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Abstract

Beneficial microbes in the microbiome of plant roots improve plant health.
Induced systemic resistance (ISR) emerged as an important mechanism by
which selected plant growth–promoting bacteria and fungi in the rhizo-
sphere prime the whole plant body for enhanced defense against a broad
range of pathogens and insect herbivores. A wide variety of root-associated
mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza
species sensitize the plant immune system for enhanced defense without di-
rectly activating costly defenses. This review focuses on molecular processes
at the interface between plant roots and ISR-eliciting mutualists, and on the
progress in our understanding of ISR signaling and systemic defense prim-
ing. The central role of the root-specific transcription factor MYB72 in the
onset of ISR and the role of phytohormones and defense regulatory proteins
in the expression of ISR in aboveground plant parts are highlighted. Finally,
the ecological function of ISR-inducing microbes in the root microbiome is
discussed.
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INTRODUCTION

Plants fix the solar energy that drives nearly all living processes on Earth. Consequently, plants
are central players in a complex food web in which numerous members profusely take advantage
of the plant’s resources. Besides microbial pathogens and insect herbivores, plants also nurture
a vast community of commensal and mutualistic microbes that provide the plant with essential
services, such as enhanced mineral uptake, nitrogen fixation, growth promotion, and protection
from pathogens (77, 136). These plant microbiota are predominantly hosted by the root system,
which deposits up to 40% of the plant’s photosynthetically fixed carbon into the rhizosphere,
rendering this small zone around the roots one of the most energy-rich habitats on Earth (7).
Several genera of the rhizosphere microbiota, which are referred to as plant growth–promoting
rhizobacteria (PGPR) and fungi (PGPF), can enhance plant growth and improve health (77, 136).

In 1991, three research groups independently provided evidence that selected PGPR strains
can promote plant health through stimulation of the plant immune system (5, 162, 179). Van
Peer et al. (162) showed that after colonization of the root system of carnation by PGPR strain
Pseudomonas fluorescens WCS417r, aboveground parts of the plant acquired an enhanced level of
resistance against infection by the fungal pathogen Fusarium oxysporum. Additionally, P. fluorescens
WCS417r–treated plants produced significantly more antimicrobial phytoalexins at the site of
infection by the challenging pathogen. Hence, the authors concluded that signals provided by
P. fluorescens WCS417r to the root system sensitize distal plant parts for enhanced pathogen
defense. Using a similar approach in cucumber, Wei et al. (179) demonstrated that colonization
of roots by different beneficial Pseudomonas and Serratia PGPR strains resulted in a significant
reduction in disease symptoms after challenge inoculation of leaves with the anthracnose pathogen
Colletotrichum orbiculare. In both seminal studies, PGPR and pathogen were demonstrated to
have remained spatially separated during the experiments, which allowed the authors to conclude
that the enhanced level of disease resistance was caused by a plant-mediated immune response
called rhizobacteria-induced systemic resistance (ISR). Although Alström (5) did not provide
evidence for spatial separation between PGPR and the challenging pathogen Pseudomonas syringae
pv. phaseolicola, this study strongly suggested that colonization of common bean roots by PGPR
strain P. fluorescens S97 triggered ISR in foliar tissues.

Since these first publications on rhizobacteria-mediated ISR, hundreds of studies in dicots and
monocots have reported on the ability of PGPR to promote plant health via ISR. These studies
mainly involved Pseudomonas, Serratia, and Bacillus PGPR strains and nonpathogenic F. oxysporum,
Trichoderma, and Piriformospora indica PGPF strains, but symbiotic arbuscular mycorrhizal fungi
were shown to also trigger ISR. Describing the extensive list of ISR-inducing beneficial microbes
is beyond the scope of this review, so readers are referred to several excellent review articles for
additional information on this topic (2, 20, 37, 46, 62, 64, 118, 136, 154, 158, 159, 175).

Since the first review on rhizobacteria-mediated ISR in this series (159), significant progress has
been achieved in understanding the molecular basis of triggering, signaling, and expression of ISR,
especially in the model plant species Arabidopsis thaliana (hereafter called Arabidopsis). Here, we
provide an overview of the mechanisms and molecular players involved in the onset and expression
of ISR as triggered by beneficial microbes, highlighting recent advances and identifying key gaps
in our understanding of this process.

INDUCED RESISTANCE

The term induced resistance is a generic term for the induced state of resistance in plants
triggered by biological or chemical inducers, which protects nonexposed plant parts against
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future attack by pathogenic microbes and herbivorous insects (68). Plants can develop induced
resistance as a result of infection by a pathogen, in response to insect herbivory, upon colonization
of the roots by specific beneficial microbes or after treatment with specific chemicals (Figure 1).
The induced state of resistance is characterized by the activation of latent defense mechanisms
that are expressed upon a subsequent challenge from a pathogen or insect herbivore. Induced
resistance is expressed not only locally at the site of induction but also systemically in plant
parts that are spatially separated from the inducer, hence the term ISR. Generally, induced
resistance confers an enhanced level of protection against a broad spectrum of attackers (175).
Induced resistance is regulated by a network of interconnected signaling pathways in which
plant hormones play a major regulatory role (111). The signaling pathways that regulate induced
resistance elicited by beneficial microbes, pathogens, and insects share signaling components.
Therefore, we first highlight the important principles of pathogen- and insect-induced resistance
before reviewing the current status of ISR mediated by beneficial soilborne microbes.

The Plant Immune System and Induced Resistance

In the past decade, groundbreaking conceptual advances in the understanding of the evolutionary
development of the plant immune system (61) placed our knowledge on induced resistance in a clear
perspective. In the current concept of the plant immune system, pattern-recognition receptors
(PRRs) have evolved to recognize common microbial compounds, such as bacterial flagellin or
fungal chitin, called pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) (16,
190). Plants also respond to endogenous plant-derived signals that arise from damage caused by
enemy invasion, called damage-associated molecular patterns (DAMPs) (16). Pattern recognition
is translated into a first line of defense called PAMP-triggered immunity (PTI), which keeps most
potential invaders in check (42). Successful pathogens have evolved to minimize host immune
stimulation and utilize virulence effector molecules to bypass this first line of defense, by either
suppressing PTI signaling or preventing detection by the host (11, 31, 42, 109). In turn, plants
acquired a second line of defense in which resistance (R) NB-LRR (nucleotide-binding–leucine-
rich repeat) receptor proteins mediate recognition of attacker-specific effector molecules, resulting
in effector-triggered immunity (ETI) (42). ETI is a manifestation of gene-for-gene resistance (45),
which is often accompanied by a programmed cell death at the site of infection that prevents further
ingress of biotrophic pathogens that thrive on living host tissue. The onset of PTI and ETI often
triggers an induced resistance in tissues distal from the site of infection and involves one or more
long-distance signals that propagate an enhanced defensive capacity in still undamaged plant parts
(35, 134). This well-characterized form of pathogen-induced resistance is commonly known as
systemic acquired resistance (SAR) (139, 171) and confers enhanced resistance against a broad
spectrum of pathogens (Figure 1). As with the pathogen recognition system, plants also recognize
herbivorous insects, most likely through a similar signaling concept (57).

