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Abstract

The rise in emerging pathogens and strains has led to increased calls for
more effective surveillance in plant health. We show how epidemiological
insights about the dynamics of disease spread can improve the targeting of
when and where to sample. We outline some relatively simple but powerful
statistical approaches to inform surveillance and describe how they can be
adapted to include epidemiological information. This enables us to address
questions such as: Following the first report of an invading pathogen, what
is the likely incidence of disease? If no cases of disease have been found, how
certain can we be that the disease was not simply missed by chance? We il-
lustrate the use of spatially explicit stochastic models to optimize targeting of
surveillance and control resources. Finally, we discuss how modern detection
and diagnostic technologies as well as information from passive surveillance
networks (e.g., citizen science) can be integrated into surveillance strategies.
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Emerging diseases:
infectious diseases that
appear in a population
for the first time or
suddenly increase in
incidence

Surveillance:
an official process that
collects and records
data on pest or
pathogen occurrence
or absence by survey,
monitoring, or other
procedures

Epidemic: increase in
the amount of an
infectious disease in
space and/or time

INTRODUCTION

Recent times have seen a dramatic rise in the number of emerging diseases of plants associated with
a range of natural and anthropogenic factors. Pathogens have been introduced to new geographic
areas by human movement of infected material (17), long-range wind dispersal of inoculum,
and changes in climate that favor pathogen establishment in areas where it was not possible
before (106, 118). New strains of pathogens have also emerged to overcome previously effective
disease control methods and unfavorable environmental conditions (120). The impacts on crop
production and food security have been extreme. Prominent examples include Ug99 and other
novel strains of wheat stem rust in Africa and the Middle East (119, 120), citrus canker (48) and
citrus Huanglongbing (29, 47) in North and South America, cassava diseases in Southeast Asia
and East Africa (52, 73), and race TR4 of Panama disease on Cavendish bananas in Asia (94).
Natural environments are also under threat (40), for example, by arboreal diseases, such as ash
dieback (caused by Hymenoscyphus fraxineus) (133) and sudden oak death (caused by Phytophthora
ramorum), which have led to significant damage to forest ecosystems in Europe and the United
States, respectively (53). The recent arrival of Xylella fastidiosa in Europe serves as a particularly
stark reminder of the danger posed by emerging plant diseases (84). The subspecies pauca of
X. fastidiosa was discovered on olive trees in Apulia, Italy, in 2013 and has spread throughout the
local region (84) with far reaching economic and social impacts in an area where this ancient crop
is an established part of the heritage (84). The long list of potential host species for X. fastidiosa
means that this pathogen is a considerable threat throughout Europe, and more recent detections of
X. fastidiosa in France and Spain demonstrate the potential for further pathogen spread (5).

Surveillance involves the collection and analysis of information relating to plant disease epi-
demics and is crucial for detection and successful control of emerging pathogens and strains.
Consequently, there have been renewed calls for improved surveillance strategies across plant
health (8, 33, 85, 107). Formal horizon scanning (114) and international networks of plant sen-
tinels (6) serve to anticipate new threats, and improved use of quarantine and border inspections
can reduce the risk of entry to new areas (85). However, preemptive measures such as these can-
not avert all epidemics. Post-border invasion of disease is inevitable and necessitates surveillance
within agricultural landscapes and natural plant communities. The challenges of early detection
and assessment of invasion are substantial for plant disease. Epidemics are frequently initiated and
spread through vast, often heterogeneous, landscapes of interconnected host populations driven
by highly variable natural and human-mediated dispersal mechanisms. Whereas surveillance is
commonly augmented for human and livestock disease through self-reporting by patients and an-
imal owners, this is seldom the case for plant disease. The problems of detecting early infections
or even the spread of an establishing epidemic are compounded by the cryptic nature of many
plant diseases. Infectious hosts or indeed whole plantings may go undetected while providing a
source of inoculum for spread ahead of visible epidemic fronts. The motivation in writing this
review is to show how epidemiological insights into the dynamics of disease spread can be used to
improve the effectiveness of disease surveillance strategies for emerging epidemics.

The consequences of failure to implement effective surveillance programs can be severe. De-
spite its steady advance across Europe, ash dieback was not discovered in the United Kingdom
until 2013, by which time it was already widespread (133). New foci of X. fastidiosa continue to
emerge in unexpected places in Europe beyond areas of intensified surveillance (84). Late discov-
ery of new epidemics limits the feasibility of eradication efforts and facilitates onward spread to
new areas. Recent work by Cunniffe et al. (26) has shown, for example, that it could have been
possible to restrict the spread of sudden oak death in California had appropriate (albeit costly)
steps been undertaken early enough based on surveillance data and knowledge of the epidemiology
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Incidence:
the proportion of
diseased individuals
in a population
(synonymous with the
term “prevalence” as it
is used in human and
animal epidemiology)

of P. ramorum. Meanwhile, insufficient gathering of epidemiological information undermines our
ability to predict major epidemics accurately (125) and leads to ill-informed interventions. The
challenges are exacerbated for plant health practitioners who often deal with multiple simultaneous
threats under time-sensitive conditions and with limited budgets for surveillance and control. Im-
proving the efficiency and cost-effectiveness of surveillance strategies for emerging plant diseases
is accordingly an important contemporary challenge in plant health.

The heterogeneous distribution of disease across plantings, forests, and landscapes requires
careful thought on how surveillance is conducted. Indeed, although surveillance is defined as “an
official process that collects and records data on pest occurrence or absence” (38, p. 16), in practice
many surveillance programs are ill-informed by or ignore the processes that actually determine
the dynamics of disease spread. However, knowledge of disease dynamics should make it possible
to know when and where a pathogen is most likely to occur. In this review, we explore how
epidemiological information about disease spread can be used to inform and adjust surveillance
strategies for cost-effective control of emerging plant diseases. We include epidemiological realism
by accounting for the dispersal and transmission of pathogens, which are constrained by the
host population. We approach this by first looking at relatively simple statistical descriptions
of surveillance and then proceed to more mechanistic epidemiological models that make use of
enhanced computer power. Although surveillance planning and evaluation are traditionally focused
on official or regulatory surveys conducted by trained surveillance operatives, new information
sources, which we also explore, are increasingly available. For example, citizen science initiatives
(15, 19, 25, 32, 34, 43, 56, 62, 68, 82, 89, 108), as well as reports from growers and landowners,
have been enabled by smartphone technology (32) and increasingly user-friendly diagnostics (31).

