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Abstract

The most economically important biotic stresses in crop production are
caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical
control is still the most commonly used method to manage them. However,
the development of resistance in the different pathogens/pests, the putative
damage on the natural ecosystem, the toxic residues in the field, and, thus,
the contamination of the environment have stimulated the search for safer
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alternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major
driver for controlling host populations and evolution, are somewhat underused, mostly because
of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable
in comparison with the limited potential market. Here, we provide a comprehensive overview of
the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific
focus on new approaches that rely on not only the direct biocidal virus component but also the
complex ecological interactions between viruses and their hosts that do not necessarily result in
direct damage to the host.

1. INTRODUCTION

Viruses are the most abundant entities in the world and are believed to play a crucial ecological
role in keeping organism populations in balance. Biocontrol is the control of pest and pathogen
populations through direct or indirect biocidal potential to limit their impact on production as
much as possible. Viruses can infect cellular organisms from all three domains of life, with the
noticeable exception of some endocellular bacteria, such as phytoplasmas. Although the majority
of viruses do not have measurable harmful effects on their hosts, viruses are often considered the
ultimate parasites and are thus attractive candidates as potential biological control agents (BCAs).
The predominant biotic stresses in crop production are caused by pathogens (fungi, oomycetes,
viruses, and bacteria) and insects (123). Examples of viruses interfering with the damage caused
by these biotic stresses exist for each class of plant disease–causing agents (Figure 1). In fact,
implementing viruses as BCAs for plant biotic stress is not new: The use of bacteriophages as
BCAs in bacteria was first hypothesized a century ago (76). In fungi, the first example of a virus
as a successful BCA was the use of the mycovirus Cryphonectria hypovirus 1 (CHV1), which
was discovered to cause hypovirulence in the ascomycetous fungus Cryphonectria parasitica and
has since been deployed to interfere with chestnut blight disease in chestnut orchards and forests
(8). In insects, the first examples of virus biocontrol were the uses of baculoviruses to control
populations of lepidopteran insects (87). More surprisingly, viruses can also be used to control
diseases caused by plant viruses: In this case, viral biocontrol relies on the use of attenuated strains
of plant viruses to prime plants against an infection of more severe viral strains of the same virus
species. This concept is known as cross-protection or preimmunization (95).

Here, we compare approaches that use virus-based BCAs, summarize the possibilities offered
by viruses to control plant pathogens and pests, propose new approaches that could increase their
implementation as BCAs able to overcome technical limitations, and discuss the safety and risk
assessments of their use.

2. PHAGE BIOCONTROL AGAINST PLANT-PATHOGENIC BACTERIA

One of the greatest global emergencies in the upcoming years is the insurgence of more and more
cases of multidrug-resistant (MDR) bacteria. Resistance to antibiotics has certain environmental
aspects (113, 138) that suggest the necessity of forbidding their use in agriculture against phy-
topathogenic bacteria (127). This has revived alternative approaches in both human medicine,
e.g., phage therapy (97), and various agricultural fields (129), e.g., phage biocontrol against bacte-
rial diseases of plants.

22 Wagemans et al.



PY60CH02_Turina ARjats.cls August 10, 2022 16:20

Figure 1

Use of virus biodiversity for traditional and new approaches to control pests and pathogens. Viruses can be used to limit
phytopathogenic bacteria (phage biological control agents), fungi/oomycetes (mycovirus), and insect pests and vectors (entomovirus).
Viruses can also be used to limit plant viral disease through cross-protection. Viruses not drawn to scale. Abbreviations: VIGE,
virus-induced gene editing; VIGS, virus-induced gene silencing.

2.1. A Limited Number of Phage-Based Biobactericides Is Available
on the Market, Especially in Europe

Among the low impact measures against phytopathogenic bacteria is the use of bacterial viruses
or bacteriophages as biocontrol tools. Promising results and technical limitations have been re-
viewed elsewhere (21, 56, 121).Even though there is clearly great potential for the implementation
of phage biocontrol in crop production, there is currently only a limited number of commercially
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available phage cocktails on the crop protectionmarket, especially in Europe, likely because, in the
European Union, biologicals need to pass a regulatory process similar to that of synthetic pesti-
cides. This leads to rather lengthy and costly procedures, although regulatory agencies could issue
waivers for phage products, considering the inherent biological safety of these natural substances
for farmers and the general public (44).

Since 2005, the US Environmental Protection Agency (EPA) has authorized four different
phage cocktails as active substances for bactericides, all from Omnilytics (part of Phagelux
Agrihealth). The first cocktail, called AgriPhage, contains bacteriophages against Xanthomonas
campestris pv. vesicatoria and Pseudomonas syringae pv. tomato and protects tomato and pepper plants
from bacterial spot and speck in both the greenhouse and open field. Similarly, Omnilytics also
developed cocktails against bacterial canker disease on tomatoes and citrus caused by Clavibacter
michiganensis subsp. michiganensis and Xanthomonas citri subsp. citri, respectively, and against
Erwinia amylovora fire blight on apple and pear trees. Unfortunately, no concrete details on
the phage contents and expected symptom development reductions of the current cocktails are
described in the literature, although early formulations of the X. campestris pv. vesicatoria phage
cocktail reduced bacterial spot disease severity on tomato plants by an average of 17% (15, 39). A
cocktail against X. citri subsp. citri containing at least some of the Omnilytics phages was able to
reduce citrus canker disease severity by 59% on average in a set of five greenhouse experiments
(14). In 2021, the EPA approved another phage product, XylPhi-PD, from the Otsuka Pharma-
ceutical subsidiary A&P Inphatec that protects grapevines in California from Pierce’s disease,
which is caused by Xylella fastidiosa. The company reported that consistent XylPhi-PD injection
in the xylem reduced disease incidence by 57% in a four-site California field study.

