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Abstract

Social isolation has been recognized as a major risk factor for morbidity and
mortality in humans for more than a quarter of a century. Although the focus
of research has been on objective social roles and health behavior, the brain is
the key organ for forming, monitoring, maintaining, repairing, and replacing
salutary connections with others. Accordingly, population-based longitudi-
nal research indicates that perceived social isolation (loneliness) is a risk
factor for morbidity and mortality independent of objective social isolation
and health behavior. Human and animal investigations of neuroendocrine
stress mechanisms that may be involved suggest that (#) chronic social iso-
lation increases the activation of the hypothalamic pituitary adrenocortical
axis, and (b) these effects are more dependent on the disruption of a social
bond between a significant pair than objective isolation per se. The relational
factors and neuroendocrine, neurobiological, and genetic mechanisms that
may contribute to the association between perceived isolation and mortality
are reviewed.
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INTRODUCTION

Chronic social isolation has long been recognized as a risk factor for broad-based morbidity and
mortality. The early evidence for this association came from epidemiological studies, where so-
cial isolation has typically been defined in terms of objective features of the social environment
such as the absence of a spouse, having less than monthly contact with friends and family, and/or
having no participation in organizations, clubs, or religious groups (e.g., House et al. 1988). At
that time, health behaviors were already known to have a strong impact on morbidity and mor-
tality, and the primary explanation for the association between isolation and mortality—the social
control hypothesis—emphasized the impact of friends and family on a person’s health behav-
iors. Specifically, the hypothesis posits that internalized obligations to, and the overt influence of,
network members (e.g., spouses, family members, friends) encourage individuals to exhibit good
health behaviors such as adequate sleep, diet, exercise, and compliance with medical regimens,
and discourage individuals from health-damaging behaviors such as smoking, excessive eating,
drug abuse, and excessive alcohol consumption (House 2001, Umberson 1987). In sum, the social
control hypothesis places the focus on the social control of a person’s health behaviors.

SOCIAL ISOLATION: A SOCIAL NEUROSCIENCE PERSPECTIVE

A contrasting perspective that places social endocrinology front and center begins with the propo-
sition that the brain is the key organ for forming, monitoring, maintaining, repairing, and replacing
salutary connections with others as well as regulating physiological processes relevant to morbid-
ity and mortality (Cacioppo & Berntson 1992). The human brain does not simply respond to
stimuli (including people) in an invariant fashion, but rather it categorizes, abstracts, interprets,
and evaluates incoming stimuli in light of current states and goals as well as prior knowledge and
predispositions.

The demographic and environmental factors associated negatively with perceived social isola-
tion [or what Weiss (1973) termed loneliness] include marriage, having offspring, higher levels of
education, and larger number of siblings (Distel et al. 2010), whereas those factors related posi-
tively to loneliness include male gender, physical health symptoms, chronic work or social stress,
small social network, and lack of a spousal confidant (e.g., Hawkley et al. 2008).! However, the

!Ethnic differences in loneliness tend to be attributable primarily to differences in socioeconomic status, and the (inverse)
association between income and loneliness is explicable in terms of marital status, with loneliness lower and family income
higher in married than unmarried individuals (cf. Hawkley et al. 2008).
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same objective social relationship (e.g., spouse) can be perceived as caring and protective or as
exploitive and isolating based on a host of factors including an individual’s prior experiences, cur-
rent attributions, and overall preference for social contact. Moreover, people may find themselves
with others who heighten their sense of threat and isolation (e.g., an untrustworthy sibling or an
arch enemy), or they may choose to be alone at times while still feeling connected to others (e.g.,
a new mother taking a break from caregiving). Accordingly, the association between indices of
perceived and objective social isolation is mediated by the perceived quality of social relationships,
and perceived social isolation (i.e., loneliness) has been found to predict increased morbidity and
mortality (e.g., Caspi et al. 2006, Holt-Lunstad et al. 2010, Patterson & Veenstra 2010, Penninx
et al. 1997, Seeman 2000) even after adjusting for objective social isolation and health behaviors
(Luo etal. 2012, Luo & Waite 2014; see also Hawkley et al. 2009).

Why is the perception of social isolation important to consider? Sociality has costs (e.g., compe-
tition for food and mates, exploitation, increased risk of pathogen transmission) as well as benefits
(e.g., mutual protection and assistance, transmission of foraging skills). The social structures and
behaviors relevant to mitigating the costs of sociality (e.g., dominance hierarchies, signals of sub-
mission, ostracism, punitive altruism) and those relevant to garnering the benefits of sociality (e.g.,
mother-infant attachment, cheating) ultimately contribute to survival and reproduction, but they
do so differently and appear to be instantiated differently in the brain. Human and animal research
on the effects of social isolation on the brain suggests the involvement of multiple, functionally
distinct brain mechanisms including neural mechanisms involved in social threat surveillance and
aversion (e.g., amygdala, anterior insula, anterior cingulate), social reward (e.g., ventral striatum),
and attention to one’s self-preservation in a social context (e.g., orbitofrontal cortex, medial pre-
frontal cortex, superior temporal sulcus, temporal parietal junction) (Bickart et al. 2012; Cacioppo
etal. 2009, 2012, 2013; Eisenberger & Cole 2012; Klumpp et al. 2012).

In many contexts across human history, a chief threat to a person’s reproductive success and
survival has come from other humans. The perception of isolation from others—of being on
the social perimeter—is not only unhappy but also signals danger across phylogeny. Fish have
evolved to swim to the middle of the group when predators approach (Ioannou et al. 2012), mice
housed in social isolation rather than in pairs show sleep disruptions and reduced slow wave sleep
(Kaushal et al. 2012), and prairie voles when isolated from their partner and subsequently placed
in an open field show less exploratory behavior and more predator evasion (Grippo et al. 2014).
These behaviors reflect an increased emphasis on self-preservation when on the social perimeter,
an emphasis that increases the likelihood of survival. For instance, fish on the edge of a school
are more likely to be attacked by predatory fish, not because they are the slowest or weakest,
but because it is easier to isolate and prey upon those on the social perimeter (Ioannou et al.
2012).

These behavioral results suggest a more general principle, specifically, that perceived social
isolation activates neural, neuroendocrine, and behavioral responses that promote short-term self-
preservation. Among the range of neural and behavioral effects of perceived isolation documented
in human adults are an increased implicit vigilance for social threats along with increased anxiety,
hostility, and social withdrawal; increased sleep fragmentation and daytime fatigue; increased
vascular resistance and altered gene expression and immunity; decreased impulse control in favor
of responses highest in the response hierarchy (i.e., prepotent responding); increased negativity
and depressive symptomatology; and increased age-related cognitive decline and risk of dementia
(cf. Cacioppo & Hawkley 2009).