PLANT DISEASE EPIDEMIOLOGY AND SURVEILLANCE

Clarifying the Objectives for Surveillance

Surveillance is conducted for a range of objectives (9). Optimal allocation of resources for
surveillance requires adjustment of surveillance strategies according to the specific objective. Con-
siderable effort has been put into understanding endemic disease where the surveillance objective
is primarily to understand how much is present (11, 79, 81). In this review, we focus on emerging
epidemics, in which a pathogen arrives and spreads rapidly through a new geographic area.

For emerging disease, surveillance is generally conducted for three broad objectives: detection,
estimation, and targeting. We need to know whether a pathogen or strain is present (detection),
gather information to understand the nature and extent of the problem (estimation), and, finally,
identify as many infected sites as possible to implement control (targeting). The first of these
objectives involves the question of whether or not the pathogen, and hence the disease, has arrived
in a given area. It is imperative to detect infection as early as possible so that appropriate control or
eradication efforts can be implemented (26, 98, 128). Conversely, if no cases of infection are found,
a question naturally arises: Is disease absent or did it go undetected by chance or due to the use of
an imperfect test (20, 55)? The second objective, estimation, follows the discovery of a new disease
and concerns how much is present and where the disease is located, i.e., the incidence and distri-
bution of the pathogen or strain. We may also wish to know how fast the epidemic is spreading
and what environmental or other factors such as trade are driving spread. Finally, targeted
surveillance (102) aimed at maximizing detections of new cases is required to implement control
or eradication, for which we need to discover new foci as well as delimit existing foci (e.g., 30).

In order to design an effective surveillance strategy for a particular objective, we need to
understand when, where, and how disease is likely to occur and at what intensity. Crucially, this
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information is used to identify how many sites should be surveyed, how often, and where. We can
begin to do this with standard statistical approaches that use probability distributions to capture
the intensity and variability of disease and relate this to sampling effort. In the following section,
we illustrate some elementary yet powerful statistical approaches to specify the sampling effort
required to achieve particular levels of confidence in a surveillance plan. The statistical approaches
involve certain simplifying assumptions about epidemic dynamics. We explore how relaxing some
of these assumptions to allow for temporal and spatial dynamics of epidemics can improve the
flexibility of the statistical approach. This leads naturally to consideration of the use of spatially
explicit stochastic simulation models to inform surveillance schemes by simulating the dynamics
of emerging epidemics across heterogeneous landscapes under varying environmental conditions.

Statistical Approaches to Surveillance

International guidelines emphasize the importance of statistical methods to inform surveillance
(37). In plant health, this has largely focused on the application of statistical modeling methods
drawn on binomial sampling theory and related probability distributions (76–79). Originally de-
veloped with endemic disease in mind, these methods are frequently used to estimate the incidence
of endemic disease, for example, to assess whether a disease has exceeded a threshold level be-
yond which a disease management decision is made (21) or to determine the number of samples
needed for accurate disease estimation (how many samples should I take to estimate disease within
± 10%?) (57, 81). Here, we focus on methods to improve the effectiveness of first detection, which,
until recently, has received little attention. The number of samples required to detect a disease
below a given incidence can be straightforwardly calculated from the binomial distribution. That
is, the probability (P) to detect at least one case of disease with sample size N and true disease
incidence q is

P = 1 − (1 − q )N . 1.

Suppose the incidence of a disease is q = 0.01 (i.e., 1% of the population is infected), then 300
samples would be required to have a 95% probability of detecting at least one infected host. To
detect even earlier, e.g., before the epidemic reached 0.1%, would require at least 3,000 samples.
The expression (Equation 1) makes a number of simplifying assumptions, not least that samples
are randomly drawn from an infinitely large population using a test with perfect sensitivity, but it
serves as the underlying probability model from which more realistic forms can be derived. Related
calculations can be performed. For example, if disease has not been found in a preliminary survey,
what is the probability that disease is present but was missed by the survey simply owing to chance
(20)? This is an important practical issue in plant health that underpins evidence to support claims
of pest-free areas (116). Statistical approaches to these questions of the probability of freedom
from disease given a survey are well established in the field of animal health (13, 20, 83, 131),
but they deserve more attention in plant health (55). Although surveys that discover no cases of
disease are commonly interpreted as confirmation of absence, it is impossible to state with 100%
confidence that disease is really not present unless all host tissue is sampled and the test sensitivity
is perfect. However, if there is no evidence of infection in any of the samples, it is possible to infer
the probability that the true incidence is below a certain threshold, based on the sample size. To
do this, q in Equation 1, which is known as the design prevalence, is set to an acceptable threshold
level for infected individuals in the population, below which it is acceptable to declare “freedom”
from the pathogen. This approach can also be used for survey design by reformulating Equation 1
to estimate the sample size required to achieve a given level of confidence. For highly sensitive
diagnostic tests, the so-called rule-of-three approximation (64, 65, 81, 117) can be used to identify
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with 95% confidence the maximum incidence of disease in the population given that no disease is
found in N samples:

q ∗ = 3
N

.

The rule-of-three approximation provides a quick and easy means to assess the confidence that
can be placed on survey results reporting freedom from disease. For example, if 100 trees were
randomly inspected from a population of 1,000 trees and none tested positive, there could be as
many as 30 infected trees (0.03 as a proportion) that were missed by chance (and that could pose
a significant threat). Statistical approaches to surveillance have also been adapted to incorporate
some epidemiological characteristics of disease, for example, through the use of the beta-binomial
distribution to account for the level of expected spatial clustering of disease and its impact on
estimates of incidence from a sample (58–60, 69, 77–80, 127).