Pathogen-Induced Systemic Acquired Resistance Signaling

In the 1960s, Ross coined the term SAR for the phenomenon in which uninfected systemic
plant parts become more resistant in response to a localized infection elsewhere in the plant
(126). Over the years, SAR has been extensively reviewed (139, 171), so here we only discuss the
important principles and recent findings. In the current concept of the plant immune system, the
onset of pathogen-induced SAR is triggered upon local activation of a PTI or ETI response (93)
(Figure 2). In systemic tissues, SAR is characterized by increased levels of the hormone salicylic
acid (SA) (171). Early genetic studies in tobacco demonstrated that SA accumulation and
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Figure 1
Schematic representation of biologically induced resistance triggered by pathogen infection (red arrow),
insect herbivory (blue arrow), and colonization of the roots by beneficial microbes ( purple arrows). Induced
resistance involves long-distance signals that are transported through the vasculature or as airborne signals,
and systemically propagate an enhanced defensive capacity against a broad spectrum of attackers in still
healthy plant parts. Consequently, secondary (2◦) pathogen infections or herbivore infestations of induced
plant tissues cause significantly less damage than those in primary (1◦) infected or infested tissues.
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Figure 2
Schematic representation of molecular components and mechanisms involved in pathogen-induced systemic acquired resistance (SAR),
herbivore-induced resistance (HIR), and induced systemic resistance (ISR) triggered by beneficial soilborne microbes. Solid black lines
indicate established interactions; dashed black lines indicate hypothetical interactions. Colored arrows indicate systemic translocation
of long-distance molecular or electric signals (indicated in the same color at the base of the arrows). Abbreviations: ABA, abscisic acid; Ac,
acetylation; DAMP, damage-associated molecular pattern; ET, ethylene; ETI, effector-triggered immunity; Fe, iron; HAMP;
herbivore-associated molecular pattern; JA, jasmonic acid; MAMP, microbe-associated molecular pattern; Me, methylation; NB-LRR,
nucleotide-binding–leucine-rich repeat; PCD, programmed cell death; PRR, pattern-recognition receptor; PTI, PAMP-triggered
immunity; SA, salicylic acid; TF, transcription factor.
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signaling are essential for the establishment of SAR (170). In addition, SAR is accompanied by
the coordinate activation of PATHOGENESIS-RELATED (PR) genes, many of which encode PR
proteins with antimicrobial activity (160). Among the best-characterized PR genes is PR-1, which
is often used as a marker for SAR (129, 160).

For initiation of SAR in distal organs, a long-distance signaling cascade in the vascular tissues,
in which the lipid-transfer protein DEFECTIVE IN INDUCED RESISTANCE1 (DIR1) is
likely to act as a chaperone for the mobile SAR signal(s), appears to be crucial (24, 80). Despite
the fact that SA accumulates in the phloem sap of SAR-expressing plants, grafting experiments
with tobacco showed that SA itself is not the translocated SAR signal (170). After this seminal
finding, the identity of the mobile SAR signal(s) has been a subject of controversy for many
years, but from recent findings a more comprehensive view starts to emerge (reviewed in 35,
63, 134). Genetic and biochemical studies uncovered several metabolites putatively involved
in long-distance SAR signaling, including the methyl ester of SA (MeSA), the diterpenoid
dehydroabietinal (DA), a glycerol-3-phosphate (G3P)-dependent factor, azelaic acid (AzA), and
pipecolic acid (Pip) (Figure 2). In systemic tissues, the onset of SAR requires the function of
FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) (92), possibly to transduce or
amplify long-distance signals originating from primary leaves.

SAR signaling downstream of SA is controlled by the redox-regulated protein NONEXPRES-
SOR OF PR GENES1 (NPR1), which upon activation by SA acts as a transcriptional coactivator
of a large set of PR genes (reviewed in 43, 102, 111, 139, 171). In noninduced cells, NPR1 is
sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. SA-induced
changes in the cellular redox state facilitate monomerization of NPR1, after which it translo-
cates into the nucleus. In SA-activated cells, NPR1 interacts with members of the TGA family of
transcription factors that, together with WRKY transcription factors, bind to the promoters of SA-
responsive defense genes, resulting in their activation. Proper functioning of NPR1 requires that
the protein is broken down by the proteasome, possibly to allow new NPR1 proteins to reinitiate
the transcription cycle (141). Recently, the NPR1 paralogs NPR3 and NPR4 were identified as
SA receptors that bind to SA with different affinity (48). NPR3 and NPR4 were shown to function
as adaptors of the CULLIN 3 (CUL3) ubiquitin E3 ligase to mediate NPR1 degradation, thereby
regulating NPR1 stability and activity. It was proposed that the differential affinity for SA causes
NPR3 to mediate degradation of NPR1 at high SA levels, resulting in local programmed cell
death during ETI. At lower levels of SA, such as during PTI or in distal SAR-expressing tissues,
NPR4 stabilizes NPR1, resulting in the activation of PR gene expression. Simultaneously, Wu
and coworkers (184) provided evidence that NPR1 itself acts as a SA receptor, resulting in a con-
formational change of the protein that unveils the NPR1 transcriptional activation domain that is
required for PR gene activation. Both findings highlight NPR1-like proteins as receptors for the
last major plant hormone for which a receptor had not been definitely identified (102) (Figure 2).

Herbivore-Induced Resistance Signaling

In the 1970s, Green & Ryan (49) demonstrated that herbivory and wounding of tomato leaves
result in the systemic accumulation of proteinase inhibitors that inhibit digestive enzymes in the
insect gut. It was proposed that long-distance signals produced at the site of tissue injury mediate
a systemic resistance against herbivorous insects (Figure 1). Along with the production of anti-
insecticidal toxins and feeding deterrents (direct defense), herbivory also triggers the production
of volatiles that attract natural predators of the attacking herbivore (indirect defense). Several
excellent reviews have been published on this topic (18, 38, 57, 183), so we only discuss the main
points here.
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Herbivore-induced resistance signaling is initiated upon the release of plant-derived signals
(e.g., DAMPs) and elicitors from insect oral secretions at the site of tissue injury, called herbivore-
associated molecular patterns (HAMPs) (53, 55, 94, 183) (Figure 2). Furthermore, insect-derived
effector molecules have been reported that suppress host defenses (55). Hence, plants may have
evolved R genes against herbivore effectors, as they did for pathogen effectors. An example of
this is the Mi gene that confers resistance against aphid feeding (127). Perception of herbivory-
related elicitors results in rapid release of oxylipins from membrane lipids. The jasmonate ( JA)
family of oxylipins emerged as key signals, as JA biosynthesis and signaling mutants are impaired
in herbivore-induced resistance (57, 178). In the past few years, major progress has been made
in unraveling the molecular mechanisms of JA signaling (reviewed in 18, 26, 57, 105, 144, 178).
Jasmonoyl-isoleucine ( JA-Ile) was identified as the biologically active signal, which is perceived by
a coreceptor complex consisting of the F-box protein CORONATINE INSENSITIVE1 (COI1)
and JASMONATE ZIM-domain ( JAZ) proteins. Perception of JA-Ile by the COI1-JAZ core-
ceptor results in proteasome-mediated degradation of the JAZ proteins that in uninduced cells
suppress positive regulators of JA-mediated defense responses, such as the transcription factors
MYC2, 3, and 4. In JA-stimulated cells, the JA signaling pathway becomes derepressed, resulting
in the activation of a large number of JA-responsive genes (88) (Figure 2).