In Europe, the European Commission is the agency that approves active substances for plant
protection products (PPPs). To date, no phages have been registered as a pesticides’ active sub-
stance in Europe, which is in sharp contrast to other viral BCAs (e.g., baculoviruses). However, at
the national level, a member state can give provisional authorization under specific circumstances,
even if the active substance has not yet been approved (44). Under this umbrella, since 2018 the
Hungarian government has authorized Enviroinvest to locally sell the phage cocktail Erwiphage
Plus as a preventive bactericide against E. amylovora.This product is adapted yearly to reduce resis-
tance development and can be applied only under strict conditions during the blossoming period,
and this emergency authorization is approved yearly for only 120 days from mid-March to mid-
July (79). The Erwiphage Plus cocktail contains two specific phage species, PhiEaH1 (79) and
PhiEaH2 (31), which were isolated locally and successfully reduced the occurrence of fire blight
cases in field experiments when no artificial infection was applied (https://www.erwiphage.com).
Although not registered as a PPP,APS Biocontrol sells a phage product within Europe: Biolyse-PB
reduces Pectobacterium soft rot of potato tubers packed for human consumption.

2.2. Recent Advances to Further Improve the Efficacy of Phage Biocontrol

Based on several phage biocontrol studies and the few available commercial products against dif-
ferent bacterial pathogens, it is clear that an in-depth knowledge of the pathosystem is crucial to
select an efficacious phage application method (56). Moreover, a careful phage cocktail selection,
which increases the success rate of the treatment, is another point of attention. Indeed, although
biologicals such as phages have important advantages over synthetic pesticides, their efficacy gen-
erally seems to be lower because of their bacterial host hyperspecificity. Therefore, developed
phage cocktails may not work simply because they do not contain phages that recognize the spe-
cific pathogen present in a certain greenhouse or field. Therefore, phage application requires
monitoring the genetic features of bacterial populations even after the product is being applied.
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Thus, new upcoming strains that cannot be efficiently killed by the current cocktails can be used
to create host range mutant phages, e.g., by in vitro evolution (20).

Another way to partly overcome the host specificity problem is to deliver precision phage bio-
control matching a phage cocktail to the particular strain of interest. Precision biocontrol could
rely on algorithms to match the strain genome to the appropriate phage cocktail. Machine learn-
ing can link the genome sequence of pathogenic bacteria to candidate bacteriophages (19, 73, 77),
and provide the ability to monitor a larger number of available phages via the prediction of the
relationship between phage and pathogen structures (97). Although precision therapy is applicable
to human phage therapy, precision biocontrol in crop production may only be profitable in, e.g.,
high-value cash crops, ornamental plants, or postharvest control measures.

Another limit to the implementation of bacteriophages as BCAs is the risk of bacterial resis-
tance development. Therefore, identifying evolution-proof strategies to prevent this is also cru-
cial to increasing the efficacy of phage biocontrol. Evolution-proof applications could encompass
combinations of phages and antagonistic bacteria (140) or phages in combination with other pest
management strategies. As resistance to one of these stressors causes increased sensitivity to the
other, pathogens facingmultiple natural enemies do not easily evolve resistance, thereby increasing
the efficacy of the combination treatment. In this regard, Ibrahim et al. (57) tested anX. citri subsp.
citri phage cocktail in combination with systemic acquired resistance (SAR)-inducing compound
acibenzolar-S-methyl (ASM), which significantly reduced Asiatic citrus canker disease incidence
on lime leaves by 18.3–75.2% under greenhouse conditions. This was a comparable reduction of
12.8% for a copper hydroxide–treated control group. Similarly, Lang et al. (68) tested a phage
cocktail targeting Xanthomonas axonopodis pv. allii on onion, the combination of the phage cocktail
withManKocide (containing the bactericidal copper hydroxide and the fungicidal mancozeb), and
the phage cocktail with ASM for two subsequent years at different geographical locations. During
these trials, it showed that phages, both with and without additives, perform as well as a traditional
copper hydroxide treatment.

Nanotechnology can help develop phage-based BCAs. Nanoparticles with an extremely small
size and a high surface area can stand as potential candidates for future bacteriophage formulations
to help improve the efficacy and facilitate the applicability of bacteriophages. Nanoparticles are
being investigated for their ability to control antibiotic-resistant pathogenic bacteria (69). They
have been shown to reduce the exopolysaccharide production and biofilm formation of bacteria,
thereby interfering with quorum-sensing signaling. This in turn prevents bacteria from express-
ing several density-dependent traits, including antibiotic production, biofilm formation, virulence,
swarming, and evolution of resistance (118). From an environmental perspective, silicon nanopar-
ticles may be particularly relevant, as they can be produced by plant materials and can have ben-
eficial effects on plant health (99). The synergies between phages and nanoparticles are currently
still under investigation.

A last approach to drastically reducing resistance development is to use multiple phages for
each pathogenic strain (140) that together put pressure on a pathogen until it evolves a resistant
phenotype weakened in other essential traits, resulting in “evolutionary suicide.”

Researchers are also exploring the use of phages other than the conventionally used strictly
lytic phages that immediately propagate inside and lyse their bacterial host as biocontrol tools.
Temperate phages, which are able to undergo a lysogenic infection cycle during which they reside
in the host genome, were traditionally excluded from biocontrol approaches, but a recent review
outlines a theoretical framework that includes them among feasible tools to control bacterial
infections (86). One other approach besides the use of lytic phages is the use of filamentous
phages (these types of phages chronically infect their host, thereby continuously releasing viral
progeny without lysing the host cell) (5). In this regard, Ahmad and colleagues (3) characterized
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filamentous phages influencing the virulence of their host X. axonopodis subsp. citri. Similarly,
Akremi et al. (4) showed that the use of filamentous phages against E. amylovora could be an
option to treat fire blight in pears.

