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Abstract

To confer resistance against pathogens and pests in plants, typically domi-
nant resistance genes are deployed. However, because resistance is based on
recognition of a single pathogen-derived molecular pattern, these narrow-
spectrum genes are usually readily overcome. Disease arises from a compati-
ble interaction between plant and pathogen. Hence, altering a plant gene that
critically facilitates compatibility could provide a more broad-spectrum and
durable type of resistance. Here, such susceptibility (S) genes are reviewed
with a focus on the mechanisms underlying loss of compatibility. We dis-
tinguish three groups of S genes acting during different stages of infection:
early pathogen establishment, modulation of host defenses, and pathogen
sustenance. The many examples reviewed here show that S genes have the
potential to be used in resistance breeding. However, because S genes have
a function other than being a compatibility factor for the pathogen, the side
effects caused by their mutation demands a one-by-one assessment of their
usefulness for application.
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Pattern recognition
receptors (PRRs):
recognizing either
pathogen-derived
molecules, called
PAMPs, or
plant-derived
damage-associated
molecular patterns
(DAMPs)

PAMP-triggered
immunity (PTI):
defenses induced after
PAMP/DAMP
perception by PRRs

Callose: a plant
polysaccharide
deposited in the cell
wall as a response to
wounding and
pathogen-infection;
the main constituent
of papillae

Effector: secreted
pathogen-derived
molecule that changes
host responses to
support compatibility,
often by suppressing
the immune response

Resistance (R) gene:
immune receptor
conferring recognition
of a pathogen-derived
avirulence product
(often an effector),
resulting in the
activation of host
defense

Effector-triggered
immunity (ETI):
defenses induced after
effector perception by
a resistance gene

Hypersensitive
response (HR): a
programmed cell death
response that often
accompanies ETI

INTRODUCTION

Plants have evolved sophisticated defense mechanisms to ward off pathogens. In fact, a high degree
of adaptation by a pathogen is required to allow it to colonize a suitable host and to overcome
its preformed and pathogen-inducible defenses. The stringent requirements imposed by the host
force the pathogen to coevolve, resulting in a high degree of host specialization. The phenomenon
of host specificity is especially widespread among biotrophic filamentous (fungal and oomycete)
pathogens that have long-lasting interactions with living host cells and frequently form specialized
feeding structures inside these cells (217). A perturbation in this delicate balance between host
and pathogen can result in incompatibility and thus loss of susceptibility.

After recognition of a suitable host, a pathogen breaches the host’s constitutive defense barriers,
penetrates its tissues and cell walls, and is then confronted with pathogen-induced defenses. These
postpenetration defenses are launched either upon direct recognition of the pathogen or upon in-
direct recognition mediated by its actions or the damage it inflicts to the host during infection.
At their cell surface, plants carry pattern recognition receptors (PRRs) that mediate recogni-
tion of pathogen-derived molecules, called PAMPs (pathogen-associated molecular patterns; e.g.,
flagellin), or plant-derived DAMPs (damage-associated molecular patterns; e.g., plant cell wall
fragments). DAMP/PAMP recognition by PRRs activates a defense response, designated PAMP-
triggered immunity (PTI). PTI includes the production of reactive oxygen species (ROS), secretion
of antimicrobial compounds and hydrolytic enzymes that target pathogen cell walls (chitinases and
glucanases), and the trigger of local cell wall fortifications, such as callose (23). To suppress PTI,
pathogens produce effector molecules that change host responses to support compatibility (57).
To counteract the activity of effectors, plants evolved the ability to recognize either the effector it-
self or its modification inflicted on a host protein using resistance (R) genes. Most R genes encode
intracellular nucleotide-binding leucine-rich-repeat (NB-LRR) proteins, and R-gene-mediated
immunity is referred to as ETI (effector-triggered immunity), which is often accompanied by lo-
cal cell death [hypersensitive response (HR)] (55, 180). Whereas PTI confers broad recognition,
as it is activated by evolutionarily conserved molecules, ETI is mostly race specific, as effectors are
highly polymorphic (55). Although activated differently, the output of PTI and ETI shows merely
quantitative differences and there is no apparent clear-cut separation between both signaling path-
ways (184). Pathway overlap at multiple levels has been suggested (155, 189), and both immune
signaling pathways are tightly regulated, with major roles for the defense hormones salicylic acid
(SA), jasmonic acid ( JA), and ethylene (Eth) (152). Effectors triggering ETI are under strong neg-
ative selection pressure and, consequently, the encoding genes often rapidly evolve. The resulting
arms race forces a pathogen to continuously evolve new strategies to evade or suppress PTI and
ETI and drives selection for an expanded recognition repertoire by the plant (96).

Along with suppressing or evading plant immunity, most pathogens, and especially biotrophs,
require cooperation of the host for establishment of a compatible interaction. Accommodating
the pathogen involves enabling it to establish feeding structures, such as haustoria, inside the host
cell to obtain nutrients. All plant genes that facilitate infection and support compatibility can be
considered susceptibility (S) genes. Mutation or loss of an S gene can therefore limit the ability of
the pathogen to cause disease. Whereas R genes are typically dominant, resistance conferred by
loss or alteration of S genes is generally recessive.

When mutated, S genes can cause pathogen-specific resistance when they no longer support a
compatible interaction because of impaired prepenetration requirements (e.g., host recognition,
penetration) or impaired support of specific postpenetration requirements (e.g., nutrients). Alter-
natively, S genes can provide relatively broad-spectrum resistance when they cause prolonged or
constitutive defenses, although the latter may cause autoimmune-like fitness penalties.
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Biotroph: microbial
pathogen that requires
living host cells for its
growth and
proliferation

Haustoria: infection
structures of
specialized biotrophic
filamentous pathogens
that are used for
nutrient absorption
from host cells and
secretion of effectors

Susceptibility (S)
gene: any plant gene
that facilitates the
infection process or
supports compatibility
with a pathogen

Antimicrobials

Actin

Callose

Vesicles 

Cues

MLO 

BI-1 

LFG

RAC

Cuticle
Wall

structure
IRG1
RAM2

CSLA9
AGP17

ATT1
BDG

BRE1
…

…

RxLR 

R factor 

S factor

Effector

Transport/
movement

Pathogen
accommodation 

Prepenetration
defense

Positive regulator

Fungal/oomycete spores

Bacterium

Adapted

Cell death

Nucleus

Nonadapted

MLO

BI-1

LFG

Stomate

RIN4

AHA1

LecRK

Papillae 

PI3P

Haustorium

Negative regulator

Fungus/oomycete

1

1

2

2

Figure 1
Susceptibility genes involved in host recognition and (pre)penetration. Examples are shown of proteins involved in early infection
processes, such as (top left) synthesis of pathogen cues and cuticle and cell wall components, (middle) formation of the extrahaustorial
membrane, which requires vesicular trafficking and actin polymerization, and penetration defense. (top right, inset) Genes involved in
stomatal (re)opening required for bacterial entry. Mutations in these genes confer loss of susceptibility to adapted pathogens. For a
more detailed description of gene names and function, please refer to Supplemental Table 1 (follow the Supplemental Material link
from the Annual Reviews home page at http://www.annualreviews.org).

The potential robustness of an S gene is exemplified by the Mlo gene, of which a recessive
mutant was shown to confer powdery mildew (PM) resistance in barley seven decades ago and this
mutant is still used and confers resistance to all PM races in the field (67, 97). These character-
istics, conferring non-race-specific and potential durable resistance, make S genes an interesting
alternative to R genes in breeding programs. Although recessive resistances have been used for
decades, the concept of a susceptibility gene was first explored in 2002 after the identification of
pmr6 (PM resistance) in Arabidopsis. PMR6 was described as “. . .a novel form of disease resistance
based on the loss of a gene required during a compatible interaction. . .” (198), after which the
term susceptibility gene was proposed (59).