Indeed, growing evidence indicates that loneliness increases attention to negative social stimuli
(e.g., social threats, rejection, exclusion). For instance, lonely compared to nonlonely individuals
worry more about being evaluated negatively and feel more threatened in social situations (even
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when they are not more likely to be rejected; Jones et al. 1981), and these differences are found
when loneliness is measured across individuals or is manipulated experimentally (Cacioppo et al.
20006). The effects of loneliness on attention to potential social threats appear to be largely implicit.
In a modified emotional Stroop task, lonely participants relative to nonlonely participants show
greater Stroop interference for negative social compared to negative nonsocial words (see review by
Cacioppo & Hawkley 2009). Stroop interference is used to gauge the implicit processing of stimuli,
so these results suggest that loneliness is associated with a heightened accessibility of negative social
information. Consistent with this reasoning, Yamada & Decety (2009) investigated the effects of
subliminal priming on the detection of painful facial expressions and found that lonely individuals
are more sensitive to the presence of pain in dislikable faces than are nonlonely individuals.

Functional magnetic resonance imaging research also indicates thatloneliness is associated with
greater activation of the visual cortex in response to negative social images in contrast to negative
nonsocial images (Cacioppo et al. 2009), and eye tracking research similarly shows that individuals
high in loneliness are more likely to first fixate on and to spend a greater proportion of their initial
viewing time looking at socially threatening stimuli in a social scene, whereas individuals low in
loneliness are more likely to first fixate on and spend a greater proportion of their initial viewing
time looking at positive stimuli in a social scene (Bangee et al. 2014). Further evidence for the
effect of perceived isolation on nonconscious processes in humans comes from cross-sectional and
longitudinal research showing that loneliness predicts more fragmented sleep (Cacioppo et al.
2002a, Kurina et al. 2011). Finally, whether measured in a hospital laboratory (Cacioppo et al.
2002b) or over the course of a normal day using ambulatory procedures (Hawkley et al. 2003),
loneliness is associated with elevated tonic vascular resistance—a marker of threat surveillance
(Mendes et al. 2002).

These changes observed in human and animal studies support short-term self-preservation by
preparing the individual to detect and defend against any potential assault as well as to identify
and solicit any socially mediated resources (e.g., food, shelter, reproductive opportunities) that
may become available. These effects extend beyond early developmental periods, in part through
mechanisms in the adult brain that permit adaptation to the functional demands of a fluid social
environment. Although the function of these physiological and behavioral adjustments may be
to increase the likelihood of short-term survival, they carry long-term costs, especially when the
perception of social isolation becomes chronic.

To the extent that the brain is the central organ for evaluating interpersonal relationships, the
neuroendocrine system becomes an important system through which perceived social isolation
may operate, at least in part, to affect morbidity and mortality. We begin with a brief description of
the two major neuroendocrine axes that respond to stressors—the sympathetic adrenomedullary
(SAM) axis and the hypothalamic-pituitary-adrenocortical (HPA) axis, and we examine the reg-
ulation of these axes by prefrontal and limbic regions of the central nervous system. We then
summarize the human literature on the association between the perception of loneliness and neu-
roendocrine activity, emphasizing where possible the research designed to investigate the putative
causal role of perceived isolation on neuroendocrine regulation.

Although the evidence from the human literature is suggestive, mechanistic animal studies in
which adult animals are experimentally assigned to normal or socially isolated housing conditions
are important for evaluating the causal effects of an individual being deprived of mutual assistance
and companionship on neuroendocrine activity. We therefore also review representative animal
investigations on the effects of isolation on neuroendocrine responses and briefly discuss recent
literature on the impact of direct sympathetic innervation of lymphoid tissue (i.e., tissue responsible
for the production of lymphocytes and antibodies). We focus on experimental studies involving
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adult mammals because we seek to determine the possible role of the HPA and SAM axes in the
association between perceived isolation and mortality in adults. We conclude with discussions
of inconsistencies in the extant literature as well as the neurobiological mechanisms that may
have been conserved across phylogeny to produce the sympathetic and neuroendocrine effects
of perceived social isolation. Although also pertinent, a review of the oxytocinergic system and
relevant animal and human literature is beyond the scope of this article. However, interested
readers may wish to consult recent reviews of oxytocin and its effects on social endocrinology and
behavior (e.g., Heinrichs et al. 2009, Insel 2010, Love 2014, Olff et al. 2013, Ross & Young 2009,
Taylor 20006).

THE NEUROENDOCRINE STRESS AXES

Schematics of the SAM and HPA axes are depicted in Figure 1. A cascade of signals travels from
the prefrontal cortex and limbic regions (e.g., amygdala, bed nucleus of the stria terminalis) to
the brain stem (e.g., locus coeruleus) and to the paraventricular nucleus of the hypothalamus.
The sympathetic nervous system (SNS) includes (#) sympathetic nerve fibers that directly
innervate most major organ systems and locally release the catecholamine neurotransmitter
norepinephrine, and (/) an adrenal-medullary (SAM) component mediated by splanchnic nerve
innervation of the chromaffin cells of the adrenal medulla, which releases catecholamines into
the bloodstream. The direct innervation of the adrenal medulla by the SNS permits rapid
neuroendocrine responses to acute stressors, and most of the circulating epinephrine (but only a
small percentage of circulating norepinephrine) comes from the adrenal medulla (see Figure 1).

The HPA axis is sensitive to the interpretation by the brain of threats and stressors, and it
influences a wide range of physiological, behavioral, and health outcomes (e.g., Charmandari
et al. 2005, Hostinar et al. 2014, McEwen & Gianaros 2011, Sapolsky et al. 2000). Unlike the
adrenal medulla of the SAM axis, the adrenal cortex of the HPA axis is necessary for survival, and
the HPA axis includes a negative feedback mechanism to limit its circulating hormonal outputs.
The cascade of signals from prefrontal cortex and limbic regions to the paraventricular nucleus
of the hypothalamus triggers the secretion of corticotropin-releasing hormone (CRH) into the
hypophyseal portal circulatory system. CRH has hypothalamic and extrahypothalamic actions,
including the promotion of the release of adrenocorticotropic hormone (ACTH) by the anterior
pituitary gland into circulation (see Figure 1).

ACTH travels through the blood to the adrenal cortex, where it stimulates the secretion of
glucocorticoid hormones (cortisol in humans and most mammals, corticosterone in rodents) into
circulation. The vast majority of circulating cortisol is bound to large proteins (e.g., cortisol binding
globulin, albumin), and only a small fraction of unbound cortisol is thought to be biologically
active—that is, to be free to bind to glucocorticoid receptors. This is important because the
proportion of the glucocorticoids that is biologically active differs across tissues (e.g., salivary,
blood, serum, urine), which means thatassays from these tissues can reflect different aspects of HPA
functioning. Assays of salivary cortisol have become popular in human behavioral and biomedical
research because cortisol levels measured in saliva are correlated with unbound cortisol levels in
serum or plasma.