2.3. Some Risk Assessment Considerations

In contrast to chemical PPPs, phages consist of proteins and nucleic acids, both of which are
biodegradable and widely abundant in the environment. The formation of toxic metabolites or
bound residues, which must be considered for chemical PPPs, is not expected for these phage
BCAs. Phages and viruses, however, can replicate and thereby increase their abundance above the
amounts that have actually been released during their application.

For their environmental safety, and in line with the environmental risk assessment of chemical
pesticides (54) and genetically modified organisms (10), the impact of phages and viruses should
consider potential effects on nontarget organisms (NTOs). These effects depend on the prop-
erties of both the phage/virus product and the receiving environments. Host specificity defines
the range at which NTOs may be affected. The mode of phage replication may strongly affect
the exposure time and dissemination into neighboring ecosystems. Other host-related properties
include UV resistance, desiccation tolerance, and affinity for adsorption onto clay minerals. For
the receiving environment, one major factor is the presence of hosts that allow phage or virus in-
fection and replication. Generally, the host range of a phage is expected to be narrow and specific
for a target organism, but the lack of knowledge on the presence of potential hosts within soil or
other environmental microbiomes may increase the predictive uncertainty. Also, some phages are
less specific and can infect hosts from different genera (124).

Indirect effects of phages on NTOs must also be considered. These may potentially be more
drastic than just a transient elimination of a host. For aquatic ecosystems, it has been shown that
phage–bacteria interactions can strongly influence global biogeochemical cycles (141). Compa-
rable data are not available for soil, and the mobility of phage and viral particles is limited by
adsorption to soil particle surfaces (48). However, soil viromes are not fully inactive and thus may
have effects on soil microbiomes and their activities (101).

Most emerging soil microbial activities result from complex interactions.Will a bacteriophage
host removed from a community be simply replaced by another taxon without affecting the inter-
action networks? Or will it trigger cascade reactions that ultimately result in completely different
communities? A way forward to addressing these questions and predicting indirect effects is net-
work analysis, which reveals the interaction potentials, e.g., whether an affected taxon is a keystone
species or hub or just a poorly connected community member.When developing a test system for
the construction of microbial networks, it is advisable to analyze distinct individual soil aggre-
gates, as the focus on such small spatial entities increases the probability of detecting interacting
partners instead of only incidental correlations (130).

Given the tremendous potential of phages and viruses as PPPs, risk assessment agencies should
ask themselves whether current procedures for assessing their environmental risks are fit-for-
purpose or whether adjustments in response to phage-specific and virus-specific properties and
new knowledge on environmental microbiomes should be applied to enhance safe applications of
phage and virus PPP products.

3. MYCOVIRUSES AS PUTATIVE BIOCONTROL AGENTS
OF PLANT-PATHOGENIC FUNGI

Mycoviruses are obligate parasites prevalent in most economically important plant-pathogenic
fungi. Mycovirus–fungus interactions are frequently associated with latent infections; however,
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mycovirus infection can also be beneficial or detrimental to the fungal host.Mycoviruses can have
many types of genomes: mainly positive- and negative-sense single-stranded RNA (ssRNA+/−)
or double-stranded RNA (dsRNA) genomes and, much less frequently, single-stranded DNA
(ssDNA) genomes, with the noticeable exclusion of dsDNA viruses (27, 110, 146). Their genomes
are mono- or multi-segmented, naked, or encapsidated (135). The historical success of us-
ing mycovirus-infected hypovirulent Cryphonectria parasitica for the control of chestnut blight
has stimulated additional studies on mycoviruses and their potential for biocontrol of plant-
pathogenic fungi in other pathosystems (90, 94, 143).

3.1. Hypovirulent Strains for the Biocontrol of Chestnut Blight

A successful case example of biocontrol of a fungal disease with a mycovirus is the use of Cry-
phonectria hypovirus 1 (CHV1) against its fungal host Cryphonectria parasitica, the causal agent of
chestnut blight, a severe disease of chestnut with characteristic canker symptoms (necrosis of the
bark and cambium) that can girdle the trunk and lead to death of the canopy (90).

Comprehensive reviews have been written on the history of controlling this invasive species
with hypoviruses and the molecular aspects of the hypovirus-fungus interaction (55, 83, 90, 133).
Here, we mainly focus on the practical aspects of this hypovirus-based biocontrol approach, the
reasons behind some failed attempts at controlling this disease with mycoviruses in the United
States, and some possible new approaches to overcome such failures.

The successful story of CHV1-caused hypovirulence in Europe.Hypovirulence was first de-
scribed by Antonio Biraghi in Italy in the early 1950s followed by approaches to develop the
hypovirus-containing strain as BCA (106, 133). The demonstration of its cytoplasmic localization,
the presence of a dsRNA molecule, and, finally, its viral nature (133) were the three discoveries
that led to implementation of an active biocontrol strategy in both Europe and the United States.
However, no mycovirus-based PPP is registered for commercial use.

In Europe, hypovirulent isolates of C. parasitica have been used to treat chestnut blight disease.
These attempts began in France with the efforts and protocol fromGrente in the 1970s (106). Sev-
eral steps were identified for the introduction of hypovirulence: (a) the vegetative compatibility
(VC) groups present in a specific location must be identified; (b) a virulent, local representative of
each VC group needs to be transfected with CHV1; and (c) isolates, or a mix of isolates from a vir-
ulent, local representative of each VC group are used to treat actively growing cankers. The BCAs
are inoculated by placing mycelia in holes made with a cork borer at the canker margin.Molecular
markers for both the fungus and the virus are used to monitor the efficacy of the treatment on
single cankers and the establishment of the BCAs. The goal is to maintain a limited disease pres-
sure without continuous reintroduction of hypovirulent isolates (102). Although the therapeutic
effect on the treated cankers was mostly successful, these natural biocontrol tools did not persist
in the field and the role of the specific virus isolate seems crucial: Aggressive isolates are likely
better at treating single cankers, but their reduced fitness (slower growth and reduced conidia)
can hamper their long-term effects. This was shown for some French CHV1 isolates similar to
CHV1-EP713, the isolates used as BCA inmost biocontrol experiments.However, Italian isolates,
which are milder in relation to hypovirulence, have better fitness (judged by growth and conidia
production) and often establish in the long-term in areas treated for biocontrol purposes (108).