The long-distance signal(s) for systemic expression of herbivore-induced resistance was obscure
for a long time. Early work in tomato pointed to the hormonal peptide systemin as a likely systemic
signal (106). However, grafting experiments with tomato plants provided evidence that JA itself is
the long-distance signal that is systemically transmitted upon herbivory (144). In Arabidopsis, it was
recently shown that wound-induced membrane depolarization by ion fluxes rapidly mediates JA
biosynthesis and JA-responsive gene expression in distal leaves. GLUTAMATE RECEPTOR-
LIKE proteins (GLRs) were shown to mediate these wound-induced surface potential changes,
indicating that electric signaling is also important in wound-induced systemic signaling (96)
(Figure 2).

HORMONAL REGULATION OF INDUCED SYSTEMIC RESISTANCE
BY BENEFICIAL MICROBES

Since the discovery in 1991 that nonpathogenic microbes in the rhizosphere can trigger ISR (5,
162, 179), a wealth of studies has investigated the molecular mechanism behind this phenomenon.
Because of its broad-spectrum effectiveness, rhizobacteria-mediated ISR was initially thought to be
mechanistically similar to pathogen-induced SAR. However, Hoffland et al. (54) provided evidence
that in radish P. fluorescens WCS417r-ISR against F. oxysporum developed without accumulation
of the PR proteins that are characteristic for SAR. Similarly, P. fluorescens WCS417r-ISR in
Arabidopsis was shown to develop without PR gene activation in systemic leaf tissue (113). Testing
of transgenic Arabidopsis NahG plants that are unable to accumulate SA provided genetic evidence
that P. fluorescens WCS417r-ISR is mediated by an SA-independent signaling pathway and does not
coincide with enhanced SA levels (112, 113). The same appeared to be true for the ISR-inducing
PGPR Pseudomonas putida WCS358r (165). It was thus concluded that rhizobacteria-mediated
ISR and SA-dependent SAR are regulated by different signaling pathways. This was supported
by observations that although both rhizobacteria-mediated ISR and pathogen-induced SAR are
effective against a broad spectrum of attackers, their ranges of effectiveness are partly divergent
(151). Van Loon & Bakker (157) reviewed the cases of rhizobacteria-mediated ISR in which
a role for SA had been functionally tested. They concluded that the ability to activate an SA-
independent ISR pathway is common for beneficial microbes and occurs in a broad range of plant
species. Although the terms SAR and ISR are officially synonymous (51), for pragmatic reasons
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we refer to SAR when the induced resistance is triggered by a pathogen or demonstrated to be
SA dependent and to ISR when the induced resistance is triggered by a beneficial microbe or
demonstrated to be SA independent.

Jasmonic Acid and Ethylene in Control of Induced Systemic Resistance

Along with SA, the plant hormones JA and ethylene (ET) are also important regulators of the
plant immune system (145). By using Arabidopsis mutants impaired in JA or ET signaling, it was
demonstrated that JA and ET are central players in the regulation of rhizobacteria-mediated ISR
(114). JA signaling mutants jar1, jin1, and coi1 and diverse ET signaling mutants, including etr1,
ein2, ein3, and eir1, were shown to be defective in P. fluorescens WCS417r–ISR (66, 114, 119).
For many other PGPR, such as Serratia marcescens 90–166, Pseudomonas protegens CHA0, and
P. fluorescens Q2-87, and PGPF, such as Penicillium sp. GP16-2, Trichoderma harzianum T39, and
P. indica, genetic evidence in Arabidopsis pointed to a role for JA and/or ET in the regulation of ISR
(1, 56, 58, 67, 132, 143, 181). The same holds true for other plant species, such as tomato and rice
(36, 52, 154, 185), supporting the notion that JA and ET are dominant players in the regulation
of the SA-independent systemic immunity conferred by beneficial soilborne microbes (Figure 2).

In accordance with its dependency on JA and ET signaling, rhizobacteria-mediated ISR was
shown to be effective against attackers that are sensitive to JA/ET-dependent defenses, including
necrotrophic pathogens and insect herbivores (reviewed in 116, 166). However, negative effects
of beneficial microbes on plant-insect interactions have been reported as well (115).

Beneficial Microbes Triggering the Systemic Acquired Resistance Pathway

Although ISR by beneficial microbes is often regulated through SA-independent mechanisms,
several PGPR have been reported to trigger an SA-dependent type of ISR that resembles pathogen-
induced SAR. For instance, an SA-producing mutant of PGPR strain Pseudomonas aeruginosa
7NSK2 was shown to confer enhanced disease resistance in wild-type bean and tomato but not in
SA-nonaccumulating NahG tomato (6, 33). Also PGPR P. fluorescens P3 overexpressing the SA-
biosynthesis gene cluster of P. aeruginosa PAO1 was demonstrated to elicit SA-dependent SAR
(85). Although many rhizobacteria have the capacity to produce SA, it is usually not the causal
agent of the observed systemic resistance (6, 40, 120, 123). This is likely caused by the fact that
rhizobacteria-produced SA is often not released in the rhizosphere but becomes incorporated into
SA moiety-containing siderophores that are produced under iron-limiting conditions to improve
uptake of ferric iron (Fe3+), which makes SA unavailable for triggering the SAR pathway (6, 9).
Examples of wild-type PGPR that have been demonstrated to induce SA-dependent SAR are
Paenibacillus alvei K165 (147) and P. fluorescens SS101 (152). Also a role for SA in the induction of
systemic resistance has been established for several Trichoderma PGPF (29, 82, 83). In the cases
that beneficial microbes trigger SA-dependent SAR, reactive oxygen species that accumulate at
the site of tissue colonization seem to be important elicitors (6). Because SA-dependent signaling
triggered by beneficial microbes is likely to follow the SAR signaling pathway, we refer the reader
to the above section on pathogen-induced SAR.

NPR1: A Common Regulator of Systemic Acquired Resistance
and Induced Systemic Resistance

Since its discovery in 1994 (21), the essential role of the transcriptional coregulator NPR1 in
SA-dependent SAR has been well characterized (43, 102, 171). NPR1 was shown to be required
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for JA/ET-dependent ISR triggered by P. fluorescens WCS417r (114) and many other PGPR and
PGPF as well (1, 56, 58, 131, 133, 143, 181). While in SAR, NPR1 functions as a transcriptional
coactivator of SA-responsive PR genes; rhizobacteria-mediated ISR typically functions without PR
gene activation. Hence, the role of NPR1 in ISR seems to be different from that in SAR (Figure 2).
In SA signaling, NPR1 is clearly connected to a function in the nucleus (43). In contrast, evidence
is accumulating for a cytosolic function of NPR1 in JA/ET signaling and ISR (111, 122, 140, 143).
Interestingly, simultaneous activation of SAR and ISR leads to an additively enhanced defensive
capacity (163). Whether this is based on the notion that SAR and ISR do not seem to compete for
the same subcellular pool of NPR1 is as yet unknown, as the exact molecular mechanism by which
NPR1 functions in JA/ET-dependent ISR remains to be established. It is, however, interesting
to note that the NPR1, NPR3, and NPR4 genes are highly expressed in Arabidopsis roots (39),
suggesting a role in the regulation of root-associated immune responses.

