interact with a single sensor protein
to perceive biochemical activities of pathogen effectors. For instance, the Arabidopsis CNL pro-
teins RESISTANCE TO PSEUDOMONAS SYRINGAE PV. MACULICOLA 1 (RPM1) and
RESISTANCE TO PSEUDOMONAS SYRINGAE 2 (RPS2) interact with the sensor protein
RPM1-INTERACTING PROTEIN 4 (RIN4) (3, 104, 105). The RPS2-RIN4 complex recog-
nizes the P. syringae effector AvrRpt2, whereas the RPM1-RIN4 complex recognizes the P. syringae
effectors AvrRpm1 and AvrB.

In contrast, the Arabidopsis ZAR1 protein, first identified as a CNL conferring resistance to
P. syringae carrying the effector protein HopZ1a (88), recognizes the Xanthomonas campestris
pv. campestris effector protein AvrAC through an adaptor protein RESISTANCE-RELATED
KINASE 1/ZED1-RELATED KINASE 1 (RKS1/ZRK1) and a sensory protein PBS1-LIKE 2
(PBL2) (156). RKS1 is a pseudokinase belonging to the RLCK XII clade, whereas PBL2 belongs
to the RLCK VII clade. The Arabidopsis ZAR1 additionally confers resistance to P. syringae carry-
ing effector proteins HopF1,HopX1,HopO1, and HopBA1 (83, 136). TheNicotiana benthamiana
ZAR1 confers resistance to Xanthomonas perforans carrying the effector protein XopJ4 (133).
A pangenome analysis showed that ETI-eliciting alleles of P. syringae effector are collectively
distributed in numerous P. syringae strains, and the Arabidopsis ZAR1 in a single ecotype Col-0 is
predicted to recognize 40% of the 494 tested P. syringae strains (83). ZAR1 is conserved among
1,135 sequenced Arabidopsis ecotypes, indicating that ZAR1 is a broad-spectrum, durable disease
resistance gene.

Paired NLRs

In several cases, genetically linked sensor and executor NLRs have been shown to directly
interact for pathogen perception and disease resistance (94). Some of these sensor NLRs carry an
integrated domain (ID) for effector recognition. The TNL RESISTANCE TO RALSTONIA
SOLANACEARUM 1 (RRS1), which carries a DNA-binding domain of WRKY transcription
factors as an ID, is a sensor NLR that recognizes two unrelated effector proteins, P. syringae
AvrRps4 and R. solanacearum PopP2. RRS1 constitutively interacts with the executor TNL
RESISTANCE TO PSEUDOMONAS SYRINGAE 4 (RPS4) to activate disease resistance
upon effector recognition (30, 51). Both AvrRps4 and PopP2 target the WRKY domain of RRS1,
leading to RPS4-dependent immune responses (86, 132). Likewise, the rice sensor CNL RGA5,
which carries a heavy-metal associated domain (HMA, also called RATX1), recognizes two
unrelated effectors, AVR-Pia and AVR1-CO39, from Magnaporthe oryzae and heterodimerizes
with executor CNL RGA4 to confer disease resistance (19, 116). Another rice sensor, CNL Pik-1,
also contains an integrated HMA to recognize the effector AVR-Pik fromM. oryzae and triggers
immunity through the executor CNL Pik-2 (2, 175).

Helper NLRs

The SOLANACEAE-SPECIFICNLRREQUIREDFORCELLDEATH (NRC) is a conserved
clade of CNLs required for disease resistance and HR mediated by some sensor CNLs (163).
As such, NRC4 is required for the function of sensor CNLs Rbi-blb2, Mi-1.2, R1, and CNL-
11990, which recognize effectors from oomycetes and nematodes,whereas NRC2 and NRC3 are
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required for the function of sensor CNL Prf. In addition, NRC2, NRC3, and NRC4 are redun-
dantly required for the function of sensor CNLs Sw5b, R8, Rx, and Bs2, which recognize effectors
from viruses, oomycetes, and bacteria. Interestingly, the sensor CNLs requiringNRCs to function
belong to sister clades of the NRC clade, and several tested CNLs that do not belong to sister
clades do not appear to require NRCs for function. The NRC clade and sister clades emerged
∼100 million years ago and exist in caryophyllales and asterids but not rosids. It is proposed that
NRCs and their sister CNL clades evolved from an ancestor singletonCNL after gene duplication
and subsequent specialization (165).

RNLs form an evolutionarily conserved clade and include members of the ACTIVATED
DISEASERESISTANCE1 (ADR1) subclade and theNREQUIREDGENE1 (NRG1) subclade
(24, 53, 119). These RNLs are differentially required for HR cell death and immune signaling by
acting downstream of all tested TNLs and some CNLs (11, 24, 47, 85, 126, 131).

MECHANISMS OF EFFECTOR RECOGNITION

Knowledge of how NLRs sense pathogen effectors is important not only for our understanding
of host–pathogen coevolution but also for the efficacy of our effort to identify or engineer
new resistance genes. Both RPP1 in Arabidopsis natural population and ATR1 in H. parasitica
populations are highly polymorphic, and different RPP1 alleles confer resistance to H. parasitica
strains carrying different ATR1 variants, indicating a host–pathogen arms race (12, 80, 128,
142). Similar observations have been made in other NLRs that directly recognize effectors (16,
34, 101). The structures revealed by cryo-EM (electron microscopy) of the RPP1-ATR1 and
Roq1-XopQ complexes show precisely how these NLRs interact with effectors (102, 110). A
distinct domain, called the C-terminal jelly roll and Ig-like domain (C-JID) or Post-LRR (PL)
domain, at the C termini of both RPP1 and Roq1 directly interacts with their cognate effectors.
In addition to C-JID/PL, the inner surface of LRR also contributes to the interaction with the
two effectors. The C-JID/PL is not predicted by the primary sequence but can be predicted by
a hidden Markov model. Importantly, structure-guided mutagenesis experiments indicate that
residues determining the recognition specificity among different RPP1 alleles are located in LRR
and C-JID/PL (102). Interestingly, C-JID/PL exists in a large number of TNLs, including RPS4,
suggesting that the variable C-JID/PL domain sequence is uniquely important for TNLs.