On the basis of the distinct phases of the host-pathogen interaction processes, we distinguish
three major mechanisms by which S genes facilitate susceptibility and contribute to infection
(Figures 1–3):

1. Genes allowing basic compatibility (prepenetration), facilitating host recognition and
penetration.

2. Genes encoding negative regulators of immune signaling.
3. Genes allowing sustained compatibility (postpenetration), fulfilling metabolic or structural

needs, and allowing pathogen proliferation.
In the first part of this review, typical representatives of S genes and potential S genes of the

three different categories are described. These examples are selected from a comprehensive list of
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Figure 2
Susceptibility genes involved in suppression of host defense. Examples of genes are shown that suppress
erroneous DAMP (damage-associated molecular pattern)-triggered immunity (DTI) (CESA/PMR4) or
pattern recognition receptor (PRR)-triggered PAMP (pathogen-associated molecular pattern) (PTI) by
affecting MAP kinase (MPK) and WRKY transcription factor pathways with positive or negative regulatory
roles, control degradation of PTI components by ubiquitination, suppress salicylic acid (SA) signaling by SA
catabolism (S3H), mediate SA antagonism by oxylipins and jasmonic acid ( JA), and suppress effector-
triggered immunity (ETI) and programmed cell death. For a more detailed description of gene names and
function, please refer to Supplemental Table 1 (follow the Supplemental Material link from the Annual
Reviews home page at http://www.annualreviews.org). Abbreviations: CESA, cellulose synthase; XXX,
effector target.

S genes provided in Supplemental Table 1 (follow the Supplemental Material link from the
Annual Reviews home page at http://www.annualreviews.org). We also briefly highlight how
pathogens control and use S genes. Finally, we discuss the possibilities and potential drawbacks of
using S genes to increase crop resistance.

TYPES OF S GENES

S Genes Allowing Basic Compatibility: A Warm Welcome

Bacterial pathogens enter the apoplast through stomates or wounds and often form type III and type
IV secretion systems for injection of effectors. Fungi and oomycetes form spores that germinate
and form runner hyphae that either enter the host via natural openings or force entry using appres-
soria that can penetrate cell walls. A haustorium can then be established for feeding and effector
translocation (217). Below and in Figure 1, typical examples are given of plant genes involved in the
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Figure 3
Susceptibility genes involved in pathogen sustenance. Examples are shown of plant proteins involved in cell expansion and
endoreduplication, which allow increased metabolism (left), production of metabolites such as amino acids, sugars, or lipids (center),
metabolite transport (top right), and virus replication (right). For a more detailed description of gene names and function, please refer to
Supplemental Table 1 (follow the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.
org). Abbreviations: Cu, copper; DHDPS, dihydrodipicolinate synthase; PME, pectin methylesterase; TAL, transcription
activator–like.

Cuticle: waxy
protective film
covering the
nonwoody aerial plant
parts, such as leaves
and shoots

early infection steps, from the production of attractants to the formation of membrane structures
to establish a feeding site, determining whether a compatible interaction can be established.

Cuticle and cell wall structure. The leaf surface is covered with a waxy layer, the cuticle, which
is composed of cutin, wax, polysaccharides, and minor compounds such as flavonoids (17). The
corn mutant glossy11 has decreased very-long-chain aldehyde levels in leaf cuticles, resulting in
poor germination of PM spores (75). A Medicago mutant, irg1, with reduced primary alcohols in
surface wax caused reduced differentiation of fungal rust and anthracnose pathogens (Phakopsora
pachyrhizi, Puccinia emaculata, and Colletotrichum trifolii ) (191). Another Medicago mutant, ram2, has
altered cutin composition because of compromised glycerol-3-phosphate acyltransferase activity,
which results in reduced susceptibility to Phytophthora palmivora because of perturbed appressoria
formation (202). These examples indicate that the leaf cuticle contains components that are used by
filamentous pathogens as essential developmental cues for pathogenicity. The plant genes/enzymes
involved in synthesis of such compounds contribute to susceptibility and can be regarded as S genes.
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Necrotroph:
microbial pathogen
that kills host cells
before colonizing
them

Adapted pathogen:
a pathogen specialized
on a specific host
species, able to
overcome or suppress
PTI

Interestingly, several Arabidopsis cuticle mutants are resistant to infection by Botrytis and
Sclerotinia. This is surprising because these pathogens are necrotrophs with a very broad host range
and are quite indiscriminate when choosing a surface on which to grow. Could, in this case, the
mechanism of resistance and susceptibility be based on something other than host recognition and
attachment? Cuticle mutants Att1, Bdg, Lcr, Rwa2, Bre1/Lacs2/Sma4, and Fdh all have altered cuti-
cle composition due to loss of enzymes such as fatty acid oxidase, fatty acid hydroxylase, and long-
chain acyl CoA synthetase (see Supplemental Table 1 and Reference 34). These changes have
structural consequences, and cuticles of these mutants have increased permeability. Conceivably,
a more permeable cuticle could facilitate perception of Botrytis elicitors by the plant, resulting in
more effective defense activation. Alternatively, increased levels of cutin monomers might activate
a DAMP-induced immune response (see section Suppressors of PTI/DTI). In addition, antimicro-
bial compounds such as camalexin and ROS are more easily released through a permeable cuticle
(34, 112). Thus, components of the cuticle and the genes that encode their biosynthetic enzymes
are susceptibility factors for many pathogens, but the mechanisms mediating compatibility vary.

The cell wall and its composition, as well as its density and stretching, are important factors in
determining compatibility. Plant cells use expansins to facilitate cell wall stretching and growth.
The expansin EXLA2 is required for susceptibility to Botrytis and Alternaria, and although the un-
derlying mechanism is not clear, it is plausible that expansins facilitate pathogen entry (2) (see also
section Endoreduplication and Cell Expansion to Boost Metabolic Output Potential). Cellulose
is a major structural component of cell walls, and the cellulose synthase-like gene CSLA9 (rat4)
is required for susceptibility to Agrobacterium infection/transformation. Agrobacterium attachment
to the root surface is strongly reduced in csla9/rat4 mutants, indicating that the CSLA9 product
could be an essential cue for host recognition (227, 228). In the same screen, rat1 was identified,
which encodes a cell wall–localized arabinogalactan protein (AGP17) that is also required for
Agrobacterium attachment (73).

Stomates are entry portals. Bacterial pathogens are not able to breach the cell wall or cuticle
and instead use wounds or natural openings, such as stomata or hydathodes, to get access to the
apoplast or vasculature. Pathogen-induced stomatal closure is an important basal defense response
and pathogens actively counteract this process (165). After the pathogen threat diminishes, plants
need to (re)open their stomata to establish gas exchange. LecRK (a receptor kinase) is a negative
regulator of pathogen-induced stomatal closing (52), and RIN4, together with H+ ATPase AHA1,
is required for stomatal reopening (119). Consequently, loss-of-function mutants of their encoding
genes are less susceptible to pathogen entry, qualifying them as S genes.

Membrane dynamics support establishment of haustoria. Many biotrophic filamentous
pathogens penetrate the cell wall, but not the host plasma membrane, to form specialized feeding
structures. One of the best-known susceptibility genes, required for PM penetration of epidermal
cells, is MLO (mildew resistance locus O). MLO was discovered in barley (67) and later mapped
and characterized as a membrane-anchored protein (27). The role of MLO in PM susceptibility
has been confirmed in Arabidopsis, pea, tomato, pepper, wheat, and strawberry (12, 47, 86, 95,
149, 194, 225) (Supplemental Table 1). MLO seems to be required for susceptibility to adapted
pathogens, and mlo mutants display loss of susceptibility resembling that described for nonhost
resistance (85). Pepper MLO2 is also required for susceptibility to the adapted bacterial pathogen
Xanthomonas campestris but not for avirulent bacteria (105). mlo-based resistance is independent of
JA, Eth, and SA but requires vesicular trafficking and, to some extent, actin polarization (47, 129).
Independent of its role in (pre)penetration, MLO also seems to suppress programmed cell death
(see section Side Effects of Mutating Prepenetration Factors).
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Hemibiotroph:
microbial pathogen
that initially grows as a
biotroph and later
switches to a
necrotrophic lifestyle

The highly conserved BAX inhibitor-1 (BI-1) proteins fulfill a function similar to MLO. BI-1
proteins are known cell death suppressors in plants as well as animals and are membrane proteins
with six to seven transmembrane domains. In addition, a role of BI-1 in susceptibility to pene-
tration of PM (Blumeria graminis) has been established in barley (60, 61). BI-1 silencing resulted
in decreased PM penetration, whereas overexpression increased PM penetration. Overexpression
of BI-1 also fully restored PM penetration efficiency in mlo mutants and MLO overexpression
restored PM penetration in BI-I mutants, suggesting that MLO and BI-1 cause susceptibility
through similar and perhaps redundant mechanisms (60, 83). Interestingly, perturbing BI-1 in-
creases susceptibility to necrotrophic fungi, such as Botrytis cinerea and Chalara elegans in barley and
carrot, respectively, and (hemi)biotrophs, such as Fusarium graminearum and stripe rust (Puccinia
striiformis) in barley and wheat, respectively (11, 87, 205). This indicates that BI-1 plays a very
different role in accommodating infection structures of PM. BI-1 proteins belong to the larger
family of Lifeguard (LFG) proteins that have also been shown to negatively regulate programmed
cell death (81). Recently, five other LFG proteins outside the BI-1 clade have been identified in
Arabidopsis as well as in barley. Also, these LFG proteins have a function in susceptibility to PM
penetration (208). These five proteins may function redundantly to some extent, but individual
knockdowns and knockouts already showed significantly reduced susceptibility to B. graminis and
Erysiphe cruciferarum. The exact mechanism of PM accommodation by BI-1 and LFGs remains
unclear, but colocalization of LFG with extrahaustorial membranes suggests that these proteins
have a prolonged role at the site of interaction, perhaps to suppress local defense responses or to
facilitate nutrient transfer through vesicular traffic (208).

