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Abstract

Navigating by path integration requires continuously estimating one’s self-
motion. This estimate may be derived from visual velocity and/or vestibular
acceleration signals. Importantly, these senses in isolation are ill-equipped to
provide accurate estimates, and thus visuo-vestibular integration is an imper-
ative. After a summary of the visual and vestibular pathways involved, the
crux of this review focuses on the human and theoretical approaches that
have outlined a normative account of cue combination in behavior and neu-
rons, as well as on the systems neuroscience efforts that are searching for its
neural implementation. We then highlight a contemporary frontier in our
state of knowledge: understanding how velocity cues with time-varying re-
liabilities are integrated into an evolving position estimate over prolonged
time periods. Further, we discuss how the brain builds internal models in-
ferring when cues ought to be integrated versus segregated—a process of
causal inference. Lastly, we suggest that the study of spatial navigation has
not yet addressed its initial condition: self-location.
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INTRODUCTION

Successful navigation is central to adaptive behavior, as it underpins our ability to trade off be-
tween exploiting our current location in the environment with exploring novel ones. Tradition-
ally, navigation has been divided into two broad classes: landmark-based navigation and path inte-
gration. The former relies on fixed environmental anchors for visual homing, reorientation, and
way-finding.The latter, instead, involves integration of evolving estimates of heading, angular, and
linear velocity derived from visual, vestibular, proprioceptive, and motor-efference signals into a
best guess of position. In a sense, landmark-based navigation can be allocentric (e.g., turn left at the
refrigerator), while path integration cannot—it relies on self-motion information derived from an
egocentric perspective (e.g., an optic-flow field radiating from a focus of expansion). As such, the
study of path integration and self-motion may allow us to further understand not only navigation
but also our subjective and egocentric sense of self-location.

Here, we contextualize recent findings of path integration and self-motion while highlighting
novel and interesting developments in neighboring and interdependent fields of study. First, we
sketch the visual and vestibular neural pathways involved. We start with the vestibular pathways,
as these are commonly less known to the general audience. Second, we highlight that the visual
and vestibular systems are in isolation incapable of accurate self-motion perception. Thus, much
of our focus is in outlining the computational and neural principles that underpin visuo-vestibular
Bayes near-optimal integration. Further, we review initial findings and suggestions regarding the
mechanism behind Bayesian causal inference. In the last section we highlight an area of study that
is seldom incorporated into the study of navigation yet constitutes its initial condition: the sense
of self-location.

NEURAL PATHWAYS FOR SELF-MOTION

A multitude of sensory systems contribute to our subjective sense of self-motion. The strongest
of these are likely vision and the vestibular system. In this section we briefly outline these neural
pathways.
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The Vestibular System in Self-Motion

The vestibular peripheral organ is located in the inner ear and comprises two components: the
otolith organs and the semicircular canals (Figure 1). The former detect linear head acceleration,
both horizontally and vertically (i.e., gravity). The latter sense head rotation in three orthogo-
nal planes. In turn, the afferent fibers of the vestibular nerve project to central vestibular areas,
in particular the vestibular nuclei. This area is composed of many cell types; some are involved
in gaze stabilization, while others [e.g., vestibular-only (VO) cells] are thought to be involved in
posture, self-motion, and navigation (see Cullen 2019 for a recent review). VO neurons respond
to passive (i.e., externally applied) head motion, but responses are suppressed during active head
motion, translation (Carriot et al. 2013), or rotation (Roy & Cullen 2001, 2004).

The suppression of VO neurons during active self-motion is predicted by a Kalman filter-based
model of self-motion (Laurens & Angelaki 2017). More specifically, the cerebellum is generally
thought to form a forward internal model that predicts the sensory consequences of self-generated
movement (Krakauer &Mazzoni 2011). Hence, theoretical models (Laurens & Angelaki 2017) of
the vestibular system have similarly suggested that during active movement the cerebellum may
compute an internal model of the expected sensory consequences of a motor command. This es-
timate is then compared with the observed sensory inflow to generate sensory prediction errors.
When expectations are violated, as is the case during passive head movements, vestibular reaffer-
ence cancellation signals from the cerebellum to the vestibular nuclei are not suppressed, and thus
activity in VO neurons is enhanced (Figure 1). In addition to VO neurons in the vestibular nuclei,
recordings from the rostral fastigial nucleus of the primate cerebellum confirm the computation
of sensory predictions that enable the distinction between self-generated and externally applied
self-motion (Brooks et al. 2015). Remarkably, therefore, already at this early stage, signals me-
diating self-motion estimation are multisensory (i.e., vestibular, motor efference copy, and likely
proprioception from the neck).

From the vestibular nuclei, information is sent to the cortex via two ascending thalamocortical
pathways.The anterior vestibulo-thalamic pathway projects first to the prepositus and supragenual
nucleus, then to the dorsal tegmental nucleus, and finally to the lateral mammillary nucleus—all
within the brainstem (Figure 1). The association between the latter two areas is postulated to en-
code a ring attractor (reviewed inKnierim&Zhang 2012) that leads to head-direction cells in their
downstream area, the anterior dorsal nucleus of the thalamus (ADN) (seeHulse& Jayaraman 2020
for a recent review). These head-direction cells are egocentric in nature, in that they encode the
direction of heading. The ADN outputs to the retrosplenial cortex and the dorsal presubiculum
before this anterior pathway converges onto the well-known spatial codes of the entorhinal cortex
and hippocampus (Moser et al. 2008). The entorhinal cortex is heterogeneously composed of, and
multiplexes (Hardcastle et al. 2017), head-direction, place (O’Keefe &Nadel 1978), speed (Kropff
et al. 2015), border (Solstad et al. 2008), and grid cells. It is likely best known for this latter cell
type, tiling space in a hexagonal pattern (Hafting et al. 2005). The hippocampus possesses place
cells, neurons that fire when the animal is within a particular location of space (O’Keefe 1976).
Thus, interestingly, while supported by the vestibular system—an idiothetic sense—the anterior
vestibulo-thalamic pathway ultimately is involved in building an allocentric map in limbic areas
(Figure 1).

The second ascending thalamocortical pathway is the posterior one. This pathway projects
from the vestibular nuclei and the cerebellum to the ventral posterior lateral thalamus (VPL).The
VPL is also a hub for somatosensory information ( Jones 1985), and thus it is not surprising that
this area is highly multisensory, encoding for vestibular, somatosensory, proprioceptive, visual,
and motor signals. From here, the posterior vestibulo-thalamic pathway projects directly to the
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Figure 1 (Figure appears on preceding page)

Visual and vestibular pathways leading to allocentric coding in parahippocampal formation. Vestibular-only
cells in the vestibular nuclei project via the anterior vestibulo-thalamic pathway to hippocampal formation,
first reflecting an egocentric code and ending in an allocentric code (e.g., place fields). Via the posterior
vestibulo-thalamic pathway, vestibular signals permeate much of the posterior parietal cortex. The exact
nature and strength of the message-passing across much of this schematic network remain to be fully
described, and this schematic coalesces evidence from a number of species: macaques, rodents, and fruit flies.
Thus, there are likely species-specific variations [e.g., head-direction cells exist in RSC in rodents
(Keshavarzi et al. 2021), yet it is unknown whether this is true in macaques]. Nonetheless, overall area 7 and
RSC seem to be strong points of contact between egocentric coding in cortex and allocentric coding in the
hippocampal formation (e.g., Whitlock et al. 2008, Keshavarzi et al. 2021). Abbreviations: NHP, nonhuman
primate; PVP, position-vestibular pause; RSC, retrosplenial cortex; VO, vestibular only.

parieto-insular vestibular cortex (PIVC), the ventral intraparietal area (area VIP), and the vicinity
of the central sulcus near the face representation, among many others (see Lopez & Blanke 2011
for an extensive review). Thus, while the anterior thalamocortical pathway ultimately aids in
building an allocentric map of external space, the posterior pathway is seemingly involved in the
perception of the body in space (Lopez & Blanke 2011).