Glucocorticoids are small, lipophilic molecules that cross the blood-brain barrier, where they
are involved in a number of processes including neuronal cell birth, differentiation, apoptosis,
dendritic arborization, and synaptic function (McEwen & Gianaros 2011, Riedemann et al.
2010). Circulating glucocorticoids that pass through the blood-brain barrier also regulate HPA
activation by acting on glucocorticoid receptors in the hippocampus (McEwen & Gianaros 2011).
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Schematics of the hypothalamic-pituitary-adrenocortical (HPA) axis, the sympathetic adrenomedullary (SAM) axis, and the innervation
of the lymph node tissue by the sympathetic nervous system (SNS). The HPA axis controls circulating glucocorticoid (GC) levels
through a cascade that starts with signals from the prefrontal cortex [e.g., medial prefrontal cortex (mnPFC), orbitofrontal cortex (OFC)]
and limbic regions [e.g., amygdala, bed nucleus stria terminalis (BNST)] to the paraventricular nucleus of the hypothalamus, which
secretes corticotropin-releasing hormone (CRH) into the hypophyseal portal circulatory system. This activity stimulates the anterior
pituitary to release adrenocorticotropic hormone (ACTH). ACTH travels through the blood to the adrenal cortex, where it acts on
melanocortin type 2 receptors to stimulate the secretion of GC hormones (cortisol in humans and most mammals; corticosterone in
rodents) into circulation. GC regulation is accomplished systemically via a negative feedback loop involving higher structures of the
HPA axis (notably the hippocampus), whereby increases in circulating cortisol concentrations inhibit CRH secretion from the
hypothalamus and diminish the production of ACTH in the pituitary gland by binding to glucocorticoid and mineralocorticoid
receptors (GR and MR, respectively); both processes lead to a decrease in cortisol secretion from the adrenal gland. The SAM axis
controls circulating epinephrine (EPi) levels. The SNS, through preganglionic neurons (the splanchnic nerve), projects from the central
nervous system directly to cells in the adrenal medulla, which secretes primarily EPi (in addition to smaller amounts of norepinephrine
and dopamine) into the circulatory system, where it serves to heighten metabolism and increase available energy. In addition, there is
direct SNS nerve fiber delivery of norepinephrine into immune system organs such as the lymph nodes, spleen, and thymus; immune
cells coordinate responses to tissue injury and infection. Artwork courtesy of Tianyi Li, adapted for publication by Annual Reviews.
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Specifically, the hippocampus, through inhibitory projections to the paraventricular nucleus in
the hypothalamus, contributes to the maintenance of cortisol concentrations within bounds by
inhibiting the secretion of CRH from the hypothalamus as well as the production of ACTH in
the pituitary gland (Chrousos 2009, Hawkley et al. 2012, Hostinar et al. 2014).

Glucocorticoids are released in a pulsatile fashion across the day to regulate numerous physio-
logical processes including energy mobilization, inflammation, reproduction, and immune func-
tioning. The release of these glucocorticoids has a circadian rhythm, with levels highest in the
morning and lowest in the evening. Significant stressors can also alter HPA activity, for instance
by increasing the frequency or magnitude of the pulsatile release either transiently or chronically
(thereby producing transient or chronic changes in circulating cortisol levels), altering the max-
imal cortisol concentrations observed approximately 30 to 45 minutes after awakening (termed
the cortisol awakening response), or flattening the circadian rhythm.

A major focus in recent years has been on the environmental factors early in life that have
lasting effects on HPA functioning and stress reactivity (e.g., Hostinar et al. 2014, Meaney &
Szyt 2005). However, the HPA axis in adults remains responsive to metabolic needs, physiological
inputs, and psychogenic stressors including social-evaluative threats (Dickerson & Kemeny 2004),
and alterations of the activity of the adult HPA axis are associated with numerous deleterious
psychological and physical health outcomes (Chrousos 2009, Fries et al. 2009, Gunnar & Vazquez
2001) (for an overview of gene regulation by the HPA axis in adults, see sidebar Gene Regulation
by the HPA Axis).

Neuroendocrine outputs are regulated by brain circuits, which translate perceptual and evalu-
ative processes into specific patterns of hormonal release. The prefrontal cortex modulates atten-
tion, working memory, conflicting inputs, and emotion regulation as well as integrates information
from plans (e.g., goals) and prior knowledge, information from peripheral afferents, and informa-
tion from the environment—including the social environment—to coordinate neural, hormonal,
and behavioral responses (Hostinar et al. 2014, McEwen & Gianaros 2011). The prefrontal cor-
tex also plays a role in orchestrating anticipatory neural, hormonal, and behavioral responses to
minimize threats and perturbations. Environmental challenges and stressors can also increase the
release of dopamine and acetylcholine in the prefrontal cortex; dopamine and acetylcholine then
play a role in modulating anxiety (Berntson et al. 2003), attention, and working memory (e.g.,
Sarter & Bruno 1997).2

Importantly, the prefrontal cortex has extensive neuroanatomical and functional connectivity
with the limbic system, which in turn permits the modulation of HPA activity by the resulting
environmental appraisals, including appraisals of the quality of companionship and mutual
assistance available in the social environment—a strong determinant of perceived social isolation
(Hawkley et al. 2008). Within the limbic system, the central and medial nuclei of the amygdala
and the bed nucleus of the stria terminalis (BNST) are connected by cells throughout the stria
terminalis, and both the amygdala and the BNST project to hypothalamic and brain stem areas
that mediate autonomic, neuroendocrine, and behavioral responses to aversive or threatening

?Vagal afferents convey visceral information to the nucleus tractus solitarus, the major visceral relay nucleus of the brain stem
(cf. Berntson et al. 2003). The nucleus tractus solitarus issues a direct noradrenergic projection to forebrain areas such as the
amygdala, and via an excitatory input to the paragigantocellularis can also activate the ascending noradrenergic system arising
in the locus coeruleus (Figure 1). The locus coeruleus, in turn, projects to the basal forebrain cholinergic system as well as to
the amygdala and cortex. Thus, there are noradrenergic and cholinergic projections through which afferent information can
impact appraisals of environmental circumstances, stimuli, and events (Berntson et al. 2003). Norepinephrine is principally
synthesized in the brain in the locus coeruleus and—in addition to serotonin released from the raphe nuclei and dopamine
from the ventral tegmental area, nucleus accumbens, striatum, and substantia nigra—has modulatory effects on the cortical
and limbic regions involved in the control of the HPA axis (Riedemann et al. 2010).