Cytoskeleton dynamics and vesicle traffic require small G proteins (Rho-GTPases, or
RAC/ROP) and GTPase activating proteins (GAP) (134). A RAC/ROP from barley, HvRACB,
was originally identified as a susceptibility factor for PM penetration (167). Three other gene
family members, HvRAC1, HvRAC3, and HvROP6, also increase PM susceptibility when overex-
pressed (148, 168). Interestingly, HvRAC1 acts as a resistance factor against the nonadapted fungus
Magnaporthe oryzae, indicating that the phenotype (resistance versus susceptibility) conferred by
these genes is pathogen specific (148). The rice genes OsRAC4, OsRAC5, and OsRACB act as sus-
ceptibility factors for M. oryzae, which is adapted to rice (39, 98). A negative regulatory role for
HvRACB, as well as MLO, in actin reorganization and focusing (cell polarity) was proposed as a
possible mechanism for susceptibility to (adapted) PM in barley, and RAC/ROPs seem to depend
on MLO in this process (129, 144). Also, in Arabidopsis, ROPs are required for susceptibility to
(adapted) PM. Likely, multiple ROP genes function redundantly, as a single knockout of ROP6
did not show a phenotype, but plants expressing a dominant negative ROP6 displayed a lower
susceptibility to PM (154). Lastly, an Arabidopsis ARF-GAP protein, AGD5, is a susceptibility
factor for Hyaloperonospora arabidopsidis, the causal agent of adapted downy mildew (DM), but is
involved in resistance to the nonadapted PM Erysiphe pisi (166).

An emerging concept is that (pre)penetration compatibility and susceptibility to biotrophic
fungi are defined by factors involved in membrane-associated cytoskeleton rearrangements and
vesicular trafficking, such as MLO, BI-1, LFG, RAC/ROP, and GAP, as outlined above. Whereas
these factors ensure susceptibility to adapted fungi, they mediate resistance to nonadapted
biotrophs and necrotrophic fungi. To explain this paradox, one could hypothesize that there
are two distinct phases during infection that utilize similar tools: (a) Phase 1, in which prepen-
etration defenses involving actin focusing and vesicle delivery induce papillae formation and se-
cretion of other antimicrobial deposits/secretions, and (b) Phase 2, which includes membrane
invagination, vesicle delivery to form the extrahaustorial membrane and support formation of
haustoria, and possibly vesicle-mediated nutrient exchange. Nonadapted fungi are susceptible to
the focal prepenetration defenses (Phase 1), whereas adapted fungi bypass or tolerate Phase 1 and
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require events in Phase 2 for proper establishment. On the above-mentioned S-gene mutants,
penetration and development of adapted fungi may be halted because the host membrane is not
able to invaginate and interact with the cytoskeleton/vesicle/membrane-dynamics machinery to
support haustorium formation. In conclusion, many S genes involved in (pre)penetration define
whether a plant is a suitable host and, consequently, resistance based on mutation of such S genes
may confer a nonhost type of resistance (85).

S Genes Encoding Immune Suppressors: Keeping Security at Bay

Although pathogens should not prematurely activate their infection machinery, plants need to
suppress immune responses in the absence of a pathogen threat. Negative regulators of immunity
can be considered S genes because their activity increases susceptibility (Figure 2).

Controlling salicylic acid levels. Typically, mutations in SA defense suppressors increase re-
sistance to biotrophic pathogens because of constitutive defense signaling, characterized by high
SA levels and pathogenesis-related (PR) gene expression. However, these mutants often exhibit
growth retardation and, in some cases, HR-like symptoms known as lesion mimics (123, 130).
One way of controlling SA signaling is to catabolize SA, and genes involved in SA conversion
may contribute to susceptibility. SA catabolism is an important control mechanism, illustrated
by the diversity of enzymes that convert SA. SA can be glucosylated, methylated, hydroxylated,
and conjugated to amino acids (197). Arabidopsis SA 3-hydroxylase (S3H), which converts SA to
2,3-DHBA, was recently characterized (224). An s3h mutant was less susceptible to Pseudomonas
syringae, indicating that SA hydroxylation contributes to susceptibility. However, mutants also dis-
play increased senescence. Whether S3H merely serves to reduce SA levels or whether 2,3-DHBA
itself may have specific functions in aging and defense remains to be elucidated. Most of the other
enzymes responsible for SA conversions do not contribute significantly to susceptibility (51, 170,
171). Interestingly, a mutant in a glucosyltransferase, UGT76B1, had elevated SA levels and re-
duced susceptibility to biotrophic pathogens. However, its substrate appeared to be isoleucic acid
rather than SA. Isoleucic acid may act as a suppressor of the SA pathway (200). So, whereas genes
involved in SA conjugation/conversion may conceptually be S genes, their actual contribution to
susceptibility seems limited, and specific functions of SA conjugates in other processes will likely
be discovered.

Suppressors of PTI/DTI. Cellulose synthases (CESAs) are essential enzymes for plant cell wall
formation (see section Cuticle and Cell Wall Structure), but their role may well reach beyond the
structural aspect of providing a physical barrier. CESA3 (cev1) mutants have increased resistance
to various PMs and show constitutively activated JA and Eth defenses and reduced stature (63, 64).
CESA4, CESA7, and CESA8 are also involved in pathogen susceptibility; the respective mutants
display increased resistance to fungal and bacterial pathogens (77) (Supplemental Table 1). Al-
though it cannot be ruled out that decreased cellulose content may hamper pathogen attachment,
a more likely hypothesis is that in cesa mutants, cellulose precursors (oligogalacturonides) accu-
mulate and induce DTI. Indeed, expression of several defense-related genes is induced in cesa4,
cesa7, and cesa8 mutants, yet their phenotypes are not dependent on JA, Eth, or SA (77).

The role of callose in plant defense is controversial. Callose deposition at the site of pathogen
perception/penetration is primarily an induced defense response that limits pathogen entry.
Overexpression of a callose synthase, GSL5/PMR4, leads to complete resistance against PM in
Arabidopsis through formation of enlarged callose deposits, preventing pathogen entry (62).
However, pmr4 loss-of-function also reduces susceptibility to PMs as well as to DMs (Erysiphe
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cichoracearum, Erysiphe oriontii, and Phytophthora parasitica) (89, 141). It seems counterintuitive that
plants with less callose are also more resistant to pathogens. Possibly pathogen-induced callose, or
PMR4 itself, suppresses SA defenses as a negative feedback loop. Alternatively, callose precursors
(oligosaccharides) that accumulate in pmr4 mutants may induce DTI. loss of susceptibility in pmr4
mutants is indeed dependent on SA and associated with moderately increased expression of de-
fense genes (141). The function of PMR4 as a susceptibility factor is thus independent of the role
of callose as a physical barrier but probably lies in PTI suppression. Silencing the tomato PMR4
abolished susceptibility to the PM Oidium neolycopersici, indicating that the role of PMR4 in PM
susceptibility is conserved (84). However, this appears to apply only to adapted PM fungi and DM
oomycetes given that Arabidopsis pmr4 mutants have shown greater penetration of a nonadapted
PM, Blumeria graminis (89).