IDs in NLRs are important determinants of recognition specificity. The RRS1-R allele from
certain Arabidopsis accessions recognizes two bacterial effectors, PopP2 and AvrRps4, whereas
the RRS1-S allele recognizes AvrRps4 only (30). Although both RRS1-S and RRS1-R contain a
WRKY domain essential for effector recognition, RRS1-R additionally contains a C-terminal ex-
tension required for the recognition of PopP2, although the precise mechanism remains unknown
(103, 141). The recognition of Avr-Pik alleles in the blast fungus by Pik alleles in rice provides
another model for the understanding of specificity determinants (25, 75, 175). Crystal structure
reveals that Pikp-HMA and Avr-PikD form an intimate interface. Interestingly, all the polymor-
phic residues in Avr-Pik alleles are localized in the binding interface, indicating thatM. oryzae has
evolved to evade recognition (108).Conversely, Pikp-HMA residues that maymediate recognition
are also variable among different alleles, suggesting coevolution betweenM. oryzae and rice.

Diverse recognition specificity of ZAR1 is determined by different adaptor proteins of the ZRK
clade and sensor proteins of the RLCK VII clade (89, 109, 133, 156). HOPZ-ETI-DEFICIENT
1 (ZED1), the founding member of ZRKs, constitutively interacts with ZAR1 and is indispensable
for HopZ1a recognition (89). Subsequent work demonstrated that multiple ZRKs interact with
ZAR1 to monitor different effectors (76, 109, 133, 156). Thus, RKS1, ZRK2, and ZRK3 associate
with the Arabidopsis ZAR1 to sense AvrAC, HopBA1, and HopF1, respectively (109, 136, 156). In
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addition toHopZ1a,ZED1 determines recognition ofHopX1,whereas ZRK3 confers recognition
of both HopF1 and HopO1 (109). The N. benthamiana ZRK protein XOPJ4 IMMUNITY 2
( JIM2) associates with NbZAR1 to recognize XopJ4 (133). Thus, the association with different
ZRKs greatly expands recognition specificity of a single NLR protein ZAR1, which is of interest
to engineering broad-spectrum and durable disease resistance in crop plants.

Recognition of different effectors by ZAR1 additionally requires sensor proteins of the RLCK
VII clade. The sensor protein detects the enzymatic activity of AvrAC to trigger ZAR1 resistance
(156). AvrAC is an uridylylate transferase that modifies several RLCK VII members including
BOTRYTIS-INDUCEDKINASE 1 (BIK1) and PBL2 (42, 156). PBL2UMP acts as a ligand to in-
teract with the ZAR1-RKS1 complex, leading to immune activation (156). PBL2 apparently acts as
a decoy, because the virulence function of AvrAC depends on uridylylation of BIK1 but not PBL2.
BIK1 plays a central role in cell surface immune receptor–mediated signaling (95, 100, 179), and
the uridylylation by AvrAC inhibits BIK1 kinase activity and blocks cell surface receptor-mediated
immune signaling (42). Similar to the PBL2-dependent recognition of AvrAC, the recognition of
HopX1 by ZAR1 also requires an RLCK VII member, SUPPRESSOR OF ZED1-D1 (SZE1),
in addition to the adaptor protein ZED1 (96, 109). In yeast, the presence of HopX1 induces the
interaction between ZED1 and SZE1, although the precise post-translational modification that
triggers the ZED1-SZE1 interaction is not known (109). Likewise, HopZ1a has been shown to
acetylate multiple RLCK VII members and promote the interaction with ZED1 to trigger im-
mune responses (5, 109). Loss of closely related SZE1 and SZE2 impairs HopZ1a-induced disease
resistance (5, 96). Thus, the combination of different ZRK adaptors with RLCK VII sensors fur-
ther expands recognition capacity of ZAR1.

The recent cryo-EM derived structure of ZAR1-RKS1-PBL2UMP tertiary complex uncovered
mechanisms underlying the ZRK-mediated recognition of diverse effectors (159). RKS1 interacts
with ZAR1 and PBL2UMP through different surfaces. Remarkably, RKS1 residues that interact
with ZAR1LRR are highly conserved among ZRKs, whereas RKS1 residues that interact with the
PBL2UMP ligand are diverged among ZRKs. These findings illustrate how ZRKs act as adaptor
proteins to recognize distinct effector targets (PBLs) while at the same time interacting with the
same NLR protein, ZAR1. The detailed structural understanding of ZRK- and PBL-mediated
pathogen recognition thus informs future genetic engineering of disease resistance in crop plants.