PRIMING: INVISIBLE PREPARATION FOR COMBAT

Ever since the discovery that SA-independent ISR is not associated with the accumulation of
PR proteins or PR transcripts in systemic tissues (54, 113), alternative hallmarks for ISR have
been sought. In the search for a functional explanation for the role of JA and ET in ISR, the
production of these hormones was analyzed in ISR-expressing plants. Surprisingly, colonization
of Arabidopsis roots by ISR-inducing PGPR did not enhance the production of these hormones in
systemic tissues, nor did they induce the expression of JA/ET-responsive genes, suggesting that
ISR is based on an enhanced sensitivity to these hormones rather than on an increase in their
biosynthesis (112, 164). Experiments in which ISR-expressing Arabidopsis plants were challenged
with the bacterial pathogen P. syringae revealed that ISR was associated with enhanced pathogen-
induced expression of the JA-responsive gene VSP (164). Similarly, the JA/ET-responsive genes
PDF1.2 and HEL showed a potentiated expression pattern in ISR-expressing Arabidopsis plants that
were challenged with the ISR-sensitive generalist insect herbivore Spodoptera exigua but not when
the leaves were damaged by the ISR-insensitive specialist herbivore Pieris rapae (161). Large-scale
analysis of the ISR transcriptome of Arabidopsis before and after pathogen challenge confirmed
that ISR is associated with potentiated expression of JA/ET-regulated genes that are induced upon
subsequent attack (169) (Figure 2).

This preparation of the whole plant to better combat pathogen or insect attack is called priming
and is characterized by a faster and/or stronger activation of cellular defenses upon invasion,
resulting in an enhanced level of resistance (28). Since the observation by Van Peer et al. (162)
that ISR in carnation is associated with augmented accumulation of phytoalexins at the site of
pathogen infection, a large number of studies with PGPR (1, 3, 14, 22, 64, 166, 177) and PGPF
(56, 74, 83, 133, 137) have supported the notion that ISR by beneficial microbes is commonly based
on priming. Several studies showed that the transcriptome changes that occur in systemic tissues
upon colonization of the roots by beneficial microbes are, in general, relatively mild, especially
in comparison to the massive transcriptional reprogramming that occurs during pathogen attack
(3, 74, 119, 166, 169, 177). Because the primed state is often invisible in unchallenged plants, this
hallmark of ISR is best studied in combination with a challenging pathogen or insect to unveil the
enhanced transcriptional changes in primed plants that become apparent only after pathogen or
insect attack.

Defense priming emerged as an important cellular process in many types of biologically and
chemically induced systemic immunities (28, 47). By studying the costs and benefits of priming,
it was shown that the fitness costs of priming are lower than those of constitutively activated
defenses (156, 172, 174). The fitness benefits of priming were shown to outweigh its costs under
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pathogen pressure, suggesting that priming functions as an ecological adaptation of the plant to
reduce damage in a hostile environment. Several excellent reviews have been published on the
molecular mechanisms underlying defense priming (27, 47, 104), so we only highlight the most
relevant issues below.

Closing the Gates: Augmenting Structural Barriers

In addition to potentiation of defense-related gene expression, augmenting structural barriers has
also been implicated in priming by beneficial microbes. Ultrastructural and cytochemical studies
of pea roots bacterized with P. fluorescens 63-28R showed enhanced cell wall appositions at the
site of infection by Pythium ultimum (14). Similarly, P. fluorescens WCS417r-induced Arabidopsis
showed an increased frequency of callose depositions at the site of entry of the downy mildew
pathogen Hyaloperonospora arabidopsidis, which effectively arrested pathogen ingress (153). This
priming for enhanced callose deposition was impaired in the abscisic acid (ABA)-related mutant
ibs3, indicating that this phenomenon is regulated by plant hormone ABA (149, 153). A role for ABA
in the activation of primed defense responses in systemic tissue was recently also demonstrated
for herbivore-induced resistance (173). The biotrophic pathogen H. arabidopsidis is insensitive
to JA/ET-dependent defenses; hence the ABA-dependent priming for callose deposition during
ISR provides an additional layer of protection that extends the spectrum of effectiveness of ISR
(Figure 2).

Many foliar pathogens invade plants by entering through stomata on the leaf surface. In Ara-
bidopsis, infection of the leaves by P. syringae results in attraction of Bacillus subtilis FB17 to the root
system, where it triggers ISR that protects noninfected plant parts against P. syringae infection
(128). Interestingly, B. subtilis FB17-ISR was shown to mediate accelerated closure of the stomata
in response to pathogen attack (69). This PGPR-induced priming for enhanced stomatal clo-
sure represents yet another structural barrier that can delay disease progression in ISR-expressing
plants.

Transcription Factors Involved in Priming

Because priming is clearly expressed at the transcriptional level, research has focused on signaling
proteins and transcriptional regulators that accumulate after induction of the primed state. These
factors are thought to remain inactive in enemy-free conditions but provide the plant with the
capacity to react with an accelerated defense response upon perception of a pathogen- or insect-
derived stress signal. In Arabidopsis, the ISR-primed state was shown to be associated with elevated
transcript levels of a set of transcription factor genes in which the AP2/ERF family was notably
overrepresented (153). Several members of the AP2/ERF family have been implicated in the
regulation of JA- and ET-dependent defenses (88), which is in agreement with the observation
that JA/ET-regulated genes, in particular, show a primed expression pattern in challenged ISR-
expressing plants (169). Pozo et al. (119) analyzed the promoter sequences of all JA-responsive
Arabidopsis genes with a primed expression pattern in ISR-expressing plants. In silico analysis
revealed that the promoters of the ISR-primed genes are significantly enriched for a cis-acting
G-box-like motif. This motif is a binding site for MYC2 that functions as a key transcriptional
regulator of JA-dependent defenses (88). MYC2-impaired Arabidopsis jin1 mutants were unable to
mount P. fluorescens WCS417r– or P. indica–mediated ISR and were affected in PGPR-induced
priming of JA-dependent defenses (119, 143), highlighting MYC2 as an important transcriptional
regulator of priming during ISR (Figure 2).
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Priming: A Molecular Memory of Immunization?

Other signaling molecules implicated in defense priming are mitogen-activated protein kinases
(MAPKs). Inactive forms of the MAPKs MPK3 and MPK6 were shown to accumulate after treat-
ment of plants with low concentrations of the SAR-inducing SA-analog benzothiadiazole (BTH),
which induces priming (13). After pathogen infection, the enhanced levels of these latent signaling
components were activated, resulting in potentiated PR-1 gene expression and the development
of systemic immunity (Figure 2). Evidence is accumulating that priming is also associated with
chromatin modifications in the promoters of WRKY transcription factor genes that regulate
SA-dependent defenses, thereby facilitating potentiated expression of these defense-regulatory
genes upon pathogen attack (60) (Figure 2). Recently, epigenetic regulation of pathogen- and
β-aminobutyric acid (BABA)-induced priming for SA-dependent defenses and herbivore-induced
priming for JA-dependent defenses was shown to be inherited by the next generation via chro-
matin remodeling or DNA methylation (78, 124, 138). Hence, plants seem to have the capacity
to memorize a stressful situation and subsequently immunize not only themselves but also their
offspring against future attacks (104). It should be noted that MAPK and epigenetic regulatory
mechanisms have so far not been demonstrated for ISR by beneficial microbes.