Genes that encode negative regulators of PTI or DTI can also be considered S genes; e.g.,
phosphorylation-mediated MAP kinase (MAPK) signaling cascades are known to relay PTI ac-
tivation. These pathways are repressed by MAPK phosphatases (MKPs). MKP1, MKP2 and, to
a lesser extent, protein tyrosine phosphatase PTP1 target MPK3 and MPK6 to suppress PTI in
Arabidopsis. Consequently, mkp mutants are less susceptible to virulent Pseudomonas and Ralstonia
bacteria (5, 15, 124). Not all MAPK cascades positively regulate PTI, as the MPK4 pathway in
Arabidopsis suppresses PTI (18, 70, 151). The soybean MPK4 and rice MAPK5 have similar PTI
or SA defense suppressor activities, and the mutants show reduced susceptibility to oomycete and
viral or fungal and bacterial pathogens, respectively (120, 212) (Supplemental Table 1). EDR1
(enhanced disease resistance) was identified in a mutant screen for enhanced resistance to PM in
Arabidopsis and turned out to encode a MAPK kinase kinase. EDR1 is required for susceptibility to
biotrophic fungal and bacterial pathogens, and the rice homolog OsEDR1 has a similar function in
susceptibility (42, 68, 169). Therefore, depending on the pathway, MAP kinases as well as MAPK
phosphatases can act as S factors.

Transcription factors are common substrates of MAP kinases, and WRKY transcription factors
play key roles in transcriptional reprogramming upon pathogen perception. WRKYs can function
as positive or negative regulators of defense and thus contribute to either resistance or susceptibil-
ity. A fairly recent overview of dozens of defense-suppressing WRKYs from Arabidopsis, rice, and
other plants can be found elsewhere (146). Later, several more WRKY defense suppressors were
identified in rice, pepper, and Arabidopsis (41, 44, 183, 206, 218). Interestingly, Arabidopsis WRKY8
has, besides a role in susceptibility to Pseudomonas, a role in resistance against Tobacco mosaic virus
(40, 41). In addition, the rice gene WRKY45-1 is a susceptibility factor for the bacterial pathogen
Xanthomonas oryzae, whereas the homologous gene WRKY45-2, differing in only ten amino acids, is
a resistance factor for the same pathogen (183). Most WRKYs have been characterized in relation
to microbial pathogens, but one report suggests that AtWRKY23 is a susceptibility factor for root
cyst nematodes. It is not clear yet whether this WRKY is a defense suppressor or perhaps required
for tissue remodeling and cyst formation (74). Clearly, enzymes suppressing DTI and signaling
components suppressing PTI are involved in susceptibility to diverse pathogens but their role can
be very specific.

Protein degradation is another important theme in defense signaling (187). In Arabidopsis, ubi-
quitin ligases PUB22/23/24 function redundantly in suppressing PTI. Double and triple mutants
were less susceptible to oomycete and bacterial pathogens (186). Intriguingly, PUB22/23/24 mu-
tants did not show any constitutive defense phenotypes, but the oxidative burst, MPK activation,
and PR gene expression were enhanced and prolonged once induced by infection. This ubiquitin
ligase triplet was shown to target the PTI regulator Exo70B2, whose degradation results in damp-
ening of PTI (175). In addition to protein degradation, protein stabilization also appears crucial
for defense. Deubiquitinating enzymes AtUBP12, AtUBP13, and NtUBP12 suppress defense, as
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silenced plants were less susceptible to virulent Pseudomonas bacteria and showed increased Cf9-
mediated HR (65). A ubiquitin ligase from rice, SPL11, is a negative regulator of defense and HR.
Mutants are less susceptible to fungal and bacterial pathogens and show constitutive defense and
a lesion mimic phenotype (223).

Jasmonic acid and salicylic acid antagonism. Jasmonates ( JAs) are lipid-derived defense hor-
mones required for defense against necrotrophs and chewing insects (13). Suppressors of the JA
pathway may contribute to susceptibility to these pests, although not many S genes in this cate-
gory have been described. The transcription factors bHLH3/13/14/17 collectively suppress the
JA response; a quadruple bHLH mutant has a strongly reduced susceptibility to Botrytis cinerea
and Spodoptera exigua larvae (172). Owing to the antagonistic interaction between JA and SA, the
JA pathway can suppress SA-mediated defense, and the SA pathway can suppress JA-mediated
defense (160). Consequently, the bHLH quadruple mutant has decreased SA defenses and is more
susceptible to the biotroph P. syringae (172). This antagonistic interaction can explain why many
S-gene mutants with reduced susceptibility to biotrophic pathogens and increased SA defense
have reduced JA defense and become more susceptible to necrotrophic pathogens (see section
Side Effects of Mutating Defense Suppressors and Supplemental Table 1).

Calcium and (sphingo)lipids mediate defense and ETI suppression. Calcium plays an es-
sential role in signaling ETI and HR (125). BON1/CPN1, BAP1/2, and SR1 are calcium- and
calmodulin-binding proteins that suppress ETI. SR1 directly binds to and suppresses the promoter
of the important defense mediators EDS1, NDR1, and EIN3 (58, 137, 215, 216). In addition, cyclic
nucleotide–gated calcium channels CNGC2/4/11/12 (dnd1/2 and cpr22) seem to specifically sup-
press the HR, and mutants are more resistant to virulent oomycetes and bacteria (4, 45, 192).

Lipids (other than JA) also mediate ETI suppression, and a significant number of lesion mimic
mutants with constitutive defense represent genes encoding lipid-binding proteins (EDR2, VAD1,
ACD11, BON1/CPN1, BAP1/2) (Supplemental Table 1). Lipid signals, such as phospholipids,
are known to be required for ETI and HR (6). In addition, sphingolipid metabolism affects ETI,
HR, and susceptibility (16). Lesion mimic mutant acd11 (sphingosine transfer protein) and mutants
of sphingolipid fatty acid hydroxylases AtFAH1/2 have increased SA levels and reduced suscepti-
bility to biotrophic pathogens (25, 107). Notably, calcium and sphingolipid signals were recently
suggested to be interconnected parts of the ETI and HR pathways (185). Lastly, fatty acid desat-
urase SSI2 is required for susceptibility to biotrophic fungi, bacteria, oomycetes, and viruses in
rice, soybean, and Arabidopsis (93, 99, 100). Ssi2 mutants have decreased 18:1 to 18:0 lipid ratios,
and it was suggested that 18:1 lipids negatively regulate the SA pathway. Similarly, Arabidopsis
and tomato fatty acid desaturase FAD7 suppresses SA defense and fad7 mutants show decreased
susceptibility to aphids. Although basal levels of SA are unchanged, SA levels and defense are
enhanced in fad7 upon aphid infestation (9). It has become clear that pathogen defense pathways
are filled with genes that suppress defense at almost any level. These genes control defenses to
prevent inappropriate activation (see section Side Effects of Mutating Defense Suppressors), and
as such they also contribute to susceptibility.

S Genes Allowing Sustained Compatibility: Sustenance for the Guests

Once a pathogen-host interaction has been established, pathogens continue to utilize the host
cell machinery to meet their metabolic and structural requirement for replication and prolifera-
tion (Figure 3 and Supplemental Table 1). The interaction between rice and bacterial blight
(Xanthomonas oryzae) revealed that approximately 10 out of 30 R genes are inherited in a recessive
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manner (88). In addition, virus resistance is recessively inherited in almost half of the cases (201).
Apparently, in these systems, pathogens heavily rely on host susceptibility factors for a successful
interaction. Interestingly, the majority of known susceptibility genes in these two types of interac-
tions fall in the category discussed in this section: host genes important for sustained compatibility.

Sugar transport. Most pathogens require nutrient uptake from the host apoplastic space or
vasculature and, thus, nutrient secretion from plant cells. In rice, two recessive genes that confer
resistance against X. oryzae (Xoo), Xa13 and Xa25, encode SWEET proteins (SWEET11 and 13,
respectively) (37). These are plasma membrane–localized sugar (efflux) transporters required for
Xoo susceptibility through loading the apoplastic space with sugars, thereby providing nutrients
to the pathogen. A similar role is predicted for SWEET12, 14, and 15 (37, 176). Expression of
Arabidopsis SWEET genes is upregulated by several pathogens, and these genes may contribute
to susceptibility as well (37). Interestingly, SWEET11 (Xa13) interacts with copper transporters
COPT1 and COPT5, and these proteins were also found to be required for full Xoo susceptibility.
COPT and SWEET11 silencing in rice resulted in increased copper levels in xylem sap and reduced
pathogen growth (221). Apparently, sugar export is linked to copper import, and both processes
contribute to susceptibility.

