
PY60CH16_Garrett ARjats.cls August 10, 2022 17:29

Annual Review of Phytopathology

Climate Change Effects on
Pathogen Emergence: Artificial
Intelligence to Translate Big
Data for Mitigation
K.A. Garrett,1,2,3 D.P. Bebber,4 B.A. Etherton,1,2,3

K.M. Gold,5 A.I. Plex Sulá,1,2,3 and M.G. Selvaraj6
1Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
email: karengarrett@ufl.edu
2Food Systems Institute, University of Florida, Gainesville, Florida, USA
3Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
4Department of Biosciences, University of Exeter, Exeter, United Kingdom
5Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Sciences,
Cornell AgriTech, Cornell University, Geneva, New York, USA
6The Alliance of Bioversity International and the International Center for Tropical Agriculture
(CIAT), Cali, Colombia

Annu. Rev. Phytopathol. 2022. 60:357–78

First published as a Review in Advance on
June 1, 2022

The Annual Review of Phytopathology is online at
phyto.annualreviews.org

https://doi.org/10.1146/annurev-phyto-021021-
042636

Copyright © 2022 by Annual Reviews.
All rights reserved

Keywords

artificial intelligence, climate change, decision support, geographic risk,
plant disease, remote sensing

Abstract

Plant pathology has developed a wide range of concepts and tools for im-
proving plant disease management, including models for understanding and
responding to new risks from climate change. Most of these tools can be
improved using new advances in artificial intelligence (AI), such as machine
learning to integrate massive data sets in predictive models. There is the po-
tential to develop automated analyses of risk that alert decision-makers, from
farm managers to national plant protection organizations, to the likely need
for action and provide decision support for targeting responses. We review
machine-learning applications in plant pathology and synthesize ideas for
the next steps to make the most of these tools in digital agriculture. Global
projects, such as the proposed global surveillance system for plant disease,
will be strengthened by the integration of the wide range of new data, includ-
ing data from tools like remote sensors, that are used to evaluate the risk of
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Weather: conditions
in the atmosphere,
including temperature,
precipitation, and
humidity

Climate: long-term
weather patterns at a
location, including
mean conditions,
variability in
conditions, and
extreme conditions

Artificial intelligence
(AI): intelligence
exhibited by machines
allowing them to
respond to input and
give a response toward
a defined goal

Decision support
systems (DSSs):
computer programs to
support decision-
making based on
available data and
priorities

Regression analysis:
method for estimation
of the relationship
between a response
variable and one or
more predictor
variables

Big data: data sets
large enough to
challenge older
computing systems,
and sometimes
assembled with
differing collection
processes

plant disease. There is exciting potential for the use of AI to strengthen global capacity building
as well, from image analysis for disease diagnostics and associated management recommendations
on farmers’ phones to future training methodologies for plant pathologists that are customized
in real-time for management needs in response to the current risks. International cooperation in
integrating data and models will help develop the most effective responses to new challenges from
climate change.

INTRODUCTION

Plant disease has major effects on agricultural crop yield, quality, and safety (121, 126) and invasive
pathogens threaten natural systems, such as forests, globally.Weather factors like temperature and
moisture availability are well-known for their role in plant disease risk. Seasonal and interannual
variations in weather offer plenty of challenges for disease management decision-making. Climate
change adds to these challenges by shifting the range of weather scenarios at most locations glob-
ally, often producing newweather patterns that locations have not previously experienced.Climate
change effects on plant disease have been a focus of interest for decades, but data availability and
modeling options have often been a limiting factor in analyses (13, 34, 62, 76, 78, 115, 122). Inva-
sions of plant pathogens into new regions are also an ongoing threat (30, 50), and climate change
has the potential to increase invasion risk. The effects of climate change and pathogen invasions
converge with greater human populations and demands for resources as well as with societal dis-
ruptions due to human epidemics, political instability, and conflicts.

At the same time, technologies with the potential to support plant disease mitigation continue
advancing. Currently, many national programs and institutions are emphasizing the development
of artificial intelligence (AI) across scientific disciplines. AI offers opportunities for improving sev-
eral components of systems for plant disease management (Figure 1). The potential applications
include improved decision support systems (DSSs) from on-farm to global policy making, crop
breeding,microbiome formulation, postharvest management, robotic management of disease, and
systems to support capacity building for plant health personnel globally. Discussions of AI often
feature both the great possibilities and the potential hype surrounding AI. Previous periods of AI
hype were followed by so-called AI winters when scientists and institutions lost interest in AI as
promises were not realized.Will plant pathology soon move into an AI winter or will the promises
of AI be realized in the short run? Some familiar aspects of AI, such as regression analysis, are likely
to remain important tools in plant pathology into the future. It remains to be seen what roles less
familiar aspects of AI, such as robotic disease management, will play in the future in agricultural
production, where profit margins may be small. It also remains to be seen whether benefits from
large-scale data integration can be spread equitably and translated effectively for people globally,
including those who experience food insecurity and/or depend on agriculture for their livelihoods.