The strength of these approaches is that they provide users with a simple means to relate
the incidence of disease with sampling effort and thus the ability to make inferences about how
much sampling effort is enough and what the sample tells us about the epidemic. Even so, statistical
approaches tend to treat epidemics as though they were static and seldom account for the dynamics
of an epidemic or include a mechanistic understanding of how disease spreads.

Accounting for Temporal Dynamics

Key characteristics of an emerging epidemic are its pattern and rate of spread. Building on the use
of statistical methods to address the objective of detection, recent approaches have been developed
to extend binomial sampling methods to incorporate more epidemiological features of emerging
diseases. This can be done by linking statistical models of sampling with epidemiological models of
the transmission of infection (1, 2, 98, 99). For example, Parnell et al. (98, 99) developed a simple
rule of thumb approach to address the following question: Given that a surveillance program is
in place, what incidence will an epidemic have reached when it is first discovered (Figure 1)?
Usually, early detection surveillance programs consist of multiple rounds of survey, during which
the epidemic may arrive and begin to spread. The incidence of disease therefore changes and
so does the probability of detection. For epidemics during the early stages of spread, in areas
where susceptible hosts are not limiting, the rate of spread can be approximated by an exponential
function. The probability of detecting an epidemic is thus a function of sampling intensity but
also the rate at which the epidemic is spreading (Figure 1) (2, 98, 99). Parnell et al. (98) found
that the mean incidence an invading epidemic will have reached when it is first discovered can be
calculated from the rule of thumb

E(q ∗) = r�

N
= rate of epidemic increase

rate of sampling
, 2.

where r is the rate of initial epidemic increase, � is the time interval between rounds of sampling,
and N is the number of samples taken per round (and hence N/� is the rate of sampling). The rule
of thumb (Equation 2) has been validated and shown to be robust to real epidemic data, supporting
the view that simple equations can be put to powerful use to support early detection surveillance
(98). In general, epidemics characterized by faster rates of growth require increased surveillance
effort (in terms of sample size and sampling frequency) than those with slower rates of growth.
Growth rates of ash dieback disease in experimental plots have been estimated at 0.0026 per day (2).
This indicates that if 30 plants were sampled every three months (90 days), an invading epidemic
would be discovered on average when it had reached 0.8% incidence in the population. In contrast,
epidemics of citrus Huanglongbing in Florida can have growth rates of up to 0.0143 per day in
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Figure 1
Linking statistical and epidemiological models; the robustness of a rule of thumb (Equation 2) to determine the prevalence (a.k.a.
incidence) of an emerging epidemic when it is first discovered (i.e., discovery prevalence) (98). Shown are discovery prevalences for an
epidemic of citrus canker disease in urban Miami. (a) The distribution of discovery prevalences for sample size, N, of 50 trees and
sample interval, �, of 50 days. The mean and 95th percentile discovery prevalences are shown for the rule of thumb (solid and open
circles, respectively), and the dashed and dotted lines denote those prevalences calculated by simulating a sampling plan on the real
epidemic data from Miami. (b,c) The change in discovery prevalence with sample size, N. Shown are the mean discovery prevalence
from the rule of thumb (orange triangle) and its 90% confidence interval (5th and 95th percentiles), and the mean discovery prevalence
using simple random sampling (red circles) and stratified random sampling (blue circles) for sampling intervals of (b) 25 days and
(c) 50 days. Adapted from Reference 98.

Cryptic infection:
infection caused by a
pathogen in a plant or
patch of host that is
not detectable

Passive surveillance:
reporting of disease by
citizens, growers, or
the community; not
linked to official
surveys

young plantings (98). A similar surveillance regime (30 trees every 90 days) would allow the
epidemic to reach nearly 4.3% incidence on average before first discovery. Approaches for other
types of invasive species have also explored how temporal dynamics can be incorporated (18, 74).
Note that, thus far, we have largely assumed that it is possible to quantify the survey effort for
official surveys carried out by experienced personnel. Determining survey effort from detections
made via citizen science initiatives, or other types of passive surveillance (56), is more challenging,
largely because absence data are usually not recorded (only positives). However, proxy methods to
estimate absence data may be possible. For example, Pocock et al. (109) used routine observations
of native moths as a proxy for survey effort for rarer detections of the oak processionary moth.

Cryptic infection, during which an infectious host is asymptomatic, can also be accounted
for (1). Whereas some pathogens have short cryptic periods, others can be infected but remain
asymptomatic for several years. Citrus Huanglongbing has a variable cryptic period that can be
up to three years (47, 104). By contrast, P. ramorum typically expresses symptoms within four
weeks of infection (2). The probability of detecting disease in surveillance programs that are based
on visual inspection is therefore clearly influenced by the time taken for symptom expression.
Alonso Chavez et al. (1, 2) showed how the increase in asymptomatic infection is related to the
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Disease risk:
the product of the
consequences of an
infection and the
probability of that
infection occurring

increase in symptomatic, detectable disease and thus factored cryptic infection into the design of
surveillance programs. In extreme cases, visual inspection may be insufficient to detect disease
before a high level of infection has occurred (1). Indeed, a recent study of citrus Huanglongbing
disease suggested that all trees within a plantation could be infected within a year, before any
symptoms manifest (72). Modern diagnostic and detection methods (85, 86, 93) offer considerable
potential to detect cryptic spread with ever more sensitive, mobile, and rapid technologies. To
do so, they must be used not only to confirm visual symptoms but also to sample seemingly
asymptomatic plants. The sensitivity of such methods can be captured by the statistical framework
discussed here and used to give due consideration to sampling effort and timing. Remote-sensing
technologies are developing quickly and have shown potential for identifying infection over large
spatial areas with reasonable accuracy (e.g., 134). However, the ability to detect emerging cryptic
infection during the early stages of emerging disease spread, when incidence is still low using these
methods, is not clear and thus still relies on inspection and sampling of host tissue.