In addition to the abovementioned areas receiving vestibular input directly from the VPL, the
medial superior temporal area (MST), particularly the dorsal subdivision (MSTd) (Duffy 1998)
but also the lateral one (Sasaki et al. 2019), and area 7a (Avila et al. 2019) also respond to vestibu-
lar stimulation. Thus, seemingly much of the dorsal stream (e.g., MSTd, VIP, 7a) is generally re-
sponsive to vestibular self-motion stimuli. Further, until recently it was thought that the response
patterns in these areas showed a progressively stronger correlation with heading discrimination
behavior [e.g., MSTd (Gu et al. 2008) versus VIP (Chen et al. 2013)], at least insofar as mea-
sured by choice probabilities (i.e., a measure indicating how well an ideal observer can predict the
animal’s choice given the distribution of a neuron’s discharge rate; see, e.g., Britten et al. 1996).
However, recent causal experiments where chemical inactivation was performed have brought into
question the causal role of MSTd and VIP in vestibular heading perception, as there is no or little
impairment in heading discrimination when these areas are shut down (Gu et al. 2012, Yu & Gu
2018).

Interestingly, while the posterior parietal cortex is widely considered to be a hub for egocen-
tric spatial navigation, and its tuning to allocentric variables (e.g., route information) is weak (e.g.,
Chen et al. 1994), area 7a—being downstream from most of the posterior parietal cortex—shows
properties that suggest a gradual transformation toward cues amenable for allocentric encoding.
That is, 7a seems to show weak visuo-vestibular convergence and distinct subpopulations of neu-
rons code for either linear or angular velocity (Avila et al. 2019). Given that the distinctive char-
acteristic of 7a relative to its parietal neighbors is its anatomical connection to the retrosplenial
cortex and indirect connection to hippocampal formation (Pandya & Seltzer 1982), we speculate
that the neural codes in 7a and the retrosplenial cortex (showing progressive divergence as op-
posed to convergence of linear and angular velocity signals) may be best suited for readout in the
hippocampus (see Kravitz et al. 2011 for a similar argument linking the caudal inferior posterior
lobule with hippocampal formation spatial codes). Similarly supporting this conjecture, Avila and
colleagues (2019) recently reported that 7a is most readily driven by vestibular and not visual op-
tic flow information, and this former sensory modality is tuned to acceleration. Along this line,
Kropff et al. (2021) recently demonstrated that contrary to popular belief, theta rhythms organiz-
ing neural activity across the hippocampus and entorhinal cortex in running rats are modulated
by the acceleration, and not speed, of the rats.

We speculate that while two ascending thalamocortical vestibular pathways exist (anterior and
posterior), these in fact form a loop, being separate and egocentric at their outset (in the thalamus
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and cortical areas) and converging in the hippocampal formation where they employ an allocen-
tric code (see Herweg & Kahana 2018 for a similar argument, and see Andersen et al. 1985 and
Bicanski & Burgess 2016 for arguments regarding the involvement of the retrosplenial cortex in
allo-/egocentric transformation).

The Visual System in Self-Motion

When a stationary observer views clouds move past her, a river flow by her, or a train departing on
the adjacent track, she may experience an illusory sense of self-motion.This phenomenon is called
vection (Tschermak 1931), and as these examples illustrate, it is a sensation that occurs in nature.As
such, it has long been appreciated that visual cues alone can generate self-motion perception (Mach
1875). In particular, it is well established that large-field, coherent, and global motion mimicking
the pattern of flow that occurs on our retinae as we move relative to the environment is capable of
eliciting vivid sensations of self-motion (see Dichgans & Brandt 1978).This pattern of motion was
denominated optic flow (Gibson 1950) and has served as the backbone for much of the modern-
day study of self-motion.

The striate and extrastriate cortices are well studied, in particular for their motion responses
(Maunsell &Van Essen 1983).Hence, natural contenders for the processing of optic flow emerged
rapidly. A subset of cells in the primary visual cortex (V1) are highly selective for direction, but
these cells have small spatiotemporal receptive fields and encode motion of local features (Hubel
&Wiesel 1968)—thus, they are likely not ideally suited for self-motion processing (but see Vélez-
Fort et al. 2018). The middle temporal area (MT) likely integrates motion cues inherited from V1
(Adelson & Movshon 1982), and cells in this area can encode two-dimensional motion, such as
patterned motion (e.g., vertical bars moving north and southeast yielding a rightward percept).
MT is also thought to estimate velocity (Adelson & Movshon 1982). However, this area does not
seem tailored for complex and whole-field flow processing. Instead, the subsequent stages of the
visual dorsal stream—MSTd,VIP, and area 7a (Figure 1)—all seem to show properties well suited
for optic flow processing: (a) large and often bilateral receptive fields, (b) selectivity for complex
visual motion patterns, and (c) often partial remapping of reference frames allowing for heading
representation independent of eye position (Avillac et al. 2005,Duffy &Wurtz 1991). These latter
areas have therefore been the most extensively studied in the processing of optic flow and self-
motion (see Britten 2008 for an earlier review focusing on MSTd and VIP).

Early studies suggested a weak but consistent correlation between spiking activity in MSTd
and trial-to-trial fluctuations in heading perception derived from optic flow (Britten & vanWezel
1998,Gu et al. 2008). This small correlation has recently also been shown inMT (Yu &Gu 2018).
In contrast, the downstreamVIP shows substantially larger correlations between brain activity and
heading perception (Chen et al. 2013). To the best of our knowledge the correlation between neu-
ral activity and heading judgments has not been reported in 7a. While it would be tempting to
suggest that higher levels of the visual hierarchy (e.g., from MT to VIP) have a stronger role in
guiding heading perception, recent experiments do not support this simple view. Causal experi-
ments bilaterally suppressing MSTd showed a threefold increase in the psychophysical threshold
for visual heading perception (Gu et al. 2012). Remarkably, however, bilateral suppression of VIP
had no effect on heading perception as derived from optic flow (Chen et al. 2016). Supporting
the conclusion linking MSTd but not VIP to heading perception, Zaidel and colleagues (2017)
dissociated sensory-driven and choice-driven components to choice probabilities. This analysis
suggested a preponderance of heading signals in MSTd and of choice signals in VIP. Recordings
in the vestibular and deep cerebellar nuclei (Bryan & Angelaki 2008), as well as the PIVC (Chen
et al. 2010), showed a lack of responsiveness to optic flow.
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In general, therefore, there is a convergence of visual and vestibular signals for self-motion in
the parietal dorsal stream (e.g., MSTd, VIP, 7a). However, their exact functional roles are not yet
fully understood. It seems as if the strongest signals relating to the encoding of self-motion from
vision are in MSTd, but after this stage, information may be most strongly related to decision-
making processes and visuo-vestibular cue combination, while being highly distributed and re-
dundantly coded (see Zhang et al. 2016 for a similar argument and modeling effort, and see Bizley
et al. 2016, for an argument that distributed networks underlie multisensory decision-making).