In this synthesis, we address current and future potential applications of AI to translate expand-
ing big data availability for mitigation of emerging plant diseases. Understanding and predicting
changes in disease risk are important goals for climate change adaptation of agriculture and ecosys-
tem management. The more common availability of big data from global climate and remotely
sensed data to genomics and phenomics can support mitigation of these risks. We present an
overview of how climate change is affecting disease risk, new AI options for understanding and
addressing threats to plant health, the potential for remote sensing, and considerations for making
the benefits of new analyses widely available.We hope that the new potential of tools for translat-
ing data to inform disease management and supporting global cooperation will inspire and spark
the imagination of the next generation of plant pathologists.
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Figure 1

Artificial intelligence (AI) can integrate key spatiotemporal data in models of the effects of climate on emerging disease risk, generate
maps of geographic priorities for surveillance and mitigation strategies, and translate these analyses in practical tools for stakeholders. A
repeating cycle of integration and analyses can fine-tune responses in a globally coordinated system for climate change adaptation.
Abbreviations: NPPOs, national plant protection organizations; RPPOs, regional plant protection organizations.

CLIMATE CHANGE EFFECTS ON PLANT DISEASE

Two related conceptual frameworks can help us consider climate change impacts on plant dis-
ease risk. First, the disease triangle describes the interactions between the pathogen(s), the plant
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Remote sensing: use
of non-ground-based
imaging systems to
obtain information
about processes and
events

host(s), and the environment in causing plant disease (56). Host–pathogen interactions include
the virulence of the pathogen against particular host genotypes; host–environment interactions
include the role of drought stress in promoting disease; and pathogen–environment interactions
include the role of temperature in determining rates of pathogen life-cycle processes like growth
within the host or spore germination. To fully understand and predict climate change effects on
plant disease we must, theoretically, understand not only the details of these interactions and pro-
cesses (63) but also the ways in which the climate will change in the future. Second, the biotic–
abiotic–migration (BAM) model (141) states that species distributions are determined by regions
with suitable availability of resources (susceptible hosts), environmental conditions (climate), and
the ability of the species to reach them (dispersal). In the BAM framework, the geographical loca-
tions where these three regions intersect are where the species will be found, and climate change
could influence all three (13).

Making projections of future plant disease risks under climate change requires models that link
responses of pathogens and hosts to climatic variables with estimates of past, current, and future
climates. The estimation of microclimates experienced by organisms based on large-scale climate
data is itself a complex process (15, 24). Understanding current (4) and future (124) host plant
distributions is another complex component of future risk. Here, we focus on the responses of
fungi and oomycetes to climate change, the pathogen–environment side of the disease triangle,
but climate is also important for other pathogen groups (77).

The range of models used in plant disease epidemiology, from relatively simple statistical ab-
stractions of relationships between climate and disease to detailed mathematical descriptions of
life-cycle processes, mirrors that found in species distribution modeling within the discipline of
biogeography (44). Plant pathogens have life cycles that involve infection of the host, growth
within the host, and dispersal to new hosts. Each process is affected by climate and thus by climate
change. The rust fungi, order Pucciniales (Basidiomycota), are important plant pathogens of agri-
culture and forestry and often exhibit complex life cycles with alternate hosts and overwintering
stages connected by the dispersal of a range of spore types. Each stage can be variously affected
by temperature, relative humidity, precipitation, wind, and sunlight, making modeling of climate
impacts potentially complex. In a simple infection model for leaf stem rust (Puccinia graminis) that
considered only the infection of leaves by germinating urediniospores (84), infection occurred
only when leaves were wet and under high light availability, with a rate dependent on temper-
ature. A more complex model considered not only the infection process but also UV and frost
effects on spore survival, temperature-dependent spore production, wind- and turbulence-driven
spore release and dispersal, and wet and dry deposition of spores onto crops (119). When driven
by climate projections, both models found that future disease risk was determined by leaf surface
wetness and temperature responses of infection. In the complex model, changing probabilities of
long-distance dispersal were of secondary importance.Another comparison of the simple infection
model with a more complex, spatially explicit dispersal model, this time for wheat stripe (yellow)
rust (caused by Puccinia striiformis f. sp. tritici), found good agreement between both models with
indirectly observed disease incidence (105).

Infection risk has been called the gateway to rust epidemics (82) and is thus the focus of many
analyses of climate change impacts on disease risk. Leaf surface wetness, or high relative humid-
ity, is a prerequisite for spore germination and penetration of the leaf surface for many fungal
and oomycete pathogens. Climate change influences moisture regimes and thus disease risk. A
fascinating paleoecological study spanning a 49,600-year period illustrates the role of moisture
as a limiting factor in plant disease (155) in the Atacama Desert, Chile. Contemporary examples
confirm an important role for moisture, for example, in the abundance and species richness of
fungal plant pathogens in the phyllosphere (31) and in the elevational shift of white pine blister
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Machine learning:
development of a new
structure by
algorithms, such as a
classification system
for plant images as
healthy or
symptomatic

Ensemble models:
models that combine
the predictions of
multiple models, often
performing better than
the best individual
model

rust (Cronartium ribicola) in the Sierra Nevada mountain range in California as the climate warmed
and dried over recent decades (48).