Accounting for the Spatial Distribution of Disease:
Geostatistical and Niche Models

As well as accounting for when an epidemic occurs and how fast it might spread, we also wish
to identify how the risk of disease varies across a susceptible landscape. Estimating the spatial
distribution of an emerging epidemic is crucial to enable understanding of how it spreads over time,
especially through complex host landscapes, and where disease control efforts should be prioritized.
There have been two main statistical approaches of relevance to plant health: geostatistics (16, 23,
41, 42, 122, 123, 126, 129) and the use of species distribution or niche models (87, 111, 128).

Geostatistical methods can be used to make inferences on the spatial distribution of disease
throughout an area of interest following initial subsampling of the area (16, 42, 63, 70, 71, 95, 105,
113, 123, 126). The method involves fitting a statistical relationship to predict a surface of disease
incidence, or other measure of disease occurrence, from the initial set of point samples. However,
by not capturing the epidemiological processes involved in transmission and spread, geostatistical
approaches, of which kriging is a typical example, can lead to overestimation of disease risk when
they fail to account for the patchy nature of host distributions and the limiting effect this can have
on epidemic spread (75, 101). Although approaches such as co-kriging and regression kriging (e.g.,
16) have been applied to account for host variability, they are static in nature and do not yet fully
account for the effect of, for example, landscape connectivity on spread.

Species distribution and niche modeling capture the impact of spatially varying environmental
conditions (e.g., 87, 90, 128). These methods combine data on the presence and absence of a
target species, such as pests or pathogens, with environmental predictors of suitability to estimate
maps of where a species is likely to occur. However, a challenge related to their application,
particularly to emerging plant diseases, lies in the implicit assumption that the species under
analysis is in equilibrium and all locations have an equal chance to become infected, i.e., have all
been challenged with inoculum, although some studies have partly overcome this by including
pathogen dispersal constraints (128).

Arguably, none of the elaborations for kriging or niche modeling fully account for the connect-
edness of the host landscape and the impact that connectedness and discontinuities of susceptible
host populations have on disease dynamics and the rate and direction of pathogen spread.

Using Risk-Based Assessments to Inform Surveillance

Parnell et al. (102) demonstrated a pathogen-generic framework to determine spatial estimates of
risk for emerging plant disease, which includes mechanistic epidemiological understanding, and
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Risk-based
surveillance:
targeting of
surveillance based on
disease risk

Basic reproductive
number: the average
number of cases one
infected case generates
over its infectious
period in an otherwise
uninfected population

showed how this could be used to determine risk-based surveillance plans. Risk at any location
in a map is defined as the product of (a) the basic reproductive number, R0, at that location and
(b) the probability that a particular location becomes infected. It therefore incorporates both the
potential distribution of a disease (i.e., through the basic reproduction number) and its likely
dispersal from known infection locations. One way to prioritize a survey based on assumed risk
is to conduct a weighted random sample, i.e., weighted toward the highest risk locations. Using
citrus Huanglongbing in Florida as a retrospective test example, Parnell et al. (102) showed that,
even when only utilizing minimal available epidemiological information (such as the age of citrus
plantings and the association of younger plantings with higher infection rates) and the results
of a single survey of disease distribution, the approach significantly outperformed uninformed
survey methods (e.g., simple random sampling) (102). The result demonstrates how even basic
epidemiological information can be of value for surveillance planning. This is particularly sig-
nificant because targeting surveillance effort toward sites at higher risk of infection can improve
the efficiency of early detection surveillance. The risk-based survey method has been adopted by
USDA-APHIS (US Department of Agriculture–US Animal and Plant Health Inspection Service)
since 2006 and has since been further developed and applied to other epidemics, including citrus
Huanglongbing in California, Texas, and Arizona (49, 50) and Plum pox virus in New York State
(51). Similar benefits for pathogen detection for risk-targeted surveillance schemes have also been
demonstrated in livestock disease systems (e.g., 54).

These approaches to capture spatial information on disease presence and risk are of significant
utility for improved surveillance and control of emerging diseases. They are static in nature and
of particular use when data on disease progress over multiple time shots are not available. In the
next section, we explore spatial approaches that explicitly account for both temporal and spatial
dynamics of epidemics and the availability of susceptible hosts.

SPATIALLY EXPLICIT SPREAD MODELS TO INFORM
SURVEILLANCE AND CONTROL

Recent advances in computational power enable the use of stochastic spatially explicit models
of epidemics to simulate realistic patterns of epidemic spread through landscapes (27, 28, 39,
46, 61, 92, 100, 103, 104, 112, 121, 124, 130). These models are used to predict where the
pathogen is most likely to spread across heterogeneous landscapes, allowing for inherent variability
in pathogen transmission, fluctuating environmental conditions, discontinuous host distribution,
and uncertainties in the current levels of knowledge about the pathosystem (46). The models are
also designed to compare the effectiveness of different disease management scenarios. Here, after
a brief review of the flexibility of compartmental epidemiological models to monitor and predict
the temporal and spatial dynamics of emerging epidemics, we consider current challenges in using
model-based strategies for optimal surveillance and control.