THE ROOTS OF INDUCED SYSTEMIC RESISTANCE:
EARLY SIGNALING EVENTS

Root Colonization

Initiation of ISR requires beneficial microbes to efficiently colonize the root system of host plants
(77). For the establishment of a successful mutualistic association, host plants and microbes need
to respond to reciprocal signals and accordingly prioritize their responses so as to develop a
lifestyle that provides mutual benefits. In the well-studied mycorrhizal and rhizobial symbioses,
host-secreted strigolactones and flavonoids stimulate the production of symbiotic Sym and Nod
factors by the microbes, which in turn activate a common symbiosis (Sym) signaling pathway in
plant roots that is necessary for the establishment of a successful symbiotic relationship (100). How
nonsymbiotic PGPR and PGPF establish a prolonged mutualistic interaction with plant roots is
less well characterized, but a picture is emerging that a molecular dialog is also essential for these
mutualistic interactions (77, 136, 188).

Many free-living PGPR actively respond to root exudates by adjusting their transcriptional
program toward traits involved in chemotaxis, root colonization, and energy metabolism (44,
81, 84, 98). Once established on the root epidermis, PGPR epiphytes typically form biofilms
in which multicellular communities are enclosed within an extracellular matrix of self-produced
polymeric substances, mainly exopolysaccharides (EPS), and mucilage (128) (Figure 3). Biofilm
formation is essential for the colonization of roots by B. subtilis and was recently shown to be
stimulated by polysaccharides derived from host cell walls that function as signaling molecules
for the expression of bacterial genes involved in matrix production (12). Within the EPS matrix,
bacterial cells integrate host and self-derived signals and function in unison to coordinate the
production and release of compounds related to plant growth promotion, nutrition, and ISR.
Conceptually, this matrix can be considered as the mutualistic interface through which host plants
and beneficials exchange solutes and chemical information. PGPR endophytes commonly enter
the root interior through cracks in the newly emerged lateral roots or utilize root hairs and the
apical zone as entry points (Figure 3). This mode of entry is facilitated by cell wall–degrading
exo-enzymes, such as cellulase and pectinase (125).
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Figure 3
Diagram of the main phases involved in root colonization by beneficial soilborne bacteria and their functions. (I) Plant roots selectively
secrete organic compounds that function as semiochemicals for the assembly of the root microbiome. Selected bacterial strains from the
bulk soil communities specifically respond to host signals and reprogram to express traits related to root colonization. Microbes that
have evolved as endophytes commonly enter the root interior through cracks in the root epidermis or through root hairs (inset). In
phase I, local immune responses in host roots are transiently suppressed by epiphytic or endophytic plant growth–promoting
rhizobacteria (PGPR), allowing bacteria to propagate on the root epidermis or intracellularly. (II) Once PGPR are established on the
root, cell wall polysaccharides from the host function as environmental cues to promote biofilm formation on the root surface. Within
the biofilm matrix, individual members and/or microbial consortia integrate host and self-derived signals to activate processes in the
plant that lead to enhanced plant growth and induced systemic resistance (ISR). In addition, root microbiota protect root tissues against
soilborne pathogens via the production of antibiotics and competition for nutrients and niches. (III) Early root responses to beneficial
microbes are locally expressed in the epidermis and are subsequently communicated to the inner cell layers and to the aboveground
plant parts via yet elusive long-distance molecules, where these signals confer ISR.

Although well known for their ability to adapt in the rhizosphere of various hosts, endophytic
PGPF have evolved sophisticated strategies to colonize the intercellular space of the epidermal
cortical root layer (97, 136). The fungal endophyte P. indica is a typical generalist with the unique
ability to colonize the inter- and intracellular space of a wide range of mono- and dicotyledonous
plants. In order to adapt to highly variable host environments, this fungus can adopt alternative
lifestyles that are determined by host-specific metabolic cues (70). Endophytic Trichoderma spp.
preferentially colonize the root hairs, where they typically form structures analogous to the ap-
pressorium of plant-pathogenic fungi (97). In the Trichoderma virens Gv29-8-maize interaction,
it was shown that plant-derived sucrose and a sucrose-dependent signaling network in the fungus
are crucial for the establishment of a mutualistic association (167, 168).

Upon root colonization, Pseudomonas, Bacillus, and Trichoderma strains have been shown to
initiate an auxin-dependent root developmental program that results in abundant lateral root
formation, increased root hair length, and enhanced plant biomass production (30, 101, 187, 189)
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Figure 4
Plant growth–promoting effect of plant growth–promoting rhizobacteria (PGPR) strain Pseudomonas
fluorescens WCS417r on Arabidopsis. (a) Colonization of Arabidopsis roots by P. fluorescens WCS417r increases
shoot biomass and stimulates lateral root formation and root hair development. (b) P. fluorescens
WCS417r–induced changes in root architecture are stimulated via auxin-dependent responses in the
Arabidopsis root. Shown are confocal images of nonbacterized (left) and bacterized (right) roots (red )
expressing the auxin-sensitive reporter DR5::venusYFP ( yellow). Images are reproduced with permission from
Reference 187.

(Figure 4). Although this trait clearly contributes to the plant growth–promoting activity of these
beneficial microbes, its relation to ISR is often unclear. Recently, however, it was shown that
Arabidopsis wild-type and ISR-defective mutants show similar PGPR-elicited alterations in the
root architecture (187), suggesting that the capacity of PGPR to promote growth and to trigger
ISR can function independently.

Modulation of Root Immunity

Like pathogens, beneficial microbes need to overcome or evade plant immune responses in order
to establish a prolonged and intimate mutualistic interaction with the host. Molecules and strate-
gies commonly used by pathogens to suppress host immunity are also employed by soilborne
ISR-inducing microbes (176, 188). For instance, the ISR-inducing arbuscular mycorrhizal fungus
Rhizophagus intraradices utilizes the symbiotic effector SP7 to suppress ET-mediated immune re-
sponses and promote fungal biotrophy (65). Similarly, the ectomycorrhizal fungus Laccaria bicolor
produces the symbiosis effector MiSSP7, which is translocated into the plant cell nucleus, where
it promotes the expression of auxin-responsive genes, possibly to suppress SA-dependent defenses
(117). Additionally, the PGPF P. indica activates the JA signaling pathway in Arabidopsis roots to
suppress both early and late defense responses (59). Transcriptome analyses of P. indica during root
colonization revealed a large number of genes encoding small secreted proteins that may function
as immune suppressive effectors (191). Downregulation of root immune responses has also been
described for Trichoderma PGPF (17) and for ISR-inducing PGPR, such as B. subtilis FB17 and
P. fluorescens WCS417r (71, 91, 169). The latter was shown to suppress activation of defense genes
in Arabidopsis roots that are triggered by the MAMP flg22 (91). Possibly, colonization of the roots
requires local suppression of PTI to protect the PGPR against MAMP-triggered production of
antimicrobial compounds (Figure 3).