AUTOINHIBITION AND ACTIVATION OF AN NLR

In animals, activated NOD-containing proteins often form oligomeric complexes, such as inflam-
masomes composed of CARD DOMAIN–CONTAINING PROTEIN 4 (NLRC4) and NLR
FAMILY APOPTOSIS INHIBITORY PROTEINs (NAIPs), to initiate downstream signaling
(67, 180). Plant NLRs also form oligomeric complexes upon recognition of effectors. The active
ZAR1 complex reconstituted in vitro is a pentamer in which ZAR1, RKS1, and PBL2UMP exist
in a 1:1:1 ratio (158). The RPP1-ATR1 complex expressed in insect cells and the Roq1-XopQ
complex purified from N. benthamiana plants are tetramers with RPP1 and Roq1 bound to their
cognate effector proteins in a 1:1 ratio (102, 110). These remarkable studies show that both CNLs
and TNLs form oligomeric ringed complexes called resistosomes in a way similar to animal NLR
inflammasomes (Figure 2). Both AvrAC andHopZ1a induce ZAR1 oligomerization in Arabidopsis
protoplasts, indicating that the ZAR1 resistosome indeed forms in the plant cell upon effector
recognition (65). Structure-guided mutagenesis demonstrated that the formation of resistosomes
is essential for immune activation by these NLRs (102, 110, 158). In addition, blue native gel as-
says showed that the Arabidopsis CNL RPP7 interacts with an immune-activating allele of RPW8
to form an oligomeric complex, which is responsible for autoimmune phenotypes in hybrid plants
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Figure 2

Structures of ZAR1 and RPP1 resistosomes and NLRC4 inflammasome. Shown are top views of the structures of the (a) ZAR1
resistosome (PDB ID: 6J5T), (b) RPP1 resistosome (PDB ID: 7CRC), and (c) NLRC4 inflammasome (PDB ID: 3JBL).

carrying incompatible RPP7 and RPW8 alleles (91). Furthermore, cognate effectors can induce
self-association of several NLRs, including N and Tm-22, although it is unknown whether these
reflect oligomerization of NLRs (111, 157). In a recent study, coexpression of the TIRRPS4-
NAIP5 chimeric protein and NLRC4, which enables flagellin-triggered oligomerization, results
in TIRRPS4-dependent cell death in plants, suggesting that oligomerization is involved in RPS4
activation (39). Thus, increasing evidence indicates that effector-triggered oligomerization of
plant NLRs is critical for immune activation. However, NLRs must be tightly regulated to avoid
autoimmunity in the absence of cognate pathogen effectors as inappropriate activation results in
plant growth defects and even lethality (154). A detailed understanding of the control of NLR
autoinhibition as well as effector-triggered activation is important for future engineering of
new NLRs.

Autoinhibition of NLRs in a Resting State

Autoinhibition is primarily mediated by intramolecular interactions between various domains of
NLR proteins. However, as many NLRs are organized in protein complexes with sensor proteins
or paired NLRs, intermolecular interactions can also contribute to autoinhibition.

Conformation of NOD of plant NLRs is crucial for autoinhibition in the resting state and
activation upon effector recognition. Early studies showed that mutations in specific residues in
NOD can lead to constitutive activation of NLRs (93, 140). The canonical NODmodule of plant
NLRs belongs to the AAA+ superfamily and can be subdivided into an NB domain (NBD), a
helical domain (HD1), and a winged-helix domain (WHD). The structure of an inactive ZAR1-
RKS1 complex showed that intramolecular interactions among various domains within ZAR1
play a key role in maintaining ZAR1 in an inactive state (159). Among these, the extensive inter-
action between LRR andWHD is particularly important, which explains autoimmunity conferred
by mutations in these domains and autoactivation of chimeric NLRs that carry an inappropriate
combination of WHD and LRR domains (7, 63, 68, 124, 127, 146, 183). The inhibitory role of
LRR is similar to that of NLRC4 (66, 78). In addition to the LRR-WHD interaction, the ZAR1
CC domain forms a four-helix bundle and interacts with HD1 and WHD, which is consistent
with a previous observation that RPM1 CC interacts with multiple domains of RPM1 (40, 159).
The interaction may be needed to keep the CC domain in an inactive state.
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The intramolecular interactions that autoinhibit ZAR1 are further stabilized by ADP binding,
which is consistent with previous observations that full-length plant NLR proteins, such as M,L6,
L7, andMLA27, are preferentially bound with ADP in vitro (106, 162). ADP interacts with NBD,
HD1, and WHD to stabilize ZAR1 in the inactive state, and some of the previously observed
mutations that autoactivate NLRs are expected to perturb the ADP-WHD interaction (7). In the
inactive state, the animal NLRs NLRC4, NLR FAMILY PYRIN DOMAIN CONTAINING
3 (NLRP3), and NUCLEOTIDE-BINDING OLIGOMERIZATION DOMAIN CONTAIN-
INGPROTEIN 2 (NOD2) also bind ADP in a similar manner, indicating a conservedmechanism
for NLR autoinhibition in plants and animals (171).

For paired NLRs, the interaction between sensor NLR and executor NLR is important for
autoinhibition. For immunity governed by the RRS1-RPS4 complex, the TIR domain of RPS4
possesses signaling activity, whereas that of RRS1 does not (161). Intermolecular interaction
between TIRRRS1 and TIRRPS4 inhibits RPS4 activation. A recent study shows that the phos-
phorylation of a specific site in the C-terminal extension of RRS1 is required for autoinhibition,
presumably by promoting inhibitory interactions (55). Because RPS4 is also expected to form
an oligomeric resistosome after activation, additional intramolecular interactions within RRS1
and/or RPS4 are likely needed to prevent oligomerization.

Similar to the RRS1-RPS4 model, the sensor CNL RGA5 inhibits cell death triggered by ex-
ecutor CNL RGA4, although the mechanism remains unclear (17). The rice CNL PigmR confers
broad-spectrum resistance toM. oryzae and triggers cell death when expressed in N. benthamiana
leaves (29). A genetically linked CNL PigmS interacts with PigmR and inhibits PigmR-mediated
resistance and cell death. Interestingly, expression of PigmS counteracts PigmR-induced yield
cost, providing a mechanism for balancing resistance with yield.

