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Abstract

Posttranslational modifications (PTMs) play crucial roles in regulating pro-
tein function and thereby control many cellular processes and biological
phenotypes in both eukaryotes and prokaryotes. Several recent studies il-
lustrate how plant fungal and bacterial pathogens use these PTMs to fa-
cilitate development, stress response, and host infection. In this review, we
discuss PTMs that have key roles in the biological and infection processes of
plant-pathogenic fungi and bacteria. The emerging roles of PTMs during
pathogen—plant interactions are highlighted. We also summarize traditional
tools and emerging proteomics approaches for PTM research. These discov-
eries open new avenues for investigating the fundamental infection mech-
anisms of plant pathogens and the discovery of novel strategies for plant
disease control.
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INTRODUCTION

Plant infection depends on complex regulatory networks governing development and infection
in the pathogen. The past two decades of work have revealed central roles for signaling pathways
mediated by many protein cascades and small-molecule signals in fungal and bacterial pathogens
(8, 131). Although the exploration of pathogen regulatory processes has frequently focused on
transcript or protein abundance, the activities of many proteins are regulated by posttranslational
modifications (PTMs). A PTM can consist of a simple chemical moiety, such as a phosphate,
acetyl, methyl, or hydroxyl group, or a more complex modification, such as a nucleotide, sugar, or
small polypeptide. PTMs shape the activity state, stability, localization, and interaction partners of
proteins. These modifications can activate or deactivate signaling cascades or reshape the surface
structures that interface with the plant host. Tight regulatory control depends on a high degree
of precision in targeting specific sites with specific modifications.

Historically, much understanding of the PT'M mechanism and regulatory significance is based
on the model yeast Saccharomyces cerevisine, but studies in recent years have uncovered new con-
tributions of specific PTMs to plant pathogenesis. In this review, we summarize the field of
knowledge regarding the identities, mechanisms, and roles of PTMs in fungal and bacterial plant
pathogens, including their functions in host—pathogen interactions. We limit our focus to cova-
lent modification of proteins in the pathogen; modifications occurring within the host have been
recently discussed elsewhere (6, 38). We highlight several modifications that are the focus of re-
cent research interest (Table 1), summarize the approaches used for PTM research, and discuss
potential possibilities of developing PTM-based plant disease control strategies.

PHOSPHORYLATION

Phosphorylation is the chemical addition of a phosphoryl group to a protein, catalyzed by a ki-
nase. The reverse reaction, dephosphorylation, is catalyzed by a phosphatase. Mitogen-activated
protein kinase (MAPK) and cyclic AMP (cAMP) cascade protein kinase A (PKA) are well-studied
paradigms for signaling cascades, but other types of protein kinases (PKs) have emerged in recent
years as key players in fungal and bacterial plant disease.

Mitogen-Activated Protein Kinase Cascades

MAPK cascades are three-tiered PK modules that govern a wide variety of cellular responses in
all eukaryotic organisms. Orthologs of the S. cerevisiae Fus3/Kss1, Slt2, and Hogl MAPXKs exist in
most fungal pathogens, among which, Fus3/Kss1-MAPK regulates morphogenesis, Slt2-MAPK
regulates cell wall remodeling, and Hogl1-MAPK regulates high osmolarity stress response, and
all contribute to virulence on plants (Figure 1) (68, 131). PMK1-MAPK, the homolog of kss1-
MAPK, was discovered in Magnaporthe oryzae and is necessary for appressorial development and
infection in many important pathogens (68, 145). PMKI1 also regulates fungal movement within
plant cells and the expression of immune-suppressing effector genes (113). The MAPK Crk1, the
homolog of S. cerevisine Ime 2, is widely conserved in plant pathogens and promotes mating in
Ustilago maydis (44). Slt2-MAPK orchestrates cell wall biosynthesis and actin organization and
therefore is important for appressorial penetration in fungi (146). Hogl-MAPK regulates adap-
tation to hyperosmotic stress, including glycerol accumulation, in fungal pathogens (24).

Protein Kinase A

PKA is the main intracellular target of cAMP and a conserved regulator of fungal cell differenti-
ation. In U. maydis, cAMP-PKA controls the transition between budding and sexual development
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Figure 1

Function of phosphoregulation of protein kinases in plant-pathogenic fungi and bacteria. Different signals are transduced to the
appropriate protein kinase modules. Protein kinases in fungi then phosphorylate a downstream substrate for the cellular response,
development, or infection process. The Slt2-MAPK cascade (also called Mps1-MAPK cascade) responds to cell wall stress and regulates
cell wall integrity. The Kss1-MAPK cascade (also called Pmk1-MAPK cascade) typically regulates infection-related structure
differentiation such as appressorium formation. The Hogl1-MAPK (also called Osm1-MAPK) controls osmostress response. The
histidine kinase SIn1 also responds to osmotic stress but is important for turgor-driven host penetration. The cAMP-PKA signaling
pathway is another key regulator of infection-related structure differentiation. Snfl mediates the response to glucose limitation. Protein
kinase Sch9 is involved in the TOR signaling pathway and is also required for appressorium formation. In bacteria, histidine kinase
(HK) sensors phosphorylate downstream response regulators (RRs) and subsequently regulate regulatory gene expression for type III
secretion, biofilm formation, SOS response, and iron response. Protein kinases are shown in red. Abbreviations: cAMP, cyclic AMP;
MAPK, mitogen-activated protein kinase; PKA, protein kinase A; TOR, target of rapamycin.

for infection (45). The cAMP-PKA pathway is essential for infection-related structural differen-
tiation, including appressorium development in M. oryzae (Figure 1), in many plant-pathogenic
fungi (96).