Where moisture is nonlimiting, temperature-dependent infection rates become the primary
driver of disease risk. In soils, temperature is the most important determinant of fungal distribu-
tions in general (151) and fungal pathogen distributions in particular (42). A dearth of distribution
data has hampered our understanding of how different climate drivers influence plant disease (13).
However, a recent analysis of historical agricultural data across China provides strong evidence
that changing temperatures exert the strongest control over pest and disease impacts, with climate
change projected to double the relative area affected by pests and diseases by the end of the twenty-
first century under a high emissions scenario (152). Chaloner et al. (28) collated experimentally
determined temperature responses of several biological processes (e.g., growth in culture, infec-
tion rate, disease development, spore germination) for hundreds of fungal and oomycete plant
pathogens, then used these to project infection risk for twelve crops under several climate change
scenarios (29). Disease risk was compared to projected crop yield, revealing latitudinal shifts in
both, finding that where climate change could improve crop yields, disease pressure will increase,
and vice versa. The authors compared infection models with and without moisture limitation,
finding little difference in regional-scale estimates between the two. Moisture could become a
limiting factor in some regions under climate change, but future humidity and rainfall projections
are far less well constrained than temperature projections (73). Although the effects of climate
change on plant–pathogen interactions are extremely complex and both climate projections and
climatic controls on biological processes remain poorly understood, observational data andmodels
suggest two broad conclusions: first, that temperature is usually the most important determinant
of disease risk and, second, that in locations where plants will benefit from climate change, their
pathogens will also tend to benefit.

ARTIFICIAL INTELLIGENCE: OVERVIEW OF CONCEPTS
AND POTENTIAL

Machine Learning

Plant pathology has used statistical methods extensively for decades, including methods like re-
gression analysis that are generally considered part of machine learning. Machine learning can be
thought of as encompassing statistical methods in general as well as providing new approaches, ex-
panding to prediction and classification using massive data sets such as images and videos. Older
statistical methods often emphasize inference and estimation, whereas newer machine learning
methods often emphasize prediction (25, 51, 72); of course, in many cases, scientists and practi-
tioners want outcomes to be both explainable and predictable. Common statistical applications
in plant pathology over the years that emphasize estimation and attribution include the analysis
of designed experiments in which disease severity may respond to experimental treatments like
differing host genotypes, environmental variables, and pathogen traits. The goals of these exper-
iments would often include understanding the mechanisms underlying the relationships between
predictors such as host genotype and responses such as disease severity. Other types of machine
learning methods that are newer to plant pathology are often used in contexts where prediction
is the main goal and there may be less emphasis on estimation. Examples where prediction is the
emphasis would include categorizing images as indicating the presence or absence of disease.

Machine learning has active communities developing improved algorithms, driven by a wide
range of applications as well as contests and other opportunities to directly compare algorithm
performance. The structure of machine learning algorithms often facilitates direct comparison of
the performance of different algorithms and ensemble models in applications. For example, many
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Hyperparameters:
assigned values that
control the fitting
process of machine
learning algorithms,
such as the number of
iterations

Deep learning: subset
of machine learning
that develops
predictions based on
multiple (deep) layers
of representations of
data

Neural networks:
potential components
of deep learning layers,
named because their
structure has been
inspired by human
neuron connections

Digital agriculture:
agricultural systems
that incorporate digital
devices to collect and
analyze spatiotemporal
data to guide actions

Value of information:
the improvement in
outcomes when
decision-making is
based on information
compared to outcomes
without the
information

types of machine learning algorithms were compared in an analysis of surveillance strategies for
Xylella fastidiosa (96). Algorithms often include wrappers that can be used to find optimal values
of hyperparameters and other parameters and to build new models based on the shortcomings
of earlier models. Cross-validation is used to evaluate predictions for data that were not used in
learning the model, where it is important to structure cross-validation correctly in terms of the
data sampling structure and potential confounding factors (11, 51).

All the options for optimization in machine learning also have the potential to result in over-
fitting, i.e., constructing a predictive model that is overly specific to the data used for learning. A
common weakness in machine learning is the inability to perform with new types of data. This is a
particular concern in the context of climate change, where new combinations of hosts, pathogens,
and environments occur. Any type of prediction of complex systems will be challenged by situa-
tions that are not represented well in the data used in formulating models, i.e., that lack statistical
support. Global analyses generally include a good share of interpolation and extrapolation, but do
the same methods that provide interesting global perspectives also provide predictions that are
useful for finer-scale economic decision-making?

Advances in deep learning methods have made new options available for extremely detailed
data sets such as images and videos (133) as well as weather prediction (131).Neural networks have
also been used for decades in plant pathology, such as in epidemiology (43) and remote sensing
(160).Now greater computational speed broadens the opportunities for using deep learning.Deep
learningmethods also have some potential limitations, such as their need for large data sets, or data
hungriness, their weaknesses in dealing with changing conditions, their limited ability to integrate
with past knowledge, and that they generally provide analysis of correlation rather than causation
(95). Combining deep learning methods with other approaches has the potential to provide the
best of both worlds.