The Structure of Spatially Explicit Stochastic Epidemic Spread Models

A common class of spatially explicit stochastic models involves variants of the SIR (susceptible,
infected, removed) epidemiological model widely used in human epidemiology. The models are
flexible in capturing a range of mechanisms, including host connectivity and fluctuating environ-
mental conditions. The models keep track of how the disease status of each individual host unit
in a population changes over time according to whether an individual is healthy (i.e., susceptible),
infected, or removed (i.e., no longer infectious, which includes recovered individuals, for example,
after chemical treatment as well as dead individuals). An individual could be a plant, but it may

598 Parnell et al.



PY55CH25-Parnell ARI 25 July 2017 21:17

be an entire field, plantation, or forest, depending on the spatial scale of interest. The host dis-
tribution can be represented as point processes (28, 100, 103), as nodes in a commercial network
(4, 22), or, more commonly, as a rasterized landscape comprising contiguous cells in which the
proportion of susceptible hosts within cells is known or estimated (26, 88). The models can be
simplified, losing a term, to give an SI (susceptible-infected) model in which there is no recovery
or death. Terms may also be added, as in the SECIR forms, to distinguish latently infected (E,
exposed but not yet infectious), cryptic (C, infectious but not yet symptomatic), and infectious (I)
hosts (26, 46). Stochastic transitions occur between each successive class governed by contact and
transition probabilities that may be weather driven. Infection of susceptible hosts is determined by
a transmission rate and a dispersal kernel to account for the falloff in the probability of inoculum
reaching more distant hosts.

Surveillance for Parameter Estimation to Characterize Epidemic Spread

There is usually little prior knowledge to predict the spread of emerging epidemics in a new region.
Surveillance plays an important role in the parameterization and design of predictive models for
emerging epidemics. Models are usually parameterized using Bayesian or other computationally
intensive methods to infer transmission and dispersal rates from successive snapshots of disease,
which are derived from repeated surveys (24, 97, 104). A detailed explanation of stochastic SECIR
models and how observational data can be used for model parameterization is provided by Gibson
et al. (45) and Gibson & Gilligan (44). Although, in principle, it is possible to estimate dispersal
parameters from a single snapshot (66), in practice that can be done only under restrictive assump-
tions for a system in equilibrium. Therefore, the more snapshots that are available, the better the
chance is of successfully parameterizing the models. This leads naturally to the simple question
of how many snapshots are sufficient for the purpose of predicting future spread of an emerging
epidemic. Baxter & Possingham (7) have shown that more time spent gathering information on
the spread of invading species can lead to more effective interventions in the long run. However,
there is a trade-off: Waiting too long to accumulate more information may mean the epidemic
has spread so rapidly and so far that it can no longer be effectively controlled (26, 28).

Using Asiatic citrus canker in Miami as a case study, Neri et al. (97) examined the value
of taking different numbers of successive snapshots (cumulative time windows) and starting at
different times (sliding time windows) at one or more discrete locations through Miami (Figure 2).
Neri et al. (97) used Markov chain Monte Carlo Bayesian methods to estimate dispersal kernels
and rates of primary and secondary transmission for Asiatic citrus canker spreading through urban
populations of trees. Parameter estimates were consistent across different locations, indicating
that surveillance at multiple independent sites was not essential. However, successive snapshots
for a given site (comprising multiple urban blocks) greatly improved estimation, measured by the
width of posterior distributions of parameters (Figure 2a–c) and the predicted distributions for
the range of possible outcomes from the point of prediction. Encouragingly, the dispersal scale of
an invading epidemic (which plays a crucial role in the design of effective control strategies) could
be accurately characterized from relatively few snapshots (Figure 2a,d), even when observations
began after the epidemic had passed its early stages of development (later sliding windows) (97).
The dispersal scale plays a crucial role in the design of effective control strategies, and many
emerging diseases are not discovered until they are already past the early establishment phase.
The result requires testing for other host-pathogen systems to establish its generality. Prediction
of the future course of the epidemic was confounded in this epidemic by the rate of secondary
transmission slowing as conditions became abnormally dry, but this could be incorporated into
the epidemic model to give an improved fit (97).
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Figure 2
The accuracy of parameter estimates and the ability to predict epidemics depend on the amount and timing
of epidemic data from surveillance (97). Surveillance involved successive, mapped snapshots of healthy and
infected trees across an urban site with a total of >6,000 citrus trees. (a–c) Trends over time in the posterior
densities for Bayesian Markov chain Monte Carlo estimation of (a) the dispersal scale (α), (b) the secondary
transmission rate (β), and (c) the primary infection rate (ε) for a model with an exponential dispersal kernel
and external inoculum, based on cumulative windows that successively encompassed three additional monthly
snapshots of data extending from 0–3 to 0–18 months. The gray dashed lines represent the prior distribution,
rescaled for display by a factor of 105 for β and 104 for ε. (d–f ) Corresponding trends in posterior densities
for parameters based on sliding windows encompassing six successive months of observation beginning
at 0, 3, 6, 9, and 12 months. The results show relatively rapid convergence for the dispersal scale. Estimates
for β improved with additional observations (i.e., showed tighter posterior densities) but also decreased
over time as conditions became drier. (g–i) Predictions of future disease based on observation windows
of increasing length comprising data from the first (g) three, (h) six, and (i) nine snapshots of disease.
The probability distributions for predicted trajectories are shown by gray shading, with intensity of shading
representing probability of occurrence. The observational data (disease snapshots) used for prediction
are marked by orange circles, the last snapshot used (the prediction time) is marked by a larger red circle,
and the observational data to be predicted are marked by white circles. The predicted trajectories are derived
by sampling parameters from the posterior densities at the time of prediction with the added assumption
that β declines linearly with time. Abbreviation: I, number of infected trees. Adapted from Reference 97.

600 Parnell et al.



PY55CH25-Parnell ARI 25 July 2017 21:17

The design of surveillance schemes to estimate parameters for emerging epidemics is a challeng-
ing area of current study. Estimation is frequently confounded by incomplete and late reporting
and by interference from ad hoc disease control activities during the early stages of an epidemic
when parameters are being estimated. Parry et al. (104) showed how to account for interference
caused by spraying for the vector of citrus Huanglongbing during data collection for parameter
estimation. There is also a common tendency to collect samples close to where disease is already
known to occur. The additional information provided by these samples is often negligibly small,
especially in extracting spatial signals about dispersal. Isolated foci may arise from primary infec-
tion derived from inoculum sources outside the region of interest. New foci may also be an intrinsic
feature of the dispersal process that can be captured by a power law, in which the probabilities of
long-distance dispersal events are inflated compared with an exponential kernel characteristic of
a spreading wave. The connectivity of hosts through the landscape also facilitates spread through
multiple short-distance jumps across host stepping stones (90), enabling the epidemic to take an
unexpected path through the landscape.