Target of Rapamycin Kinase

Target of rapamycin (TOR) kinase is the central component of a signaling pathway that controls
cell growth and proliferation in eukaryotic cells (63). TOR forms the dimeric complex TORCI,
which promotes cell growth by stimulating protein synthesis and ribosome biogenesis. Conversely,
inhibition of TORCI triggers autophagy, stress responses, and cell-cycle arrest (63). Through
phosphorylation of the kinase Sch9, the TOR signaling pathway is necessary for normal hyphal
growth, conidial germination, and osmotic and oxidative stress tolerance as well as mycotoxin syn-
thesis in some pathogens (50, 107). TOR signaling also cooperates with PKA to inhibit autophagy,
a process necessary for fungal appressorium formation (Figure 1) (93, 94).

SNF1 Kinase

SNF1 kinase mediates the transcriptional response to glucose limitation. Snfl is required for the
normal growth of several plant-pathogenic fungi on complex or host-associated carbon sources
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and enhances cell wall-degrading enzyme gene expression and virulence (Figure 1) (77,103, 149).
It may also have a role in sexual and asexual development (77, 149).

Histidine Kinases

Histidine kinases (HKSs) function at the head of two-component systems (T'CSs) used to
sense and respond to environmental stimuli and stressors in both prokaryotes and eukaryotes
(Figure 1) (78). HKs signal through a histidine-containing phosphotransfer protein, which phos-
phorylates a downstream response regulator protein (78). Some HKs are required for fungicide
susceptibility (99, 133). Others regulate conidial development, promote virulence (109, 133), or, in
the case of the M. oryzae HK Slnl, initiate penetration when the appressorium reaches sufficient
pressure (112).

Phytopathogenic bacterial species contain dozens of T'CSs that govern bacterial responses
to the environment. TCSs may initiate infection- or survival-associated behaviors in response
to a variety of stimuli, including quorum sensing signals, osmotic or nutrient stress, light, and
phytohormones (9, 138). A few of these systems are essential to pathogenicity: In the model en-
teric plant pathogen Erwinia amylovora, the HrpX/HrpY system activates type III secretion and
the ResCDB phosphorelay regulates production of the external polysaccharide layer (137, 141).
The GacS/GacA module is a central virulence regulator in multiple phytopathogens, albeit with
context-dependent roles (81, 100).

GLYCOSYLATION

Protein glycosylation is the addition of different polysaccharide cores to specific amino acids con-
taining a special consensus sequence. The polysaccharide cores are synthesized in the endoplasmic
reticulum (ER) and transferred to nascent proteins. The glycoproteins undergo maturation in the
Golgi apparatus and are then secreted to the plasma membrane—associated cell wall or extracellu-
lar region (19, 54). Recent work has uncovered new roles for three types of glycosylation in fungal
invasion and infection of plants, primarily in the model systems U. maydis and M. oryzae (15, 16,
34-36, 88).

N-glycosylation

N-glycosylation is one of the most abundant PTMs in eukaryotes and is necessary for the folding,
sorting, stability, and localization of diverse target proteins (54). This PTM is the addition of
an oligosaccharide core to the asparagine (N) residue in the sequence Asn-X-Ser/Thr (X is any
amino acid except Pro) (54). N-glycosylation begins in the ER membrane with glycans assembled
on the lipid carrier dolichol pyrophosphate (Dol-PP) by a-glucosidases and transferred to the
protein substrate. N-glycan-linked proteins are modified to mature N-glycosylated proteins by
mannosyltransferases in the Golgi apparatus (Figure 24) (54).

N-glycosylation-deficient mutants of U. maydis, M. oryzae, and Mycosphaerella graminicola
have revealed the importance of this modification in fungal plant pathogenesis (15, 16, 97). In
M. graminicola, the a-mannosyltransferase mediates the switch from yeast-like growth to the hy-
phal form, whereas in M. oryzae, another mannosyltransferase is required for the suppression of
host reactive oxygen species (ROS) production (16, 97). In Fusarium oxysporum, deletion of the
N-glycosyltransferase Gnt2 results in differential protein glycosylation patterns, affecting conid-
ium morphology, hyphal fusion rates, and secretion of trafficking vesicles and their protein cargo
(92). N-glycosylation maintains the stability of the ER quality control (ERQC) system, with im-
plications for infection (Figure 2b). U. maydis ERQC glucosidase I and II are required for early
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Figure 2

Function of glycosylation in plant-pathogenic fungi. (#) Schematic depiction of N-glycosylation, O-glycosylation, and glycolipid
phosphatidylinositol (GPI) anchoring synthesis processes in plant-pathogenic fungi. All three types of glycosylation are catalyzed by
corresponding glycan transferases in the endoplasmic reticulum and Golgi apparatus and are eventually secreted into the plasma
membrane, cell wall, or outside spaces. (4) Biological functions of three types of glycosylation in plant-pathogenic fungi. Each
glycosylation type controls several key steps, through different cellular processes, during fungal development or the infection process.
Abbreviations: ERQC, endoplasmic reticulum quality control; KTR, Kre-two-related mannosyltransferase; MAPK, mitogen-activated
protein kinase; MNN, mannosyltransferase; OST, oligosaccharyltransferase; PMTs, protein O-mannosyltransferases.
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infection events after host penetration and establishing the initial biotrophic state, respectively
(35, 115). ERQC components themselves are also N-glycosylated in M. oryzae, which affects their
ER location and stability (15).