Robotics

Digital agriculture also has the potential to incorporate robotics into diseasemanagement.Ground
robots may offer value to disease management through both automated detection and targeted
management. Proximal sensing systems deployed in the field on ATVs, tractors, or autonomous
rovers with onboard computer vision can aid experts in monitoring larger areas than human scouts
could feasibly cover (20, 71, 89). Applying UV-B light supports powdery mildew management
and automated light application has been implemented for high-value crops such as grape and
strawberry (111, 145). Robotics may be useful for targeted application of pesticides, perhaps es-
pecially for high-value crops like grapes (108). There are interesting possibilities for epidemic
calculations to be incorporated in decision-making by digital agricultural machinery in the field
or postharvest. These might include detecting disease symptoms, evaluating how far from the ob-
served infection there may already be latent infection, and evaluating disease risk based on data
about recent weather, crop architecture and its effects on microclimate, and other factors. Sequen-
tial sampling schemes could be automated and implemented based on where disease is detected in
the first round of sampling, in combination with other predictor variables, considering the value
of information for decision-making.

Unmanned aerial vehicles (UAVs), or drones, are another interesting option for collecting data
such as images (91, 92), microbes (128), plant tissue samples, and other data from sensors. UAVs
also have the potential to perform field operations based on real-time decisions guided by the
data they collect. However, current applications in agriculture may have limitations because of
regulations and the limited availability of technically skilled operators as well as the need for eco-
nomic returns on investments. The use of UAVs for collecting phenotype images in crop breeding
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(136), where high precision can readily give a substantial economic benefit, seems likely to become
widely established.

THE PLANT DISEASE RESEARCH VALUE CHAIN RESPONDING
TO THE CHALLENGES OF GLOBAL CHANGE

Research in plant pathology constitutes a value chain providing solutions to new challenges from
global change, where AI can make responses to emerging diseases more efficient, including early
detection of emergence (Figure 2). For plant pathosystems, digital twins can be constructed with

Figure 2

Plant health research can be thought of as a value chain providing solutions for each aspect of the disease triangle and their interactions.
Artificial intelligence supports the understanding of the effects of climate change on these interacting factors and provides tools for
research translation to products useful for stakeholders, with feedback from stakeholder testing back to research programs. The
resilience and efficiency of this research value chain will determine whether effective mitigation and adaptation to emerging diseases
occur.
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key data and models that can duplicate the main processes in a system, even for extensive systems
(12). For example, one exciting challenge will be modeling microbiome interactions and under-
standing how to manage them to support plant health (118, 146), where a great number of weak
associations is one issue for inference, as discussed by Efron (51).

In crop breeding for disease resistance to adapt to new disease risks, models support genomics-
assisted breeding (149) and deployment of resistance genes (45). A major bottleneck is the time
required for variety selection and the limited availability of high-throughput field phenotyping
tools to accurately assess phenotypic expressions. Machine learning has made advances in image
analysis for phenotyping (33, 93). Phenomics-assisted disease resistance breeding has advanced
for potato late blight (47, 66) and viruses (67, 117). CGIAR breeding programs routinely use deep
learning and machine learning as the basis for models to accurately classify breeding lines with
resistance to potato late blight (66), Rice hoja blanca virus (41), and banana Xanthomonas wilt
(132), potentially reducing disease scoring time from several days to hours. With developments
in hardware–software technologies, e.g., sensor development and quantum computing, onboard
image/data processing and real-time analysis will become a reality.

DSSs help growers make evidence-based and precise decisions, focusing on optimizing pro-
ductivity and maximizing economic returns on investments. DSSs can start with simple models
and improve with incorporation of more information as it becomes available. Potato late blight has
a long history of weather-based modeling to support within-season management decisions with
straightforward models. For example, the LATE BLIGHT model, initially developed to simulate
late blight epidemics in the Andes (6, 7), was found to perform well over a range of other tropi-
cal environments (5, 17). Late blight models have been reworked to project late blight risk under
coarse-grained climate change scenarios (143), and for finer temporal scales, the BLIGHTSIM
model was developed to take into account diurnal fluctuating temperatures (103). Functionally
represented weather time series are an opportunity to use detailed weather data (135). Under
rapid climate change, new weather patterns may make DSSs more challenging and also poten-
tially more important (61). Postharvest protection of crop products can also be directed by DSSs
to optimize storage and protect consumer health through supply chains, such as via prediction of
mycotoxin content (40). Automated handling of fruits such as apples can also be based on analysis
of fruit images, with the potential for improved management with incorporation of more infor-
mation about disease risk factors in the fields where fruit was harvested.

For regional management and surveillance, understanding of the geographic structure of
weather-based risk through machine learning can be integrated with other risk factors to guide
surveillance and regional mitigation under climate change (96, 139). Risk-based surveillance con-
siders the likely epidemic spread of disease (113, 114). Early in invasions, there are opportunities
to contain invasions, motivating optimization based on limited information (38). Integrating in-
formation about the potential for coordinated management and likely individual management
decisions can also guide regional optimization and decision-making (58, 59). As another exam-
ple of integration, X. fastidiosa was detected in almond orchards by synergic use of an epidemic
spread model and remotely sensed plant traits (26). Integration of information from farmers using
tools such as Nuru (101) for disease diagnosis is another exciting opportunity for citizen science
contributions to disease surveillance.