www.annualreviews.org ¢ Neuroendocrinology of Social Isolation

739



GENE REGULATION BY THE HPA AXIS

Glucocorticoids regulate a diverse array of physiologic processes by simultaneously altering the transcription of
hundreds of genes. Following HPA axis activation, glucocorticoids circulate through the bloodstream to reach
virtually every cell type in the body. Glucocorticoid molecules are small and easily diffuse across cell membranes
and into the cytoplasm, where they can bind to intracellular glucocorticoid receptors (GRs). Glucocorticoid binding
prompts GRs to dissociate from their resting antagonist molecules and traffic into the nucleus of the cell, where they
can bind to genes that contain specific DNA sequences called glucocorticoid response elements (GREs; a typical
GRE is GACA.. ' TGT.C, where “...” can be any nucleotide). In many cases, GR binding to a GRE serves to flag
a gene for transcription into RNA and translation into a protein that can alter cellular function. Many metabolic
effects of glucocorticoids are mediated by such transcriptional induction of genes involved in glucose production.
Some anti-inflammatory effects of glucocorticoids are mediated by transcriptional induction of molecules that
inhibit immune responses. GR molecules can also inhibit the transcription of specific genes either by binding to
their DNA sequences in locations that block access by other stimulatory molecules or by binding to stimulatory
molecules in the cytoplasm and blocking their translocation to the nucleus. For example, many anti-inflammatory
effects of glucocorticoids are mediated by GR antagonism of the proinflammatory transcription factors NF-kB and
AP-1. GR transcriptional repression also mediates the negative feedback loop in the hypothalamus that prevents
accumulation of excessive glucocorticoid levels. The combination of strong transcriptional activation of some gene
setsand transcriptional repression of other gene sets allows one specific hormonal signal to influence a diverse array of
biological processes in a wide range of different cell types. GR signaling is itself subject to inhibition by other cellular
signaling pathways via phosphorylation of GR proteins in the cytoplasm and by transcriptional downregulation of
the NR3C1 gene that encodes the GR protein. These dynamics can result in a state of glucocorticoid resistance in
which normal or high levels of HPA activity have little or no effect on cellular function because the GR fails to
translate the hormonal stimulus into a gene transcriptional response. Several studies now suggest that social threat
in general, and loneliness in particular, is associated with glucocorticoid resistance and a complementary increase
in proinflammatory gene expression that may contribute to some of the adverse health outcomes associated with
perceived social isolation.

stimuli (Walker & Davis 2008). The BNST, like the amygdala, is composed of multiple distinct
subnuclei, which differentially regulate HPA activation (Choi et al. 2007, Ulrich-Lai & Herman
2009). Connections also exist between the hippocampus and BNST; the hippocampus modulates
the actions of the BNST through glutamate, whereas the amygdala acts on the BNST through

CRH and gamma-aminobutyric acid (Riedemann et al. 2010).

The amygdala and the BNST are involved in fear and anxiety conditioning, respectively (Davis
1998)—two acquired behaviors that permit anticipatory responses to a potentially threatening
situation. The amygdala appears to be especially important for rapid-onset, short-duration be-

haviors that occur in response to specific threats, whereas the BNST appears to mediate slower-

onset, longer-lasting responses that frequently accompany sustained threats (or the surveillance
for threats) and that may persist even after threat termination (Walker et al. 2003). Outputs from
the basolateral amygdala activate medial portions of the central amygdala to rapidly elicit phasic
fear responses via projections to the hypothalamus and brain stem. The basolateral amygdala also

projects to the lateral portion of the BNST, which contributes to a slower-developing, more sus-
tained response (Walker & Davis 2008). We return to this distinction of the temporal effects of

the amygdala and BNST on HPA activity in the Concluding Remarks section.
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NEUROENDOCRINE ACTIVITY AND PERCEIVED SOCIAL
ISOLATION (LONELINESS)

The extant human research suggests that perceived social isolation (loneliness) and social threats
are associated most consistently with activity of the HPA axis (cf. Dickerson et al. 2011, Hawkley
etal. 2012). Some data also suggest an association between perceived social isolation and increased
circulating levels of catecholamines, although the SAM findings are less numerous and consistent
(e.g., Edwards etal. 2010, Hawkley et al. 2006) and may be attributable atleastin part to differences
in perceived stress rather than perceived isolation per se (Hawkley et al. 2006).

In an early set of studies of medical students, loneliness was found to be associated with poorer
cellular immune competence, as indexed by significantly higher Epstein-Barr virus antibody titers
(Glaser et al. 1985) and natural killer cell activity (Kiecolt-Glaser et al. 1984a). To investigate
whether the HPA axis might be involved, Kiecolt-Glaser et al. (1984b) investigated the associ-
ation between loneliness and urinary cortisol levels in newly admitted nonpsychotic psychiatric
inpatients. Loneliness and stressful life events were measured by self-report, and a median split
was performed on each self-report measure to divide participants into high or low groups on lone-
liness and high and low groups on recent stressful life events. Analyses indicated that inpatients in
the high lonely group had significantly higher levels of urinary cortisol than inpatients in the low
lonely group, whereas the inpatients grouped in terms of high or low levels of recent stressful life
events did not differ in urinary cortisol levels. Assays of natural killer cell activity and blastogenesis
(cell proliferation to the mitogen, phytohemagglutinin) were lower in the lonely than nonlonely
groups, and loneliness was found to be the best predictor of these immune measures, although the
correlations were low.

Subsequent investigations suggest that loneliness is typically associated with higher levels of
HPA activation, although the strength of the association may vary depending on the chronicity of
loneliness, the specific tissue assayed, the parameter used to gauge HPA activity, the time of day
of the measurements, and the reliability (e.g., number) of the measurements. Using an experience
sampling methodology, Cacioppo et al. (2000) measured salivary cortisol levels in undergraduate
students at nine random points during a normal day. Results indicated that loneliness was positively
correlated with salivary cortisol levels, but this association reached statistical significance only for
chronic loneliness. Interestingly, the percent of time spent alone was not associated with salivary
cortisol levels. Using a similar methodology at four points in time across the day, Pressman et al.
(2005) similarly found loneliness to be related to salivary cortisol levels, although this association
reached statistical significance only for salivary cortisol levels measured an hour after awakening
and at night. Subsequent work has confirmed that the association between loneliness and overall
salivary cortisol levels is generally positive but small (Edwards et al. 2010, Hawkley et al. 2006,
Steptoe et al. 2004).

As mentioned above, cortisol levels are characterized by a strong basal diurnal rhythm, with
levels high in the morning and typically increasing 50% to 60% in the first 30 to 45 minutes after
awakening (i.e., the cortisol awakening response), dropping rapidly over the first few hours after
waking, and then declining more slowly across the rest of the day until finally reaching a low
point around midnight (e.g., Adam 2006). The variations in HPA activity across the day are often
much larger than those found between groups or in response to quotidian stressors, making the
time and conditions of measurement important considerations. Steptoe et al. (2004) reported that
differences in loneliness across respondents, controlling for waking salivary cortisol value, gender,
socioeconomic status, smoking, time of waking, and body mass, were associated with the cortisol
awakening response, with higher levels of loneliness associated with larger cortisol increases.
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Associations identified in cross-sectional studies do not address the causal role of perceived
social isolation. To address this limitation, Adam and colleagues (2006) measured salivary cor-
tisol at waking, 30 minutes after waking (the cortisol awakening response), and at bedtime, and
loneliness was measured using an end-of-day diary each day for three days in a longitudinal,
population-based study of older adults. Multilevel growth-curve modeling was used to estimate
three HPA indices for each person: waking cortisol levels, slope from waking to bedtime, and
size of the cortisol awakening response. Results averaged across the three days replicated those
of Steptoe et al. (2004), showing that loneliness was related to larger cortisol awakening re-
sponses. When across-day (i.e., longitudinal) analyses were performed, loneliness predicted the
size of the cortisol awakening response the following day independent of other variables such as
demographic factors, nervousness, or perceived stress, whereas the cortisol awakening response
did not predict the subsequent levels of loneliness. These longitudinal results were replicated
in a study of high school students (Doane & Adam 2010); in addition, Doane & Adam (2010)
found that momentary and daily assessments of loneliness were associated with momentary sali-
vary cortisol levels, and trait loneliness was associated with a flattening of the diurnal cortisol
rhythm.