N-glycosylation of effector proteins is a common strategy to help fungal pathogens evade
host innate immunity (Figure 2b). The M. oryzae chitin-binding virulence effector Slpl requires
N-glycosylation at three sites to fully suppress chitin-triggered immunity (16). N-glycosylation
regulates chitin binding capacity and protein stability of Slpl, suggesting that glycosylation-
mediated stabilization is critical to accumulate enough effector to sufficiently lower the free
chitin levels (16). Putative N-glycosylation sites are found among effector proteins in diverse
plant-pathogenic fungi, including M. oryzae Bas4, U. maydis Pepl and Pitl, and Cladosporium
Sfulvum Ecp6 (21, 25, 26).

O-glycosylation

O-glycosylation, i.e., attachment of sugar to the oxygen of serine or threonine, can incorpo-
rate a wider variety of sugars than can N-glycosylation. Mannose-based modification, or O-
mannosylation, is the most common type of O-glycosylation in fungi and the best characterized in
fungal plant pathogens (91, 115). Initial mannose addition is mediated by protein mannose trans-
ferases (PMTs) in the ER, followed by modification and maturation in the Golgi (Figure 24). Fun-
gal PMTs comprise three widely conserved subfamilies: PMT1, PMT2, and PMT4 (91). PMT
deletion usually causes defects in cell wall composition by affecting the amounts of B-glucans,
chitin, and glycoproteins found in the cell wall (Figure 25). In U. maydis, individual deletion of
eight predicted O-mannosyltransferase genes showed that only pmit4 was essential for virulence
and played roles in appressorium formation and plant cuticle penetration (34). This suggests that
the virulence roles of O-glycosylation are not always linked to cell wall composition. PMT4s effect
on early virulence in U. maydis is largely attributable to its glycosylation of the signaling mucin
Msb2, which regulates a MAPK cascade critical for appressorium formation (Figure 25) (36).
Pmt4 affects virulence independently of Msb2 in later stages of infection, likely through direct
glycosylation of the secreted protein Pitl and putative effector protein Um03749, both of which
are required for biotrophic growth (36).

Several other PM'T5 are critical for cell wall stability, sporulation, and virulence in fungal plant
pathogens (46, 52, 53, 104, 147). In Botrytis cinerea, PM'Ts contribute to infection in a variety of
hosts, with a primary role in the adhesion and penetration of intact leaves; penetration of grape
leaves requires three functional PMTs (46). In . oxysporum f. sp. cucumerinum, PM'T genes were all
required for growth, conidiation, intact cell walls, and virulence, and some PMT5 also contributed
to thermotolerance and polar growth (147). Deletion of M. oryzae MoPmit2 and MoPmi4 resulted in
various defects in conidiation, polar growth, and host adhesion as well as penetration and invasion
of the host (52, 104).

In bacteria, the flagellum is a common target of O-glycosylation. In the model species
Pseudomonas syringae, flagellin is glycosylated at six sites with a trisaccharide that terminates in a
modified viosamine (mVio) (128). Inhibiting glycosylation causes defects in motility, adhesion,
and biofilm formation (80, 127), demonstrating importance for both flagellar and regulatory
functions. Flagellar glycosylation also determines host specificity in some plant-pathogenic
bacteria (57, 129), and recent studies have shown how it affects the host immune response. The
multiple immune-triggering epitopes of flagellin are buried in the flagellum and inaccessible to
plant receptors (39). During P. syringae infection of Nicotiana benthamiana, proteases degrade the
flagellum to expose these epitopes and trigger immunity, but glycosylation protects the flagella
from proteases (7). The N. benthamiana glycosidase BGALI1 recognizes mVio and degrades the
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glycans, enabling protease function. Modification of flagellar glycosyl groups to evade specialized
host glycosidases could be a common pathogen strategy to subvert immunity and expand host
range (7). Flagellar glycosylation has been confirmed in species of Burkholderia, Dickeya, Pantoea,
Xanthomonas, and Pectobacterium (60). A genomic analysis in enteric bacteria found that glycosyla-
tion islands are horizontally transferred and undergo frequent recombination events (22). Among
enteric plant pathogens, flagellar glycosylation islands were found in all published genomes
of Dickeya and Lonsdalea strains but in only a portion of Pectobacterium, Pantoea, and Erwinia
genomes. Interestingly, several species in the latter three genera were predicted to have flagellar
methylation islands, suggesting that this is an alternate flagellar PTM in plant pathogens (22).

O-oligosaccharyltransferases

O-oligosaccharyltransferases (O-OT-ases) are a second group of bacterial glycosyltransferases. O-
OT-ases modify a variety of bacterial proteins but are most frequently known to modify the type
IV pilus, potentially affecting motility or susceptibility to phage (72). PglLg, is an O-OT-ase es-
sential for glycosylation in the wilt pathogen Ralstonia solanacearum, and deletion of the corre-
sponding gene compromised biofilm formation and virulence on tomato (29). Proteomic analysis
of the deletion mutant identified 20 glycosylation targets, including type IV pilus components,
cell division proteins, and several transmembrane proteins of unknown function. Accumulation of
pilins and type VI secretion proteins was also reduced (29). Another O-OT-ase was identified in
the type IV pilin cluster of Acidovorax avenae subsp. citrulli (117), and pilin glycosylation has also
been observed in the citrus pathogen Xanthomonas citri (105). A virulence-associated glycoside
hydrolase was recently found to affect the abundance of 13 outer membrane proteins in the rice
pathogen Xanthomonas oryzae (135), suggesting that the impact of glycosylation on pathogenicity
may extend well beyond the currently characterized protein targets.