Metabolite biosynthesis. In Arabidopsis, several mutants with loss of DM (H. arabidopsidis) sus-
ceptibility because of altered amino acid metabolism have been identified, particularly in the
Asp-derived amino acid pathways. DMR1 encodes a homoserine kinase (HSK) that catalyzes
phosphorylation of homoserine (HS), a derivative of the amino acid Asp and a precursor for Met,
Thr, and Ile. Hsk knockouts are lethal, implying that a basal level of HS conversion is required
for synthesis of essential metabolites. The resistant HSK mutants overaccumulate HS, but this
metabolite does not seem directly toxic to the pathogen. Also, the abundance of HS derivatives,
Met, Thr, and Ile, was not significantly reduced (193). RSP1 encodes an aspartate kinase (AK2)
that converts Asp to aspartyl-4-P, used for Met, Thr, and Ile but also for Lys biosynthesis. Rsp2
encodes a dihydrodipicolinate synthase (DHDPS), catalyzing the first committed step to Lys syn-
thesis, two steps downstream from AK2. Both AK2 and DHDPS mutants lost susceptibility to DM
(177). Interestingly, these mutants also do not appear to be deficient in downstream metabolites,
probably due to redundancy, as there are five AKs and two DHDPSs. The mechanism of reduced
DM susceptibility in HSK, AK2, and DHDPS mutants is not clear; unknown metabolites upstream
or downstream of the enzymes may be toxic to, or required by, DM. Alternatively, an amino acid
imbalance may affect biosynthesis pathways in the pathogen because of feedback regulation.

Attempts to pinpoint a key metabolite responsible for susceptibility have been inconsistent. One
report observed a prominent effect of exogenous Thr, but not HS, on DM susceptibility (177),
whereas previous studies found that exogenous HS, but not Thr, decreases DM susceptibility
(193). Further work is needed to uncover how Asp-derived amino acid biosynthesis pathways
affect DM susceptibility.

Along with a role in host defense signaling (see sections Jasmonic Acid and Salicylic Acid
Antagonism and Calcium and (Sphingo)Lipids Mediate Defense and ETI Suppression), lipids
are used by pathogens directly. LOX3 of maize is required for full susceptibility to three fungal
pathogens from distinct genera (Fusarium, Colletotrichum, Cochliobolus) (72). Lipoxygenases con-
vert 18:2 and 18:3 lipid substrates toward synthesis of, among others, JA. Intuitively, one might
therefore assume that susceptibility is due to LOX3-mediated JA synthesis that can suppress SA
defenses directed to the fungi. Indeed, Lox3 mutants become more susceptible to necrotrophic
Aspergillus fungi, most likely due to decreased JA synthesis (71). However, for the biotrophic fungi
mentioned above, it appears that the fungal biomass in leaves was similar to wild type, but mainly
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the disease symptoms were reduced in lox3 mutants. Moreover, production of conidia/spores was
strongly reduced and production of the fungal toxin fumonisin B1 from Fusarium was eliminated
(72). Hence, LOX3 may produce lipid compounds that are essential for fungal reproduction and
toxin biosynthesis.

Endoreduplication and cell expansion to boost metabolic output potential. Besides trans-
port, metabolite production can also be increased to benefit pathogens. In barley, ADH (alcohol
dehydrogenase) is induced upon PM infection and supports pathogen growth by increasing
(anaerobic) glycolytic metabolism. ADH-silenced plants were less susceptible to PM (147). Host
cells in overall metabolic overdrive provide an even better environment for pathogens. PM
infection is accompanied by a marked increase in cell ploidy by endoreduplication at the site
of infection (31). The transcription factor MYB3R4 and the ubiquitin X domain protein PUX2
are both required for PM susceptibility through endoreduplication regulation and cell cycle
progression (30, 32). Surprisingly, the PM susceptibility genes PMR5 and PMR6, which encode
pectate lyases, also contribute to mesophyll ploidy level increase (31). The mechanism for pectate
lyase–mediated susceptibility has been obscure, as the PMR5 and PMR6 mutant phenotypes
are independent of known defense signaling pathways and although their cell walls accumulate
more pectin, penetration efficiency is unaltered. Yet, the fungus produces less hyphae, coni-
diophores, and conidia at later stages (198, 199). A plausible hypothesis is that a more rigid
pectin-rich cell wall imposes physical constraints to cell expansion, which feedback-inhibits the
endoreduplication machinery (31). Endoreduplication also promotes susceptibility to giant cell–
or syncytia-inducing nematodes and symbiotic, nitrogen-fixing Rhizobium bacteria. In both cases,
the endocycle activating CCS52 proteins was shown to be required for establishing an efficient
interaction (50, 195).

Hypertrophy, the enlargement of cells, is induced by Xanthomonas infection in pepper, and
was found to be mediated by the bHLH transcription factor Upa20 and its target, expansin
Upa7 (103). Although expansin-mediated facilitation of cell wall penetration by pathogens was
suggested elsewhere (see section Cuticle and Cell Wall Structure), Upa20 and Upa7 likely facilitate
susceptibility to Xanthomonas through increased nutrient production by enlarged host cells (103).
We can conclude that pathogens and symbionts utilize the plant’s capacity to increase metabolic
(and therefore nutrient) output. The facilitation of this process by several host genes, acting as
susceptibility genes/factors, seems to be a conserved theme in diverse microbe-host interactions.

Virus replication. Viruses have very compact genomes and heavily rely on host factors for com-
pleting their life cycle, most notably the host’s replication and translation machinery. Different
virus genera seem to require different plant proteins. TOM1, TOM2, and TOM3 are tonoplast
transmembrane proteins required for formation of the RNA replication complex of tobamoviruses
like Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV). TOM proteins were first
characterized in Arabidopsis (190, 213, 214). The genes are partly redundant, and mutating two
genes, TOM1 and TOM3, led to complete inhibition of virus replication (213). Silencing the TOM
homologs in various tobacco species resulted in efficient inhibition of TMV multiplication but
not of Cucumber mosaic virus (CMV), a bromovirus (8, 35, 110). This indicates that the function of
TOM proteins as tobamovirus susceptibility factors is highly conserved across plant species. The
ARL8 proteins are small GTP-binding proteins encoded by a small gene family with three and
four homologs in Arabidopsis and tobacco, respectively. ARL8 is also part of the RNA replication
complex, and mutating two ARL8 genes in Arabidopsis also resulted in complete inhibition of to-
bamovirus replication (140). Interestingly, both TOM and ARL8 mutants do not show any other
obvious phenotypes, so the function of these genes for the plant remains unknown.
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Translation of potyvirus RNA requires the host translation initiation complex, consisting of
cap-binding protein eIF4E, scaffold protein eIF4G, and seven other complex members, including
the ribosomal subunits (102). The 5′ end of potyvirus RNA is occupied by viral protein VPg, which
interacts with the plant eIF4E protein (209). This interaction is essential for viral RNA translation
and eIF4E is the most important susceptibility factor for potyviruses. eIF4E (as well as eIF4G) has
two isoforms, and an impressive number of eIF4E and eIF(iso)4E mutations have been identified
in many plant species that abolish susceptibility to potyviruses (201) (Supplemental Table 1).
There are a few examples of eIF4E being identified as a susceptibility factor for families other than
potyviruses. These include eIF4E for a tombusvirus [Melon necrotic spot virus (MNSV)] in melon
and eIF4E as well as eIF4G for a bromovirus (CMV) in Arabidopsis (138, 219). eIF4G has also
been found essential for several viruses but to a lesser extent than eIF4E. As mentioned above, this
was shown for a bromovirus (CMV) in Arabidopsis but also for a tombusvirus [Turnip crinkle virus
(TCV)] in Arabidopsis, a sobemovirus [Rice yellow mottle virus (RYMV)] in rice, a sequivirus (Rice
tungro spherical virus (RTSV)] in rice, and four potyviruses [Plum pox virus (PPV), Turnip mosaic
virus (TuMV), Lettuce mosaic virus (LMV), and Clover yellow vein virus (ClYVV)] in Arabidopsis
(3, 22, 115, 136, 219) (Supplemental Table 1). It is interesting to note that for the plant itself,
two possible initiation factor complex isoforms, containing either eIF4E and eIF4G or eIF(iso)4E
and eIF(iso)4G, exist and seem to function redundantly; mutating one of them does not cause any
observable developmental phenotype (46). In contrast, most potyviruses are completely dependent
on one of the two isoforms; the VPg interaction with eIF4E (or eIF4G) is isoform specific. Few
other host factors important for virus multiplication have been reported so far. Those that have
include RNA helicases RH8 and PpDDXL for potyviruses in Arabidopsis and peach (82), a NAC
domain transcription factor, rim1, for a reovirus [Rice dwarf virus (RDV)] in rice (220), and a DNA
binding protein phosphatase, AtDBP1, for potyviruses in Arabidopsis (28).