VISUO-VESTIBULAR INTEGRATION: COMPUTATION, ALGORITHM,
AND IMPLEMENTATION

Despite their clear contribution to self-motion processing, in isolation the visual and vestibular
systems are ill-equipped to guide spatial navigation. As mentioned above, given that self-motion
is relative, during full-field visual motion observers may misinterpret global world motion as self-
motion (i.e., vection; see Dichgans & Brandt 1978 for an early and extensive review). Similarly,
optic flowmay be caused by true translation or rotation of the head in the environment, but it may
also be due to rotation of the eyes in orbit, or a confluence of signals that have to be parsed (i.e.,
the rotation problem). The vestibular system also has inherent limitations. For instance, given
that the inner ear detects acceleration, in the absence of visual cues we cannot sense movement
after a prolonged period of constant velocity (e.g., closing one’s eyes on a moving train). Likewise,
given that otolith afferents encode linear acceleration and changes in head orientation relative to
gravity in an identical manner, this system in isolation cannot distinguish between these [Einstein’s
equivalence principle (Einstein 1907)]. Thus, the integration of visual and vestibular signals not
only supposes a redundancy of encoding that via multisensory integration is likely to ameliorate
perceptual sensitivity (see Fetsch et al. 2013 for a review) but also overcomes fundamental deficits
in each of these systems.

In this section we first summarize behavioral and computational evidence specifying how sig-
nals ought to be combined, from a principled perspective. Then, we highlight probabilistic popu-
lation codes (PPCs) as a theoretical framework detailing how optimal cue combination may occur
in the brain and review the evidence for this sort of neural code in visuo-vestibular integration
for heading perception (see the sidebar titled Neural Instantiation of Probabilistic Inference for a
broader discussion on the neural instantiation of statistical inference).We highlight important ad-
vances that have (a) developed ideal observers who integrate signals over an undetermined period
of time and with time-varying reliabilities and (b) sketched the putative neural implementation of
this computation. Lastly, we discuss causal inference as a more general computation toggling be-
tween different internal models (e.g., dictating the integration or not of visuo-vestibular cues) and
point to theoretical proposals as well as recent findings from cognitive and systems neuroscience
that together promise to ultimately elucidate the neural underpinning of this fundamental and
ubiquitous computation.

Bayesian Observers

Our brains are locked inside dark and silent skulls. They understand the language of spikes and
not that of visual objects and vestibular events. Thus, as Helmholtz (1867) most famously stated,
perception is a process of (unconscious) inference. We do not have direct access to the external
world, and instead we must make our best guesses based on available sensory evidence and prior
knowledge.
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NEURAL INSTANTIATION OF PROBABILISTIC INFERENCE

The central tenet of the Bayesian framework is that the brain represents uncertainty about the environment in the
form of probability distributions. In the main text we emphasize probabilistic population codes (PPCs) (Beck et al.
2008, Hou et al. 2019, Ma et al. 2006) as a putative neural implementation of probabilistic inference, given that
these have a strong history of accounting for cue combination, and their application to this problem has produced
much of their empirical support. Walker et al. (2020) have also recently shown strong support for this framework
in demonstrating that trial-to-trial changes in the shape of likelihood functions as derived from a population of V1
neurons can account for fluctuations in behavior.

PPCs suggest that the response of a neural population is proportional to parameters of probability distributions.
Given this distributed format (i.e., a spatial code), this framework is thought to represent probabilities almost in-
stantaneously, a great strength. However, this code has also been criticized, most commonly for only being able to
represent a restrictive class of distributions and for its prohibitive computational cost for performing exact inference
(e.g., Savin & Denève 2015). On the other end of the theoretical spectrum lie sampling models suggesting that the
activity of each neuron within a population encodes a different random variable, and that neural activity represents
samples drawn from a latent probability distribution (Hoyer&Hyvarinen 2003).This second framework, relying on
a temporal code, is slower than PPCs but is said to allow for easier marginalization, and it accounts for trial-to-trial
variability in single-unit neural variability (Fiser et al. 2010). Strong empirical support for the sampling framework
comes from spontaneous and evoked V1 activity of developing ferrets showing a progressive adaptation of internal
models (i.e., spontaneous activity) to the statistic of natural stimuli with age (Berkes et al. 2011). Relatedly, Sohn
et al. (2019) recently argued that Bayesian computations depend on the shape (i.e., curvature) of cortical dynamics
within a latent low-dimensional space, thus also suggesting that neural activity defines a latent space where Bayesian
computations occur.

More broadly, it must be noted that PPCs are a theory of statistical inference that occurs at the population level,
while sampling puts the burden on single neurons. As such, these may not be mutually exclusive. In fact, Festa et al.
(2021) recently suggested that sampling in V1 might account for Poisson-like variability of single neurons. The
outset of PPCs is exactly this form of variability, and thus we may conjecture that certain statistical inferences occur
at the single-neuron level and via sampling while others occur at the population level via PPCs and Poisson-like
variability, the latter being inherited from the individual neurons and sampling.

More formally, and taking the example of heading discrimination, on a particular trial T, an
observer is presented with a specific heading, θT. This stimulus is encoded by noisy and stochas-
tic biological elements, and thus our measurements or observations, m, of the environment may
change on a trial-by-trial basis, even for a fixed θT (Tolhurst et al. 1982). The resultant distribu-
tion, p(m|θT), is called a measurement distribution and is defined for a fixed stimulus. It is typically
considered to be Gaussian and centered on the true θT. The relation between (a) the different
headings that we may experience, p(θ ), and (b) the measurement distribution specifies a generative
model. This model is an explanation of how sensory data were generated by the world and our
sensory systems and is the schema the brain is tasked with inverting to perceive. That is, we make
a hypothesis to explain the observed data. The process of translating external stimuli to internal
measurements, θT → m, is referred to as neural encoding and has a rich computational history
(i.e., efficient coding; Barlow 1961), yet it is unfortunately typically considered separately from
decoding processes, such as Bayesian inference (but see Wei & Stocker 2015 for an exception).

In a first step of inference, observers generate a degree of belief (Ramsey 1926) about θ based
on their measurements. This belief is characterized by likelihood functions, L(θT), that effec-
tively take the same shape as p(m|θT) but in this case are functions of θT and not m (see Ma 2019
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for details). Next, an observer may incorporate beliefs that are independent from current sen-
sory observations (i.e., at time t) and instead based on expectations (for instance, derived from
long-term environmental statistics or immediately preceding states, e.g., the heading at t − 1).
These expectations are the prior distribution, p(θ ). In different contexts this distribution is typically
considered to beGaussian, uniform,or broad enough to be negligible.According to the Bayes Rule
(Equation 1), by combining the likelihood and prior we can compute posterior distributions—the
probability of θ given m.

p(θ |m) ∝ L(θT)p(θ ) 1.

In a last step, the observer must make a decision or take action. This requires a cost function
(i.e., penalties and rewards for hits, misses, etc.) and a mapping from posterior distributions to a
concrete action. In the general case where priors and likelihood distributions are Gaussian, the
posterior will be so as well, and thus the mean, median, and mode of the posterior specify the
same value, the same action. However, posteriors need not be Gaussian, and thus loss functions
and action-selection must be carefully considered (Rahnev & Denison 2018).What characterizes
an observer as optimal is the use of the correct generative model and computations that minimize
cost or maximize reward (see Daptardar et al. 2019 for a description of rational observers as those
making optimal decisions within an incorrect generative model).