Deployment of virus-caused hypovirulence in the United States. Introducing stable natural
biocontrol in the United States has been unsuccessful (83). The major reasons seem to be the
higher susceptibility of American chestnut to C. parasitica and the greater diversity of VC groups
that are locally present, which makes natural spread of the hypovirus more difficult (33).
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Successful biocontrol relies on horizontal transfer of a hypovirus through anastomosis. When
isolates belonging to different VC groups attempt hyphal fusion, cell death occurs. Theoretically,
up to 64 VC groups are possible, controlled by six loci with two alleles at each locus.

The American regulatory landscape is more open to biotechnological manipulation of BCAs.
In the mid-nineties, a system to initiate CHV1 infection from a trans-gene copy of the viral cDNA
was established (24). The release of transgenic fungal strains in chestnut orchards and coppices
is expected to increase the spread of hypovirulence because (a) all the conidia will be infected by
the virus (as opposed to cytoplasmic CHV1, which is transmitted only to a variable and limited
extent to conidial progeny); (b) ascospores originated from outcrosses using transgenic conidia
as spermatia will segregate for the presence of CHV1 (whereas no ascospore is infected from
cytoplasmic CHV1); and (c) mating will increase the variability of CHV1-infected VC groups,
resulting from recombination at the VC loci. Two studies evaluated the introduction of transgenic
C. parasitica carrying the CHV1 virus and both reported that several ascospores carried the virus
(although in a lower number compared to the expected segregation ratio) but without changing
the likeliness of hypovirulence naturally spreading in the orchard/coppice (33, 109).

The possibility to use genetically manipulated organisms in the United States also suggested a
further approach to overcome the limitations to natural hypovirulence spread due to the high di-
versity of VC groups: In this case, a superdonor strain ofC. parasiticawas obtained by knocking out
four of the five vegetative incompatibility (vic) loci that restrict virus transmission (one locus is not
involved in restricting CHV1 transmission). This strain is therefore able to establish anastomosis
with a great number of the 64 VC groups and thus can be used to efficiently spread hypoviru-
lence in the field, without VC restrictions (148). Indeed, when two such superdonor strains were
used to treat cankers, in a natural and vic-genotypically diverse C. parasitica population, they were
successful in transmitting the virus to most of the local vic genotypes (120).

3.2. Mycoviruses as Biofungicides

As shown above, the use of mycoviruses as BCAs has relied on the infected hypovirulent fungal
strain to transmit the mycovirus to the virulent fungal strain by hyphal anastomosis. However, the
formulation of mycoviruses in such ways that they could be used as external fungicides, similar
to the commercial products based on other microorganisms such as phages, fungi, and bacteria,
would be more promising for market success. In this way, field transmission barriers due to the
fungal host vegetative incompatibility could be avoided.

In this regard, there are a few examples of extracellular infections of fungi using mycoviral par-
ticles. In 2010, Yu and coworkers discovered the first mycovirus with an ssDNA circular genome
associated with the fungus Sclerotinia sclerotiorum [Sclerotinia sclerotiorum hypovirulence-
associated DNA virus 1 (SsHADV-1)] (146). The treatment of Arabidopsis leaves and Brassica napus
plants with SsHADV-1 virions as a virus-based fungicide was protective against S. sclerotiorum
infection; the results were comparable with the application of carbendazim, a chemical fungicide
frequently used for fungal control (147). Moreover, the isolation of ssDNA-infected strains from
the treated leaves indicated that the inhibition of the infection was due to the conversion from
virulent to hypovirulent variants by mycoviral infection. Furthermore, in rapeseed field trials,
the application of SsHADV-1 particles also prevented secondary infections, reduced both the
incidence and severity of Sclerotinia stem rot, and significantly improved seed yield (147).

3.3. New Approaches for Mycovirus-Based Biocontrol Strategies

The deployment of fungal isolates with virus-mediated hypovirulence had the advantage of lim-
iting the environmental spread of the mycovirus, raising very little concern for off-target effects;

28 Wagemans et al.



PY60CH02_Turina ARjats.cls August 10, 2022 16:20

nevertheless, such approaches that rely on the horizontal spread of the virus among pathogen pop-
ulations with delayed efficacy are not suitable for annual crops but remain particularly useful for
forest diseases in natural settings. Recent new approaches seem to be better adapted to protect an-
nual crops, using mycovirus-infected strains, but have the advantage of not relying on horizontal
transfer of the virus for effective biocontrol.

Mycovirus-caused change of fungal lifestyle. A more recent mycovirus-based biocontrol ap-
proach relies on the discovery of the complex relationship of a mycovirus-infected hypovirulent
strain with the plants that need protection. Three groundbreaking works have been published in
the past year sharing the discovery that a mycovirus can switch the lifestyle of a fungal host from
a pathogen to an endophyte and that the presence of the endophytic fungus in the plant hosts has
positive effects on the growth of the plant and protection from the virus-free pathogen. Zhang
and coauthors (149) started from the observation that SsHADV-1 DNA could be found in rape-
seed pods long after treatment with the hypovirulent strain, suggesting that mycovirus-infected
S. sclerotiorum could colonize B. napus; they showed that mycovirus-infected S. sclerotiorum isolates
formed compound appressoria and could grow on the surface and under the leaf epidermis without
killing the cells (as normally done by virus-free isogenic isolates). Looking at mycovirus-caused
differential expression patterns, the authors showed that the mycovirus suppressed the produc-
tion of pathogenicity/virulence factors and provided the fungus with the ability to regulate plant
defense and hormone function, stimulating plant growth and resistance to pathogen infection,
including Botrytis cinerea (149).