Some exploratory work has been done on the optimization of data collection to estimate
parameters for temporal epidemic models (24) using ideas derived from optimal design the-
ory for linear systems (3). Future work will extend these methods to improve the efficiency of
data collection for parameterization of spatiotemporal models. There are natural pressures when
dealing with emerging epidemics to target surveillance on locating positive sites at the expense
of reporting negative sites, yet these data are essential to minimize overestimation of epidemic
rates. Recent studies by Williams et al. (131, 132) in veterinary medicine have shown how the
dual, and sometimes conflicting, surveillance objectives of estimation and targeted control can
be resolved. More broadly, future developments in estimation will also benefit from advances
in remote sensing (86), diagnostic networks (93), and citizen science (32) for detecting diseased
and healthy hosts. Cryptic infection poses an additional challenge. Lee et al. (72) recently sug-
gested that citrus Huanglongbing, which is transmitted by psyllids, can reach 100% incidence
by the time the first symptomatic tree appears. Thompson et al. (125) have shown using mod-
els motivated for Ebola, a human disease, that the ability to forecast major epidemics is not
possible without estimating the proportion of asymptomatically infected individuals in the popu-
lation. The effective deployment of diagnostic methods to identify infection (85, 86) informed
by model predictions about likely extents of cryptic infection is an important area of future
research.

Model-Based Strategies for Optimal Surveillance and Control

Given a parameterized model, it is possible to infer the effectiveness of different surveillance and
disease management scenarios (26, 98). Consider first when surveillance is required to report as
many positive cases as possible without necessarily invoking control. Using a spatially explicit
stochastic model for Asiatic citrus canker spread in Queensland, Potts et al. (110) showed how
adaptive surveillance radii should be used to maximize detections of Asiatic citrus canker disease.
The length of the search radius is a function of how long a location has been infected and thus
how far the pathogen could have dispersed. Similar approaches could be used to ascertain disease
absence (i.e., pest-free areas). Russell et al. (115) showed how spatial models could be used to
optimize surveys to ascertain the absence of rodents after an eradication effort. The authors
simulated the growth and dispersal of the rodent population and determined the optimal location
for traps or other devices and the number of nights of monitoring required to infer eradication.
The methods are adaptable for plant health and are likely to become more important as improved
pathogen sensors are introduced (85, 86).
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Figure 3
The effect of different detection probabilities and length of cryptic infection on the impact of epidemic
control (28). The example shown is for the eradication of citrus Huanglongbing disease using a host cull
radius around symptomatic plants. (a,b) Responses of the median epidemic impact (measured by the number
of hosts lost to disease and healthy hosts removed by control) to cull radius for different values of the
(a) probability of detection and (b) cryptic periods. The optimal culling radius increases as detection
probabilities decrease and the cryptic period lengthens. Adapted from Reference 28.

Models can also be used to link surveillance explicitly with control strategies, for example,
when each new detection event leads to an associated control action at that location, such as
roguing infected hosts. In plant health, SECIR models have been successfully used to determine
large-scale control strategies, including the deployment of genetic, chemical, and cultural control
(27, 28, 39, 61, 100, 103, 104, 121). The models typically identify an optimal control strategy for
a fixed level of surveillance, for example, culling radii for removal of potentially infected citrus
plants around an infected host (Figure 3). The models are used to identify how optimal control
strategies change as the probability of detection changes, for example, using detection methods
with different sensitivities (Figure 3a). The models can also be used to infer the effects of different
inherent cryptic periods on optimal culling radii (Figure 3b) and hence on the impact and cost
of control programs. Future work will address the question of how to optimize the allocation of
resources for detection versus control when there is a fixed budget for dealing with an epidemic.
Preliminary exploratory work has shown how to optimize the balance of expenditure on detection
and control by applying optimal control theory to deterministic metapopulation models for disease
management of sudden oak death (96).

Modeling surveillance and control programs simultaneously allows us to not only address the
question of how much resource should be allocated to detection versus control (14, 35, 42, 91,
96) but also enable exploration of how, when, and where surveillance efforts should be targeted
for optimal control. The analysis and use of spatial spread models for various invasive species
indicate that surveillance should be targeted at locations in a landscape with higher probabilities of
disease occurrence. The result is unsurprising, but identification of the preferred sites is not trivial.
Epanchin-Niell et al. (36) developed a framework to optimize surveillance for the eradication of an
invasive species. While testing the framework for gypsy moth in California (Figure 4), the authors
showed that accounting for spatially varying surveillance costs and establishment risk could reduce
annual management costs by 50% (36). By contrast, Berec et al. (10) compared a grid-based method
with a random-sample method for invading insect pests and found that the spatial arrangement
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Figure 4
The use of models to inform optimal allocation of surveillance and control resources; the management of the gypsy moth in California
(36). Shown is the parameterization of the model for different counties in California for (a) moth establishment rate (populations/
10,000 km2/year), (b) cost of trapping ($/trap), (c) optimal trap density (traps/km2), and (d) the total expected costs of surveillance,
eradication, and damages over time ($/km2/year). (a,b) Sampling costs and establishment rates are heterogeneous across the region,
which leads to a (c) spatially optimal deployment of traps, (d) reducing management costs by half compared with the actual trapping
densities used. Adapted from Reference 36.