NLRs that indirectly recognize effectors recruit additional host proteins into a preformed com-
plex in the resting state (26). For instance, constitutive interactions of RIN4 with RPM1 and RPS2
are required for the autoinhibition of the two CNLs (3, 77, 104). Transient expression of RPS2 in
N. benthamiana leaves triggers cell death that is blocked when coexpressed with RIN4 (28). RIN4
also inhibits cell death triggered by an autoactive allele of RPM1 in N. benthamiana leaves (50).
The AvrB-triggered RPM1 activation is mediated by induced phosphorylation on RIN4 Thr166
(22, 97). The Arabidopsis rotamase CYP1 (ROC1) protein, a prolyl-peptidyl isomerase, regulates
the configuration of RIN4 at Pro149, and this inhibits the RIN4 Thr166 phosphorylation and
contributes to autoinhibition of RPM1 and RPS2 (92).

Nucleotide Exchange in NLR Activation

NLRs bind ADP or ATP through the P-loop, a highly conserved motif in the NBD. Mutations
of the P-loop frequently abolish NLR function (99, 148). As discussed earlier, exchange of ADP
with ATP is thought to switch the NOD-containing proteins to an active state. The mechanism
of this transition is best illustrated by structural comparisons of inactive, intermediate, and active
ZAR1 complexes (158, 159). In the ZAR1-RKS1-PBL2UMP tertiary complex, called an interme-
diate complex, PBL2UMP stabilizes an activation segment of RKS1 to promote the release of ADP
from NBD, indicating a role of effector-triggered nucleotide exchange for NLR activation (159).
This observation also supports the equilibrium model in which effectors shift the balance toward
an ATP-bound state (9, 181).

The structure of ZAR1 resistosome, which was reconstituted in vitro in the presence of dATP,
shows that dATP directly binds to the interface of NBD and HD1, and this triggers major
conformational changes in multiple ZAR1 domains and exposes surfaces required for ZAR1
oligomerization (158). These likely reflect ZAR1 activation upon ATP binding in the plant cell,
as a double mutation of dATP binding sites abolishes AvrAC-induced ZAR1 oligomerization in
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vitro, cell death in protoplasts, and disease resistance to X. campestris carrying AvrAC. In addition,
these two ZAR1 residues are also essential for HopZ1a-induced cell death and disease resistance
(65). The Roq1 resistosome, which was isolated from N. benthamiana plants, contains an ATP
molecule that is bound to the NBD and HD1 interface in a similar fashion, suggesting a similar
mechanism in activation (110).

ATP-Independent Activation of NLRs

Although the ADP-ATP exchange appears to be a commonmechanism for NLR oligomerization,
the RPP1-ATR1 resistosome contains an ADP molecule instead of ATP (102). The conforma-
tional switch that leads to RPP1 oligomerization is probably caused by an interaction between
RPP1 and ATR1 instead of ATP binding. This possibility is consistent with the observation that
the P-loop of NAIP5 is dispensable for the flagellin-induced formation of the NAIP5-NLRC4
inflammasome and caspase-dependent cell death (56). Flagellin binds multiple NAIP5 domains,
which likely induces an active NAIP5 conformation (151, 174). ATP-independent activation
is also known in several other plant NLRs. P-loop mutants of the sensor NLRs RRS1 and RGA5
are fully functional, although P-loop mutations abolish the function of their executor NLRs,
RPS4 and RGA4 (17, 161). A recent study showed that the PopP2-triggered immune activation is
mediated by enhanced proximity between the TIR and C-terminal domains of RRS1-R,which re-
lieves the inhibition of TIRRPS4 by TIRRRS1 (55). Furthermore, the P-loop is absent in rice CNL
PANICLE BLAST 1 (Pb1), which confers broad-spectrum resistance to the blast fungus (59).

Role of Oligomerization

The three reported plant resistosomes are similar to the animal NLRC4 inflammasome in that
they all adopt a ringed structure with the N-terminal signaling domain positioned in the center,
indicating a shared logic for the triggering of RCD and signaling (Figure 2). NLRC4 contains
a caspase recruitment domain (CARD) at the N terminus required for RCD and downstream
signaling. In the NLRC4 inflammasome, the CARD domain is positioned in the center to recruit
caspase-1 directly or indirectly by an apoptosis-associated speck-like protein, ASC (44, 67, 180).

In the ZAR1 resistosome, the N-terminal α1 helices of five ZAR1 protomers form a funnel-
shaped structure required for immune signaling (158). This mechanism appears to be shared by
many, but not all, CNLs. A recent study uncovered an N-terminal segment termed the MADA
motif that is conserved in 20% of CNLs with canonical CC domains, including NRC4 and ZAR1
(1). This motif is required for cell death induction and functionally interchangeable among var-
ious CNLs carrying this motif. Interestingly, sensor CNLs that require NRC for function lack
the MADA motif, indicating a functional differentiation of these sensor NLRs and NRCs. The
function of the funnel-shaped structure is discussed in detail in the next section.