Zhou and coauthors (151) looked at a different host–pathogen system: Pestalotiopsis theae, a
pathogen of tea.Pestalotiopsis spp. are commonly found as nonpathogenic endophytes, but sequence
and phylogenetic analysis have failed to distinguish closely related pathogenic and endophytic
Pestalotiopsis. These authors associated the endophytic lifestyle with the presence of a chrysovirus
and assessed the potential for a BCA based on such mycovirus-infected endophytic strain (151).

In a surprising development of the SsHADV-1-caused endophytic switch in its fungal host,
Tian and coauthors (131) discovered that S. sclerotiorum can establish a protective endophytic
relationship also with gramineous hosts (which were formerly thought to be nonhosts and used
in rotation with dicotyledonous S. sclerotiorum hosts), treating the seed and priming the plant to
protect itself from several different fungal pathogens such as Fusarium graminearum,Magnaporthe
oryzae, andPuccinia spp. (131). In these approaches, the product that is sprayed on the crop is indeed
a fungal culture that carries the mycovirus intracellularly; therefore, there is no open release of
the virus in the environment; nevertheless, it acts as a PPP without the necessity to convert the
pathogenic recipient strain through anastomosis.

Virus-induced gene silencing and synthetic biology.Most mycoviruses that are found through
metatranscriptomic data are not causing hypovirulence, because they coevolved with their host,
which tamed their pathogenic potential. Nevertheless, there are biotechnological approaches that
can make those viruses pathogenic to their fungal host, interfering with the fungal life cycle or
specifically interfering with their virulence potential for causing disease on plants. Virus-induced
gene silencing (VIGS) is an approach in which a fragment of a target host gene is inserted into a
viral genome (into a viral infectious clone). From CHV1 infectious clones, an expression vector
was derived (128) and the same site of insertion can be used to insert a fragment of a fungal host
gene that would be downregulated during infection.

Furthermore, the mycoviruses that can be used for biocontrol strategies can include those
that result from the amplification and assembly of infectious clones frommetasamples analyzed in
silico, as recently demonstrated for an ssDNA virus amplified from a plant metagenome (38). Such
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infectious clones can be adapted to become virus-induced gene editing (VIGE) tools, increasing
the potential for application (29, 91).

3.4. Biosafety and Risk Assessment

Before the commercial use of new BCAs, their safety, taking into account their dispersal and per-
sistence in the environment, needs to be assessed. Known mycoviruses with RNA genomes are
strictly intracellular, and as BCAs they need to be carried to the field inside the mycelia or spores
of their host fungus. This also means introducing new inocula of the host pathogen into the en-
vironment. For this reason, only environments already heavily infested with the pathogen can be
considered, and the introduced strain of the pathogen should be clearly hypovirulent. Moreover,
unless the introduced host strain has the same genotype as the resident population, the genetic
diversity of the host may increase, which could potentially lead to the generation of new, more
virulent host genotypes. In general, mycoviruses are expected to persist in the environment for a
long time after application because of their intracellular nature. This is beneficial in terms of bio-
control efficacy, as has been seen in the case ofC. parasitica hypoviruses that are naturally spreading
in the forest, but it also means that any harmful effects would be difficult to mitigate.

Another risk to be assessed is the potential virus transmission toNTOs. In general,mycoviruses
are highly species-specific and no major interspecies spread is expected. However, mycoviruses
have been shown to be occasionally transmitted between different species of the same fungal genus
(72, 80, 112, 134) or possibly even more distantly related fungal species in the same environment
(9, 136). This is not expected to lead to problems if a common mycovirus pool is naturally shared
between multiple host species, in which case each species would be equally adapted to the virus
effects. However, the outcome is more unpredictable if non-native viruses are used. Because of
the lack of coevolution and adaptation, viral host jumps are expected to be harmful to the fungus,
as has been demonstrated in laboratory experiments (23, 61, 63). If the introduced viruses infect
co-occurring ecologically important fungal species such as mutualistic endophytes or mycorrhizal
species, concomitant negative outcomesmay extend to the plant community and thereby thewhole
ecosystem.

An even more problematic scenario would be posed by virus transmission into other organisms
that are closely connected with fungi, such as plants and arthropods. Recent high-throughput
sequencing studies have suggested the occasional occurrence of such transmissions in nature (27,
114) or experimentally (18).Ultimately, human exposure needs to be taken into account during risk
assessment. The only currently known mycoviruses with DNA genomes are gemycircularviruses
in the familyGenomoviridae, which have been shown to be capable of extracellular transmission and
are vectored by insects (71). Vectoring by insects is highly beneficial considering practical viro-
control applications, as it could eliminate the necessity of co-distributing the fungal host pathogen
into the environment. However, some caution should be taken, as gemycircularviruses have been
widely detected in various environmental samples (65, 116) as well as immunosuppressed humans
(75).

4. VIRUSES AND INSECT BIOCONTROL: SOMETHING OLD,
SOMETHING NEW

Insects form the largest living animal group on Earth, representing a major part of its biodiversity.
Insects have conflicting relationships with humans: They are beneficial for a plethora of biological
processes and ecological services, but they are also competing with humans for food and resources.
As such, they constitute amajor economic burden on food crop production by either direct feeding
(pre- and postharvest) or transmitting pathogens to plants.
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Viruses are integral components of ecosystems and as such they cause epizootics in insects
(35). The first field trials using a virus occurred in the 1950s, using a baculovirus to control alfalfa
caterpillars (100). Since then, the use of entomopathogenic viruses to control agricultural pests
and disease vectors represents one of the most promising approaches in sustainable pest control
strategies (125).The success of baculoviruses as BCAs has been undeniable, but they have a limited
target that excludes most of the insect vectors of viruses and phytoplasmas; furthermore, their
intensive use has inevitably selected for resistance (11, 12), leaving us with few alternative solutions.
Today, there is an urgent need to diversify the arsenal of viral pesticides as BCAs. This section
describes the baculovirus success stories and the potential new virus resources and virus-based
strategies for insect control.