Glucocorticoids (e.g., cortisol) influence a wide range of physiological functions that include
glucose regulation, metabolism, inflammatory control, cardiovascular activity (e.g., endothelial
function, atherosclerosis), cellular and humoral immunity, reproductive processes, and neurode-
generation and apoptosis. Among these effects (e.g., carbohydrate metabolism) are relatively
quick-acting nongenomic effects (Borski 2000), but most are mediated by slower-acting genomic
effects, where up to 20% of the expressed genome in a tissue is susceptible to the direct and indirect
influences of glucocorticoids, estrogens, and androgens (Chrousos 2009, Hawkley et al. 2012). For
instance, cortisol acts on the glucocorticoid receptors in leukocytes, leading to a suppression of
proinflammatory gene networks [e.g., blocking of nuclear factor (NF)-kB-mediated transcription
of proinflammatory cytokine genes such as ILIB, IL6, IL§, and TNF]. Although negative
feedback mechanisms in the brain operate to constrain cortisol concentrations, animal models
of social disruption suggest that social factors can lead to glucocorticoid resistance in which the
glucocorticoid receptor becomes less efficient in transducing endogenous glucocorticoid signals
(e.g., Cole et al. 2009, Hanke et al. 2012, Pace et al. 2007, Powell et al. 2013), thereby increasing
an inflammatory biology that can contribute to the development of diseases ranging from type II
diabetes and atherosclerosis to neurodegeneration and tumor metastasis. Mechanistic studies
have shown that the effects of social threat on glucocorticoid resistance are mediated in part
by sympathetically induced alterations in immune cell production (hematopoiesis) (Hanke et al.
2012, Powell et al. 2013).

Given the association between loneliness and HPA activity, Cole (2008) investigated the ex-
tent to which loneliness was associated with glucocorticoid resistance using data from a nationally
representative sample of adults ages 54 and older from Taiwan. Cortisol, through its effects on
the glucocorticoid receptors in leukocytes, normally stimulates an increase in the concentrations
of neutrophils and a decrease in the concentrations of lymphocytes and monocytes in circu-
lating blood. Cole (2008) used the strength of the glucocorticoid regulation of the circulating
neutrophil:lymphocyte ratio and of the circulating neutrophil:monocyte ratio as a marker for
receptor functional activity in leukocytes. The rationale is that the extent to which the gluco-
corticoid receptors become insensitive (resistant) to glucocorticoid signals should be reflected in
an attenuation of the established positive correlation between cortisol levels and the circulating
neutrophil:lymphocyte and neutrophil:monocyte ratios. Cole (2008) found that loneliness was
associated with smaller neutrophil:lymphocyte and neutrophil:monocyte ratios, consistent with
leukocyte glucocorticoid resistance.

Cacioppo et al.



Research has also linked loneliness to a proinflammatory gene expression profile (see sidebar
Gene Regulation by the HPA Axis). Genome-wide microarray analyses revealed a reduction in
the expression of genes bearing glucocorticoid receptor response elements, an upregulation of
proinflammatory gene transcripts (e.g., mRNAs encoding proinflammatory cytokines and other
inflammatory mediators, and bioinformatic indications of activated NF-«kB transcription factor),
and a downregulation of anti-inflammatory markers (e.g., bioinformatic indications of reduced
transcriptional activity of the glucocorticoid receptor) in middle- and older-age adults who are high
in loneliness compared with those low in loneliness (Cole et al. 2007, 2011). A reduction in gluco-
corticoid receptor signaling has a permissive effect on NF-kB activation (Almawi & Melemedjian
2002), so the impaired transcription of glucocorticoid receptor-regulated genes may also indi-
cate an upstream activation of proinflammatory transcription factors that could contribute to the
increased risk of inflammatory disease in chronically lonely individuals.?

Although a significant body of human research, including longitudinal studies, suggests that
perceived social isolation affects the HPA axis, inflammation, and immunity, the causal role of
social isolation is difficult to test conclusively in humans. The idea that the brain is the key
organ of social connections and processes should be true for other species for which sociality
has been a central feature of life for millions of years. Mechanistic animal studies therefore may
provide a more direct test of the causal effects of a member of a social species being deprived
of companionship and mutual assistance. There is not an animal literature on loneliness per se,
but there is a large literature in which social animals are randomly assigned either to normal
social living conditions or to socially isolated living conditions. We turn next to this literature,
specifically experimental studies of the effects of social isolation on HPA and SAM activity in adult
animals. As the review shows—and paralleling the research on perceived isolation in humans—the
nature of the relationship that is disrupted by isolating an animal and the duration of isolation are
important influences on the neuroendocrine response to social isolation.

ANIMAL STUDIES OF NEUROENDOCRINE ACTIVITY AS A
FUNCTION OF SOCIAL ISOLATION

Correlational research in adult baboons indicates that relative social isolation (i.e., negative de-
viations from median values on a composite measure of social connectedness) is associated with
elevated levels of basal cortisol (Sapolsky et al. 1997) (see Table 1). A major advantage of using
animal models is the ability to experimentally manipulate social isolation from conspecifics, con-
trolling for other aspects of the environment (e.g., amount of space available, complexity of the
environment, thermoregulation), to investigate its effects on the SAM and HPA axes. Experimen-
tal studies in animals have manipulated social isolation acutely (e.g., social isolation for one hour,
sometimes repeated daily) and chronically (e.g., social isolation for days or weeks).

Research on acute social isolation shows it typically produces an acute neuroendocrine re-
sponse. Studies in monogamous prairie voles, for instance, show that a single acute (e.g., one
hour) or repeated acute (e.g., one hour per day for four weeks) social isolation from a group or
from a same-sex sibling increases corticosterone levels (e.g., Pournajafi-Nazarloo & Partoo 2011).

3 Although not the only factor in the activation of NF-kB, glucocorticoids do play a key role. NF-kB is normally sequestered
in the cytoplasm by inhibitory protein IkB. Glucocorticoids induce the activation of IkB. NF-«B can also be activated by
cytokines [e.g., tumor necrosis factor (TNF)-alpha and interleukin (IL)-1] and microbial and viral infections. These immune
challenges activate IkB kinases, which in turn phosphorylate Ik B. Phosphorylation of Ik B releases a nuclear localization signal
on NF-kB, and once NF-kB is in the nucleus, it actively stimulates the transcription of proinflammatory genes encoding
cytokines, cell adhesion molecules, antimicrobial molecules, and cell death mediators.
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This finding is in line with a large body of studies describing the separation of an animal from con-
specifics as a stressor (Garrido etal. 2012; Zlatkovi¢ & Filipovi¢ 2012, 2013). Studies in Wistar rats
provide information about the temporal dynamics of the effect of repeated acute social isolation
on levels of corticosterone: Levels peak at the 5- and 15-minute intervals, then plateau through
the 30-minute interval, and finally return to baseline after 90 minutes of social isolation (Ferland
& Schrader 2011). Similar temporal dynamics in the effects of acute social isolation on cortisol
also have been found in cows (Rushen et al. 1999) and sheep (Parrot et al. 1988) (see Table 1).