Bayes Optimal Cue Fusion

Borrowing from insights in computer vision (Knill & Richards 1996) and within the Bayesian
framework detailed above, Ernst & Banks (2002) (among others) specified an ideal observer for
multisensory cue combination. They assumed a flat prior, Gaussian likelihoods, and that measure-
ments are conditionally independent acrossmodalities (i.e., signalsmay covary, but their noise does
not). Under these assumptions, it can be shown that the likelihood function of a combined (e.g.,
visuo-vestibular) condition Lcomb(θ ) is the product of the unisensory likelihoods Lvis(θ ) Lvest(θ ),
and the maximum-likelihood estimate will be

θ̂comb = wvisθ̂vis + wvestθ̂vest, 2.

with θ̂vis and θ̂vest being the unisensory estimates and wvis and wvest being weights that are propor-
tional to inverse variances σ 2

vis and σ 2
vest:

wvis =
1

σ 2
vis

1
σ 2
vis

+ 1
σ 2
vest

, 3.

and similarly for wvest. The variance of the combined estimate is

σ 2
comb = σ 2

visσ
2
vest

σ 2
vis + σ 2

vest
. 4.

Thus, if individuals are combining information across cues, their combined estimate will intu-
itively fall in between the unisensory estimates, weighted by the relative reliability of each cue.
More importantly, given that a weighted average estimate across trials could also emanate from
following a given estimate at some times and the other estimate in the remaining trials, the true
hallmark of optimal cue combination is a reduction in uncertainty (predicted by Equation 4). Hu-
mans have been shown to combine cues optimally or near optimally within senses (Hillis et al.
2004) and across visuo-tactile (Ernst & Banks 2002), audio-visual (Alais & Burr 2004), visuo-
proprioceptive (van Beers et al. 1996), and visuo-vestibular (Fetsch et al. 2009, Prsa et al. 2012)
pairings, among others.
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Neural Instantiation of Bayes Optimal Cue Fusion

Armed with a principled account of multisensory behavior, researchers’ next step was to derive
how such a computation could be instantiated algorithmically—what operations and set of rules
may neurons follow in accomplishing the computation at hand?

In an influential theoretical contribution, Ma and colleagues (2006) highlighted that neural
populations have to represent the reliability associated with environmental cues in order to per-
form an inference of the type p(S|r), where S is the cue and r is a vector of neural responses for
a given presentation. In analogy to the Bayesian observers described above, p(r|S) is proportional
to p(S|r), and the former is something we can measure. In fact, we know that cortical neurons
tend to show Poisson-like variability (Tolhurst et al. 1982), meaning that their average activity is
monotonically related to their variance. Taking this property into account, it can be shown that
the posterior distribution p(S|r) approximates a Gaussian function, its mean closely corresponds to
the peak of population activity, and importantly, its variance is implicitly encoded in the amplitude
of the population response, or gain, g, such that Kg = 1/σ 2, where K is a constant.

In turn, regarding cue combination and again with the example of visuo-vestibular integration,
this PPC (Ma et al. 2006) renders the hypothesis that if unisensory populations have the same
number of neurons, identical tuning functions, and independent Poisson-like variability, optimal
conservation of information [e.g., Icomb = Ivis + Ivest (Clark & Yuille 1990)] equates to a simple sum
of neural activities, rcomb = rvis + rvest. Since the unisensory areas are characterized by Poisson-like
variability, so will the multisensory, and 1

σ 2
comb

= 1
σ 2
vis

+ 1
σ 2
vest

, which is equivalent to the uncertainty

reduction outlined in Equation 3. Many of the assumptions outlined (e.g., equal number of neu-
rons) can be relaxed in more general formulations (e.g., wcombrcomb = wvistrvis + wvestrvest), but the
important take-home message is that by incorporating the known distribution of single-unit vari-
ability, PPCs are able to accomplish a multiplication required at the computational level, Lvis(θ )
Lvest(θ ), by simple summation—convergence of unisensory populations onto a multisensory one
(see Ma et al. 2006 for mathematical details).

Angelaki,DeAngelis, and colleagues performed a series of experiments to detail the neural code
underlying visuo-vestibular integration and to specifically ascertain whether PPCs are indeed bi-
ologically implemented. First, Gu et al. (2008) demonstrated that nonhuman primates perform
a discrimination task where they are required to indicate their direction of heading relative to
straight-head in line with optimal cue combination, their sensitivity during visuo-vestibular con-
ditions improving consistently with theoretical predictions (Ernst & Banks 2002). Second, Fetsch
et al. (2009, 2012) showed that these animals also took into account the relative uncertainty be-
tween cues in generating estimates when visual and vestibular cues were incongruent. In addition
to the behavioral observations, these authors performed single-neuron recordings in MSTd and
observed two classes of neurons: those with congruent visual and vestibular tuning functions and
those with opposite preferences.Neurometric curves constructed from receiver operating charac-
teristic analysis of spiking activity of congruent cells had visuo-vestibular discrimination thresh-
olds in line with predictions from optimal cue combination (Gu et al. 2008; see Chen et al. 2013
for a similar result in VIP). We return to the opposite cells below.

These behavioral and physiological studies set the stage for questioning whether optimal cue
combination in fact occurs in the brain as predicted by PPCs.However, the headings probed in the
early reports were fairly restricted and thus did not allow for sketching a neural combination rule—
the set of weights A, such that Rcomb = AvisRvis + AvestRvest + C,where R is neural responses and C
is a constant. To remedy this situation, Morgan et al. (2008) recorded from MSTd while present-
ing nonhuman primates with the full gamut of visual, vestibular, and visuo-vestibular headings—
including incongruent presentations. Results demonstrated that a linear combination of
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unisensory visual and vestibular responses was indeed well able to predict multisensory responses
(i.e., the addition of nonlinear components did not significantly improve fits).However, somewhat
surprisingly, weights Avis and Avest were smaller than 1 (i.e., subadditive as opposed to the addi-
tive), and perhaps most vexingly, they varied with changes in cue reliability. This latter observation
was at face value incongruent with the framework of PPCs, as this theory in essence suggests that
the weighting of likelihood functions by their reliability is accomplished at the unisensory level,
where, for example, visual responses are modulated by coherence, and thus Poisson statistics imply
that there is no need to update neural weights, A, with changes in stimulus coherence.

Two subsequent reports proposed why, and how, neural weights might change as a function of
visual coherence and hence reinstated PPCs as a putative neural mechanism of optimal cue inte-
gration. Fetsch and colleagues (2012) first showed that Poisson statistics do not entirely account
for how neural responses in MSTd change with visual motion coherence. Instead, with increasing
coherence in visual stimuli there is both a multiplicative scaling of neural responses and a change
in baseline firing. Taking these properties into account, the researchers derived the optimal neural
weights for visuo-vestibular integration in MSTd and showed a correlation between mathemati-
cally derived optimal and measured neural weights (see Hou et al. 2019 for a suggestion that in-
corporating neural correlations could have strengthened the agreement between PPC theory and
empirical observations). Secondly, Ohshiro and colleagues (2011) suggested that both the subad-
ditivity in neural weights (i.e., A < 1) and rapid changes of these weights on a trial-by-trial basis
could be accounted for by divisive normalization acting at the stage of multisensory integration.
Divisive normalization is a ubiquitous neural computation wherein the output of each neuron is
divided by the summed activity of a normalization pool (Carandini & Heeger 1994, 2011). Thus,
the strength of the normalization pool depends on unisensory firing rates; hence, as firing rates
covary with stimuli coherence, so will the neural weights. In fact, divisive normalization can give
rise to a neural combination rule similar to that measured byMorgan et al. (2008) and Fetsch et al.
(2012). Further, this property is likely critical for appropriate function of the nervous system as a
whole in that it prevents neural saturation—a ceiling effect in firing rates—and hence potentially
explain why neural weights in fact need to be subadditive. Lastly, in a beautiful convergence of
evidence, divisive normalization at a multisensory layer is not only able to account for population
level properties in cortex (Ohshiro et al. 2011) but is equally able to account for properties of
individual multisensory neurons in subcortex, such as their supra-additive responses during weak
stimuli presentations (inverse effectiveness), or presentations within colocalized receptive fields
(spatial principle; see Stein & Stanford 2008 for a review summarizing early work detailing the
properties of multisensory neurons in superior colliculus). The divisive normalization conjecture
makes a strong and testable prediction: Nonpreferred sensory input from one modality should
suppress the response to a preferred input in another modality. Recent recordings have confirmed
the presence of this form of cross modal suppression in MSTd and not in MT (Ohshiro et al.
2017).