4.1. Entomopathogenic Viruses: The Baculovirus Success Stories

Entomopathogenic viruses belonging to at least 20 taxonomic groups (119) have been associated
with epizootic outbreaks in insects from natural ecosystems or rearing facilities, among which
we find baculoviruses, cypoviruses, densoviruses, entomopoxviruses, and insect-infecting picor-
naviruses. However, not all these viruses have the potential to become BCAs. Indeed, the criteria
required for a “good” viral BCA in agriculture include specificity, oral infectivity and pathogenic-
ity, safe and easy production, and stability in the environment. Although more viruses could meet
these criteria, application has so far concentrated on baculoviruses.

Baculoviruses belong to two genetically related virus families, Baculoviridae and Nudiviridae.
These viruses have been characterized in arthropods only, mainly in insects of the Lepidoptera,
Diptera, and Coleoptera orders. Surprisingly, the recent characterization of insect viromes did not
broaden the baculovirus host range to other relevant agricultural pest and vectors (26, 89, 92).

Approximately thirty-five baculovirus products are commercialized at present against various
pests, mostly Lepidoptera (100, 126). These are mainly specific baculoviruses, yet few relatively
broad-spectrum baculovirus products have also been developed. Despite the multiple products in
use, so far host resistance to baculoviruses has rarely been reported, primarily in populations of the
codling moth Cydia pomonella treated with the baculovirus Cydia pomonella granulovirus (CpGV)
(11, 12).Genetic resistances occurred independently in different populations. Insect resistance was
overcome by introducing naturally occurring CpGV genetic diversity from field sampling (37).

Molecular biology and genetics studies have also opened the possibility of genetic modification,
in particular for improving the baculovirus speed-to-kill (122). Research on genetically modified
baculoviruses remains limited mainly because of the general societal reluctance to embrace genet-
ically modified organisms, but research is ongoing in this field.

4.2. Densoviruses: Possible Biological Control Agents with High Potential

Densoviruses were discovered in the 1960s following mortality in mass rearing of the lepidoptera
Galleria melonella (81). They were next associated with natural epizootics in various lepidopteran
populations, including agricultural and forest pests (82, 107).

Densoviruses are the smallest known animal viruses. A nonenveloped icosahedric capsid
(19–25 nm) protects a linear ssDNA genome (4–6 kb) ended by inverted terminal repeats.
Densovirus genomes encode 3–7 proteins. Arthropod-infecting densoviruses can be found in
two subfamilies of the family Parvoviridae: Densovirinae and Hamaparvovirinae (30). The diversity
in sequence, genomic organization, and structure identified eight genera in Densovirinae and
five genera in Hamaparvovirinae. Although only 65 assembled genomes have been described,
metagenomic analyses and data mining in transcriptomic and genomic public databases have
identified partial genomes and densovirus-related sequences. Diversity and prevalence of these

www.annualreviews.org • Virus-Based Biocontrol 31



PY60CH02_Turina ARjats.cls August 10, 2022 16:20

viruses in all ecosystems (42, 43, 132) suggest that densoviruses can be considered as potential
BCAs against several insect families, including Lepidoptera, Diptera, Orthoptera, Hemiptera,
Blattoidea, Thysanoptera, etc. Densovirus transmission is thought to be mostly horizontal,
although vertical transmission (from adults to progeny) has been often described (6, 96).

A few successful field trials have been reported in South America and Africa to control
lepidopteran pests of palm and coconut trees (47), but research remained low profile and denso-
viruses were never developed further against agricultural pests despite interesting results for a
few densovirus candidates (85). Viroden, the first densovirus-based product, was commercialized
in Ukraine in the 1980s to control mosquitoes (59), and a densovirus pathogenic for the smoky
brown cockroach Periplaneta fuliginosa has been commercialized in China (126).

Densoviruses are also easy to manipulate and their entire genome can be placed into an infec-
tious plasmid, which can be transfected in insects or in cell culture to recover a viral population
(60). Mosquito densovirus vectors have been used to deliver short hairpin RNA to mediate gene
silencing and interfere with the transmission of arthropod-borne viruses (50, 70).

The small size of their DNA genome makes densoviruses easy to engineer and produce, and
densovirus capsids can be exploited as specific nanovehicles for gene or product transduction,
opening the design of precision products.

4.3. Diversifying Virus-Based Biocontrol Strategies Against Insects

Pest control strategies using viruses have been modeled on those of chemicals and viral pesticides
evaluated with the same criteria, i.e., specificity, efficacy, persistence, and biosafety. Most virus-
based strategies designed so far have relied on the periodical release of viruses against targeted
pests. However, due to their close relationships with their hosts, viral BCAs can be more versatile
than conventional pesticides.The knowledge and experience accumulated with baculoviruses over
the years encouraged diversifying the strategies of use (137).

Viral ecology–based strategies.Viruses have been associated with natural population cyclic dy-
namics by directly reducing the host population peak but also by having sublethal effects that
indirectly influence population decline. But not all insect populations undergo epizootic fluctua-
tion episodes (88). Field tests of the impact of baculoviruses have shown that for host populations
that undergo natural epizootics, early infectionmay be beneficial for biocontrol (93).The diversity
of responses that insects may have to virus infection likely relies on intrinsic (host genetics, sym-
bionts) and extrinsic (plant, environment) factors. Taking the complexity of the biological system
into account is important in evaluating chances of success for a viral BCA.

Viral metagenomics and high-throughput sequencing have provided the tools to explore the
insect virome, unraveling the prevalence and diversity of viruses. One scientific challenge is to
understand the structure of virus communities in insects and test how these viruses may influence
interactions with the host plant. Data-driven approaches, including statistical methods, may help
refine our understanding of the key drivers (and the levers to act on) of the damage for the insect
pest/vector and the plant.