PATHOGENS EXPLOIT S GENES: EFFECTOR TARGETS

Pathogens deploy effector proteins to disarm defense networks and to increase nutrient availability.
Filamentous pathogens are predicted to secrete up to several hundred effectors, whereas bacteria
produce a few dozen (24, 56, 211). Most effectors appear to act inside the host cell; bacteria can
inject effectors using a type III secretion system (211), whereas filamentous pathogens secrete
effectors and rely on effector uptake by the host cells (24, 56). Identification of effector-host target
interactions is essential for our understanding of pathogen virulence and plant susceptibility.
To increase virulence, many pathogen effectors suppress host factors involved in resistance (53).
However, it makes sense that some effectors can also activate susceptibility factors encoded by
S genes. In this section, examples are given of S genes targeted by pathogen effectors.

The TAL (transcription activator–like) effector family from the bacterial pathogen Xanthomonas
has received much attention in recent years. TAL effectors bind and activate the promoters of
specific host proteins (20). The determinants of binding specificity have been elucidated (21),
which opens up great possibilities for genome editing technology. Importantly, this discovery also
facilitates prediction and identification of TAL effector targets, which are potential S genes (142)
(see section Strategies for S-Gene Identification and Application). AvrBs3 from X. campestris was
the first confirmed TAL effector directly regulating an S-gene target; the cell size regulator Upa20
(103) (see section Endoreduplication and Cell Expansion to Boost Metabolic Output Potential).
The sugar transporter genes OsSWEET11 and OsSWEET14 (see section Sugar Transport) are
confirmed targets of up to five Xanthomonas effectors (37, 162, 176). Lastly, transcription of the
rice transcription factor genes OsTFIIAγ and OsTFX1 is induced by two Xanthomonas effectors
(162, 178).
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Although altering S-gene expression seems a strategy particularly adopted and expanded by
Xanthomonas bacteria, there are other pathogen effectors known to target S genes. An interesting
atypical case is the victorin toxin from the fungus Cochliobolus that activates LOV1, an NB-LRR
protein in Arabidopsis. One role of LOV1 is providing resistance to a biotrophic pathogen by
activating ETI and cell death. However, the necrotrophic Cochliobolus benefits from necrotizing
tissue and thus LOV1 is also a Cochliobolus susceptibility factor; victorin hijacks this R gene to turn
it into an S gene (122).

Pseudomonas effector HopZ2 binds AtMLO2, and HopZ2 contributes to virulence in an
AtMLO2 dependent manner, indicating the significance of this S-gene interaction (117). In addi-
tion, Pseudomonas effector AvrB phosphorylates and thereby activates two PTI suppressors, MPK4
and RIN4 (49, 54) (see section Suppressors of PTI/DTI). Lastly, nematodes are notorious for re-
programming host cells to allow formation of enlarged feeding sites (root cysts or root knots) by
secreting effectors (78). Two effectors were shown to bind a pectin methylesterase (PME3) and a
spermidine synthase (SPDS2), which were both demonstrated to be S genes upregulated during
infection (79, 80).

In conclusion, although effectors are most known for their suppression of resistance, a signif-
icant number of effectors in fact activate S genes. Research in this field received a great boost
from the uncovering of the TAL effector repertoire and can inspire new strategies for breeding S
gene–based resistance, which is discussed below.

S-GENE APPLICATION TOWARD BREEDING
PATHOGEN RESISTANCE

According to our definition of an S gene, its activity benefits the pathogen and contributes to
disease susceptibility of the host plant. Consequently, disabling an S gene enhances host resistance,
as demonstrated by many examples of S-gene mutants described in this review and listed in
Supplemental Table 1. The potential of increased resistance, or even nonhost resistance, makes
S genes highly interesting targets for resistance breeding. However, for an S-gene mutant to
be usable in crop breeding, several characteristics need to be considered (Figure 4). First, will
mutating or otherwise impairing S-gene function have serious pleiotropic effects, such as sensitivity
to other stresses, dwarfing, or other undesirable side effects? Second, will targeting an S gene result
in sufficiently improved resistance, and is that improvement qualitative or quantitative? Third, if
a susceptibility factor is encoded by multiple (redundant) genes of a gene family, is it feasible to
target multiple genes and combine multiple alleles? Most known S genes have been identified as
monogenic recessive gene mutants having a significant resistance phenotype. Some candidate S
genes, however, have been found using overexpression studies or RNAi, which cause dominant
effects/phenotypes, and in these cases the contribution of single gene family members is unclear.
If the above criteria are met, the final question is whether S gene–based resistance is durable.

S Genes: More Durable than R Genes?

Durability of a new resistance-enhancing trait is difficult to predict and depends mostly on the
adaptability of the pathogen. However, a limited number of applied examples, and the fundamental
difference between S gene– and R gene–based resistance, provide hints. S genes are recessively in-
herited, and resistance is the result of the loss of function of a host factor required by the pathogen.
R genes are dominantly inherited and resistance is triggered when a pathogen-derived avirulence
determinant (often an effector) is recognized by the R protein. Other dominant resistances can be
mediated by PRRs recognizing PAMPS or DAMPs or by genes promoting production of defense
compounds and/or structural barriers.
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Figure 4
Classification scheme to determine the usability of a susceptibility (S) gene. First, recessive resistance is
observed (mutant with reduced susceptibility). Second, pleiotropic effects should be monitored (growth,
yield, fertility, senescence, and abiotic stress tolerance). If a deleterious phenotype is present, it is important
to test whether it can be alleviated in a different genetic background. Third, the plant response to pathogens
with a different lifestyle (biotroph versus necrotroph) should be evaluated. Lastly, plant performance should
be tested in field conditions, as interactions with beneficial microbes, such as rhizobia and mycorrhiza, may
be affected.

For the pathogen to overcome R gene–based resistance, a simple point mutation in a protein/
effector recognized by an NB-LRR or a PRR may be sufficient to evade recognition. Many ef-
fectors are recognized indirectly by NB-LRRs monitoring a host target. In that case, an effector
would need to alter its activity on the host target, or it would need to disappear altogether. Ef-
fectors often operate redundantly; dozens of effectors may be injected into a host, and effectors
are often on genomic regions prone to rapid mutation and reshuffling (156, 158, 210). Resis-
tance durability can be predicted by assessing the evolutionary potential of pathogens as well as
the fitness penalty of losing the effector; recognition of conserved effectors is likely more durable
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(114, 128, 196). Durability has also been demonstrated to depend on the host genetic background;
R genes introduced into plants already having quantitative/partial resistance [quantitative trait
loci (QTLs)] may be more stable (14, 26, 174). In addition, R-gene stacking can likely be used to
increase durability of disease resistance (106, 196, 226).

For a pathogen to overcome S gene–based resistance rather than evading R gene–based recog-
nition, it must overcome a dependency on a host factor. This may mean the pathogen needs
to acquire a new function, which is more difficult to accomplish than loss-of-function. Obligate
biotrophs, especially, have a strong dependency on several host factors, such as essential metabo-
lites, they cannot produce themselves (173). Therefore, we predict that S gene–based resistance
is generally more durable than R gene–based resistance. mlo is the most frequently mentioned
example of an S gene providing durable PM resistance. It has been used for many decades, and
resistance-breaking pathogen strains have not been found in the field (97). Plants with the recessive
mlo allele seem to have increased penetration defenses, but more importantly, plants are likely un-
able to cooperate with membrane and cytoskeleton reorganization to allow formation of haustoria
for nutrient exchange (see section Membrane Dynamics Support Establishment of Haustoria).
This is a mechanistic/structural requirement that the pathogen cannot easily overcome.

The best-studied type of recessive resistance (S-gene mutant) in terms of durability is the
eIF4E-based resistance against potyviruses. Pepper pvr1/2 was the first recessive potyvirus (Potato
virus Y ) resistance identified and has been successfully used for more than 50 years (48, 133).
Potyvirus isolates breaking eIF4E-based resistance have been reported and, in most cases, are
explained by mutations in viral protein VPg (10, 33, 126, 132, 188). The virus depends on a physical
interaction between its VPg and plant eIF4E to establish successful replication (33, 209). eIF4E
(or G) resistance–breaking strains may regain binding capacity to the mutated eIF4, acquire new
specificity to a different eIF4 isoform, or even bypass the requirement of eIF4 binding altogether.
The latter has been suggested in one study (69). Whereas many studies on resistance-breaking
viruses have been conducted in labs by forcing or mimicking virus evolution, resistance-breaking
strains have rarely been identified in the field. There have been two instances in which a viral
protein other than VPg is responsible for overcoming the requirement for eIF4E (1, 135). For
a resistance based on an impaired physical interaction between VPg and a mutated eIF4E, with
only a single or a few point mutations, resistance is surprisingly durable. Being encoded by a viral
genome, and having very short generation times and notoriously high mutation rates, VPg has
the potential to evolve and mutate rapidly. However, there are likely constraints that limit the
number of allowed mutations in VPg (131). Interestingly, there seems to be a correlation between
the resistance spectrum (number of different potyviruses) of eIF4E alleles and their durability
(131), which suggests that the resistance spectrum of new eIF4E alleles may be used to predict
durability. In addition, eIF4E durability was found to be much higher when introgressed into a
genetic background with quantitative trait loci for partial resistance (145).