Many bacterial pathogens deliver immune-suppressive effectors in the plant cell via a type III
secretion system. Despite the fact that many PGPR are equipped with a similar type III secretion
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AUTOREGULATION OF MUTUALISM

Despite their net fitness benefit, mutualistic plant-microbe interactions also come with a fitness cost. In the rhizobial
and mycorrhizal symbioses, costs and benefits of the symbiosis are balanced via a sophisticated long-distance
signaling process called autoregulation, which controls the level of infection by the symbiont (95, 142). In the
Rhizobium-legume symbiosis, autoregulation is initiated in the roots, where primary Rhizobium infections trigger
the production of Clavata3/endosperm-surrounding region (CLE) glycopeptides (99). CLE glycopeptides are then
loaded into the xylem and systemically transported to the shoot, where they bind to a leucine-rich repeat receptor-
like kinase. A second, yet elusive, signal is generated in the shoot and is translocated back to the roots to restrict
nodulation. Interestingly, several autoregulation mutants are hypersusceptible to pathogen infection, suggesting
that systemic defense signaling may be an intrinsic part of the autoregulation phenomenon (188). It is tempting to
speculate that beneficial associations with nonsymbiotic PGPR and PGPF are controlled by a similar autoregulation
strategy, resulting in the ISR phenomenon that provides systemic protection in roots and shoots against a broad
spectrum of pathogens. The recent finding that colonization of Arabidopsis roots by P. indica inhibits secondary
colonization of distal roots (107) supports this hypothesis.

DAPG: 2,4-
diacetylphloroglucinol

machinery and produce functional effectors (75, 86), their role in mutualistic plant-microbe inter-
actions is still unclear. Along with suppressing local host defenses to facilitate colonization, PGPR
effectors may also function as host-range specificity determinants under control of host resistance
(R) proteins, as in the case of the Rhizobium-legume symbiosis (186, 188). This would allow host
plants to utilize components of their immune system to select for their mutualistic partners. The
observation that ISR is genetically determined by the host-microbe combination (148, 150, 165)
supports this hypothesis.

Microbial Elicitors of Induced Systemic Resistance

Although beneficial microbes seem to actively suppress local host defense responses in the roots,
ISR-inducing beneficial microbes must also produce elicitors that are responsible for the onset
of systemic immunity. It has been proposed that ISR is the resultant of a long-distance signaling
mechanism that in rhizobial and mycorrhizal symbiosis is responsible for autoregulating the col-
onization density of the symbionts (142, 188) (see sidebar, Autoregulation of Mutualism). In this
scenario, local immune suppression and systemic activation of defense priming would balance the
costs and benefits of mutualism.

Early reports on MAMPs and other elicitors of ISR-inducing PGPR focused on the involve-
ment of lipopolysaccharides (LPS) and the iron-regulated metabolites pyoverdin and SA (37,
159). In the past years, many other ISR elicitors have been identified, including antibiotics, such
as 2,4-diacetylphloroglucinol (DAPG) and pyocyanin; flagella; N-acyl homoserine lactones; iron-
regulated siderophores; and biosurfactants (reviewed in 37). In addition, volatile organic com-
pounds, such as 2R,3R-butanediol produced by B. subtilis GB03 (130) and a C13 volatile emitted
by Paenibacillus polymyxa (73), were demonstrated to elicit ISR (Figure 2). Several of these ISR
elicitors were shown to act redundantly (10). For example, LPS-containing cell walls, flagella, and
the siderophore pyoverdine of P. putida WCS358 elicit ISR in Arabidopsis when applied exoge-
nously to the roots (90). However, P. putida WCS358 mutants lacking pyoverdine, flagella, or the
immunizing O-antigenic side chain of LPS were still capable of triggering ISR, indicating that
multiple bacterial elicitors of this strain can trigger systemic immunity. This resembles PTI in
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plant-pathogen interactions, where recognition of multiple PAMPs is funneled into the same PTI
signaling pathway (16, 190).

In PGPF, several elicitors with defense-activating properties have been identified (135). These
include enzymatic proteins, such as xylanases and cellulases, but also proteins and peptides with
more specific defense-eliciting functions, such as Sm1 from T. virens. (41). However, in most
cases functional evidence for a role in ISR in vivo, e.g., via gene-knockout experiments, is lacking.
Recent comparative genomics of Trichoderma spp. and mycorrhizal fungi revealed the presence of
many genes that encode putative effectors and elicitors, which offers a great potential to further
investigate their role in the elicitation of ISR (97, 146).

MYB72: An Early Root-Specific Regulator of Induced Systemic Resistance

ISR elicited by beneficial microbes involves long-distance signaling that starts at the root-microbe
interface. Very few studies have investigated signaling components of the plant root that are
important for the initiation of ISR. Using the Arabidopsis mutant eir1, which is insensitive to
ET in the roots only, it was shown that ET signaling in the roots is required for the expression
of ISR in the leaves and possibly facilitates the generation or translocation of a yet elusive
systemic ISR signal (66). Furthermore, the R2R3-type MYB transcription factor gene MYB72
was identified as one of the significantly induced genes in Arabidopsis roots in response to
P. fluorescens WCS417r (169). In uninduced plants, MYB72 is little expressed in the root vascular
bundle but becomes highly expressed in root epidermis and cortical cells upon colonization
by ISR-inducing PGPR (Figure 5). Knockout myb72 mutants of Arabidopsis are impaired in
their ability to express ISR against different foliar pathogens upon treatment with P. fluorescens
WCS417r or P. putida WCS358r, indicating that this root-specific transcription factor is essential
for the onset of ISR. MYB72 is also induced in Trichoderma-colonized Arabidopsis roots and shown
to be crucial for Trichoderma ISR (4, 17, 133), suggesting that MYB72 is a node of convergence in
the ISR signaling pathway triggered by different beneficial microbes. Overexpression of MYB72
does not confer enhanced resistance to foliar pathogens (155), suggesting that MYB72 acts in
concert with one or more other signaling components.

MYB72 is specifically induced in roots under iron-limited conditions or conditions that distort
iron uptake, such as high zinc concentrations (34, 103), pointing to a link between iron homeo-
stasis and the onset of ISR (Figure 5). This notion is supported by the fact that the expression
of the iron-deficiency marker genes FRO2 and IRT1, coding for a Fe3+ chelate reductase and
a Fe2+ transporter, respectively, are coregulated with MYB72 in Arabidopsis roots colonized by
ISR-inducing Pseudomonas strains but not in roots colonized by the ISR-noninducing P. fluo-
rescens strain WCS374r (C. Zamioudis & C.M.J. Pieterse, unpublished results). Detailed genome-
wide transcriptional profiling in roots of Arabidopsis wild-type and mutant myb72 confirmed that
MYB72-associated root transcriptional responses to ISR-inducing rhizobacteria are dominated by
genes associated with the iron-deficiency response. Because many Pseudomonas spp. produce iron-
chelating siderophores to take up iron from the environment, induction of the iron-deficiency
response in the roots may be caused by bacterially inflicted iron stress. However, siderophore
mutants of P. fluorescens WCS417r were still able to induce MYB72 and the iron uptake genes
FRO2 and IRT1. Moreover, these genes were induced by volatile organic compounds produced
by ISR-inducing PGPR and PGPF (189). Hence, the iron-deficiency response is activated even
though plants do not physically experience iron limitation (Figure 2). How the iron-deficiency re-
sponse functions in the communication between beneficial microbes and the plant root is currently
unknown. It may be required at the root-microbe interface for the production of semiochemicals
or for the generation and/or translocation of a long-distance ISR signal (Figure 5).
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Figure 5
(a) Confocal image of Arabidopsis root epiphytically colonized by induced systemic resistance (ISR)-inducing
Pseudomonas fluorescens WCS417r bacteria expressing yellow fluorescent protein (YFP) ( yellow). Bacterial cells
that are in contact with the root form a biofilm, whereas cells in the root vicinity retain the planktonic state
(red color in panels a–c indicates propidium iodide–stained Arabidopsis root). (b) Nonbacterized Arabidopsis root of
pMYB72::GFP reporter line expressing green fluorescent protein (GFP) under the control of the MYB72
promoter. In nonbacterized roots, MYB72 is mainly expressed in the xylem parenchyma cells ( green). (c) Root
colonization by P. fluorescens WCS417r and conditions of iron (Fe) deficiency activate MYB72 expression in
the root epidermal and cortical cell layer ( green). (d ) Schematic representation of the iron-deficiency
response in Arabidopsis roots. During the iron-deficiency response, roots acidify the soil environment via
proton extrusion to solubilize Fe(III), which is then reduced to Fe(II) by the action of the ferric chelate
reductase FRO2. Fe(II) is then imported in the root via the iron transporter IRT1. Upon colonization of the
roots by ISR-inducing rhizobacteria, MYB72 is coordinately upregulated with FRO2, IRT1, and several other
iron deficiency–regulated genes (not shown). MYB72 may function in the generation or translocation of
long-distance ISR signals. Alternatively, MYB72 may act in the production and/or secretion of root
semiochemicals that stimulate plant growth–promoting rhizobacteria to produce signals that trigger ISR.