Strengthening human interfaces with AI can make systems more effective. Explainable AI
(XAI) is an interesting option for further development in plant pathology applications (1, 68,
130). The black-box nature of some machine learning approaches, such as common deep learning
methods, has inspired attention to how to modify methods to both help provide people using
the methods with more insights into systems and incorporate more knowledge from users (130).
Clever Hans effects, named after the horse Clever Hans who responded to cues from trainers
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Text mining:
automated extraction
of information from
text, such as detecting
increased use of words
referring to disease

rather than actually answering the questions he was supposed to be able to answer, can be
observed with deep neural networks. Similarly, machine learning may be driven by confounding
factors in the data. For example, suppose in a training data set one disease generally occurs with
overcast skies but another disease occurs in bright sunlight, or one disease might have been
photographed on younger plants while another was photographed on older plants. These con-
founding visual effects could be important parts of the model developed by the machine learning
algorithm. In XAI, coactive learning with humans is used to revise models and attempt to detect
and explain potential confounding factors, which may be even more important under changing
weather conditions (125). XAI aims to explain the basis for a decision or prediction, although the
explanation may be convoluted to non–data scientists. XAI should aim to be understandable to
non–data scientists, making AI and machine learning more transparent to the general public (87).

Human health offers useful examples of efforts to use AI for disease management. Google
Flu Trends was used in online searches to predict influenza outbreaks and was criticized for big
data hubris, the idea that data quantity can make up for data quality, when its predictions were
not effective (83). Machine learning has proven useful in image analysis for disease diagnostics
(137). In public health and precision medicine, similar issues as those for plant disease are noted,
including the inherent bias when disease is noted but health is not, with even greater privacy
issues (100, 120). Naudé (104) concluded that AI was not impactful in the early response against
COVID-19.

AI is likely to speed up the processes by which people achieve their goals; outcomes are still lim-
ited by human good judgment and imagination and individuals’ access to resources. For example,
speeding up processes in plant pathology could result in more efficient production of megavari-
eties that are vulnerable to rapid pathogen spread when resistance genes are overcome. Systems
may more efficiently externalize costs. Targeting projects for the greatest benefits may be more
efficient, but targeting might be so efficient that considerations not explicitly quantified are lost
(23, 60). There is also the potential for more effective spread of disinformation and the possibility
of misuse of information in agroterrorism.

NEW TYPES OF DATA AND MODELS BECOMING AVAILABLE

A range of new data types are becoming available through remote sensing of plant disease (110),
from volatile profiles (85) to text mining (127).Wemay be approaching what is possible with visual
analysis of disease symptoms,with the potential to improve analyses using sensors (18). Image data
collections support disease classification models (Figure 3) (99), such as a library of foliar diseases
of wheat (21) or cassava disease (120a). As remote sensing becomes a more commonly used tool,
images of larger-scale epidemics may also be assembled in epidemic image collections.

Remote sensing is unique among disease detection methods in its ability to offer passive mon-
itoring. Most risk assessment methods require some sort of understanding of underlying disease
distribution for appropriate calibration; for example, systems that issue action thresholds based on
initial detection, whether via molecular assays or smartphone apps, all require a human to first find
and observe the disease in the environment. Even in small-scale production systems, most fields
are too large for growers to cost-effectively monitor daily or weekly. Remote sensing can inform
plant disease risk assessment by offering the capacity for monitoring at previously unachievable
scales, filling gaps in space and time between labor-intensive field measurements, while reducing
uncertainty in downstream analyses and management decision-making.

Advances in remote sensing will enable high temporal- and spatial-resolution monitoring that
can be used to efficiently deploy high-accuracy ground diagnostics and remediation activities
to diseased plants before epidemics emerge. Imaging spectroscopy, also known as hyperspectral
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Figure 3

Illustration of RGB-based deep learning for detection of (a) banana bunchy top disease (BBTD) symptoms and (b) banana Xanthomonas
wilt (XW) symptoms in a mixed-complex African landscape. Adapted from Reference 132.

imaging, can quantify plant disease in terms of variation in solar radiation interactions with leaves
and canopies. Imaging spectroscopy in the visible to shortwave infrared light range (VSWIR; 400–
2,400 nm) can quantify chemistry in soil, rock, and vegetation based on the interaction of light with
chemical bonds (39). This underlying capacity is what enables the use of imaging spectroscopy for
early and nondestructive biotic stress detection in both natural and agroecosystems (65). Both ben-
eficial (142) and parasitic (93) plant–microbe interactions impact a variety of plant traits that can
be sensed by aerial and spaceborne imaging spectrometers (92, 107). Plant pathogens can change
foliar composition, such as through production of systemic effectors or secondary metabolites, or
by the physical presence of pathogen structures, such as hyphae and spores. Broadband and mul-
tispectral methods relying on visible (400–700 nm) and near-infrared (700–1,000 nm) reflectance
indices, such as the normalized difference vegetation index (NDVI), have been used to sense late-
stage plant disease since the 1980s (75, 102). For example, NDVI is primarily sensitive to total
overall greenness (i.e., green cover) and thus detects green vegetation dieback. Simple indices
such as NDVI that are widely available both commercially and from space agencies are useful for
general targeting and risk assessment but have proven insufficient for disease diagnosis, especially
in multistress environments (35).