Glycolipid Phosphatidylinositol Anchoring

Glycolipid phosphatidylinositol (GPI) anchoring is the attachment of GPI to a newly synthesized
protein to confer membrane association, with the modified protein displayed on the outer cell
surface (Figure 2a) (41). Fusarium graminearum deletion mutants of the GPI pathway gene GPI7
formed aberrantly shaped macroconidia and had significantly reduced virulence (110). In the maize
pathogen Colletotrichum graminicola, RINAi-silenced lines of three GPI pathway genes were all
severely defective in cell wall integrity, formed exploding infection cells on the host plant surface,
and distorted invasive hyphae (102). In M. oryzae, disruption of GPI7 caused significant defects in
appressorial cell wall architecture, which is essential for penetration and invasive growth in the
host cells (88). GPI anchoring is a critical process regulating cell wall development and cell wall
integrity, likely through modification of cell wall mannoproteins. More interestingly, the GPI-
anchored proteins may act as a shield to protect inner cell wall chitin and p-1,3-glucans, therefore
helping the fungus to evade recognition of the plant host innate immunity system (Figure 25) (88).

HISTONE MODIFICATION

Histones form the octameric complex around which DNA winds to form the nucleosome.
Histone-DNA interactions are regulated by several types of PTM. Modifications that weaken
histone-DNA interactions can cause nucleosomes to loosen to form euchromatin, and PTMs
that strengthen these interactions result in tightly packed heterochromatin associated with gene
silencing (Figure 3). Methylation and acetylation of histones are the most well-studied modifica-
tions in plant pathogens (27, 30).

Liu  Triplett » Chen
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Figure 3

Histone modifications on H3 in plant-pathogenic fungi. Histone methyltransferases (HMT5) and histone
demethylases (HDMs) are shown at the top. Histone acetyltransferases (HATS) and histone deacetylases
(HDAC:S) are shown at the bottom. Abbreviations: ac, acetylation; me, methylation.

H3K4 Methylation

Methylation of histone 3 lysine 4 (H3K4) is an important epigenetic mark for gene activation
(Figure 3) (27). Setl proteins are an important family of H3K4 methyltransferases and function
as part of a larger complex called COMPASS (complex proteins associated with Setlp). M. oryzae
MoSET1 encodes a histone methyltransferase that methylates H3K4 at the locus of the cellulase
gene MoCel7C, activating transcription of the gene in the presence of cellulose (1). MoSET]I is
required for conidiation and appressorium formation, functioning through direct gene activation
and indirect gene repression to regulate essential infection processes (70). SetI genes also have im-
portant roles in many other fungi. Deletion of the Fusarium verticillioides gene FvSET1 led to de-
fects in growth, pathogenicity, synthesis of fumonisin B1 toxin, and environmental stress responses
(48). In Fusarium fujikuroi, deletion of Serl promotes genome-wide transcription and affects the
expression of many secondary metabolite synthesis genes as well as the major conidiation-specific
transcription factor gene ABAI (67). In F graminearum, FgSetI is required for the transcription of
genes involved in hyphal growth, stress tolerance, virulence, and the synthesis of deoxynivalenol
(DON) and aurofusarin toxins (89).

Other proteins in the COMPASS complex are also essential for fungal pathogenesis. In
E graminearum, KMT2 is required for normal growth and virulence and altered responses to
cell wall stress (89). The COMPASS component Ccll is required for the production of secondary
metabolites such as gibberellic acid and DON in F fujikuroi and F. graminearum (123), suggesting
that epigenetic modifications are an important aspect of regulating secondary metabolite pro-
ductions in fungi. In Colletotrichum higginsianum, deletion of the COMPASS component CclA
strongly reduced mycelial growth and sporulation but did not impair the formation of appressoria
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and biotrophic hyphae (20). However, the appressoria of the Cc/4 mutant lacked full penetration
capacity. Interestingly, the Cc/4 mutant produced an enriched variety of secondary metabolites,
including five novel molecules not produced in the wild type (20).

H3K27 Methylation

H3K27 methylation is an epigenetic mark for gene suppression (Figure 3), which is catalyzed by
KMT6, a part of the polycomb repressive complex 2 (PRC2). In F graminearum and F. fujikuroi,
H3K27 trimethylation (H3K27me3) covers ~30% of the genes in the genome (18), a majority
of which are upregulated in the absence of FgKMT6, suggesting that the absence of methylation
is sufficient to induce transcription. Deletion of KMT6 or other PRC2 complex elements results
in extreme developmental and metabolic dysfunction in Fusarium spp. and M. oryzae, including
female sterility and constitutive expression of genes related to the biosynthesis of mycotoxins,
pigments, and other secondary metabolites (18, 70).

H3K36 Methylation

H3K36 methylation is conferred in F fujikuroi by the methyltransferases Set2 and Ashl, each
having unique functions in euchromatin and telomeric heterochromatin, respectively (66). Ashl
is generally thought to be involved in DNA repair processes, although the Ashl-like protein
MoKMT2H is important in conidial germination and pathogenesis in M. oryzae (10). Set2-
mediated H3K36 methylation regulates secondary metabolite biosynthesis, asexual development,
and virulence in both F. fujikuroi and F. verticillioides (49, 66). In F. verticillioides, FvSet2-mediated
H3K36me3 activates expression of Fumonisin B1 (FBI) and bikaverin biosynthesis genes (49).

H3K9 Methylation

H3K9 methylation is critical for the regulation of chromatin structure and gene transcription. The
KHMTase enzyme Dim5 is a lysine histone methyltransferase that regulates H3K9 methylation
in eukaryotic cells. In E verticillioides, FvDim5 regulates the H3K9me3 (trimethylation of H3K9)
(47), whose deletion mutant was defective in perithecium production, conidiation, and virulence.
The mutant also showed increased phosphorylation of the osmotic stress MAPK Hogl and a
corresponding increased tolerance to osmotic stresses (47).