Inoculative applications for virus-based biocontrol. Inoculative biological control consists of
the intentional release of the BCA into the environment with the expectation that it will multiply
and control the pest for long periods. Conservative biological control refers to the modification of
the environment to protect and enhance the specific agent (34). Inoculative and conservativemeth-
ods are often used in biological control using predators and parasitoids. However, these methods
have hardly been used with microbial control agents. For viral pathogens, a few attempts were
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carried out using baculovirus for the control of forest pests such as the gypsy moth (Lymantria
dispar), European spruce sawfly (Gilpinia hercyniae), and European pine sawfly (Neodiprion sertifer)
(51).

Multiple studies have revealed that covert infections (also known as persistent or silent infec-
tions) with DNA and RNA viruses are very common in field insects, and many stress factors have
been discovered to activate lethal infections, encouraging further research into their regulation
of the host populations and their potential applications in pest control (45, 98). Although viral
covert infections are naturally maintained in populations by vertical transmission, they could also
be generated by inoculative applications of the viruses into the system. Strategies aimed to ex-
ploit natural and inoculated viral infections to reduce pest populations by triggering epizootics of
disease in field populations would need to address certain pitfalls to understand the mechanism
regulating the covert/overt interaction with the host, the broad-range effects of viral infection on
host fitness and their integration into the cropping system.

Metagenomic analyses of insect populations have significantly increased the rate of virus dis-
covery and revealed that covert virus infections are ubiquitous.However, the mechanisms govern-
ing the maintenance of the infection, and, more importantly, the transition from covert to overt
infections, remain to be elucidated. Insects have developed a complex immune system to fight
against infections (16). However, viral strategies for the maintenance of covert infections include
circumventing the host defenses by repressing or inhibiting the immune system or infecting spe-
cific cell types (62). Studies on host immunity may potentially clarify the mechanisms involved in
themaintenance of covert infections and suggest newmolecular tools for promoting the transition
to the overt stage.

Application of a baculovirus produces obvious lethal symptomatology on the targeted pest.
However, covert infections with baculovirus and with most of the newly discovered RNA viruses
do not reveal a clear symptomatology, and their long-term effects on insect populations are not
well known. So far, clear effects of RNA viruses on insect fitness have been mainly reported in
reared beneficial insects such as honeybees and silkworms. For example, Sacbrood disease in hon-
eybee larvae is a fatal disease caused by the Sacbrood iflavirus, and dual infection together with
deformed wing virus (DWV) has synergistic effects on the host egg transcriptome. In addition, in
the case of DWV infection, besides the direct effect on bee development, long-term covert infec-
tion may seriously hamper foraging behavior and colony survival (7, 17). In this context, it is likely
that a more detailed study of the broad-range effects of viral infections with newly discovered or
poorly studied viruses may reveal long-term effects, perhaps relevant to the detrimental effects
on population dynamics. It is also possible that covert infections with these RNA viruses could
provide certain advantages to the host. For example, a picorna-like virus in pea aphids suppresses
the jasmonic acid response in the plant host, thus facilitating aphid adaptation to different plant
hosts (74).

The pest and the viral BCA must be considered as components of a complex system, which
also includes the plant or cropping system. Additional components influencing the efficacy of
a viral pesticide (115) may include epidemiological parameters (pest abundance, density, spatial
distribution) and host intrinsic factors (susceptibility, stage, resistance). Alone and together, each
parameter can influence the outcome of an infection. In addition, virus-based strategies in bio-
control should be considered in the context of integrated pest management strategies, including
compatibility with other BCA agents. So far, the effect of covert viral infections on the use of non-
viral microbial pathogens or the efficacy of the host predators and parasitoids has been the subject
of limited studies. Some of the few examples of covert viral infection effects on other BCAs re-
vealed different outcomes depending on the virus–BCA–host combinations and interactions. For
instance, Junonia coenia densovirus and Helicoverpa armigera densovirus-1 have been shown to
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protect lepidopteran pests from other pathogens, including baculovirus and Bacillus thuringiensis
(46, 144). In contrast, in the lepidopteran Spodoptera exigua, sublethal infections with two iflaviruses
increase the potency of baculovirus (22).

Alternative virus-based strategies for biocontrol: molecular manipulation of insect viruses
and virus-based vehicles.The approval of transgenic plants targeting the Coleoptera Diabrotica
virgifera (western corn rootworm) by US and Canadian regulatory agencies has opened the way
to RNA interference (RNAi)-based control methods of insect pests. RNAi allows silencing of se-
lected genes through the delivery of sequence-specific dsRNAs inside the target host (58). The
technique exploits a cellular mechanism devoted to the endogenous regulation of gene expres-
sion, together with the immune reaction against invading viruses and transposons. RNAi may be
applied to silence vital insect genes, and owing to its sequence specificity, it has the potential to be-
come an efficient and selective insecticide strategy. Yet several important ecological and technical
issues need to be addressed, such as (a) the selection of target genes to identify the most efficient
ones for each insect species at the most appropriate life stage, (b) the specificity of the dsRNA
sequence to avoid off-target effects, dosage, and saturation of the RNAi machinery, (c) the size of
the administered dsRNA molecules, (d) delivery strategies, especially to phloem or xylem feeders,
and (e) possible development of resistance (66). In particular, to protect the dsRNA molecules
from degradation during application and from the insect environment upon internalization, their
absorption within nanoparticles or their integration within the genome of engineered viruses that
can infect the target insect host has been proposed (66).

In the same way as mycovirus-based VIGS, insect virus–based VIGS vectors exploit modified
viruses for transient knockdown of target genes through RNAi (32). VIGS is also a powerful tool
for investigating insect–plant interactions, in most cases for functional description of plant genes
(therefore using plant virus–derived VIGS vectors) to improve plant resistance to herbivore pests
(28).