In the marmoset, acute and chronicisolation have been shown to increase levels of basal cortisol.
Adult marmosets exposed to a brief 15-minute period of social isolation (Cross et al. 2004) and to
11 hours of social isolation (Smith & French 1997), relative to normally housed animals, exhibited
increased cortisol levels. Prolonged social isolation (6-20 weeks) in adult Geoffroy marmosets
prior to cohabitation with an opposite-sex partner, compared to the animals that had remained
with their natal group prior to cohabitation, exhibited higher cortisol levels that remained elevated
over the course of the 90-day cohabitation period (Smith et al. 2011).

Studies in rats similarly suggest that chronic social isolation increases corticosterone levels
when experimental animals are socially isolated from a group of same-sex rats (Djordjevic et al.
2010; Dronjak et al. 2004; Garrido et al. 2012; Zlatkovi¢ & Filipovi¢ 2012, 2013), but inconsisten-
cies have also been observed (cf. Pournajafi-Nazarloo & Partoo 2011). There are two important
factors to consider in this literature, however. First, most investigations use small sample sizes due
to concerns about cost and animal welfare. There is a growing appreciation for an unintended
consequence of small sample sizes, however. As Button et al. (2013) detail, a small sample size re-
duces the likelihood of detecting a true effect (due to low statistical power), increases the likelihood
that the effect size of a true effect is overestimated (due to the use of p < 0.05 to identify when an
effect has been “detected” and the larger sampling error associated with smaller sample sizes), and
increases the likelihood that a statistically significant effect is not truly different from zero (due
to differences in the base rates for tests of true and untrue effects). The predictable outcome is a
literature with somewhat inconsistent results. Despite this inconsistency in statistical significance,
meta-analyses of an unbiased literature nevertheless can produce a cumulative science because
true causal effects should produce a more consistent pattern of findings (i.e., effect sizes) across
studies than effects attributable simply to sampling error.

Second, and in line with human research indicating that the eaning of the presence or absence
of a conspecific is an important determinant of the resulting HPA response, the effect of social
isolation on the HPA axis in animals may not be a general effect but may depend on the social
structure and dynamics of the species—that is, the brain’s interpretation of the social environment.
For instance, studies in monogamous prairie voles show that animals that are chronically isolated
from their pair-bonded partner show increased corticosterone levels (e.g., Bosch et al. 2009,
McNeal et al. 2014) and higher corticosterone levels after a resident-intruder test (Grippo et al.
2007a), whereas prairie voles that are chronically isolated from a conspecific for whom partner
preference is low (e.g., same-sex sibling) show no such increase in corticosterone levels (Bosch
et al. 2009, Grippo et al. 2007b, Klein et al. 1997, Pournajafi-Nazarloo & Partoo 2011, Stowe
etal. 2005). Similar effects have been found in other monogamous species, such as Siberian dwarf
hamsters (Castro & Matt 1997) and nonhuman primates (Mendoza & Mason 1986a,b; Smith &
French 1997).

The importance of conspecific preference is nicely illustrated in research by Mendoza & Mason
(1986a,b), who tested the strength and quality of the relationship (with different measures such
as social distance between cage mates and proximity within arm’s reach) among members of
two species: the monogamous titi monkeys, which are known to form strong mutual pair bonds,
and the polygynous squirrel monkey. Members of both species had been housed in heterosexual
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pairs for several months but were found to respond differently to social isolation. Following one
hour of social isolation from their pair mates, the normally monogamous titi monkeys (for whom
partner preference is high) showed a significant increase in plasma cortisol, whereas the normally
polygynous squirrel monkeys (for whom partner preference is relatively low) did not (Mendoza
& Mason 1986a).

The titi monkey and the squirrel monkey do not differ simply in terms of their HPA reactivity.
The titi monkeys show elevated HPA activity when isolated from their monogamous partner, but
they do not show HPA activation when separated from their infant (Mendoza & Mason 1986b).
In contrast, the HPA axis in the squirrel monkeys is unresponsive to isolation from polygamous
partners or adult peers (Hennessy 1986, Mendoza et al. 1992), but the separation of squirrel
monkey mothers from their infant produces significant increases in plasma cortisol levels in both
the mother and the infant (Coe et al. 1978, Mendoza et al. 1978, Vogt & Levine 1980).

These results are consistent with the notion thatitis not the objective presence of or absence of
a conspecific that determines HPA activation but rather the brain’s interpretation of the presence
or absence of the conspecific. Paralleling this specific pair-bond effect, adult domesticated dogs
(Canis familiaris), who show “vocalization and destructiveness immediately after their owner’s
departure, intense greeting on reunion, and a persistent shadowing to maintain proximity to the
owner during other times” (T'uber et al. 1996, p. 103), have reduced glucocorticoid levels in the
presence of their human caretaker, even when placed in a novel environment, whereas the presence
of a long-term familiar (either a same-sex or an opposite-sex) kennel mate does not reduce their
stress in a novel environment (Tuber et al. 1996).

A few studies have investigated the effects of social isolation on glucocorticoid receptors. For
instance, chronicsocial isolation from same-sex peers in rats elevates nuclear glucocorticoid protein
in prefrontal cortex (Djordjevic et al. 2010), downregulates glucocorticoid receptor expression in
the prefrontal cortex (Djordjevic et al. 2010), and decreases cytosolic glucocorticoid receptors
in the hippocampus (Dronjak et al. 2004). Although only suggestive, these results are consistent
with the hypothesis that chronic social isolation contributes to glucocorticoid resistance and a
corresponding reduction in the negative feedback that constrains HPA activation.

Although most of the published research on chronic social isolation and stress hormones
in adult animals has focused on the HPA axis, several studies have measured SAM activity.
As in the human literature, the effects of chronic social isolation on SAM activity and plasma
catecholamine levels are less consistent across studies than are the effects of chronic isolation on
HPA (see Table 1). Castro & Matt (1997), for instance, studied male Siberian dwarf hamsters to
investigate the effects of four weeks of social isolation from a female partner versus pair housing
with the female partner on plasma cortisol, catecholamine, and testosterone levels. The isolated
males showed elevated plasma cortisol levels but similar levels of epinephrine and testosterone
(and lower levels of norepinephrine) compared to pair-housed males. In a study of Wistar rats,
Dronjak et al. (2004) measured HPA and SAM activity to investigate the effects of three housing
conditions: one animal per cage (social isolation), 6 animals per cage (normal housing), and 12
animals per cage (social crowding). Chronic social isolation increased basal levels of ACTH and
corticosterone, whereas no effect of social isolation (or social crowding) was found for basal
catecholamine levels. Gavrilovic and colleagues (2010), in contrast, reported increased plasma
levels of epinephrine and norepinephrine in adult male Wistar rats following 12 weeks of social
isolation. A study of neuroendocrine responses to acute isolation in adult female dairy goats
also documented increased norepinephrine levels but no change in epinephrine or cortisol levels
(Carbonaro et al. 1992). Experimentally imposed social isolation thus can have different effects in
various animal models; this may be due to species- and sex-related differences in the natural social
conditions of the animal populations studied and resulting differences in the contrast condition
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created by experimental social isolation (which can sometimes result in reduced physical activity
and conspecific aggression, particularly in males) and small sample sizes.