Demethylation

Demethylation is necessary to regulate the histone methylase process. Demethylation of H3K4
is conferred by the demethylase JARID1 (Jarl)/KDMS5. In B. cinerea, BcJarl orchestrates global
gene expression related to ROS production and response and is critical for infection structure for-
mation but negatively regulates sclerotium production (58). In M. oryzae, the histone demethylase
Mo]JM]1 is also important in vegetative and infectious growth and asexual reproduction (59). In
B. cinerea, BcKDM1 is an H3K36-specific demethylase required for pathogen penetration as well
as responses to light (118).

Acetylation

Acetylation is manipulated by histone acetyltransferases (HATS) and deacetylases (HDACs) with
distinct substrates and mechanisms (Figure 3) (27). Lysine acetylation of residues on histone 3 and
histone 4 is generally related to gene activation and regulates diverse processes in plant-pathogenic
fungi (27). The M. oryzae HAT MoRtt109, which acetylates H3K56, has an important role in DNA
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integrity (74), whereas the HAT MoSAS3 is required for pathogenicity and normal growth (28).
M. oryzae HATS acetylate nonhistone proteins to regulate pathogenesis-related autophagy (150,
153); GenS acetylates the ubiquitin-like autophagy protein Atg7 in a light-responsive manner
(153), whereas MoHatl acetylates two autophagy-related proteins that are critical for appresso-
rium development and pathogenicity (150). In F. graminearum, deletion of four putative HAT
genes, including GCN, indicated that all were required for normal growth (71). Two of the HAT
genes, FgSas3 and FgGen$5, were also important for sexual and asexual reproduction and were re-
quired for wheat and tomato infection and synthesis of DON biosynthesis (71). FgSAS3 acetylates
site H3K4, FgGCNS is essential for H3K9, H3K18, and H3K27 acetylation, and both contribute
to H3K14 acetylation (71). GCNS5 also has a central role in F fujikuroi, regulating expression of
approximately 30% of the genome, including many secondary metabolite genes (111). Finally,
in the postharvest pathogen Aspergillus flavus, the HAT AflGenE is an important pathogenicity
factor required for colonization and aflatoxin production on maize seeds as well as cell surface
hydrophobicity, asexual sporulation, and sclerotia development (75).

Lysine acetylation is also widespread in bacteria, where it regulates many housekeeping and
physiological functions such as DNA transcription, replication, and repair (11). Although some
bacterial acetylation is mediated by lysine acetyltransferases, the majority occurs independently of
enzyme activity (11) and thus cannot be globally inactivated through mutagenesis. A survey in E.
amylovora found that acetylation levels varied highly with growth conditions and that there were
significant differences in the acetylomes of two genetically similar strains with differing virulence
levels (144). The 96 acetylated E. amylovora proteins identified after affinity enrichment included
seven with known virulence roles in addition to many predicted metabolic enzymes. A sensitive
liquid chromatography tandem mass spectrometry approach was used to analyze the acetylome
in the walnut pathogen Brenneria nigrifluens, finding 787 acetylated proteins, including those im-
plicated in motility, nucleoside synthesis, and stress responses (83). The effects of acetylation in
plant-pathogenic bacteria are still not well-understood, but it is likely widespread and central to
pathogen competence.

Histone Deacetylases

HDACs remove acetyl modifications from histones, usually resulting in the repression of gene
expression. In M. oryzae, HDAC inhibitor treatment inhibited appressorium formation and de-
creased fungal pathogenicity (62), as did deletion of components of the Tigl HDAC complex
(23, 76), demonstrating a role for HDACs in transcriptional programming that leads to infec-
tious growth and conidiogenesis. The HDAC homologs HDCI and Hos2 were important genes
required for conidiation and mating in the maize pathogens Cochliobolus carbonum and U. maydss,
respectively (2, 31). Deletion of another U. maydis HDAC gene, hdal, induced expression of sev-
eral mating locus-regulated genes that are normally expressed only in the dikaryon. The mutant
strains can still infect corn but cannot produce teliospores (130). HDACs often have an important
role in the production of mycotoxins and other secondary metabolites, as demonstrated by studies
on HDF1 in E graminearum (82) and FfHdal and FfHda2 in E fujikuroi (124).

Sirtuins

Sirtuins are NAD-dependent deacetylases of histones and nonhistone proteins. In plant-
pathogenic fungi, sirtuins have an important role in suppressing host innate immunity (37). The
M. oryzae sirtuin Sir2 works with the histone demethylase MoJmjC to activate expression of su-
peroxide dismutase, which neutralizes the host ROS burst (37). Sir2 itself is regulated by PTM
mediated by at least three ubiquitin ligases (79).
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UBIQUITIN AND UBIQUITIN-LIKE MODIFICATIONS

Ubiquitin

Ubiquitin is a 76-aa protein attached to target lysine residues through the sequential action of
an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Multiple ubiquitination
typically targets proteins for degradation, whereas monoubiquitination can change the location
or activity of a protein (56). Deletion of the polyubiquitin encoding gene UBI4 resulted in defects
in growth, sporulation, germination, and appressorium formation as well as a loss of virulence
in M. oryzae (101). Key ubiquitin components identified in M. oryzae include the E2 enzyme
Rad6, which works through at least three E3 ligases to ubiquitinate degradation targets, histones,
the DNA replication clamp PCNA (119), and members of the Skp1-Cull-F-box-protein (SCF)
E3 ligase complex (106). The essential protein MoSkpl forms SCF complexes with 17 F-box
proteins in M. oryzae, of which three are essential for virulence (120), and a fourth F-box protein,
MoGrrl, is also critical for conidiogenesis and pathogenicity (51). Grrl homologs are also key
regulators of infection processes in F oxysporum (95). Along with their virulence roles, deletion
ubiquitination regulatory genes often cause pleotropic developmental and reproduction defects
in systems such as F verticillioides and the chestnut pathogen Cryphonectria parasitica in addition
to the model pathogens discussed above (14, 51, 106).