of traps was important in minimizing management costs only when trap sensitivity was high and
budgets were low. Prioritizing site selection depends more broadly on the interaction of factors
such as travel and other logistical costs (12), the sensitivity of detection, and the epidemiological
characteristics of the host-pathogen system. Models, provided they do not become overly complex,
can help in integrating these components to allow comparisons of different surveillance scenarios.
The integration of passive, i.e., ad hoc, surveillance by growers, land managers, or members of
the public with formal surveillance schemes also needs to be considered. Cacho et al. (19) found
that eradication costs for an invasive species were greatly reduced when the additional survey
effort provided by passive detections were included (19). This is an important area of further
research for plant health, given recent developments in public engagement and citizen science
initiatives (15, 25, 32, 34, 82, 89, 108). For plant diseases, more work is needed to explore how
the control option at hand influences the optimal targeting of surveillance. For example, consider
a control policy in which large numbers of hosts neighboring a single detected individual are
removed, exemplified by the current Xylella fastidiosa 100-m radius policy in Europe (84) and the
Asiatic citrus canker 1,900-ft removal policy in the United States (48). Detection of only one host
plant is required to trigger removal of all surrounding hosts. Greater efficiency could be achieved,
therefore, by targeting surveillance to discover new foci rather than wasting resources in taking
multiple samples around known foci that would be removed in any event. Future work is likely
to develop the integration of predictive models to improve the cost-effectiveness and efficiency of
surveillance for emerging diseases.

CONCLUDING REMARKS

As the numbers of emerging pathogens and strains rise so does the importance of effective surveil-
lance for control of emerging epidemics. In this review, we have explored how epidemiological
information on disease dynamics can be used to inform and target surveillance strategies. Simple
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but powerful statistical models of surveillance can be linked with epidemiological models to yield
new insight into how surveillance should be matched to the characteristics of an epidemic. Sta-
tistical models can provide rules of thumb to enable us to answer questions such as: Following
the first discovery of an epidemic, what incidence has it reached in the population? A range of
spatial mapping approaches is available to capture spatial information on disease risk and allow
improved targeting of surveys. Spatially explicit stochastic models enable disease dynamics to be
fully captured and thus predict when, where, and how fast disease is most likely to spread across
complex heterogeneous landscapes. This approach enables simulation of surveillance and control
strategies to identify the optimal use of resources. In general, surveillance in agricultural land-
scapes and natural environments can be enhanced by increasing the intensity and coverage of
surveys (i.e., the number and location of sites that are sampled) and by increasing our ability to
detect disease when it is present at a particular location or plant (i.e., improved sample sensitivity).
Limited fiscal budgets place restrictions on our ability to increase the former through traditional
surveys and inspections. Consequently, a range of new forms of surveillance has been proposed,
including the use of remote sensing (86), citizen science initiatives (15, 32, 82, 89), reports from
growers (31), and diagnostic networks (93). However, it is still not clear what these new forms
of detection tell us about epidemic dynamics and how they can be best utilized. For example,
if a citizen scientist detects the first case of disease in a new area, how far will the disease have
already spread by then? Also, do citizen scientists provide sufficient intensity of surveillance, and
how should this be augmented with traditional surveys? Meanwhile, advances in detection and
diagnostic technologies continue to improve sample sensitivity and provide ever more accurate,
fast, and mobile diagnostic tools for plant health (31, 67, 85, 86).

Future work will determine how best to deploy these technologies effectively in complex and
heterogeneous disease landscapes to detect and control emerging epidemics. There is also scope for
comparative work to investigate the complementary advantages of using statistical and stochastic
spatially explicit models to inform surveillance.
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90. Meentemeyer RK, Haas SE, Václavı́k T. 2012. Landscape epidemiology of emerging infectious diseases
in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50:379–402

91. Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC. 2007. Optimal detection and control
strategies for invasive species management. Ecol. Econ. 61:237–45

92. Mikaberidze A, Mundt CC, Bonhoeffer S. 2016. Invasiveness of plant pathogens depends on the spatial
scale of host distribution. Ecol. Appl. 26:1238–48

93. Miller SA, Beed FD, Harmon CL. 2009. Plant disease diagnostic capabilities and networks. Annu. Rev.
Phytopathol. 47:15–38

94. Molina AB, Fabregar E, Sinohin VG, Yi G, Viljoen A. 2009. Recent occurrence of Fusarium oxysporum
f. sp. cubense tropical race 4 in Asia. Acta Hortic. 828:109–16

95. Musoli CP, Pinard F, Charrier A, Kangire A, ten Hoopen GM, et al. 2008. Spatial and temporal analysis
of coffee wilt disease caused by Fusarium xylarioides in Coffea canephora. Eur. J. Plant Pathol. 122:451–60

96. Ndeffo Mbah ML, Gilligan CA. 2010. Balancing detection and eradication for control of epidemics:
sudden oak death in mixed-species stands. PLOS ONE 5:e12317

97. Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA. 2014. Bayesian analysis for inference of an
emerging epidemic: citrus canker in urban landscapes. PLOS Comput. Biol. 10:e1003587

98. Parnell S, Gottwald TR, Cunniffe NJ, Alonso Chavez V, van den Bosch F. 2015. Early detection surveil-
lance for an emerging plant pathogen: a rule of thumb to predict prevalence at first discovery. Proc. Biol.
Sci. R. Soc. B 282:20151478

99. Parnell S, Gottwald TR, Gilks WR, van den Bosch F. 2012. Estimating the incidence of an epidemic
when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305:30–36

608 Parnell et al.



PY55CH25-Parnell ARI 25 July 2017 21:17

100. Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F. 2010. The effect of landscape
pattern on the optimal eradication zone of an invading epidemic. Phytopathology 100:638–44

101. Parnell S, Gottwald TR, Irey MS, Luo W, van den Bosch F. 2011. A stochastic optimization method to
estimate the spatial distribution of a pathogen from a sample. Phytopathology 101:1184–90

102. Parnell S, Gottwald TR, Riley T, van den Bosch F. 2014. A generic risk-based surveying method for
invading plant pathogens. Ecol. Appl. 24:779–90

103. Parnell S, Gottwald TR, van den Bosch F, Gilligan CA. 2009. Optimal strategies for the eradication of
Asiatic citrus canker in heterogeneous host landscapes. Phytopathology 99:1370–76