Finally, there is evidence in the animal literature that the chronic social isolation of an adult
animal from preferred partners enhances neuroendocrine responsiveness to acute stressors. Al-
though contrary evidence exists (cf. Djordjevic et al. 2010), chronic social isolation in rodents
relative to control animals has been shown to increase catecholamine (Dronjak et al. 2004; cf.
Dronjak & Gavrilovic 2006) and corticosterone responses to acute stressors (Dronjak et al. 2004,
Ferland & Schrader 2011, Grippo et al. 2007b).

ANIMAL AND HUMAN STUDIES IN RETROSPECT

The cumulative human and animal research suggests that perceived social isolation—that is,
chronic isolation from a meaningful (e.g., pair-bonded) conspecific rather than isolation per se—is
associated with increased HPA activity. Moreover, longitudinal studies in humans and experimen-
tal studies in animals indicate that perceived isolation has a causal effect on the HPA axis. Important
differences are also apparent. The animal research, for instance, suggests that chronic social isola-
tion between meaningful pairs not only elevates basal levels of glucocorticoids (see Table 1) but
also tends to enhance the neuroendocrine response to an acute stressor (i.e., stress reactivity)—an
effect not typically observed in the human literature. Most quotidian stressors in industrialized
societies are neither extreme nor life threatening. As Sapolsky (2001) noted, people in contem-
porary societies are not getting their ulcers from being chased by saber-toothed tigers, they are
inventing social stressors. Accordingly, the acute stressors used commonly in human studies are
relatively mild (e.g., public speaking, serial subtraction) models of the stressors encountered in
modern societies. In contrast, the acute stressors used in animal studies are relatively severe (e.g.,
two hours of immobilization simulating the collapse of a burrow, two hours in a 4°C chamber).
The difference in the effects of chronic social isolation on stress reactivity in the human and animal
literatures, therefore, may be attributable to the use of relatively mild acute stressors in human
studies. This raises two testable hypotheses: (#) that chronic social isolation from a meaningful
social partner enhances stress reactivity in an animal model for intense but not for mild acute
laboratory stressors, and () given that exposure to extreme acute stressors in modern societies is
rare for most individuals, the effects of perceived social isolation on basal HPA functioning may be
more deleterious for human health and longevity than are its effects on HPA and SAM reactivity
to acute stressors.

The most appropriate animal model for investigating the mechanisms underlying perceived
isolation and mortality may depend not only on the nature of the relationship between conspecifics
but also on the specific mechanism under scrutiny. For example, social isolation of male adult
rodents is generally associated with a substantial reduction in physical activity (and attending
decreases in activity-related SNS activity) and a notable decrease in fighting and other overtly
aggressive behavior. Once reintroduced into social settings, isolated male rodents often display a
greater propensity for dominant/aggressive behavior (Blanchard et al. 2001), which has parallels
in the increased negativity/hostility profile observed in lonely individuals but possibly less so in the
socially withdrawn/anxious/depressed profile observed in lonely humans (Cacioppo et al. 2006).
In small rodent models, repeated social threat from an aggressive conspecific may also model
important aspects of the chronic sense of social threat and hostility seen in lonely humans. The
animal model for repeated social threat activates neuroendocrine responses in both the HPA
and SAM axes, and it also induces proinflammatory/glucocorticoid-resistant immune dynamics
(Hanke et al. 2012, Powell et al. 2013) analogous to those observed in lonely humans (Cole
2008; Cole et al. 2007, 2011). Experimental molecular studies show that the proinflammatory
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gene-regulation dynamics observed in mouse paradigms involving repeated social threat derive
in part from catecholamine-mediated alterations in immune cell development within the bone
marrow, which generates a population of glucocorticoid-resistant monocytes that are primed for
hyperinflammatory responses as they subsequently circulate throughout the body (Hanke et al.
2012, Powell et al. 2013). This pattern is similar to the immunologic effects observed in lonely
humans (Cole etal. 2007, 2011), butitis not observed in rodents subject to objective social isolation.

To the extent that human loneliness stems from a chronic sense of social threat and a diminished
reward from social interactions (Cacioppo & Patrick 2008, Cacioppo et al. 2014), nonhuman pri-
mate models of repeated low-grade social threat may also help illuminate the neural and biological
consequences of experienced isolation in humans. Several studies in rhesus macaques have shown
that unstable social conditions (experimentally preventing the development of a stable social hi-
erarchy) confer risk for greater mortality due to viral infection (Capitanio et al. 1998, Capitanio
& Lerche 1998) and induce both socially anxious behavior and immunoregulatory alterations that
resemble those observed in lonely humans (Sloan etal. 2007). Experimentally imposed social insta-
bility also induces SNS innervation of the lymph node tissues in which immune cells coordinate
responses to tissue injury and infection (Sloan et al. 2007, 2008) even though social instability
does not appear to alter circulating SAM catecholamine levels. Such observations suggest that
nonhuman primate models may provide an ethologically valid context for analyzing the effects
of perceived social isolation and may play an important role in identifying the most appropriate
small rodent models for mechanistic investigations.

PUTATIVE UNDERLYING NEUROBIOLOGICAL MECHANISMS

The distinction between the effects of the amygdala versus the BNST on HPA activity may also
be relevant to understanding how social isolation affects neuroendocrine activity and mortality in
contemporary society. There is now a sizable literature in humans and animals for social buffering,
including an attenuation of the sympathetic and HPA response to a stressor (Cacioppo et al.
1998, Hostinar et al. 2014). As noted above, however, social buffering has not been a particularly
robust finding in human studies of the effects of perceived social isolation on autonomic and
neuroendocrine activity in adults. Instead, perceived social isolation has typically been associated
with changes in tonic functioning such as basal differences in sympathetic vascular tonus (as gauged
by vascular resistance), cortisol awakening responses, elevated evening cortisol levels, circulating
glucocorticoid levels, and decreased glucocorticoid receptor sensitivity (e.g., Cacioppo et al. 2003,
Hawkley et al. 2012).

In an early test of the buffering hypothesis, cardiovascular activity was measured in healthy
young adults who were high or low in loneliness prior to and during a series of laboratory stres-
sors. Analyses revealed two main effects—higher vascular resistance in lonely than nonlonely
participants and higher vascular resistance during the stressors than during the baseline—whereas
the interaction did not approach significance (Cacioppo et al. 2002b). That is, there was no differ-
ence between these groups in stress reactivity. The basal differences in vascular resistance between
lonely and nonlonely participants were also apparent when participants performed postural ad-
justments (sitting, standing; Cacioppo et al. 2002b) and during rest whether in the laboratory or
during the course of a normal day (Hawkley et al. 2003). In a similar study, Steptoe et al. (2004)
reported the interaction to be significant, but it held only for women and only for diastolic blood
pressure, not systolic blood pressure or heart rate.