Ubiquitin-Like Proteins

Ubiquitin-like proteins (Ubls) are protein modifiers similar to ubiquitin in that they share a
p-grasp fold and typically modify lysine (132). These Ubl-mediated modifications, which include
sumoylation, neddylation, urmylation, and pupylation, function as important regulators of various
cellular processes, including DNA repair, transcription, signal transduction, and cell-cycle control.

Sumoylation

Sumoylation is the attachment of the small ubiquitin-like modifier (SUMO) peptide used to target
proteins and is regulated by a cascade of events similar to ubiquitination (43). In M. oryzae, a key
sumoylation pathway is catalyzed by the subsequently worked enzymes of E1 (activating enzyme;
Aos1/Uba2), E2 (conjugation enzyme; Ubc9), and E3 (ligases; Siz1 and Siz2, etc.). Many reported
infection-related proteins in this pathogen are sumoylated, including key players in appresso-
rium formation, conidial storage, ROS scavenging and detoxification, and ER effector trafficking
and secretion; deletion mutants of the SUMO pathway genes were all significantly reduced in
host penetration and invasion (86, 87). Interestingly, SUMO regulates proper localization of the
septins, which is essential for appressorial actin ring formation during infection (87).

Neddylation

Neddylation refers to the addition of the NEDD8 polypeptide to lysine residues of a small range
of target proteins (108). Neddylation is essential for fungal growth and is closely linked to ubiqui-
tination, regulating the cullin-1 protein of the SCF E3 ligase complex (121). A neddylation protein
ortholog exists in plant fungal pathogens such as M. oryzae, but the role of neddylation in plant
pathogenesis remains largely unknown.

Urmylation

Urmylation is the attachment of the small modifier URMI1 (ubiquitin-related modifier 1) to pro-
teins, which was relatively less studied in plant-pathogenic fungi. In M. oryzae, URMI modifies
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and activates the thioredoxin Ahpl during oxidative stress and thus may be part of suppressing
the host resistance response (139). URM is necessary for virulence and has other proposed roles
in regulating cell wall integrity, vegetative and infectious growth, conidiation, and responses to
other stresses (139).

Pupylation

Pupylation is the addition of a ubiquitin-like peptide (Pup) that targets proteins for degradation
via the 20S proteosome complex of gram-positive Actinobacteria. The proteosome was originally
discovered in the plant symbiont Frankia alni (4). In Mycobacteria and Corynebacteria, pupyla-
tion contributes to DNA damage and oxidative stress responses, iron homeostasis, and survival
in the host as well as some proteosome-independent regulatory roles (98). Pupylation has not
been studied in plant pathogens, but Pup ligase genes are annotated in the genomes of plant-
inhabiting Rbodococcus, Streptomyces, Leifsonia, and Frankia strains (GenBank protein accessions:
WP_179273996.1, WP_013004876.1, WP_048678303.1, and WP_041939239.1, respectively).

LIPID MODIFICATIONS

Lipid modification refers to the attachment of diverse fatty acids or sugar-lipid moieties to cys-
teine, glycine, or serine residues of target proteins (69). In general, lipid modifications function to
regulate protein—-membrane associations. The GPI anchoring mechanism discussed above in the
glycosylation section is one form of lipid modification.

Prenylation

Prenylation is the irreversible addition of 15- or 20-carbon terpenoids to a target cysteine in
a C-terminal CAAX motif (152). In fungi, prenylation most frequently modifies members of
the small GTPase superfamily that regulate growth and pathogenicity traits as well as lipopep-
tide pheromones that are important for intercellular communication and mating (55, 125). For
example, the M. oryzae prenylation enzyme, farnesyltransferase p-subunit Raml, regulates the
membrane localization of two Ras GTPases and contributes to virulence, vegetative and inva-
sive growth, and appressorial and conidial production (55). Raml is also a critical virulence and
mating factor in sugarcane smut fungus Sporisorium scitamineum (125).

N-Myristoylation
N-Myristoylation is the addition of the 14-carbon fatty acid myristate to an exposed N-terminal
glycine (33). The process is essential for membrane targeting and viability in human model fungi
such as Aspergillus fumigatus and Cryptococcus neoformans (32, 90), but relevance to plant pathogen-
esis is not yet known.

Palmitoylation

Palmitoylation is the reversible addition of a fatty acid to the side chain of Cys residues by protein
S-acetyltransferases (PATS) (12). Functions of palmitoylation in human fungal pathogens have
been previously revealed. For example, chitin synthase 3 (CHS3), central signaling protein Rasl,
and vacuolar fusion factor Vac8 are palmitoylated by the PATs in the human fungal pathogen
C. neoformans (114). However, the relevance of palmitoylation to plant pathogenesis has not been
studied.
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REDOX MODIFICATION

Under stressful conditions, a type of protein modification called redox modifications is usu-
ally induced by responding to cellular ROS or reactive nitrogen species signals, which can reg-
ulate protein functions to coordinate cellular processes. S-Thiolation is the reversible, oxida-
tive stress—induced modification of cysteine residues with a low-molecular-weight thiol redox
buffer: glutathione (S-glutathionylation) in gram-negative bacteria, bacillithiol in Firmicutes (S-
bacillithiolation), or mycothiol in Actinomycetes (S-mycothiolation) (134). The modification pro-
tects cysteines from permanent oxidation and protein damage but can also alter protein function.
Although little is known about S-thiolation in bacteria, recent studies have revealed that this mod-
ification is widespread and plays critical virulence roles in diverse human pathogens (61, 73, 84).