In the RPP1 and Roq1 resistosomes, the TIR domain is clustered in the center ring as a
tetramer (102, 110). Recent studies show that the TIR domain of several plant TNLs is struc-
turally and functionally similar to the animal TIR domain of the STERILE ALPHA AND TIR
MOTIF CONTAINING 1 (SARM1) protein, which functions as an NAD+-cleaving enzyme
(NADase) (41, 61, 155). Dimerization of TIRs and a catalytic residue are required for the en-
zymatic activity and immune responses conferred by these TNLs. Importantly, the RPP1-ATR1
complex possesses strong NADase activity, whereas the RPP1 protein alone does not, indicating
that oligomerization of RPP1 is required to transform the TIR domain into an active enzyme
(102). The TIR domain in the RPP1 and Roq1 resistosomes adopts a conformation that opens
the NADase active site, explaining the indispensable role of oligomerization in NADase activity
(102, 110). This is in agreement with the observation that an NLRC4-mediated oligomerization
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of chimeric RPS4TIR protein can trigger cell death in plants (39). Thus, the oligomerization of
these TNLs assembles TIR into an active enzyme for immune signaling. Readers are referred to
two excellent reviews for explanation of the signaling mechanisms downstream of TIR NADase
activity (6, 84).

PORE FORMING AND PROGRAMMED CELL DEATH

HR cell death is thought to limit the growth of biotrophic and semibiotrophic pathogens (82).
In addition to local resistance, HR also confers systemic acquired resistance, which activates a
stronger immune response to secondary infection (37). However, RCD in plants is ill-defined,
and it is not clear how the cell death is executed.

RCD is much better defined in animals. Besides apoptosis, which was first discovered
nearly four decades ago, RCD also includes necroptosis, pyroptosis, ferroptosis, and autophagy-
dependent cell death, to name a few (149). Apoptosis, necroptosis, pyroptosis, and autophagy-
dependent cell death are potentially linked to HR in plants, as discussed by Dickman & Fluhr
(31). The pore-forming activity of the ZAR1 resistosome suggests a resemblance of plant HR
cell death to necroptosis or pyroptosis, both of which involve pore-forming proteins and are inti-
mately linked to immune responses (Figure 3). It is thus useful to discuss and compare HR with
necroptosis and pyroptosis.
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Figure 3

Pore forming by ZAR1 resistosome, MIXED LINEAGE KINASE LIKE (MLKL), and gasdermin D (GSDMD). (a) RKS1 directly
binds to a leucine-rich repeat domain of ZAR1 in the resting state. Uridylylated PBL2 (PBL2UMP) is recruited specifically to the
ZAR1-RKS1 complex to induce oligomerization of ZAR1 and expose an N-terminal α1 helix for plasma membrane (PM) association.
(b) In the resting state, the MLKL protein exists as a monomer in animal cells. Upon activation by upstream stimuli, RECEPTOR-
INTERACTING SERINE/THREONINE KINASE 3 (RIPK3) phosphorylates the pseudokinase domain of MLKL, allowing MLKL
to oligomerize through the four-helix bundle and form pores in the PM. (c) In the resting state, the C terminus of GSDMD binds with
the N terminus (GSDMD-NT) to inhibit the pore-forming activity. Caspases activated by inflammasomes cleave the linker between
two domains and release GSDMD-NT, which then oligomerizes in the PM to form pores. Abbreviation: p, phosphorylation.
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MLKL and Necroptosis

In necroptosis and pyroptosis, the dying cell loses membrane integrity, lyses, and releases cellular
contents and cytokines. This is in contrast to apoptosis, during which the dying cell forms apop-
totic bodies enclosed with intact membranes that are then engulfed by phagocytic processes (149).

Necroptosis can be triggered by multiple stimuli, including those that activate transmem-
brane and intracellular immune receptors (149). Necroptosis is regulated by RECEPTOR-
INTERACTING SERINE/THREONINE KINASE 3 (RIPK3) and various upstream proteins,
depending on specific stimuli, and is executed by the MIXED LINEAGE KINASE LIKE
(MLKL) protein. For example, stimulation of TUMOR NECROSIS FACTOR RECEPTOR
activates RIPK1, which then interacts with RIPK3 to form a complex called a necrosome. RIPK3
then phosphorylates the MLKL protein to stimulate the oligomerization of the latter protein (60,
178).The oligomerizedMLKL inserts into the plasmamembrane (PM) to form a pore and trigger
necroptosis (Figure 4). RIPK3-dependent necroptosis can also be activated by Toll-like receptors
through TIR-DOMAIN-CONTAINING ADAPTER-INDUCING INTERFERON-β.

The mammalian MLKL protein contains an executor domain at the N terminus, a brace
region containing two brace helices, and a C-terminal pseudokinase domain. The executioner
domain forms a four-helix bundle as observed in the mouse MLKL structure, whereas an
additional helix at the top of the four-helix bundle exists in human MLKL (114, 145). Although
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Comparison of hypersensitive response (HR) cell death with necroptosis, pyroptosis, and apoptosis. (a) The resistosome pore in the
plasma membrane (PM) (or other cellular membrane) may act as an ion channel to regulate the execution of regulated cell death.
Nucleotide-binding leucine-rich repeat receptor (NLR)-mediated HR cell death is associated with morphological changes, including
cytoplasmic shrinkage, mitochondrial swelling, chromatin condensation, the release of damage-associated molecular patterns (DAMPs),
perturbed membrane integrity, and the development of chloroplastic stromules. (b) In necroptosis, the MIXED LINEAGE KINASE
LIKE (MLKL) pore formed in the PM may act as an ion channel to regulate unknown components that execute cell killing. The dying
cell swells gradually and eventually explodes, which likely involves an alteration of turgor pressure. The dead cell displays membrane
disruption, mitochondrial swelling, chromatin condensation, DNA damage, and the release of DAMPs. (c) The formation of a
gasdermin D (GSDMD) pore initiates pyroptosis. The dying cell forms pyroptotic bodies and releases small proteins such as IL-18 and
IL-1β before cell lysis. In addition, the cell shows mitochondrial swelling, chromatin condensation, DNA damage, and the release of
DAMPs. (d) In apoptosis, the cell forms membrane bubbles called apoptotic bodies, which are enclosed by intact cell membrane.
Intracellular contents are not released during apoptosis.
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the oligomer of the four-helix bundle is thought to form a pore in the PM, biochemical studies
have suggested that the MLKL pore is composed of a trimer, tetramer, hexamer, octamer, or
higher-order polymer of the MLKL protein (121, 122, 170). Structure studies are needed to
advance our understanding of the MLKL-dependent pore-forming mechanism.