The MLO and eIF4E examples illustrate that pathogens relying on host factors for successful
establishment or replication run the risk of reaching a dead end in the evolutionary arms race.
They would either have to backtrack and regain a lost function or just abandon that host and find
another one. It is this principle that makes S genes such interesting targets for resistance breeding.
However, as with many promises that seem too good to be true, there is a catch.

Side Effects: Pitfalls of S-Gene Mutation

Besides reduced susceptibility, mutating an S gene may have other consequences for the plant, as S
genes have a primary function. The question is, do the benefits of reduced susceptibility outweigh
the potential negative effects of losing or changing the function of a plant gene? We here discuss
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pleiotropic effects of mutation of an S gene in the different phases of pathogen-host interactions
(see also Supplemental Table 1).

Side effects of mutating prepenetration factors. S-gene mutants with altered cuticle compo-
sition may be less susceptible to some pathogens (see section Cuticle and Cell Wall Structure),
but several other processes require cuticle integrity. Beneficial mycorrhiza use cuticle cues to ini-
tiate their symbiotic interaction. The Medicago GPA7 mutant illustrates that increased resistance
to oomycete pathogens may come at the cost of impaired interaction with mycorrhiza (202). In
addition, mutants with increased cuticle permeability are able to ward off necrotrophic fungal
pathogens more efficiently, but these mutants turn out to be more sensitive to salt, cold, and
drought stress, as well as to biotrophic bacterial pathogens (2, 182, 207).

Fungal penetration and establishment depend on focal membrane and cytoskeleton rearrange-
ment and vesicle traffic mediated by MLO, BI-1, LFG, RAC/ROP, and ARF-GAP, but these
likely have additional functions. Indeed, the pleiotropic effects of mutating these genes have been
described, most clearly for mlo, and they relate to three distinct activities: First, changes in prepen-
etration defense and secretion adversely affect defense to nonadapted pathogens (e.g., Arabidopsis
agd5 and rop6) (154, 166). Secondly, changes in cytoskeleton rearrangement and focal membrane
protrusion/penetration adversely affect root hair growth and pollen tube growth and guidance
(e.g., Arabidopsis mlo7 and rop6) as well as penetration of beneficial mycorrhizae (e.g., barley mlo)
(104, 164). Also RAC/ROP genes are especially known to be involved in these processes (108, 222).
And third, reduced cell death suppression affects growth, senescence, and lesions as well as resis-
tance to necrotrophic pathogens (see also section Side Effects of Mutating Defense Suppressors)
(e.g., barley mlo, Arabidopsis mlo2, -6, -12 and pepper mlo) (47, 91, 97, 109, 225).

Despite these issues, barley mlo mutants have been successfully used in agriculture. The effects
on lesions, senescence, and reduced growth could largely be eliminated by introgression into the
right genetic background (19). Issues with increased susceptibility to the blast fungus are mostly
avoided by growing mlo plants in areas where the rice blast pathogen is absent (northern Europe).
Moreover, a mutant (emr1) was isolated in the mlo background with restored resistance to rice blast
(90). The diverse effects of mlo mutation in various plants illustrate that the function of mlo gene
family members has diverged considerably. In tomato, pea, and strawberry, silenced or mutated
mlo resulted in PM resistance without observable side effects (12, 86, 95, 149, 150). In conclusion,
the applicability of mlo for reduced PM susceptibility may depend on the crop species, but the range
of observed pleiotropic effects provides a glimpse of the trade-offs that need to be considered.

Side effects of mutating defense suppressors. Most S genes in this category are involved in
direct or indirect suppression of SA-mediated defense pathways. Many mutants with deregulated
PTI or ETI have constitutively activated defense and consequently suffer from deleterious effects of
high SA levels, such as dwarfing and spontaneous lesions due to ROS and HR cell death (123, 130).
In addition, increased SA levels generally cause a decrease in JA-related defense against necrotrophs
or chewing insects, a well-known defense hormone antagonism (160). S-gene mutants that enhance
biotroph resistance but reduce necrotroph resistance are, for example, PTI suppressors BIK1,
MKP2, MPK4, EDR1, and AtWRKY4/8/18/33/40/60 (Supplemental Table 1). Effects on insect
feeding are not usually tested, but an SR1(/CAMTA3) mutant that has reduced susceptibility to
several pathogens turned out to be more susceptible to insect feeding. If side effects are limited to
increased sensitivity to other pests, applicability depends on the local disease pressure.

There are only a few mutants in this class known to provide enhanced defense without major
pleiotropic effects. Arabidopsis cdd1 shows constitutive SA defenses and a decreased susceptibility to
bacterial, oomycete, and fungal pathogens, yet no lesions and no effect on growth or development
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were reported (179). Callose synthase mutant Pmr4 also does not exhibit significant growth
aberrations despite having heightened SA defenses (141). Lastly, S genes required for resetting
PTI after activation, such as ubiquitin ligases PUB22/23/24 and MAPK phosphatases MKP1
and MKP2 have no or only mild growth phenotypes. In these mutants, basal SA defenses seem
normal, and only after pathogen infection are the responses enhanced and prolonged (5, 124,
186). These examples indicate an important distinction between two types of defense-suppressing
S genes:

1. Suppressors of defense onset. These are S genes that are required for constitutive suppression
of defense signaling when no threat is present. Mutations in these genes cause defense
signaling to go haywire; examples are suppressors of SA signaling, R-protein signaling, and
cell death.

2. Suppressors of defense persistence. These S genes reset defense signaling after it was first
induced. When mutated, these genes may cause low levels of constitutive defense, but more
importantly, they enable enhanced and prolonged defense signaling. Examples are enzymes
that inactivate SA, MAPK phosphatases that inactivate MPK-mediated PTI signaling, and
ubiquitin ligases that mark PTI components for degradation/inactivation. Type 2 defense
suppressors are expected to have fewer pleiotropic effects and are therefore probably more
suitable for application.

Side effects of mutating S genes that provide pathogen sustenance or replication
machinery. The SWEET genes encoding sugar transporters are required for sugar efflux, includ-
ing phloem loading for providing roots and other tissues with energy. The rice OsSWEET14/11
mutant has reduced stature and suffers from pollen abortion (7, 43), whereas an Arabidopsis
Sweet11/12 double mutant has reduced root length and aboveground growth retardation (38).
This indicates that restricting sugar availability for pathogens in the apoplast can affect plant
growth as well.

The potyvirus resistance of eIF4E mutants is rather unusual among S genes. This is one of
very few cases in which a subtle mutation does not affect the function of the plant protein but
confers loss of susceptibility due to a disturbed interaction between eIF4E and VPg. However,
a subtle mutation might allow the pathogen to evolve and regain the ability to interact with the
mutant form or with other eIF4E isoforms, making this type of loss-of-susceptibility potentially
less durable (see section S Genes: More Durable than R Genes?) (69, 92). Although not commonly
observed in the field, avoiding pathogen adaptation may require mutations in multiple eIF4 genes.
However, disabling both isoforms of eIF4E or of eIF4G results in growth defects or even lethality
(116, 127, 136).

In conclusion, one should be aware of possible pleiotropic effects of S-gene mutation, and
depending on the cellular function of the S gene, the nature of these effects can often be anticipated,
allowing a proper risk assessment. An illustrative example can be found in Reference 71: “Because
Aspergillus spp. and Fusarium spp. coexist naturally in maize fields, engineered resistance to one
pathogen at the expense of susceptibility to the other is useless,” which points out not only the
importance of the direct costs of introducing the S gene for, for example, yield but also its altered
sensitivity to other (a)biotic stresses.