STRATEGIES FOR POSTTRANSLATIONAL MODIFICATION STUDY
Functional Genetics Research

Commonly, functions of different PTMs are characterized by analyzing key genes encoding corre-
sponding modification transferases or hydrolytic enzymes. Through observing phenotypic defects
of these genes’ mutants, such as defects in vegetative growth, mycelial morphology, conidiation,
conidium morphology, germination, appressorium formation, cell wall integrity, stress response,
mycotoxin production, sexual reproduction, and virulence, functional roles of specific PTMs can
be determined in the pathogenic fungi or bacteria. Through functional genetics research, combin-
ing with cellular function determination, gene/protein expression pattern tests, and target identi-
fication, the roles of PTMs can be successfully determined.

Genome-Wide Reverse Genetics Strategies

Although some important protein kinases have been characterized, many others remain to be ana-
lyzed. In the postgenome era, it is feasible to systematically characterize functions of the predicted
kinome of a plant-pathogenic fungus or bacteria. For example, a kinome-wide reverse genetics
analysis has been conducted in F. graminearum (136). There are 116 genes encoding putative pro-
tein kinases identified from the 13,321 predicted genes of E graminearum, 96 of which can be
successfully deleted and functionally characterized by observing defects in growth and colony
morphology, conidiation and conidium morphology, germination, stress response, DON produc-
tion, sexual reproduction, and plant infection (136). Combining with a PK-PK and PK—protein
interaction network prediction, this strategy can show us a landscape of PK genes’ functions in
developmental and plant infection processes in the plant-pathogenic pathogens. Similarly, a phos-
phatome analysis is also performed in F graminearum (151).In a total of 82 genes encoding putative
phosphatases, 63 are deleted and characterized for hyphal growth, development, plant infection,
and secondary metabolism (151). This strategy can be extended to other pathogenic pathogens to
systematically characterize PTM-mediated regulatory mechanisms.

Posttranslational Modification Proteomics Approaches

Many experimental methods have been used to identify potential PTM sites, among which the
MS-based proteomic strategy is the most used analytical method for detecting PTM-modified
proteins. Gel-based or gel-free approaches, chemical and antibody-based enrichment strate-
gies combined with MS, modern ion separation technologies, and computing algorithms are
powerful techniques to characterize the individual parts and provide a global analysis of PTMs
(Figure 4). These PTM proteomics approaches have been successfully used for identifying sites of
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Proteomics analysis to identify posttranslational modifications (PTMs) in plant-pathogenic fungi and bacteria. Fungal or bacterial
samples are collected to prepare total proteins, which are enriched by different strategies or separated by SDS-PAGE (sodium dodecyl
sulfate—polyacrylamide gel electrophoresis) gel. The enriched or separated proteins are subjected to mass spectrometry analysis and
data analysis with different computing algorithms, after which a database search to determine the target proteins is performed.
Abbreviation: m/z, mass-to-charge ratio.

phosphorylation, acetylation, and N-glycosylation of different plant-pathogenic pathogens (15,
40, 85, 126, 140), which provides a global view of how PTM proteins regulate the diverse
processes of development and pathogenesis.

By using isotopically encoded labels and isobaric tags combined with the spectral counting
methodology, quantitative MS has also become a powerful method for studying the regulatory
patterns of PTMs. Quantitative analyses of PTM dynamics can be utilized to study regulatory
mechanisms under changing cellular conditions or during different plant infection stages. For
example, high-throughput N-glycosylation proteomics was used to show that N-glycosylation is
important in coordinating events in vegetative growth, conidia formation, appressoria formation,
and invasive growth in M. oryzae (15).

ChIP-seq

Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-Seq)
and MS can be used to identify histone modification patterns enriched or deficient in chromatin
(3, 142). ChIP-Seq has become a comprehensive tool for investigating various posttranslational
histone modifications, including methylation and acetylation. A common approach in ChIP-Seq
analysis is to sequence the profiles of an experimental sample and a wild-type sample and compare
them to identify differences in the histone modification patterns. These can then be used to un-
cover the regulatory mechanisms during development and infection of the pathogenic pathogens.
Through ChIP-Seq analysis, relationships of specific histone modifications with genome patterns
were uncovered in different filamentous fungi, including F fujikuroi (143), F. graminearum (18),
M. oryzae (70), and Zymoseptoria tritici (116).

Posttranslational Modification Site Prediction

Because experimental methods are time-consuming and PTM proteomics approaches are high
cost, PTM site prediction through bioinformatics has become more valuable. Because the local
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sequence of the PTM site is generally conserved in most PTMs, it is appropriate to predict PTM
sites through computational methods. Some bioinformatics tools have been developed to predict
phosphorylation sites, including NetPhos, Scansite, NetPhosK, GPS, and the bacterial phospho-
rylation site prediction tool NetPhosBac (Table 2). Many other bioinformatics online tools are
also developed for the prediction of different PTM sites. For example, ubiquitination sites can
be predicted by iUbiq-Lys and UbiNet, lysine acetylation sites can be predicted by BRABSB and
PAIL, glycosylation sites can be predicted by NetOGlyc and NetNGlyc, and GPI anchor sites can
be predicted by NetGPI and YinOYang (Table 2). However, PTM is a complex process related to
many biological mechanisms, and local sequence-based PTM site prediction may not be sufficient
for the understanding of global function. Other approaches, such as protein—protein interaction
(PPI) and protein structure information, can be used to assist the PTM site prediction.