Microbiome:
communities of
commensal,
mutualistic, and
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microorganisms that
live in close association
with a host
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activity, and
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THE RHIZOSPHERE MICROBIOME AND INDUCED
SYSTEMIC RESISTANCE

Engaging a Social Network with the Underground

Beneficial microbes with ISR-eliciting properties have often been selected from large screens of
the root microbiome for members that have biological control activities (37, 64, 136, 175). The
rhizosphere microbiome contains a mesmerizing diversity of microbes that interact with each
other in a positive or negative manner (15, 89). In most soils, growth of microbes is limited by
carbon availability, a commodity of which photosynthesizing plants have plenty. Plants deposit
up to 40% of the photosynthetically fixed carbon via their root system (rhizodeposition), where
it becomes accessible for microbiota in the rhizosphere (7). This causes a 10–100-fold increase
in the microbial density in the rhizosphere and a microbial community composition that is
significantly distinct from the surrounding bulk soil, a phenomenon called the rhizosphere effect
(8) (Figure 3). As the gut and skin microbial communities affect human health, the composition
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PLANT AND HUMAN MICROBIOMICS

New opportunities offered by next-generation sequencing techniques have inspired a renewed interest in micro-
biomics, especially in the medical field. Large-scale studies, such as the Human Microbiome Project, have shown
that specific microbial communities that reside in or on body parts, such as the gut or the skin, can have a decisive
influence on human health. Particular microbial communities have been associated with obesity, psoriasis, asthma,
inflammatory bowel disease, colorectal cancer, cardiovascular disease, and other human conditions (25). Although
different in many aspects, plant and human microbiomes share important similarities (15). Not only do both host
microbiomes competitively exclude pathogens from their hosts, they also modulate host immunity and assist in
nutrient uptake and utilization. However, whereas the human microbiome is limited in its phylogenetic diversity,
plants are colonized by extremely diverse communities, especially on their roots (25, 89). Nonetheless, to gain a
thorough understanding of the biological mechanisms that control the structure of plant and human microbiomes,
essentially similar questions need to be addressed. Answers to these questions will ultimately lead to innovative ways
of regulating the health of any host.

Disease-suppressive
soils: soils in which a
pathogen does not
establish or persist, or
in which it causes
disease at first but then
disease declines with
successive cropping of
the host

of microbial communities in the rhizosphere can have significant effects on plant health (15, 25,
110) (see sidebar, Plant and Human Microbiomics).

Recently, next-generation sequencing technologies have made it feasible to study the immense
microbial diversity in the rhizosphere in detail. These studies confirmed that the rhizosphere
microbiota consist of a subset of the total diversity of the bulk soil in which plants are grown
(19, 79, 108). Being the reservoir from which rhizosphere inhabitants are selected, soil type is an
important factor in determining rhizosphere microbial community composition. Nonetheless, in
the same soil different plant species select distinct microbial communities, presumably because of
differences in root exudates (50). Although soil is the decisive factor in structuring root-associated
microbial communities, there is overlap in the bacterial species that are selected by genotypically
similar plants across different soils (19, 79, 108). This suggests the existence of coevolutionary
relationships between plant-inhabiting bacteria and their hosts.

Evidence is accumulating that plants can modulate the composition of their root microbiome,
a capacity that can provide important fitness benefits to the plant (15, 110). Plants can specifically
select and enrich certain bacterial groups or species through the secretion of compounds that
selectively stimulate or repress microbial growth (15). The PGPR P. putida KT2440 is recruited
by maize plants through the secretion of benzoxazinoids, antimicrobial compounds that inhibit
most microbes but to which KT2440 is insensitive (98). Another example of recruitment was
demonstrated upon infection of foliar parts of Arabidopsis by pathogenic P. syringae. In plants un-
der pathogen attack, the roots intensify active secretion of malic acid, which increases abundance
of, and biofilm formation by, the ISR-eliciting B. subtilis strain FB17 in the rhizosphere (128). Such
pathogen-induced recruitment of beneficials is in line with the observation that exogenous appli-
cation of the defense hormone JA to the leaves of Arabidopsis changed the rhizosphere abundance
of several taxa that have been associated with disease suppression (23).

Disease-Suppressive Soils

A striking example that coevolution of plant-beneficial microbe interactions for the benefit of
plant health occurs in nature is evidenced by the existence of disease-suppressive soils (180, 182).
The disease suppressiveness of these soils is generally based on specific microbial populations that
antagonize pathogens. Disease-suppressive soils occur worldwide, and some develop following
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prolonged monoculture of a specific crop (110, 182). Microorganisms that have been demonstrated
to contribute to the disease suppressiveness of soils include Trichoderma, Fusarium, Streptomyces,
Bacillus, and Actinomyces spp.; however, bacteria from the genus Pseudomonas have most often
been identified as important players (89, 182). Possible mechanisms of disease suppression include
competition for space and (micro)nutrients; hyperparasitism; antagonism via microbial production
of secondary metabolites, such as iron-chelating siderophores, antibiotics, and lytic enzymes; and
elicitation of ISR (75, 110, 182) (Figure 3).

Among the best-characterized examples of disease suppressiveness are Fusarium wilt–
suppressive soils and take-all decline in wheat monocultures (2, 87, 110, 180, 182). The basis
of Fusarium wilt suppressiveness includes the activity of nonpathogenic Fusarium spp. that com-
pete for carbon with pathogenic Fusarium spp., and Pseudomonas spp. that antagonize the pathogen
via the production of siderophores and the antibiotic phenazine (87). Take-all disease caused by
the soilborne pathogen Gaeumannomyces graminis gradually declines during consecutive years of
wheat monoculture because of the buildup of populations of Pseudomonas spp. that produce the
antibiotic DAPG, for which the fungal pathogen is highly sensitive (180).