Strategies for S-Gene Identification and Application

Since the 1940s and 1960s, respectively, the mlo alleles in barley and eIF4E ( pvr) alleles in pepper
have demonstrated the potential for a more widely adopted application of S genes in commercial
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crops. The first PM-resistant mlo allele in barley was identified from a forward genetic screen
after radiation mutagenesis (67), and natural mlo alleles were found in tomato and pea (12, 86,
149, 150). The potyvirus resistance based on eIF4E mutation was first found as natural alleles in
pepper and later also in other crops (48, 163, 201). Besides mlo and eIF4E, the use of S genes in
breeding has been rather limited, as their recessive nature hampers identification and complicates
breeding. Unbiased functional (forward) screens can be difficult to perform in crops at large
scale, and polyploidy of some crops can be another complication in identifying effects of recessive
mutations. To identify novel S genes, the TAL-effector repertoire from Xanthomonas pathogens
provides a great resource, as these effectors are known to bind to promoters of S genes (see section
Pathogens Exploit S Genes: Effector Targets). Hence, for any TAL-effector target, an attractive
possibility would be to mutate its promoter such that effector binding is abolished but plant
gene function stays intact. Although non-TAL-effector families usually suppress the function of
resistance factors, a subset interacts with S-gene products and thus effectors can generally serve
as bait.

Functional screens in the model plant Arabidopsis have yielded many S-gene candidates
(Supplemental Table 1), and identification of homologous gene sequences from crops is greatly
facilitated by available genome and transcriptome sequencing data. These resources allow a reverse
genetic approach in which molecular screening can focus on the gene of interest or mutations can
be targeted to specific locations. Whether a crop gene with high homology to a potential S gene
of Arabidopsis also contributes to susceptibility is an important first question. Several crops allow
transient silencing with viral vectors to test relatively quickly whether decreased expression of the
potential S gene indeed decreases susceptibility (113). This was demonstrated for MLO homologs
in wheat and pepper (194, 225). Alternatively, the candidate crop S gene could be tested for its
ability to functionally complement susceptibility of the corresponding Arabidopsis mutant. Having
identified a potential S gene in a crop, obtaining a stable mutant can be done by (a) screening
a (mutant) population with molecular techniques to find mutations in the S gene of interest or
(b) creating S-gene mutants in a targeted manner.

The first approach involves making a population of mutagenized plants containing typically
up to 1,000–20,000 individuals. EMS (ethyl methanesulfonate) is most commonly used for this.
Collections of natural accessions are sometimes used as a source of allele variety [ecoTILLING
(targeted induced local lesions in genomes)]. Molecular screening techniques have developed
from the classic TILLING based on mismatch cleavage with endonucleases and single nucleotide
polymorphism (SNP) detection with high-resolution melt-curve (HRM) analysis, Taqman probes,
or next-generation sequencing (NGS) (203). EcoTILLING was used to identify allelic variants of
eIF4E in melon (139). Other TILLING projects yielded multiple new mlo alleles in barley (157,
181) and eIF4E alleles in tomato (153). In the hexaploid wheat, a large, targeted screen identified
mutations in four potential S genes, NFXL1, CeSa8, PLDb1, and PFT1 (Supplemental Table 1),
using Taqman probes (66). Lastly, an efficient molecular screen using NGS and a multidimensional
DNA pooling and (adapter) labeling strategy was employed to identify mutant alleles of eIF4E in
tomato (159). With these screens, mutation frequencies are variable and depend on the mutagen
dose, plant species, and also ploidy; tetra and hexaploids tolerate higher treatment dose (203).

The second approach involves targeted knockdown or knockout of the gene of interest. Silenc-
ing with antisense-, hairpin-, or microRNA can yield stable knockdowns. RNAi was successfully
used to silence MLO in strawberry and tomato (95, 225), and eIF4E in melon, plum, and tomato
(127, 161, 204). In addition, RNAi of PMR4 and DMR1 homologs in tomato demonstrated the
applicability of these genes outside Arabidopsis, although DMR1 silencing also caused dwarfing (84).

Interestingly, overexpression of a mutant eIF4E allele in tomato and potato demonstrated an
alternative approach based on dominant negative effects of the introduced transgenes (29, 101).
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An advantage of RNAi (and overexpression) is that expression can be driven by a tissue-specific
promoter, thereby minimizing anticipated pleiotropic effects in unrelated tissues. An interesting
example here is the rice Xanthomonas susceptibility gene SWEET11, which was successfully tar-
geted by an artificial microRNA that was expressed only in leaves, so pollen development was
unaffected (118). In addition, with RNAi it is possible to silence multiple homologous genes at
once. The trait inherits dominantly and is stable across many generations. However, long-term
stability has only been evaluated in one rice study and a few shorter studies in Arabidopsis (111).

In recent years, targeted genome editing techniques have gained much interest. Engineered
zinc finger nucleases or TAL effector nucleases are able to introduce mutations at designated
locations (36). Most recently, RNA-guided DNA endonucleases (CRISPR/Cas9) have been
added to the genome editing toolkit. Compared with the two earlier techniques, CRISPR/Cas9-
mediated genome editing has the advantage that rather than customizing large, repetitive protein
domains using complex cloning strategies, only a short oligo of ∼20 nucleotides needs to be
inserted into the guide RNA (36). Efficiencies of these nuclease-based methods are as much as 1%
to 5% and even more than 30% for CRISPR/Cas9 in protoplasts (121). The first demonstrated
use of S-gene mutation using the novel CRISPR genome editing tool involved SWEET11 and
SWEET14 in rice (94). As an alternative, oligonucleotide-directed gene targeting or mutagenesis
(ODM) had earlier demonstrated its use in plants (143). This involves translocating an oligo
with a desired mutation into cells (protoplasts), which anneal to the target sequence with a very
low frequency (∼0.01%–0.1%), and the mismatch repair machinery copies the mutation into
the genome. Despite the lowest mutation frequency, ODM has the advantage of not requiring
transgene insertion, as the methods mentioned above do.

Especially for the European market, current GMO (genetically modified organism) regulations
are a major hurdle for applying S genes using targeted mutagenesis methods. All targeted methods
above, except RNAi, can be used to create a crop with only the target site mutated. However,
current EU GM legislation states that crops are evaluated based on the technique used (involving
alteration of genetic material with non-natural methods and foreign nucleic acids). It could be
argued that instead the end product/trait should be evaluated. This principle, as well as regulations
on some of the above-mentioned methods specifically, is currently under debate (76). It is ironic
to realize that TAL effectors, used by pathogens to induce host S genes, can now be modified and
used against them by inactivating those same S genes and are in fact currently one of the most
used genome editing techniques in eukaryotes.

CONCLUSIONS AND PERSPECTIVES

We have outlined the diversity of plant genes that contribute to disease susceptibility and pathogen
performance at various stages of pathogen infection. Pathogens may passively benefit from the
activity of S-gene products or force plants to cooperate by activating or stabilizing S genes or their
products, using effectors. S-gene mutants have increased pathogen resistance and are therefore
attractive targets for crop breeding. The underlying mechanisms suggest a higher durability com-
pared with R gene–based resistance, especially for obligate biotrophic pathogens, such as viruses
and mildews. Indeed, mlo in barley and pvr (eIF4E) in pepper have been used commercially for
decades. However, S genes are by no means magic bullets for accomplishing resistance. Given
that S genes do not merely exist for the pathogen’s convenience but have an evolutionarily con-
served function in plant processes, one should be aware of possible pleiotropic effects that could
outweigh their benefits. Typical effects include reduced growth, yield, and fertility, early senes-
cence, reduced tolerance to abiotic stress, and altered resistance to other pathogens, most notably
necrotrophs. We suggest a simple classification scheme of S-gene mechanisms. Knowing at which
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stage of infection the S gene functions allows, to some extent, prediction of pleiotropic effects.
Phenotypic analysis of Arabidopsis mutants further aids in anticipating the effects of mutating S
genes in crop species. Optimizing the genetic background or combining with compensatory mu-
tations has been shown to alleviate most pleiotropic effects for mlo in barley. In addition, some side
effects may be controllable by minimizing exposure to, for example, abiotic stress or necrotrophic
pathogens. Identification of new S genes by forward genetic screens or identification of effector
targets can further expand our understanding of the molecular basis of pathogenicity, helping
to uncover processes most crucial to infection. The ever-expanding S-gene repertoire, increased
access to genome sequencing technology, and novel precise genome editing tools will further
support strategies to defeat pathogens using host genes never meant to function as resistance
genes.
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67. Freisleben R, Lein A. 1942. Über die Auffindung einer Mehltauresistenten Mutante nach
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