Densoviruses have been explored as VIGS vectors for the prevention of mosquito-borne dis-
eases. A nondefective recombinant Aedes aegypti densovirus microRNA expression system was
developed with the aim of clarifyingmosquito biology and paratransgenesis parameters for dengue
virus control (70). Similarly, Anopheles gambiae densovirus suitability as a VIGS vector was evalu-
ated for malaria control (105). From a plant protection perspective, VIGS is also interesting for its
ability to target insect genes, and the construction of an infectious clone of the infectious paralysis
dicistrovirus has paved the way to explore other insect viruses as VIGS vectors (64). Construction
of insect-specific cDNA libraries together with their insertion into appropriate VIGS vectors to
obtain virus-infected plants expressing insect-specific dsRNAs has been proposed as a platform
to identify candidate genes with insecticidal and/or repellent activity against Aphis gossypii (67). A
similar strategy has been explored for other vectors of plant pathogens such asDiaphorina citri (52)
and Bactericera cockerelli (142) psyllids. Phytoplasmas are transmitted by phloem-feeding hemipter-
ans and indirectly controlled by insecticide treatments. The VIGS approach has been applied to
the functional genomics analyses of phytoplasma effectors within the host plant (13). In this case, a
tobacco rattle virus–based VIGS vector was used to silence the importin α genes (1, 2) ofNicotiana
benthamiana to confirm their role in the nuclear internalization of the ‘Candidatus Phytoplasma
asteris’ SAP11 effector. In the case of insect vectors, VIGS can be exploited for direct silencing
of vital genes (insecticide activity) but also as a functional genomic tool to screen for insect genes
involved in pathogen transmission, especially in the case of phytoplasmas, as they are transmitted
by nonmodel insect species.

Exploration of the insect virosphere can also provide the frame for selection of the most
appropriate viruses as potential VIGS backbones for phytoplasma vectors, whose control relies
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almost exclusively on insecticide treatments. In the case of phloem feeder hemipterans, infection
by iflaviruses is quite common (1, 92). Iflaviruses, with their monopartite ssRNA genomes, meet
several criteria to be explored for VIGS of phytoplasma vectors (111). Several new positive-strand
RNA viruses most closely related to plant sobemovirus, luteovirus, and tombusvirus have been
discovered in thrips viromes and could also be easily adapted to VIGS vectors (26).

These approaches involving modified viruses to interfere with pathogen transmission are be-
yond the scope of biocontrol, but they must be considered as new research avenues in pest man-
agement with high innovative potential. This is especially true in the case of vector-borne diseases,
as no threshold is acceptable for vector populations to avoid crop infection.

5. VIRUS-BASED BIOCONTROL TOOLS FOR DISEASES CAUSED
BY PLANT VIRUSES

It is intriguing that plant virus diseases can be prevented by viruses themselves. The mechanism of
virus-based biocontrol tools for virus diseases called cross-protection (152) differs from what we
have shown for the other organisms in which viruses are chosen because of their intrinsic parasitic
properties and their ability to interfere with host homeostasis in an ecological sense.

To control virus-caused plant diseases with virus-based biocontrol tools, other paradigms better
describe the rationale of the approach used, and the most fitting definition, sometimes used in
the past, is that of preimmunization with a nonpathogenic (mild) isolate of the virus, as is the
case of the live attenuated vaccine against several human viral diseases (84). In fact, virus-based
biocontrol tools are mild strains of a virus that, when preinoculated to a host plant, can protect
from subsequent infection of a second, severe isolate of the same virus (152).

Cross-protection was first described more than a century ago with mild strains of tobacco
mosaic virus protecting tobacco from strains causing a more severe yellow mosaic symptom (78).
Since then, cross-protection has been used in open-field conditions to protect against important
virus diseases caused by citrus tristeza virus (CTV) on citrus species (40, 49), zucchini yellow
mosaic virus (139) on several cucurbit species, and papaya ringspot virus in papaya (145): Detailed
analyses of such case studies were provided in a very comprehensive review of this field (152).

Some of the possible molecular mechanisms rely on reprogramming the adaptive immune re-
sponse of the plant (antiviral silencing pathway), and therefore the analogy with the preimmu-
nization is somewhat congruent with this approach. An appropriate framework for understanding
cross-protection is that of the use of satellite viruses, satellite RNAs, and defective interfering
RNAs as BCAs that offer some potential for tempering the helper-caused disease severity (103,
117). Nevertheless, the silencing pathway seems not to be involved in some specific cases of cross-
protection because it also occurs in silencing deficient mutant plants (153).

Cross-protection was also recently developed and employed on a wide scale in Europe for
pepino mosaic virus using several mild strains (2, 53) which were also granted distinct approvals
from the European Food Safety Agency (36).

A wealth of literature has dealt with the molecular mechanism of cross-protection.Most likely,
different mechanisms are involved in different systems, of which some are protein mediated (40,
41, 150) and others are RNAmediated (104). Different mechanisms of superinfection exclusion at
the cellular level seem to be a common theme for the molecular mechanism of cross-protection.

Regarding technological advances in developing mild strains, recent work relies on reverse ge-
netics tools to produce mutants in vitro through site-directed mutagenesis without having to rely
on natural mutants (25, 95, 153), a time-consuming and often limiting factor in cross-protection
approaches.
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6. CONCLUSIONS AND OUTLOOK

Many examples show that viruses are viable as BCAs for limiting the impact phytopathogens have
on crops. In any case, care should be taken to select viruses that have the expected properties in
terms of applicability and safety. As some examples show, off-target or unpredicted outcomes can
occur. Targeted research is thus needed to fully understand the biology of the viruses that are
applied. Moreover, an understanding of the effect of BCAs on the natural microbiome (soil and
plant microbiome) is needed to further pave the regulatory pathway and ensure biosafety. Finally,
social acceptance is an important aspect that should be investigated in more detail as a crucial
component of getting the products to the agricultural community.
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