Broadly, therefore, a multitude of visuo-vestibular phenomena (e.g., vection) and the basic pe-
ripheral properties of the visual and vestibular system implied that appropriate self-motion per-
ception requires the integration of visual and vestibular information. Normative approaches to
modeling behavior then suggested how these signals ought to be integrated, and landmark theo-
retical studies bridged the gap between behavioral cue combination and neural integration. Phys-
iological recordings in MSTd then largely confirmed predictions from theory, while iteratively
adding caveats—e.g., MSTd responses are further from Poisson-like than initially suggested, and
neural weights may vary trial-to-trial with changes in stimuli reliability. These empirical obser-
vations lead to the conjecture of a network-level operation that may account for the inconsisten-
cies between theory and empirical observations. And in turn, this circuit property (i.e., divisive
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normalization) was able not only to account for population-level responses in cortex but also to
incorporate traditional properties of single neurons in subcortex (see Fetsch et al. 2013 and Hou
& Gu 2020 for insightful reviews).

Time and Time-Varying Reliabilities

An important andmore recent extension to the study of optimal cue combination is the incorpora-
tion of time as a critical variable. Indeed, the publications in the human literature on multisensory
integration appear to be divided between those employing estimation tasks and optimal cue com-
bination as a theoretical framework on one side (e.g., Fetsch et al. 2009, Gu et al. 2008) and those
using reaction time tasks and race models (Miller 1982, Raab, 1962) or principles derived from
early single-unit electrophysiology (Stein & Stanford 2008) on the other. The former have ig-
nored a critical dimension present in all perceptual and decisional processes—time—while the
latter have ignored the perceptual sensitivity benefits derived from multisensory integration and
have not been able to connect behavior with neurons; nor can they establish whether multisensory
inputs are combined optimally.

Drugowitsch et al. (2014) closed the gap between multisensory precision and speed by deriving
an extension to the traditional drift diffusion model (DDM). The conventional DDM (Ratcliff &
Rouder 1998) is based on particle dynamics accumulating evidence until hitting a decision bound.
This model can account well for stereotypical distributions of reaction times, and changes in the
speed of evidence accumulation (i.e., drift rate) and/or the initial distance of particles to the de-
cisional boundary can accommodate speed accuracy trade-offs during decision making. Addition-
ally, these diffusion models are known to optimally integrate evidence over time given that the
reliability of the evidence is time-invariant (Bogacz et al. 2006). However, in their standard imple-
mentation, DDMs are not optimal when the speed of evidence accumulation changes over time
(within or across trials), nor are they designed to integrate disparate sources of information. In
Drugowitsch and colleagues’ (2014) extension, a multisensory DDM’s drift rate is determined by
a weighted combination of unisensory drift rates, each weighted in proportion to its relative and
momentary (i.e., time-evolving) sensitivities.

This version ofDDMs is optimal despite time-varying reliability of cues (seeDrugowitsch et al.
2014 for mathematical detail). Within the context of a speeded version of the visuo-vestibular
heading discrimination task, the multisensory DDM can account for apparent suboptimal be-
havior as indexed by standard analyses not incorporating time as a factor. It also suggests a near-
optimal speed-accuracy trade-off inmaximizing reward rate across trials (Drugowitsch et al. 2015).
Further, in analogy, this framework specifying accumulation of evidence both across time and
across the senses may be able to account not only for apparent suboptimal behavior (Drugowitsch
et al. 2014) but also for recent reports of supraoptimal behavior, most common in the rodent lit-
erature (Nikbakht et al. 2018, Raposo et al. 2012; but see Shalom & Zaidel 2018 for an alternative
explanation). Finally, and perhaps most interestingly from a neural implementation standpoint,
the extended DDM suggests that in natural self-motion visual and vestibular signals may each
play an outweighed role during different time periods. As alluded to above, vestibular signals are
most sensitive to acceleration while visual signals are tuned to velocity, and thus their weight dur-
ing visuo-vestibular motion may vary accordingly. This conjecture would also suggest that there is
no need to integrate vestibular acceleration into a velocity signal, a process that could in principle
be costly in terms of signal-to-noise (Bogacz et al. 2006; but see Laurens et al. 2017 for evidence
that vestibular acceleration seems to indeed be transformed into velocity estimates as it climbs the
neuraxis).
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In the most recent physiological recordings attempting to further delineate the neural under-
pinning of optimal visuo-vestibular integration, Hou and colleagues (2019) took on the challenge
of determining whether in fact cue combination is dependent on momentary evidence (e.g., vi-
sual velocity and vestibular acceleration) and whether such a code is compatible with PPCs (Ma
et al. 2006). These authors presented nonhuman primates with translations of a Gaussian velocity
profile, naturally dissociating moments of maximal vestibular information (early and late in the
motion profile, due to its encoding of acceleration) versus visual information (peaking with maxi-
mal velocity). Single-unit recordings were performed in the lateral intraparietal (LIP) cortex. This
area receives anatomical input fromMSTd and VIP (Boussaoud et al. 1990), two areas heavily im-
plicated in the coding of self-motion (Chen et al. 2011, 2013; Gu et al. 2006, 2008). However,
while a majority of neurons in LIP are in fact tuned to visual motion direction, this selectivity
is very broad [>120° (Fanini & Assad 2009)]. Thus, in keeping with the general thought of LIP
as an area reflecting evidence accumulation (but see Huk et al. 2017, Katz et al. 2016, and Zhou
& Freedman 2019 for recent controversy), recording in LIP (as opposed to earlier areas) likely
allowed Hou et al. (2019) to examine a neural node that is a good candidate for one performing
a computation akin to integration in the multisensory DDM (Drugowitsch et al. 2014). Further,
recording from LIP implicitly supports the hypothesis that multisensory integration occurs at a
decisional stage (see Bizley et al. 2016). Hou and colleagues (2019) demonstrated that LIP indeed
harbors heading discrimination choice signals that peak in accordance with vestibular accelera-
tion and visual speed. Moreover, the authors demonstrated that a network performing decisions
by summing spikes across time and cues via an invariant linear PPC (Beck et al. 2008) was able
to perform optimal multisensory decisions. Finally, a linear approximation of the optimal model
showed responses similar to those of LIP, while decreasing its time constant of integration did
not. In other words, this report suggests that (a) PPC is the algorithm supporting optimal cue
combination even for time-varying reliabilities, (b) this algorithm is housed (at least partially) in
LIP, and (c) a defining characteristic of LIP versus its neighbors is its time constant of integration.