POSTTRANSLATIONAL MODIFICATIONS AND DISEASE CONTROL

As PTMs in the plant-pathogenic fungi and bacteria play critical roles in plant infection and re-
production, various enzymes that mediate PTMs provide promising new agrochemical targets.
However, compared with the drug discovery targeting of pathogen PTM:s for the treatment of
human disease, the applications for plant disease control are still in the early stage. A good exam-
ple is that a filamentous fungus HK within the HOG pathway is the target of the phenylpyrrole
fungicide fludioxonil, which causes uncontrolled hyperactivation of HOG signaling and cell death
(42, 64).

Several small molecules inhibit protein kinases, acetylases, and methylases of plant pathogens,
which can be loading compounds for the development of specific inhibitors. Marasmic acid, a
sesquiterpenoid isolated from the basidiomycete Marasmus conigenus, has strong antifungal activ-
ity against M. oryzae and interferes with the membrane sensor HK MoSInlp of M. oryzae (65).
In several fungal pathogens, the Hogl pathway plays a species-specific role in fungal virulence,
so this pathway could be a promising target for the development of novel specific fungicides (68).
Recently, an in vivo test system for fluorescent-based validation was used to identify the fungicides
targeting the HOG pathway in the MoHOG::GFP mutant, and this work can provide a tool for
screening new fungicidal candidates that interfere with the Hoglp-MAPK (5). HAT and HDAC
inhibitors are widely employed in cancer chemotherapy. A specific inhibitor of mammalian histone
deacetylase, trichostatin A, also inhibited the appressorium formation of M. oryzae and decreased
its pathogenesis, and MoHos2 was considered a potential target (62). Phenazine-1-carboxamide,
secreted by the biocontrol bacterium Pseudomonas piscium, was found to directly inhibit the activ-
ity of FgGenS5 in the pathogenic fungus F graminearum, which suggests that the Spt-Ada-Gen5
acetyltransferase complex could be a valuable target (17).

It has been reported that altering DNA methylation and histone acetylation can affect the
synthesis of secondary metabolites of fungi. 5-Azacytidine (5-AC) is a DNA methyltransferase in-
hibitor and frequently used to elucidate the roles of DNA methylation. 5-AC can dramatically
block the aflatoxin production of A. flavus and cause concurrent developmental defects (148).
In addition, a nonaflatoxigenic mutant of A. flavus induced by 5-AC was found to produce de-
creasing fatty acid—derived volatiles, which are important precursors for aflatoxin biosynthesis
(122). After the treatment of an HDAC inhibitor, suberoylanilide hydroxamic acid and two novel
compounds, 5-butyl-6-oxo-1,6-dihydropyridine-2-carboxylic acid and 5-(but-9-enyl)-6-oxo-1,6-
dihydropyridine-2-carboxylic acid, which are derivatives of fusaric acid, were isolated in the cul-
ture medium of F oxysporum, suggesting that chemical epigenetic modifiers could be a feasible
strategy to regulate metabolite production (13).
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http://csspalm.biocuckoo.org/online.php
http://swisspalm.epfl.ch
http://lishuyan.lzu.edu.cn/seqpalm/
http://pup.biocuckoo.org/
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. Phosphorylation-mediated MAPK, cAMP-PKA, and two-component signaling cascades

play key roles in pathogen infection.

. N-glycosylation, O-glycosylation, and GPI anchoring regulate appressorium-mediated

fungal invasion of plants, and O-glycosylation masks bacterial surface proteins from the
host interface.

. Histone methylation and acetylation coordinate infection through activating or repress-

ing genome-wide gene expression.

. Ubiquitin and ubiquitin-like modifications regulate protein stability or localization in

plant-pathogenic fungi.

. Lipid modifications are important for the localization of plasma membrane target

proteins.

. Functional genetics research, genome-wide reverse genetics strategies, PTM proteomics

approaches, ChIP-Seq, and bioinformatics site prediction can be used to study PTMs in
plant-pathogenic pathogens.

. Enzymes mediating PTMs provide promising new fungicide targets for disease control.

. Most current knowledge regarding the roles of PTM in plant pathogenesis is focused

on protein phosphorylation. Understanding the important roles of other PTMs, such as
ubiquitin-like modifications, histone modifications, glycosylation, lipidation, and others,
will require more extensive studies.

. Interactions between PTMs clearly exist, and therefore regulatory networks mediated

by different PTMs will shed new light on the biology and infection of plant-pathogenic
pathogens.

. Specialized PTMs such as N-myristoylation, palmitoylation, S-thiolation, and S-

nitrosylation play important roles in model human pathogens, but they are largely un-
known in the context of plant disease and warrant further investigation.

. Emerging novel histone PTMs, including succinylation, crotonylation, butyrylation,

benzoylation, and 2-hydroxyisobutyrylation, may have unknown impacts on plant
pathogenesis.

. Developing more effective technologies to identify targets of different PTMs, either

through proteomics or bioinformatics, will greatly facilitate the understanding of PTMs
in phytopathogen biology and infection. This will provide valuable new targets for fungi-
cide development.

. Many key enzymes regulating PTMs have been identified, but there are likely many

others that need to be uncovered.

. Inhibition of PTM enzymes may help us to dissect the fascinating biology of PTMs and

develop new strategies to control fungal or bacterial diseases.
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