Changes in continuous, shortwave infrared (SWIR; 1,000–2,500 nm) wavelengths have proved
valuable for plant disease sensing due to their sensitivity to a range of foliar properties (39), in-
cluding nutrient content (64, 138, 153, 154, 157, 159), water (57), photosynthetic capacity (112),
physiology (134), phenolics (80), and secondary metabolites (36, 37), that are all impacted by dis-
ease. Use of SWIR reflectance from satellites greatly improves disease detection in the absence
of, and/or prior to, a greenness response (16, 49, 98). Historically, narrowband SWIR data have
not been widely available from spaceborne systems.However, this will soon change. Forthcoming
satellite systems with launches planned for the late 2020s such as the European Space Agency’s
Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) (106) and NASA’s
Surface Biology and Geology (SBG) (129) will revolutionize global imaging spectroscopy data
availability. These systems will provide VSWIR hyperspectral imagery at high resolution (30 m)
across the entire globe when launched later this decade.Taken as a constellation, these instruments
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will provide data at weekly or better intervals without cost and will, for the first time, democratize
the availability of such powerful data products.

Integrating objective plant health assessments from these forthcoming, hyperspectral satellite
systems into existing DSSs has the potential to improve risk and economic injury threshold assess-
ment while providing a counterbalance to subjective human ratings without taking the ultimate
decision-making away from the stakeholder (14). This will be particularly useful in regions most
at risk for agri-food change disruptions and downstream impacts on food security and safety. For
example, alert systems connected to remote sensing data could warn when vulnerable plant pop-
ulations are under attack by pathogen, pest, or anthropogenic factors, identifying novel/emerging
risks to both natural and agroecosystem function in the context of climate change and pathogen
spread. This could have a revolutionary impact on low-income countries that cannot financially
support intensive ground monitoring for emerging threats. Challenges for implementation may
include unsupportive local governments, lack of equipment and support infrastructure, and pre-
ventative material export laws. Remote sensing with next-generation systems can offer a path
around these historical challenges by funneling resources and expertise from high-income coun-
tries to global regions most in need.

Imagery from space agency satellites is an ideal foundation for risk assessment tools, as the
data are free and any changes to accessibility are announced well in advance. But just because the
data are freely available does not mean that they are universally accessible. For example, NASA’s
Airborne Visible and Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has oppor-
tunistically captured VSWIR imagery of almost one million acres of vineyards in California over
the past 5 years during missions focused on nonagricultural objectives (147), but better tools and
user interfaces for accessing, searching through, and processing archived imagery for nonexpert
users will be essential for utilizing spaceborne data to their fullest potential. The key to achieving
this goal will be interdisciplinary training and collaboration between plant pathologists and engi-
neers, computer scientists, and remote sensing experts to build usable decision support and risk
assessment systems for both researchers and stakeholders (70).

Biotic stress is the result of dynamic interactions between living organisms within ever-
changing micro, meso, and macroclimates. The unique challenges associated with studying crop
disease have yielded a discipline far behind other agricultural sensing domains, such as nutrition
and water management, which have seen major advances at the satellite scale in recent years.Mul-
tiple diseases and abiotic stresses may occur in the same target sensing zone. Learning how to
effectively distinguish these at scale is essential because mitigation resources are limited, and en-
demic versus invasive diseases require different urgency in response. It is unreasonable to expect
hyperspectral satellites to perfectly differentiate all crop stresses at all target stages of assessment
from the spaceborne resolution, but, for example, it has recently been established that abiotic
and biotic stresses with similar visual appearance (i.e., wilting) but different origins have diver-
gent spectral pathways, which is why spectroscopy can be used to differentiate between them
(158). Understanding the capacity and limitations of spaceborne sensing on a pathosystem-by-
pathosystem basis will be essential for appropriately using these forthcoming data streams and
successfully integrating their outputs into existing decision support tools.

NEW POSSIBILITIES FOR INTEGRATING EPIDEMIOLOGICAL DATA
TO UNDERSTAND CLIMATE CHANGE AND RESPONSES

Epidemiological Data for Climate Change Response

Decision-makers are expected to respond quickly to mitigate emerging diseases, despite the
uncertainty surrounding new pathosystems. The perception of risk and prevalence of a disease
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(or climatic stressors) across a community can be pivotal in garnering regional collective action,
although during the initial phase of an epidemic, decision-makers are less likely to respond (52,
94). In situations where there is high uncertainty regarding an emerging pest or pathogen,models
can be used to forecast the disease’s effects across a range of different scenarios. Statistical models
can use data from remote sensors, climate data, soil sensors, vegetative spectral indices, etc., to
establish general patterns of disease movement and can help identify which parameters may be
the best predictors of disease dynamics (32, 79, 86). Many new agricultural tools incorporate the
data from these sensors and use statistical learning to estimate the amount of disease within a
population for a set of specific features (53, 148). For example, Ocimati et al. (109) constructed
a map of areas in Africa that may be at high risk for Xanthomonas wilt of banana, using multiple
regression analyses of the topographic, climate, and management features of a smaller region.
Small et al. (140) created a system to substantiate the decisions of growers about when and how
best to manage Phytophthora infestans infecting potato and tomato, using weather and geographic
data.