In MLKL-mediated necroptosis, the cell swells gradually and consequently explodes like an
overinflated balloon (20, 182) (Figure 4). Several competing models have been proposed for cell
death triggered by the MLKL pore (184). The MLKL pore may directly cause PM lysis. Alter-
natively, MLKL may function as an ion channel or activate downstream ion channels to alter
osmotic pressure, leading to PM rupture. It was reported that MLKL assembled in vitro possesses
cation channel activity, which is preferentially permeable to Mg2+ (168). However, it is unknown
whether the Mg2+ channel activity is required for necroptosis and how Mg2+ influx may trigger
necroptosis.

A secondary structure–based search identified three Arabidopsis proteins with domains simi-
lar to the MLKL pore-forming domain (107). These are subdivided into subfamily I (AtMLKL1
and AtMLKL2) and subfamily II (AtMLKL3). The structure of AtMLKL3 showed that it indeed
adopts a similar fold as the mouse and human counterparts. Both AtMLKL2 and AtMLKL3 form
tetramers in vitro in which pore-forming domains are completely buried, suggesting an inactive
oligomer. The Atmlkl triple mutant is impaired in disease resistance mediated by the TNLs RPP4
and RRS1-RPS4 but shows normal disease resistance mediated by CNLs RPS2 and RPM1. The
RPS4- and RPM1-triggered HR, however, remains normal in triple mutants. Nonetheless, over-
expression of the AtMLKL pore-forming domain in protoplasts can induce cell death. It remains
unknown whether any of the AtMLKLs function as an executor in HR during ETI.

Gasdermins and Pyroptosis

Pyroptosis is triggered by inflammasomes and executed by a family of pore-forming proteins called
gasdermins (GSDMs;Figure 3),which exist in vertebrates only (13).Among these,GSDMDplays
a central role in RCD, which is mediated by canonical and noncanonical inflammasomes. gsdmd
mutants are completely blocked in LPS-triggered pyroptosis in HeLa and iBMDM cells (139).

All GSDM members except DFNB59 contain a highly conserved pyroptosis-triggering do-
main at the N terminus (GSDM-NT), a repressor domain at the C terminus (GSDM-CT), and a
variable linker connecting the two domains. The activation of the NLRP3 inflammasome by the
bacterial toxin nigericin and of the NLRC4 inflammasome by bacterial flagellin recruit caspase 1,
which cleaves GSDMD to release GSDMD-NT. The latter localizes to the PM by anchoring to
phosphatidylinositol 4-biphosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PI4,5P) on
the inner leaflet of the cell membrane to form a pore (32, 139) (Figure 3).

The high-resolution structure of the GSDMA3-NT membrane pore provides the pore-
forming mechanism of GSDMs (130). The GSDMA3-NT pore contains 26–28 protomers with
two rings, of which the top ring inserts into the membrane and the bottom ring is soluble.The size
of the inner diameter is approximately 180 Å, which may permit the exchange of contents between
the cytoplasm and extracellular spaces. The proinflammatory cytokine IL-1β with a molecular di-
ameter of ∼5 nm is secreted into the extracellular space in a GSDMD-dependent manner before
membrane rupture (74, 169). Furthermore, expression of GSDMD-NT rapidly induces an influx
of Ca2+ and Na+ and an efflux of K+ (20). Nonselective ion flux is not expected to increase os-
motic pressure inside the cell, and ion flux mediated by GSDMD-NT does not appear to directly
kill the cell. It should be noted, however, that efflux of K+ is known to secondarily activate the
NLRP3 inflammasome that may contribute to cell death (112), and this is also relevant to ion flux
triggered by the MLKL pore discussed above.
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Compared to necroptosis, GSDMD-mediated pyroptosis displays modest cell swelling and
forms membrane bubbles called pyroptotic bodies before cell lysis (20, 31, 182) (Figure 4). How
GSDMs trigger cell rupture requires future investigation.

The ZAR1 Resistosome Pore and Hypersensitive Response

The funnel-shaped structure formed by the α1 helix of ZAR1 is amphipathic in nature, which is
suggestive ofmembrane association (158).Protein fractionation experiments indeed supported the
idea that the funnel structure is associated with the PM. Mutations that abolish ZAR1 oligomer-
ization or alter the hydrophobic exterior of the α1 helix can all disrupt PM localization, cell death
triggering, and immune function of ZAR1, supporting the idea that the ZAR1 resistosome forms
a pore in the PM to trigger RCD and signaling (Figure 3). Although the ZAR1 protein frac-
tionation experiments support a PM association, further experiments are needed to determine the
dynamic of resistosome assembly in the plant PM and test whether an interaction with specific
phospholipids in the PM is involved.

The ZAR1 resistosome pore predicted by the structure has an inner diameter of 10 Å, and
the interior contains carboxylate rings formed by glutamate residues at positions 11 and 18. Si-
multaneous mutation of the two residues compromises ZAR1-triggered cell death and disease
resistance, which indicates that the interior space of the pore plays a key role in ZAR1-triggered
immunity (65, 158). Two additional glutamate residues at the base of the pore (positions 130 and
140) also appear to form carboxylate rings (14), but their functional importance is unknown. The
negatively charged residues in the ZAR1 pore are positioned in a way similar to that of the mito-
chondrial calcium uniporter, the calcium release-activated calcium channel ORAI, and the calcium
channel ryanodine receptor RyR2, as noted by Kobe and colleagues (14, 62, 117, 120). Although
these findings point to an ion channel function of the ZAR1 resistosome pore, electrophysiological
experiments are urgently needed to establish such a role.