Novel path integration studies employing optic flow alone (Lakshminarasimhan et al. 2018,
2020; Noel et al. 2020a, 2021a) or visuo-vestibular signals (Stavropoulos et al. 2020) during pro-
tracted timelines (∼2–4 s) will be ideally suited to further examine the circuit motifs sustaining
long versus short integration time constants. Initial results within this domain suggest there is no
leak in the integration of self-motion information into a position estimate, and instead errors in
path integration may be due to initial mis-estimations of velocity (Lakshminarasimhan et al. 2018,
Noel et al. 2020a).

Causal Inference

In addition to the reliability of different sensory signals, the world around us and the objects and
events in our surroundings change dynamically over time. The approach of optimal cue combina-
tion (Ernst & Banks 2002) outlined above is sometimes referred to as a forced fusion model, given
that its main limitation is that it can only consider one alternative; the signals must be combined.
However, in the real world there are instances when multiple signals refer to the same source (e.g.,
auditory and visual signals conveying speech and mouthing of an interlocutor) and thus should
be combined, and in other instances these signals relate to different sources (e.g., an unskillful
ventriloquist) and should be separated. To appropriately perceive and act in the world, therefore,
we must first use the samples we draw from our environment (i.e., observations) to build an
internal model specifying the likely causal structure of the environment [building the generative
model (Figure 2)]. Then, we can use this deduced generative model in perceiving. This process is
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referred to as Bayesian causal inference (Kording et al. 2007) (Figure 2) and is again based on
the Bayes Rule:

p(C|xvis, xvest ) = p(xvis, xvest|C)p(C)
p(xvis, xvest )

, 5.

where xvis and xvest refer to sensory measurements and C is a categorical variable whose value
depends on the state of the world. In an example where visual and vestibular signals index either
the same (C = 1) or separate causes (C = 2),

p(C = 1|xvis, xvest ) = p(xvis, xvest|C = 1)p(C = 1)
p(xvis, xvest|C = 1)p(C = 1) + p(xvis, xvest|C = 2)(1 − p(C = 1))

. 6.

Solving p(xvis, xvest|C = 1) and p(xvis, xvest|C = 2) allows establishing the likelihood of signals
emanating from a single cause, p(C = 1|xvis, xvest ), and these have closed-form analytical solutions
assuming measurement distributions and priors are Gaussian or uninformative (see Kording et al.
2007 for mathematical detail). In turn, the maximum a posteriori estimate of the different signals
θ̂vis and θ̂vest can be computed under either of the hypotheses, C = 1 or C = 2 [inverting the
generative model (Figure 2)]. Now, exactly how these estimates and the inferred causal structure
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Figure 2 (Figure appears on preceding page)

Causal inference. (●1 ) Our sensory periphery redundantly samples from the environment (solid and dashed
white circles represent samples for Sense 1 and Sense 2, respectively). (●2 ) Based on these samples, we build an
internal model of the potential causal structure of the world that may have given rise to the observed sensory
data (Equation 5). In the first hypothesis illustrated here (Hypothesis 1), the two senses index a common
object in the environment (purple circles; colored circles indicate a sample under a particular hypothesis). As
such, the samples that best reflect the state of affairs is the middle sample for Sense 1, and the rightmost for
Sense 2 (darker color indicates the sample falling closer to the mean of the inferred distribution). (●3 ) Since
signals from both Sense 1 and Sense 2 are taken to come from the same source, we can integrate this
information, together with a prior, according to maximum-likelihood estimation (Equation 2). Conversely,
we might hypothesize that the two senses reflect different objects in the external environment (represented
by red and blue). If this were the case, the central sample, both for Sense 1 and Sense 2 (darkest red and blue
circles, respectively), would be best aligned with the mean of the inferred distribution (again, a darker color
indicates the sample closest to the mean of its distribution). Under this hypothesis, we would not integrate
the different signals. (●4 ) Lastly, we can combine (or not) worldviews (i.e., hypotheses) in acting on the
external world. Two potential solutions are illustrated here. In a model-selection strategy (left), we would
commit to the most likely hypothesis. In this example, we assume Hypothesis 1 is most likely, and thus the
final estimates (triangles) correspond to the estimates from this model (purple triangles indicate the mean of
the posterior of Hypothesis 1, and solid and dashed black triangles indicate the final percept/response). In a
model-averaging strategy (right), observers can weigh estimates according to the relative certainty of the
hypothesis. Again, Hypothesis 1 is most likely in this example. Thus, the final estimates (solid and dashed white
triangles) will fall somewhere in between the posteriors derived from Hypothesis 1 (purple) and Hypothesis 2
(blue and red), but they will be closer to the former.

are used in generating actions depends on the loss function, and this one is largely dependent on
the specific task. The three decision strategies that are routinely considered are model averaging,
probability matching, and model selection (e.g., Cao et al. 2019). Model averaging linearly com-
bines estimates derived from integration and segregation, each weighted by the inferred posterior
probability over the respective causal structure. On the other hand, probability matching and
model selection commit to a certain worldview for a given trial. The final estimate is sampled
from, say, θ̂vis,C=1 or θ̂vis,C=2, with a proportion that is either stochastic (probability matching) or
fixed (model selection) (Figure 2).

Causal inference has been shown to account well for a number of empirical observations, in-
cluding low-level audio-visual localization (Odegaard et al. 2015), speech perception (Magnotti
et al. 2013, Noel et al. 2018b), and heading discrimination (Acerbi et al. 2018; Dokka et al. 2019)
among many others (see French & DeAngelis 2020 for a recent review, and below for further
examples). However, the precise neural underpinning of this computation is less well established.

To tackle this gap in our knowledge, human neuroimaging studies based on functionalmagnetic
resonance imaging (Rohe &Noppeney 2015, 2016) or time-resolvedM/EEG (Aller &Noppeney
2019, Cao et al. 2019, Rohe et al. 2019) are starting to delineate the general principles putatively
guiding the neural implementation of causal inference. By and large these reports all agree in
describing causal inference as a hierarchical process where early sensory areas [e.g., V1 or A1
(Rohe & Noppeney 2015)] and early neural latencies [e.g., <100 ms (Aller & Noppeney 2019)]
encode their preferred sensory modality independently. Intermediate areas (e.g., posterior parietal
cortex) and latencies (e.g., <250 ms) show patterns most consistent with forced fusion (Ernst
& Banks 2002). Finally, more anterior regions [e.g., anterior parietal cortex (Rohe & Noppeney
2015)] and later neural latencies (e.g.,>250ms) flexibly vary their response patterns in accordance
with causal inference. An existing discrepancy regards whether groups emphasize anterior aspects
of the parietal cortex (Rohe & Noppeney 2015) or the inferior frontal lobe (Cao et al. 2019) as
the primary seat of causal inference.

Broadly, these neuroimaging studies are conceptually consistent with initial efforts to imple-
ment causal inference in biologically plausible neural networks. Early work in this area suggested
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that a decentralized and interconnected network (e.g.,MSTd and VIP) receiving input from pools
encoding unisensory stimuli (e.g., MT and PIVC, respectively) could perform optimal cue com-
bination (Zhang et al. 2016). This type of redundant encoding, not only of stimuli but also across
neural areas, is robust to local failure (versus, e.g., postulating LIP as the sole region of multi-
sensory integration) and seemingly consistent with the observation that while disrupting one area
may alter unisensory encoding, optimal cue combination is preserved (see Hou & Gu 2020 for
a review). More recently, this architecture has been updated to include known properties of ar-
eas computing visuo-vestibular heading. That is, in addition to cells with overlapping visual and
vestibular tuning functions (congruent cells), there is a large fraction of neurons showing oppo-
site tuning functions [offset by ∼180°; opposite cells (Gu et al. 2008)]. Opposite cells have been
postulated to be involved in (a) dissociating object motion during self-motion (e.g., Sasaki et al.
2017, 2019; see also Sasaki et al. 2020) [and recent neural network models suggest they may more
generally compute Bayes factors (Zhang et al. 2020; ratio between a segregation and integration
model of the world)] and (b) retaining access to unisensory likelihoods even after fusion (Zhang
et al. 2019; also see Hillis et al. 2002).