Rather than the social buffering of stressors, several studies suggest that perceived social iso-
lation may diminish the generally salubrious effects of interacting with others. In an experience
sampling study, undergraduate students were just as likely to interact with other people whether
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or not they felt socially isolated. For those who felt isolated, the interactions were rated as being
of poorer quality and as providing less support and comfort (Hawkley et al. 2003). Importantly,
the presence of others did not differentially affect the ratings of the severity of stressors for in-
dividuals who did and did not feel socially isolated; instead, social interactions, which themselves
are a potential uplift and a source of pleasure for most individuals, were experienced less positively
by individuals who felt socially isolated. These behavioral findings suggest that perceived social
isolation may both increase surveillance for social threats and decrease the rewards that one de-
rives from interpersonal relationships. Consistent with this idea, a functional magnetic resonance
imaging study found that perceived isolation was associated with (#) stronger activity in the visual
cortex in response to unpleasant social relative to unpleasant nonsocial visual stimuli and () weaker
activity in the ventral striatal area in response to pleasant social compared to pleasant nonsocial
visual stimuli (Cacioppo et al. 2009).

Both the amygdala and the BNST are involved in HPA adjustments in conditions that per-
mit anticipatory or preparatory responses to a potentially threatening situation. The amygdala is
especially important for rapid-onset, short-duration behaviors that occur in response to specific
threats, whereas the BNST appears to mediate slower-onset, longer-lasting responses that fre-
quently accompany sustained threats and that may persist even after threat termination (Walker
& Davis 2008). These differences raise the possibility that the BNST plays a key role in the effects
of perceived social isolation from a significant conspecific on basal HPA functioning. CRH is
produced not only by neurons in the medial parvocellular region of the paraventricular nucleus
of the hypothalamus but also by cells in the lateral central amygdala that release CRH into the
lateral BNST (Walker & Davis 2008). The BNST, through projections to the brain stem and
paraventricular nucleus of the hypothalamus, produces neuroendocrine and autonomic responses
that appear as changes in relatively tonic activity.

The receptors for CRH, namely CRHR1 and CRHR2, are differentially distributed in the
brain (the former are widely distributed, whereas the latter are found in only a few nuclei includ-
ing the central amygdala and BNST). The anxiogenic effects of CRH are mediated by CRHRI,
whereas anxiogenic and anxiolytic effects are mediated by CRHR2. The HPA axis is also un-
der the influence of oxytocin and vasopressin, and these hormones exert opposite effects on the
HPA axis, with oxytocin decreasing and vasopressin increasing HPA axis activity (De Boer et al.
2012). Given the prevalence of oxytocin receptors in the BNST, central amygdala, and paraven-
tricular nucleus of the hypothalamus, Dabrowska et al. (2011) investigated the distribution of
CRHR?2 in the BNST, paraventricular nucleus, and supraoptic nucleus of the hypothalamus in
relation to oxytocin, oxytocin receptors, CRH, and arginine-vasopressin. Their results indicated
a reciprocal neuroanatomical relationship between CRH-containing neurons in the BNST and
oxytocin-containing neurons in the hypothalamus. Moreover, the colocalization of CRHR2 and
oxytocin in hypothalamic neurons and in axon terminals throughout the BNST suggests that the
BNST is involved in a potential feedback loop between the hypothalamic oxytocin system and the
forebrain CRH system (Dabrowska et al. 2011). How precisely this feedback loop operates is not
fully known, but given the role of oxytocin in pair bonding and in suppressing HPA activity, one
might posit that the presence of companionship and mutual assistance lowers HPA activation in
part through its effects on the BNST and the hypothalamic oxytocin system or, conversely, that
the removal from or absence of companionship and mutual assistance raises HPA activation in
part through its effects on the BNST and the hypothalamic oxytocin system.

Other mechanisms, such as the development of glucocorticoid resistance, also warrant further
empirical investigation. In these studies, it will be important to distinguish between the SAM
neuroendocrine component of sympathetic activation (which does not seem to be consistently
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associated with loneliness or glucocorticoid resistance and other proinflammatory dynamics) and
the effects of direct SNS nerve fiber delivery of norepinephrine into immune system organs such
as spleen, lymph nodes, and thymus, and into diseased tissues such as tumors (Lutgendorf et al.
2009, 2011; Sloan et al. 2007, 2008). Studies examining systemic SAM catecholamine levels in
parallel with localized SNS-derived catecholamines have found a surprising degree of discontinu-
ity between the two (Lutgendorf et al. 2009, 2011), and social processes appear to be much more
strongly related to the latter (as are immunobiological alterations in animal models; Sloan et al.
2007).

CONCLUDING REMARKS

Social isolation has been recognized as a major risk factor for morbidity and mortality in humans
for more than a quarter of a century. The brain is the key organ of social connections and processes,
however, and the same objective social relationship can be experienced as caring and protective
or as exploitive and isolating. The extant evidence indicates that the perception of social isolation
(i.e., loneliness) is also a risk factor for broad-based morbidity (both physical and psychological)
and mortality. However, the causal role of loneliness on neural and neuroendocrine mechanisms
is difficult to test conclusively in humans. Mechanistic animal studies provide a means to evaluate
the effects of social isolation on the HPA axis, autonomic functioning, and SAM axis. Adult animal
studies of the effects of social isolation on HPA and SAM activity are reminiscent of two findings in
the human literature: (#) chronic social isolation is associated with relatively consistent increases
in HPA axis activity but little alteration in SAM catecholamine activity, and (b) the effects of
chronic social isolation appear to be more dependent on the disruption of a social bond between
a significant social pair (e.g., as indexed by behavioral measures of partner preference in animals
or rated quality of relationships in humans) than isolation from others per se. The experimental
research in adult animals further demonstrates that social isolation can have a causal effect on
neuroendocrine functioning.

The incredible complexity of social life within and across species, the plethora of brain mecha-
nisms needed to make sense of and respond to an ever-changing social world, and the still nascent
level of understanding of the social brain underscore the importance of integrating human and
animal research to determine which specific animals and paradigms are best for modeling a specific
process or mechanism and delineating the pathways through which social relationships, or their
absence, impact health and longevity. Experimental animal models of repeated social threat (but
not chronic social isolation) have been found to generate immunobiological dynamics that re-
semble those observed in lonely human beings and thus may provide an experimental framework
in which to analyze the increased risk of inflammation-related diseases observed in the human
social epidemiology of loneliness. In these studies, functional alterations in the HPA axis (glu-
cocorticoid resistance) and the SNS (innervation of immune system organs regulating leukocyte
development) interact to promote a proinflammatory “defensive regime” in gene expression that
ultimately increases the risk of chronic illnesses such as cardiovascular, neurodegenerative, and
neoplastic diseases while simultaneously undermining resistance to viral infections. The corre-
spondence of the behavioral, neurobiological, and genomic effects of repeated social threat in
animals and those of human loneliness suggests that it may be important for future studies to
define more precisely the specific brain dynamics and the specific cognitive processes that are
most engaged by perceived social isolation. To date it is clear that a full understanding of the core
psychological and biological features of human loneliness requires a consideration of the brain’s
interpretation of the social environment.
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