Modeling of secondary structures showed that the MLKL four-helix bundle is similar to the
pore-forming domain of the fungal HET-S protein, which triggers RCD that prevents fusion of
mycelia from incompatible strains (27). Similarmodeling suggested that the CC andCCR domains
of several plant NLRs, including ZAR1, ADR1s, and NRG1s, also adopt similar folds as found in
the MLKL and HET-S pore-forming domains (8, 72). These observations suggest a common
mechanism of cell death control across different kingdoms and imply that the mechanism under-
lying ZAR1 HR also applies to RNLs (6, 72, 84), which mediate TNL HR and signaling. This
raises a question as to whether RNLs oligomerize in HR execution. Consistent with this possibil-
ity, mutations that perturb the ADP-mediated stabilization of inactive conformation in Arabidopsis
ADR1-L2 andNRG1 result in autoactivation and trigger cell death (119, 129).This autoactivation
requires the P-loop, which is consistent with the role of ATP-induced oligomerization. Further-
more, theN. benthamianaNRG1 requires the P-loop for the helper function downstream of Roq1
(126). NRG1s are reported to localize to the endoplasmic reticulum (ER) (167), whereas ADR1s
have been implicated to associate with PM-localized surface receptors (123). An outstanding ques-
tion is whether RNLs form pores in the PM or ER for HR execution. The similarity of the ZAR1
CC and RNLCCR domains to the pore-forming domains of HET-S andMLKL proteins implies
a cell death mechanism similar to necroptosis.

HR is associated with morphological changes such as cytoplasmic shrinkage, chromatin con-
densation, organelle dynamics, and perturbed membrane integrity (113) (Figure 4). The final
stage of HR involves cell membrane rupture, as indicated by electrolyte leakage associated with
ETI and staining of dead cells by cell membrane–impermeable dyes. As with necroptosis and
pyroptosis, the resistosome pore may or may not directly cause membrane lysis. Morphological
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features of the dying cell at early phases of HR need to be documented in real-time. It remains
to be determined whether RCD during HR is also preceded by cell swelling in a way similar to
necroptosis and pyroptosis.

The possibility that the ZAR1 resistosome pore acts as an ion channel is particularly relevant
to the onset of HR (Figure 4), as Ca2+ serves as a secondary messenger and plays a central role in
plant NLR-triggered immune responses. An early study showed that the recognition of AvrRpm1
and AvrB triggers a prolonged Ca2+ influx mediated by RPM1 (54). Furthermore, LaCl3, a chan-
nel blocker, is sufficient to prevent cell death triggered by RPM1 and ZAR1 (40, 54, 158). The
increase of cytosolic Ca2+ has been shown to regulate several components in ETI. Loss of two
Ca2+-dependent protein kinases, CPK1 and CPK2, compromised RPM1- and RPS2-triggered
cell death (48). Reactive oxygen species (ROS) produced by two NADPH oxidases, RbohD and
RbohF, are a major source of pathogen-triggered apoplastic ROS, which contribute to NLR-
mediated cell death (152). A prolonged elevation of cytosolic Ca2+ concentration can potentially
activate ROS production, which in turn enhances cell death (125). It remains unknown whether
ROS act as a signal or executor of RCD during HR.

It should be noted that NLR-triggered cell death is unlikely to be limited to activity in the PM,
as different subcellular localizations have been reported for various NLR proteins (167). It has
been reported that viral and bacterial effectors can trigger the fusion of the central vacuole mem-
brane with the PM in the early phases of HR (58). Pharmacological experiments suggested that the
vacuole–PM fusion is required forHR. It is interesting to note that vacuolar proteins are detectable
in the extracellular spaces after pathogen inoculation, suggesting a possible role of membrane
fusion in the release of vacuolar contents to extracellular spaces. After effector recognition,
multiple NLRs trigger a prolonged activation of MPK3/6, which inhibits photosynthetic activity
and promotes HR (144). In addition to photosynthetic inhibition, chloroplastic stromules are
induced at the beginning of HR, which is triggered by viral and bacterial effectors (15, 33). These
stromules connect chloroplasts to the nucleus, which may transfer proteins and H2O2 into the nu-
cleus (113). Whether and how a resistosome activates the aforementioned processes await future
investigation.

SIGNALING BY RESISTOSOME

Although the pore-forming activity of the ZAR1 resistosome provides a mechanism for RCD,
whether and how this triggers a complex array of downstream responses remain unknown. In this
section, we discuss insights from the most recent studies and issues that require attention.

Signals Generated by the Resistosome Pore

The ZAR1 resistosome may trigger a calcium flux by itself or through other calcium channels
to regulate downstream signaling. The transcription factor calmodulin binding protein 60-like g
(CBP60g) binds with calmodulins to promote the expression of salicylic acid biosynthesis path-
way genes, which constitutes a link between Ca2+ and disease resistance (147, 185). Arabidopsis
metacaspases contain nine members, which are further divided into types I (AtMC1–AtMC3) and
II (AtMC4–AtMC9). MC1 and MC2 antagonistically regulate RPM1-triggered cell death (23).
Type II MCs promote the maturation of plant elicitor peptides (Peps) by cleaving precursors of
Peps (PROPEPs) in a Ca2+-dependent manner during cell damage or upon treatment of the bac-
terial flagellin epitope flg22, although the role of type IIMCs inNLR-mediated signaling remains
unknown (57, 138).