Remote sensing data can improve existing DSSs by providing estimates of underlying disease
distribution.For example, synergistic use of an epidemic spreadmodel with airborne hyperspectral
imagery improved X. fastidiosa mapping in almond (26). The incorporation of sensor data and
statistical models is the basis for digital agriculture and the development of a DSS (32, 79, 148).
These systems can help to quantify the fine details of an epidemic, although there are currently
still many limitations to widely implementing DSSs, including access to frameworks and large
data sets, adaptability across landscapes and pathosystems, and the cost of new infrastructure (8,
79). Changing ecosystems lead to uncertainty in patterns of dispersal and establishment. Many
epidemiological models seek to address uncertainty about pathogens and weather systems and can
model epidemics across a range of scenarios. For example, Cunniffe et al. (38) developed a model
that accounts for the stochasticity of epidemics and allows users to specify pathosystem parameters,
with the objective of informing policy and decision-makers.Themore complex a system, the more
useful models become, as they allow decision-makers to prioritize their resources.

Another frontier for integration of data and models is the incorporation of decision-making
by farmers and other stakeholders, ideally in a system that both supports decision-making and
effectively models the effects of management decisions on regional disease risk. Integration of
data to support regional disease management decisions can be implemented through frameworks
such as impact network analysis (Figure 4) (59). This approach provides scenario analysis for po-
tential management options and uncertainty quantification to deal with the fact that all the data
that would be useful for decision-making are rarely available. Components of scenario analyses
can include analyses of host landscape structures in terms of a location’s connectivity to the sur-
rounding cropland (156) and key locations in trade networks for vegetative planting materials (2,
3, 22) as a first step for understanding spatial risk factors, improved iteratively as systems are better
understood.

TRANSLATING DATA AND MODELING INTEGRATION TO SUPPORT
MANAGEMENT GLOBALLY

The International Plant Protection Convention (IPPC), through the development and implemen-
tation of sanitary and phytosanitary measures and international standards created by 184 national
plant protection organizations (NPPOs) and 10 regional plant protection organizations, provides
trade-oriented approaches to protect plant health globally and regionally (https://www.ippc.
int/en/) (27). The IPPC is one important global structure that supports coordinated responses
to shifting disease risks in response to global change.

368 Garrett et al.

https://www.ippc.int/en/
https://www.ippc.int/en/


PY60CH16_Garrett ARjats.cls August 10, 2022 17:29

Figure 4

Incorporating disease management decision-making networks in an impact network analysis model. The
socioeconomic network can represent farmers and/or agents in national plant protection organizations
(NPPOs) deciding whether to use a new disease management technology (blue nodes) and influencing each
other in that choice. The biophysical network can represent farms managed by these farmers and NPPOs in
a geographic landscape, where the pathogen may spread and become established (red nodes) or not, as a
function of how the disease is managed at each location. Adapted from Reference 59.

National and regional surveillance systems can build on translation from high-resolution data
sets of climate variables (see 13) and information, often limited, about the current distribution
of plant pathogens. Bioclimatic envelope models have used inductive modeling approaches or
deductive models to assess current species distribution, potential habitat, and the ecological niche
of invasive pathogens, and to project plant pathogen responses to changes in environmental
conditions (29, 74, 116, 150). Models identifying key airborne dispersal routes can be used to
inform surveillance of crop diseases (97). Integrative climatic models can also combine current,
developed methods with innovative approaches (10, 55, 74). Methods can integrate multiple
rule-based models following, for example, multicriteria decisions (29, 150). Uncertainty usually
increases with climate change, but uncertainty quantification (or sensitivity analysis) of model
outputs is often lacking, and validation of newmodel outputs is often not possible until some years
later.

Innovative modeling approaches require incorporating substantial changes in the future dis-
tribution of plant hosts, vectors, and natural enemies (13). Modeling advances are required to
consider the role of rapid changes in climate factors in the emergence, reemergence, distribu-
tion, and spread of plant pathogens (88). Models that integrate disease risk factors like cropland
connectivity (156), weather conduciveness, airborne connectivity (97), trade, transport (10), and
management (10) can provide insights into proactive approaches to prevent plant pathogen inva-
sions and local buildup. Alert and warning systems are a critical component of early responses to
the emergence of plant diseases (121). The Program for Monitoring Emerging Diseases exempli-
fies a global monitoring network reporting plant disease outbreaks since 1995. Models can also
highlight current disease hot spots that are potential inoculum sources or highlight locations at
risk (50, 88).
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Fair Distribution of Benefits from Data and Models

The ability of countries to respond to invasive species varies across global landscapes (50). Coun-
tries with high scientificmonitoring capacity, often in temperate regions,may detect and report the
changes in pathogen distributions more readily, where reporting capacity may be a confounding
factor when evaluating the effects of climate change (13). Uneven data availability across regions
challenges big data approaches (10), especially regarding climate suitability of emerging pathogens
(29). Intensive monitoring across all latitudes, particularly focusing on improvement for low- and
middle-income countries, would strengthen the global capacity for surveillance (69).

Food system stakeholders, including smallholder farmers, have varying levels of scientific
expertise. Social and political willingness to support plant health, and research and extension
capacity, vary geographically (69). Communication and coordination are necessary among inter-
national and domestic markets, private and public sectors, and informal and formal trading systems
(69, 90). The identification of regional weaknesses can help in prioritizing responses to climate
risks. Multiple factors, such as climate change, including extreme weather events, and countries’
socioeconomic status, contribute to greater epidemic risk for less prepared countries (10, 69).