104. Parry M, Gibson GJ, Parnell S, Gottwald TR, Irey MS, et al. 2014. Bayesian inference for an emerging
arboreal epidemic in the presence of control. PNAS 111:6258–62

105. Paulitz TC, Zhang H, Cook RJ. 2003. Spatial distribution of Rhizoctonia oryzae and rhizoctonia root rot
in direct-seeded cereals. Can. J. Plant Pathol. 25:295–303

106. Pautasso M, Doring TF, Garbelotto M, Pellis L, Jeger MJ. 2012. Impacts of climate change on plant
diseases-opinions and trends. Eur. J. Plant Pathol. 133:295–313

107. Plant Health Aust. 2013. National Plant Biosecurity Surveillance Strategy. Canberra, Aust.: Plant Health
Aust.

108. Pocock MJO, Evans DM. 2014. The success of the horse-chestnut leaf-miner, Cameraria ohridella, in
the UK revealed with hypothesis-led citizen science. PLOS ONE 9:9

109. Pocock MJO, Roy HE, Fox R, Ellis WE, Botham M. 2017. Citizen science and invasive alien species:
predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol.
Conserv. 208:146–54

110. Potts JM, Cox MJ, Barkley P, Christian R, Telford G, et al. 2013. Model-based search strategies for
plant diseases: a case study using citrus canker (Xanthomonas citri). Divers. Distrib. 19:590–602

111. Purse BV, Golding N. 2015. Tracking the distribution and impacts of diseases with biological records
and distribution modelling. Biol. J. Linn. Soc. 115:664–77

112. Real LA, Biek R. 2007. Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes.
J. R. Soc. Interface 4:935–48

113. Rosenzweig N, Steere L, Gerondale B, Kirk WW. 2016. A geostatistical approach to visualize the diver-
sity of soil inhabiting bacteria and edaphic qualities in potato (Solanum tuberosum) production systems.
Am. J. Potato Res. 93:518–32

114. Roy HE, Peyton J, Aldridge DC, Bantock T, Blackburn TM, et al. 2014. Horizon scanning for invasive
alien species with the potential to threaten biodiversity in Great Britain. Glob. Change Biol. 20:3859–71

115. Russell JC, Binnie HR, Oh J, Anderson DP, Samaniego-Herrera A. 2016. Optimizing confirmation of
invasive species eradication with rapid eradication assessment. J. Appl. Ecol. 54:160–69

116. Schrader G, Unger J-G. 2003. Plant quarantine as a measure against invasive alien species: the framework
of the International Plant Protection Convention and the plant health regulations in the European Union.
Biol. Invasions 5:357–64

117. Selvin S. 1996. Statistical Analysis of Epidemiological Data. New York: Oxford Univ. Press. 2nd ed.
118. Shaw MW, Osborne TM. 2011. Geographic distribution of plant pathogens in response to climate

change. Plant Pathol. 60:31–43
119. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, et al. 2011. The emergence of Ug99 races of

the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81
120. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, et al. 2015. Emergence and spread of new races of

wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology
105:872–84

121. Stacey AJ, Truscott JE, Asher MJC, Gilligan CA. 2004. A model for the invasion and spread of rhizomania
in the United Kingdom: implications for disease control strategies. Phytopathology 94:209–15

122. Stonard JF, Marchant BP, Latunde-Dada AO, Liu Z, Evans N, et al. 2010. Geostatistical analysis of the
distribution of Leptosphaeria species causing phoma stem canker on winter oilseed rape (Brassica napus)
in England. Plant Pathol. 59:200–10

123. Taliei F, Safaie N, Aghajani MA. 2013. Spatial distribution of Macrophomina phaseolina and soybean
charcoal rot incidence using geographic information system (a case study in northern Iran). J. Agric. Sci.
Technol. 15:1523–36

www.annualreviews.org • Surveillance to Inform Control of Emerging Plant Diseases 609



PY55CH25-Parnell ARI 25 July 2017 21:17

124. Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ. 2016. Management of invading pathogens should
be informed by epidemiology rather than administrative boundaries. Ecol. Model. 324:28–32

125. Thompson RN, Gilligan CA, Cunniffe NJ. 2016. Detecting presymptomatic infection is necessary
to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLOS Comput. Biol.
12:e1004836

126. Tubajika KM, Civerolo EL, Ciomperlik MA, Luvisi DA, Hashim JM. 2004. Analysis of the spatial pat-
terns of Pierce’s disease incidence in the lower San Joaquin Valley in California. Phytopathology 94:1136–
44

127. Turechek WW, Madden LV. 1999. Spatial pattern analysis of strawberry leaf blight in perennial pro-
duction systems. Phytopathology 89:421–33

128. Vaclavik T, Kanaskie A, Hansen EM, Ohmann JL, Meentemeyer RK. 2010. Predicting potential and
actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection
and eradication of disease outbreaks. For. Ecol. Manag. 260:1026–35

129. Van der Heyden H, Dutilleul P, Brodeur L, Carisse O. 2014. Spatial distribution of single-nucleotide
polymorphisms related to fungicide resistance and implications for sampling. Phytopathology 104:604–13

130. White SM, Bullock JM, Hooftman DAP, Chapman DS. 2017. Modelling the spread and control of
Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 19:1825–37

131. Williams MS, Ebel ED, Wells SJ. 2009. Poisson sampling: a sampling strategy for concurrently estab-
lishing freedom from disease and estimating population characteristics. Prev. Vet. Med. 89:34–42

132. Williams MS, Ebel ED, Wells SJ. 2009. Population inferences from targeted sampling with uncertain
epidemiologic information. Prev. Vet. Med. 89:25–33

133. Woodward S, Boa E. 2013. Ash dieback in the UK: a wake-up call. Mol. Plant Pathol. 14:856–60
134. Yuan L, Pu RL, Zhang JC, Wang JH, Yang H. 2016. Using high spatial resolution satellite imagery for

mapping powdery mildew at a regional scale. Precis. Agric. 17:332–48

610 Parnell et al.