After cell membrane rupture, animal cells release DAMPs such as calreticulin, high-mobility
group box 1 (HMGB1),ATP,heat-shock proteins, peptides, andDNA,which trigger inflammatory
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responses (81). During pathogen infection, plants also release DAMPs, including HMGB3, ATP,
NAD(P)H,DNA, sucrose, peptides, and oligogalacturonides, some of which are recognized by cell
surface receptors to enhance immune responses (21). For instance, genetic depletion of BRASSI-
NOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and
its closest paralog BKK1, which are coreceptors of surface immune receptors, leads to autoim-
munity in a manner dependent on ADR1s (166), suggesting that these coreceptors are monitored
by unknown sensor NLRs. Interestingly, the autoimmune phenotype of the bak1 bkk1mutant re-
quires perception of Peps by cell surface receptors PEPR1/2 (173).Whether Peps serve as DAMPs
in bona fide ETI signaling remains unknown.

Transcriptional Regulation by NLRs

During ETI, some NLRs localize or relocalize into the nucleus to activate transcriptional re-
programming. For example, the rice CNL PigmR interacts with transcription factor PigmR-
INTERACTING and BLAST RESISTANCE PROTEIN 1 (PIBP1) in the nucleus to trigger
defense-related gene expression (177). In addition, CNLs, such as Pb1, BPH14,MLA10, Pi9, Piz-
t, PID3 and Rx, and TNLs, such as RPS4, SNC1, and N, have been reported to localize in the
nucleus and/or associate with transcription factors (64, 69, 118, 137, 172, 186). It remains to be
determined whether resistosome formation is required for the nuclear action of these NLRs. A re-
cent study showed a key role of RNLs in transcriptional regulation downstream of sensor NLRs,
including both CNLs and TNLs (131). How RNLs regulate defense gene transcription remains
to be elucidated. It is not clear whether some of the RNL proteins are localized in the nucleus
after activation by upstream sensor NLRs.

Cross Talk with Cell Surface Receptors

ETI and PTI are known to share similar immune responses, although time and intensity differ.
Several key immune components display a similar phosphorylation change during PTI and ETI,
although the underlyingmechanism remains unclear (73).Recently, two independent studies show
that cell-surface receptors synergistically function with NLRs to fully activate disease resistance
and immune responses, including ROS accumulation, callose deposition, MAPK activation, de-
fense gene induction, and HR (115, 176). The mechanism underlying this synergistic action is
not clear but likely involves NLR-dependent transcriptional activation of PTI pathway genes and
BIK1-mediated phosphorylation of RBOHD.

Increasing evidence indicates that helper NLRs are involved in not only ETI but also PTI.
Among these, NRC2 and NRC3 from N. benthamiana are required for immune signaling of the
cell surface immune receptors Cf-4 and LeEIX2, which recognize the apoplastic effector Avr4 of
Cladosporium fulvum and ethylene-inducing xylanase (EIX) from multiple fungi, respectively (46,
164). SlNRC4a can associate with LeEIX2, suggesting a potential link between NLRs and cell
surface receptors (87). Both Cf-4 and LeEIX2 are RLPs known to trigger HR upon activation.
Their link to NRCs provides an explanation for HR activation, likely through pore-forming ac-
tivity of the MADAmotif. A more recent study showed that Arabidopsis ADR1s and several RLCK
VII members are required for immune responses mediated by RLPs, such as RLP23, RLP32,
and RLP42, which recognize ethylene-inducing peptide 1–like proteins, proteobacterial trans-
lation initiation factor 1 (IF1), and fungal polygalacturonases, respectively (123). Similar to the
interaction of SlNRC4a and LeEIX2, ADR1s associate with multiple RLP complexes. However,
ADR1s are dispensable for immune signaling of the RKs FLAGELLIN SENSING 2 (FLS2) and
ELONGATION FACTOR RECEPTOR (EFR), suggesting a specific link between RNLs and
RLPs (123). These exciting findings point to a central role of helper NLRs in the integration
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of PTI and ETI. Future studies are needed to elucidate the interplay between helper NLRs and
canonical PTI components.

SUMMARY POINTS

1. Ligand-induced oligomerization is a common mechanism for the activation of plant
NLR proteins.

2. Structures of the ZAR1, RPP1, and Roq1 resistosomes provide a multitude of insights
into plant NLR activation and clues to downstream signaling.

3. Clustering of plant NLR signaling domains, including CC and TIR, in the center of the
ringed structure of resistosomes initiates immune signaling.

4. The N terminus of ZAR1, and likely many other CNLs, forms a funnel structure that
creates pores in cellular membranes.

5. The ZAR1 resistosome pore triggers cell death in a way analogous to animal pore-
forming proteins that trigger necroptosis and pyroptosis.

6. NLRs and surface receptors are intimately linked in the activation of immune signaling.

7. Helper NLRs function in both RLP-mediated PTI and sensor NLR-mediated ETI.

FUTURE ISSUES

1. The association of the ZAR1 resistosome with the plasma membrane needs to be fully
established.

2. Electrophysiology experiments are needed to test whether the ZAR1 resistosome indeed
possesses ion channel activity.

3. Pore forming does not appear to disrupt the membrane directly, and the mechanism
underlying RCD requires further investigation.

4. How pore-forming resistosomes activate immune signaling, particularly transcriptome
programming, remains to be elucidated.

5. It is urgently needed to identify proteins that interact with the activated resistosome and
elucidate their role in RCD and immune signaling.

6. Mechanistic details are needed to fully understand the PTI-ETI cross talk.
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