Ultimately, the precise detailing of the neural implementation of Bayesian causal inference will
depend on invasive neurophysiology, and thus on the development of behavioral paradigms capa-
ble of indexing causal inference in animal models. Along this line, Dokka and colleagues (2019)
recently demonstrated that nonhuman primates perform causal inference in determining head-
ing direction in the presence of independent object motion (i.e., object motion must be parsed
from optic flow caused by self-location for appropriate heading perception). Mohl and colleagues
(2020) similarly showed that both humans and rhesus monkeys make either a single or multiple
saccades to audio-visual targets depending on their disparity and in line with causal inference.
Interestingly, however, while human behavior was best explained by model averaging, nonhuman
primate behavior was most consistent with model selection. Whether this latter effect is a true
difference between humans and nonhuman primates, or whether it is a corollary of the fact that
the monkeys were trained on the specific task—and the fact that during training animals are re-
warded for committing to a single (and correct) worldview—will be an interesting area for future
study (see Noel et al. 2021a for an example experimental ecosystem that should allow the study of
causal inference without explicit training, and thus without putatively shaping task strategies).

Lastly, Fang and colleagues (2019) had nonhuman primates reach toward a target during dif-
ferent levels of visuo-proprioceptive disparities (i.e., real hand position versus visual rendering of
a dummy hand). Results suggested no bias during congruent visuo-proprioceptive presentations,
and a saturating level of reaching end-point error as the visuo-proprioceptive conflict grew.More-
over, these researchers recorded single units in the premotor cortex, and neural activity in this area
was similarly modulated by visuo-proprioceptive conflict. Overall, therefore, they showed behav-
ior and neural activity consistent with causal inference. Further, these results imply not only that
visuo-vestibular self-motion perception may be rooted in causal inference—the example par ex-
cellence in the study of cue combination and probabilistic coding (Dokka et al. 2019; Fetsch et al.
2009, 2012, 2013; Gu et al. 2006, 2008; Hou et al. 2019; Ma et al. 2006)—but also that aspects
more personal to the self, such as body ownership, may be rooted in this computation. Below we
further explore the “self” in self-motion.

SELF-LOCATION AS AN INITIAL CONDITION

As described so far, successful navigation via path integration depends on both the visual and
vestibular sense and on the integration of these to generate accurate and precise self-motion and
heading estimates. In turn, it is thought that the continual integration of self-motion velocity

118 Noel • Angelaki



estimates generates a dynamic sense of self-location (although this process is generally less studied,
particularly within a computational framework; see Lakshminarasimhan et al. 2018 andNoel et al.
2020a for recent exceptions).These processes are routinely considered to be central in the study of
spatial navigation. However, there is another critical condition that is seldom considered within
the spatial navigation literature—an initial condition. Our initial sense of self-location must be
correct to enable successful navigation.

Note, where “I” am and where my body is are typically one and the same. But they need not
be, as demonstrated by neurological phenomena such as heautoscopy, autoscopic hallucinations,
and out-of-body experiences (see Blanke & Metzinger 2009). Static (i.e., prior to movement) and
egocentric self-location is typically studied within the broader study of bodily self-consciousness
(Blanke 2012) and in conjunction with the subjective experience of body ownership and first-
person perspective of the environment (Blanke & Metzinger 2009). [The study of the location of
the body is also widely considered in the rodent literature, but mostly from an allocentric encoding
point of view (see Barry & Burgess 2014 for a review), and the dissociation between body and self-
position is difficult in rodents.] Philosophically, it has been argued that these three together—a
sense of being encapsulated within a body that belongs to “me” (body ownership), that is located
at a specific location within the external environment (self-location), and from where “I” perceive
(first-person perspective)—constitute the minimal requirement for a pre-reflective phenomenal
selfhood (Blanke & Metzinger 2009).

Empirically, this area of investigation was jump-started by a seminal contribution from
Botvinick & Cohen (1998), who demonstrated that by providing touch on participants’ real hand
while showing touch on a dummy hand, they could elicit ownership over a rubber hand (i.e.,
the rubber-hand illusion). Further, when subjects were asked to close their eyes and indicate the
location of their real hand, they were systematically biased toward the rubber hand (i.e., they ex-
perienced proprioceptive drift). Over the following 20 years a number of similar illusions have
been developed [e.g., with face, leg, tongue, and even tail in rodents (Wada et al. 2016, 2019)], and
most importantly, the computational and neural correlates of the rubber-hand illusion are being
established. Interestingly, recent models have casted the process of limb ownership as a process of
Bayesian causal inference (Samad et al. 2015) and have postulated that neural networks dedicated
to encoding the space near our bodies (see below) act as a coupling prior between our body and
what is near us (Noel et al. 2018a). As such, the computational principles (e.g., Bayesian observer
with particular priors and performing causal inference) underlying inferences of the world around
us and of ourselves within it may largely overlap. The recent neurophysiology recordings from
Fang and colleagues (2019) equally support this speculation by demonstrating that reaches during
visuo-proprioceptive conflicts were in line with causal inference and that firing patterns in the
premotor cortex reflected this computation.

Now, empirical results (Rohde et al. 2011) have shown that the subjective sense of embodiment
over a limb and the sense of where it is located in external space do not necessarily covary. And
more importantly, while studies derived from the rubber-hand illusion are interesting in and of
themselves, a change in the subjective location of one’s hand is still described from an unmoved
egocentric location and perspective. That is, it does not involve a manipulation of our reference
frame as a whole, a global translation in space. To tackle this more general question—one
that ought to impact the initial conditions during self-motion guided navigation—Blanke and
colleagues as well as Ehrsson and colleagues devised a manipulation similar to the rubber-hand
illusion but applied to the whole body. These researchers administered touch on either the back
(Lenggenhager et al. 2007) or chest (Ehrsson 2007) of participants who viewed synchronous (or
asynchronous in the case of controls) touch being applied far from their location (i.e., ∼2 m in
front of them). In both studies participants reported subjective experiences somewhat akin to
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out-of-body experiences (Blanke et al. 2004,De Ridder et al. 2007). Further, in Lenggenhager and
colleagues’ (2007) protocol, subjects were blindfolded and moved backward from their original
location. When asked to return to their initial spatial location via path integration, they overshot
their target, as if returning to a location in-between their initial physical location and that of the
avatar they felt body ownership over. That is, a visuo-tactile manipulation was able to induce
a subjective sense of embodiment over a virtual avatar and to perturb the subjective sense of
self-location.