Adoption of short-term actions complemented with long-term responses is often a criti-
cal component in surveillance systems under progressive climate risks (46), as exemplified by
the management of coffee rust epidemics in Central and South America (9). Long-term plant
health requires well-established funding mechanisms balanced across emerging, established, and
widespread pathogens (46, 69, 90).

Data governance for biosecurity is an important factor when formulating plant health policy
(54, 69, 90). Data governance frameworks need to consider sensitivity about data for personal
farm, private, and public interests as well as a balance between data openness (as it allows interop-
erability andmultipurpose reuse) and privacy (as it prevents potential social and economic damage
or loss of profit) (90). Data governance should also consider basic FAIR (findability, accessibility,
interoperability, and reusability) principles of data stewardship (19).

Rural agricultural regions particularly need to overcome traditional challenges to succeed in
a complex, dynamic, and changing environment, and to attain benefits from new technologies.
Access to information and communication technologies needed to participate in data collection
and modeling or obtain remote advice is limited for smallholder farmers in rural areas; language
barriers also need to be overcome to effectively translate disease surveillance and discovery plat-
forms, as exemplified in the Program forMonitoring Emerging InfectiousDiseases and theGlobal
Public Health Intelligence Network (88).

RECOMMENDATIONS AND CAPACITY BUILDING

Adapting plant disease management to global change is an ongoing challenge. No-regrets adap-
tation strategies can focus on improving systems so that they are prepared for both expected and
unexpected global change. Improved AI applications in plant pathology can be an important com-
ponent of better systems, integrating data sets that are both big and high quality using effective
machine learning operations. AI incorporates long-proven tools like regression analysis as well
as tools whose applications are still expanding, such as image analysis using data from drones or
satellites, where we are still discovering what applications are economically viable in which con-
texts. The development of understandable AI can support public buy-in and greater potential for
mechanistic understanding to support the adjustment of models to climate scenarios for which
few data are available.

The One CGIAR Plant Health Initiative (PHI) is working to develop a robust disease surveil-
lance system that incorporates reflexive learning, consideration of user needs, and aspirational
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indicate whether they
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Cost of information:
the cost of acquiring
information for
decision-making

technology development and deployment.Through this PHI, national and regional phytosanitary
institutions in low- and middle-income countries (LMICs) in Africa, Asia, and Latin America
will be connected to global surveillance and diagnostic networks, allowing them to exchange
knowledge and manage established institutions and emerging plant health threats. The goal is for
institutions in LMICs to be better informed about emerging threats and prepared to efficiently
respond to pests and diseases exacerbated by changing climatic conditions, international trade,
and cropping practices. Groups like One CGIAR may also play a role as brokers for harnessing
and disseminating data streams across diverse sources and institutions. Efforts are underway to
bring together most of the digital surveillance tools used throughout the CGIAR (81). Promoting
the use at the farm level of this anticipated platform of applications will require a diverse set of
innovative partnerships with both public and private sectors.

Synergies can be developed across projects in plant health by developing a shared AI toolbox,
building collaborative systems for data collection, machine learning, and science translation for
important pathosystems. An AI toolbox would include tools supporting the plant pathology value
chain in general (Figure 2).Models and tools to support surveillance andmitigation of global plant
disease would generate action prioritizationmaps (Figure 1) based onmaps of (a) disease presence
and ideally severity, (b) plant host density and, ideally, resistance gene deployment, (c) observed
and anticipated future climate variables and, ideally, fine-resolution weather variables, (d) remote
sensing data, (e) trade networks, and ( f ) management practices and their effectiveness. Other key
data would include libraries of images and volatiles corresponding to diseased and healthy plants,
ideally at scales from individual plants to regions, collected with corresponding information about
genotype, date, and location for integration withmaps.Models would regularly be used to evaluate
the value and cost of information (23), for both fundamental and use-inspired research (144), to
prioritize new data collection. Models in the toolbox would address (a) weather-based disease
risk, (b) pathogen-dispersal gradients, and (c) disease status predicted from images and volatiles,
integrated into (d) DSSs for decision-makers at scales from individual farmers to policy makers
and regional plant protection organizations. To translate these data and models for managers and
to collect useful data and system feedbacks, it will be important to design dashboards and apps
that allow users to select the level of detail with which they would like to engage. Translation
for policy makers may include analysis of worst-case scenarios, including future invasions in new
regions, and recovery plans.

Making this a global toolbox addressing new plant disease challenges is a key component of
a global surveillance system (27) and global mitigation system. A global system would build on
strengthening national programs and agreements for privacy and defined data sharing. The Agri-
culturalModel Intercomparison and Improvement Project (AgMIP) is a good example of potential
cooperation across large modeling teams (123). Communities studying individual plant pathosys-
tems rarely include as many scientists as the crop modeling communities in AgMIP, so there are
additional incentives for cooperation to make the most of available resources. Globally, NPPOs
run the gamut from a handful of people to major endeavors with substantial research teams. The
data generated by NPPOs may be “data lakes” that lack the structure for integration into larger
systems and models, with data in the form of notes on paper or in spreadsheets with differing
formats and metadata. Capacity building is central to building a global system. As AI–human in-
terfaces improve, there may be interesting possibilities for designing training that is matched to
specific pathosystems and the needs of specific countries and NPPOs.
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