Many Pseudomonas spp. strains that have been isolated worldwide for their excellent plant-
protective properties appear to be genetically very closely related (R.L. Berendsen, C.M.J. Pieterse,
P.A.H.M. Bakker, unpublished results). This suggests not only that plants select for specific bac-
teria with biocontrol activity but also that similar strains are present globally in different soils.
Some of these closely related strains were isolated from different plant species and thus might
embody a group of universal PGPR, whereas others were isolated from the same plant species
and could represent plant species-specific beneficials. This also became evident from studies on
disease-suppressive soils. Although at least 18 genotypically different DAPG producers have been
found in disease-suppressive soils across Europe and the United States, some of the same genotypes
have been found in different locations (32). Furthermore, it was demonstrated that in side-by-side
fields with long histories of either monocultures or crop rotations with wheat or flax, DAPG
producers were only found in the monoculture fields of both crops and that the prevalent DAPG
producers in flax monoculture fields were genotypically different from those in wheat monoculture
fields (72).

Is Induced Systemic Resistance Constitutively Active in the Field?

The microbial community in the rhizosphere is extremely diverse, and members of many genera
have the potential to elicit ISR. On top of that, many different microbial determinants have been
implicated in eliciting ISR. Thus, the question of whether all plants in the field are already in the
state of ISR seems reasonable, and it may explain some observations of inconsistent performance of
induced resistance in the field. However, there are many examples of PGPR or PGPF that induce
ISR under field conditions when introduced to soil or planting material (64, 175). This suggests
that untreated plants do not constitutively express ISR or at least that they are not induced up to
their full potential. This apparent contradiction may be explained by the relatively high population
densities of introduced bacteria that are required for effective elicitation of ISR. For example, the
threshold population density of P. fluorescens WCS374r required to elicit ISR in radish is 105

colony-forming units per gram of root (121). The occurrence of such a high density of a single
bacterial genotype in the rhizospheres of field-grown plants seems unlikely, with the exception of
the situation in some disease-suppressive soils. For example, in take-all decline soil, population
densities of DAPG-producing Pseudomonas spp. are consistently above the 105 threshold (182).
Given the observation that DAPG production by P. fluorescens is a major determinant of ISR (181),
ISR may be operative in take-all decline soils in which DAPG-producing Pseudomonas spp. play a
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prominent role. A demonstration that suppressive soils not only control a single target soilborne
pathogen or disease but also stimulate the plant immune system would greatly enhance their
standing as an important approach to managing diseases and insects in conventional and organic
crop production systems.

CONCLUDING REMARKS

Since the discovery that selected beneficial soilborne microbes can stimulate plant immunity, now
more than 20 years ago, a wealth of knowledge has accumulated on the mechanisms underlying ISR.
The plant immune system plays a central role in the social network of plants that, on the one hand,
can be activated to ward off enemies and, on the other hand, can be suppressed to accommodate
mutualists. Both aspects of host immune modulation are operative in the ISR phenomenon, and
their interplay will definitely be a subject of future studies. A major gap in our knowledge is how
recognition of beneficial microbes at the root-soil interface drives the whole plant body toward
enhanced growth and elevated stress resistance. The first steps toward unraveling the molecular
dialog between roots and ISR-eliciting microbes have been made, but major questions still need
to be resolved. For instance, how are signals from ISR-eliciting microbes perceived in the roots
and translated into specific plant responses that mediate enhanced defense in foliar tissues? Do
plant roots produce one or more long-distance ISR signals, and if yes, what is their nature? Long-
distance signaling molecules may be generated and/or modified in the outermost root cell layer,
as indicated by the expression pattern of MYB72, which is required for the onset of ISR in the
roots. As is the case with the establishment of SAR and herbivore-induced resistance (24, 57),
signaling cascades in the xylem parenchyma cells of the vascular bundle may also be critical for
the establishment of ISR in foliar tissues. As plant roots respond to ISR-eliciting microbes in a
cell type–specific manner, the analysis of root cell type–specific transcriptome and metabolome
profiles in response to beneficial microbes will be highly informative.

We have also become much more aware of the fact that the beneficial microbes that are stud-
ied as elicitors of ISR are part of a large microbiome that is structured at the root-soil interface
and within the root compartment. Although the importance of the root microbiota in improving
nutrient availability, antagonizing soilborne pathogens, promoting plant growth, and priming the
plant’s immune system is well established and abundantly used in biocontrol strategies (76, 175),
we are still ignorant about how plants are able to shape the composition of the root microbiome
to their own benefit. What are the plant traits and corresponding genes that enable plants to
maximize profitable and protective functions from their root microbiota? Exciting new discov-
eries combining metagenomic analysis and quantitative plant genetics have revealed a core root
microbiome of plants, including that of Arabidopsis (15, 19, 79, 89, 108, 110), which will greatly
facilitate future studies on the relation between the root microbiome and plant health.

The major societal challenge to produce more food with less fertilizer and agrochemical inputs
in crop protection has greatly increased the awareness of the importance of the root microbiome in
plant health for current agricultural and horticultural practices. In natural ecosystems, plants have
evolved in the context of complex microbial communities that fulfill important plant functions
related to plant growth, vigor, and defense. However, these traits provided by the plant’s second
genome have not been major targets of classical plant-breeding programs. Hence, the continuous
increase in our knowledge on the molecular and genetic basis of plant-beneficial microbe com-
munication in the context of its evolutionary and ecological relevance will be highly instrumental
for the development of sustainable future crops that are better able to maximize profitable and
protective functions from beneficial microbes in their root microbiome. Indeed, roots and their
plant health–supporting microbiome may hold the key to the next green revolution.
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SUMMARY POINTS

1. Beneficial microbes produce different MAMPs and elicitors that can trigger ISR.

2. Local suppression of root immune responses is a common feature of ISR-eliciting ben-
eficial microbes that possibly aids in root colonization.

3. The root-specific transcription factor MYB72 is an early signaling factor that functions
as a node of convergence in ISR elicited by diverse beneficial microbes.

4. ISR triggered by beneficial soilborne microbes is often regulated by a JA/ET-dependent
signaling pathway, but beneficial microbes that elicit the SA-dependent SAR pathway
exist as well.

5. Priming for enhanced defense, rather than direct activation of resistance, is a common
feature of systemic immunity elicited by beneficial microbes.

6. Plants have mechanisms by which they enrich their microbiome with beneficial microbes
that provide protection against diseases.

7. ISR is a plant immune function mediated by the root microbiome.

8. Disease-suppressive soils are enriched with beneficial microbes that promote plant health.

FUTURE ISSUES

1. To what extent does beneficial plant-microbe communication at the root-soil interface
facilitate microbial colonization and drive the whole plant body toward enhanced growth
and elevated immunity?

2. What is the role of the MYB72-controlled gene regulatory network and other root cell
type–specific signaling components in the onset of ISR?

3. What is the identity of the ISR long-distance signal(s), and does autoregulation of mu-
tualism play a role in ISR by nonsymbiotic PGPR and PGPF?

4. What is the role of NPR1 in the regulation of ISR elicited by beneficial microbes?

5. Is priming induced by beneficial microbes mediated via epigenetic mechanisms, and can
it, as SAR and herbivore-induced resistance are, be transgenerationally inherited?

6. How do plants structure their root microbiome, and can they modulate its composition
to improve plant immune functions?

7. Do disease-suppressive soils play a broader role in plant defense against pathogens and
insects through ISR activity?

8. What are the microbial functions and matching plant genes involved in microbiome-
mediated beneficial effects on plant growth and protection, and how can we utilize this
information in designing sustainable next-generation crops?
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