To the best of our knowledge, single-unit recordings during full-body illusions such as those
described above have not been performed. This would be particularly interesting, not only for
the full-body (versus body-part) ownership piece but more so for the corollary that these illusions
have on what have been denominated the spatial aspects of bodily self-consciousness: self-location
and first-person perspective (Blanke 2012). In this vein, there is a well-established neural circuit
that largely overlaps with that for optic flow and self-motion processing that is widely considered
to play a fundamental role in bodily self-consciousness generally, and in its spatial aspects in par-
ticular. Fang et al. (2019) recorded from ventral premotor and found correlates of arm-reaching
errors. Approximately 20 years earlier, Graziano et al. (2000) recorded single-unit activity from
parietal area 5 during a rubber-hand illusion and found that the activity of these neurons was in-
fluenced by the location of the rubber hand after synchronous but not asynchronous (control)
visuo-tactile stroking. Both these reports concern body-part (i.e., hand) ownership and not self-
location. Remarkably, however, these areas house neurons encoding for peri-personal space (PPS),
and there seems to be a strong association between PPS and self-location.

PPS is the space immediately adjacent to and surrounding one’s body (Serino 2019).This space
is encoded by a frontoparietal network composed of multisensory neurons in ventral premotor
cortex (areas F4 and F5; Fogassi et al. 1996), VIP (Colby et al. 1993), and 7b (Hyvärinen 1981),
among other areas (see Cléry et al. 2015b for a recent and extensive review). These neurons re-
spond both to touch on the body and to visual or auditory stimuli when these are presented near,
but not far, from one’s body. That is, they map the body and the space near it (∼30 cm in depth,
but this is body-part specific and highly heterogeneous). The receptive fields of these neurons are
anchored to the body, in that visual responses are largely independent of gaze position (particu-
larly true in premotor areas) and instead follow the movement of specific body parts or the body
as a whole (Graziano et al. 1997). These areas receive projections from earlier motion processing
regions such as MSTd, and as a consequence it is no surprise that they are velocity (Fogassi et al.
1996, Noel et al. 2018c) and motion-direction (Duhamel et al. 1998) selective (particularly sensi-
tive to looming stimuli). Similarly, both the premotor areas and VIP are activated by large-field
optic-flow stimulation and by vestibular input (Chen et al. 2011). Finally, the premotor neurons
in this network seem to preferentially respond during voluntary as opposed to passive head ro-
tation (Graziano et al. 1997). As a whole, therefore, there is a spatial code that specifically maps
the body and the space near it (and seems involved in body ownership; Graziano et al. 2000, Fang
et al. 2019), and this code is largely overlapping and interdependent with the areas highlighted
earlier as encoding self-motion and heading perception (e.g., optic flow and vestibular translation
responses, differentiating between active and passive movement).

Psychophysical methods have been developed to study PPS in humans, and many of these rely
on indexing tactile detection facilitation when exteroceptive sensory signals (audition or vision)
are presented near as opposed to far from the body (Serino et al. 2015, 2018). Researchers have
used these methods to replicate in humans many of the earlier findings from the monkey electro-
physiology literature. In addition, these methods have advanced our understanding of PPS and
self-location in two aspects. First, Noel et al. (2015) behaviorally mapped peri-trunk space en-
coding in the front and backspace during a full-body illusion. As expected, participants reported
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feeling ownership over a virtual avatar placed in front of them, and more importantly, their PPS
shrank in the back while it expanded in the front—as if translating forward to encode not the loca-
tion of their physical body but their subjective self-location.This finding is similar to observations
of neural responses during the rubber-hand illusion (Graziano et al. 2000) and has been replicated
while rendering subliminal both the stimuli eliciting the full-body illusion and the stimuli used
for mapping PPS (Salomon et al. 2017). Second, a plethora of results have highlighted the incred-
ible plasticity of PPS (Noel et al. 2020b), remapping due to personality traits, and the perceived
danger of our environment (e.g., Sambo & Iannetti 2013), our social context (e.g., Teneggi et al.
2013, Noel et al. 2021b), and the state space of potential actions (see Bufacchi & Iannetti 2018,
Serino 2019 for reviews). Given these observations, the general agreement is that PPS serves as an
interface between self and environment, is involved in defensive behaviors (see Graziano &Cooke
2006), and likely computes time-to-contact or impact prediction (Cléry et al. 2015a).

The latest interpretation of PPS as involved in impact prediction may be colored by the fact
that PPS is most sensitive to looming stimuli and often studied in static individuals. In a more
active setting, however, we would attribute cause to the agent and not to the external environ-
ment, and thus we may rephrase this interpretation as PPS predicting the future location of the
body (and not the future location of objects in the environment). In fact, PPS remapping has been
shown to anticipate arm movement (Brozzoli et al. 2010) and the PPS has been shown to enlarge
during full-body actions, such as walking (Noel et al. 2014). This emphasis on PPS as (a) encoding
subjective self-location and (b) anticipating future self-locations may be particularly fruitful in em-
bedding the study of the bodily self within the study of self-motion, and conversely, in furthering
our understanding of path integration. That is, incoming sensory evidence is by definition ego-
centric, and the parietal cortex seems outfitted to process this information: from edge detection to
motion detection to a multisensory estimate of self-motion. However, eventually this egocentric
information must converge with the spatial codes of the hippocampal formation (e.g., grid and
place cells). Thus, just as clear spatial codes exist in the limbic system (e.g., place, grid, border,
and speed cells), it is useful to define and identify spatial codes that exist in the parietal cortex. In
PPS, we have an egocentric encoding of self-location and future potential locations (see Moon
et al. 2020 for recent evidence suggesting that bodily self-consciousness impacts the tuning of
spatial codes in the hippocampal formation). Relatedly, reinforcement learning models have em-
phasized that codes that represent future relations may be particularly useful in navigating state
spaces (Dayan 1993), and within this framework some (Behrens et al. 2018) have reinterpreted
place cells as encoding an animal’s best estimate of where it will be in the immediate future, one
step ahead, as opposed to its current location. Arguably, this desideratum is accomplished in pari-
etal cortex by the PPS network.While subjective self-location may be encoded by a population of
place cells (Robinson et al. 2020), it may be encoded in individual PPS neurons.

A last aspect worth brieflymentioning related to the study of self-location is that of first-person
perspective. This can broadly be defined as one’s outlook on the environment, an outlook that is
directed at external components of the environment (see Blanke & Metzinger 2009 for more
detail). Most often one navigates in their heading direction, and thus first-person perspective is
thought to be an important component of self-location (but autoscopic hallucinations and out-of-
body experiences are two neurological conditions defined by a differential relationship between
self-location and first-person perspective; Blanke &Metzinger 2009). Importantly, however, first-
person perspective is not exclusively defined by one’s visual viewpoint. To demonstrate this, Ionta
and colleagues (2011) had participants experience a full-body illusion while lying in a supine po-
sition. Subjects viewed an avatar in virtual reality that provided conflicting information; while
gravity on the participant’s real body suggested a vector pointing downward, the visual image sug-
gested that gravity was pointing upward for the seen body. During the synchronous visuo-tactile
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condition, participants reported feeling ownership over the virtual avatar. Most interestingly, ap-
proximately half of the subjects perceived themselves to be lying under the seen avatar, and thus
during the illusion they perceived themselves as moving upward. The other half of the subjects
were more influenced by observed rather than felt gravity, and thus in seeing the back of an avatar
in front of them, they felt as if they were viewing this subject from above. During the illusory
condition, they felt their self-location to be closer to the ground than in the asynchronous control
condition (Ionta et al. 2011). Together, these data show that subjective self-location can generally
be distorted by visuo-tactile stimulation, and further that experienced direction of first-person
perspective depends on a balance between visual and vestibular cues, and this outlook may affect
the perceived direction of self-motion.

OUTLOOK AND CONCLUDING REMARKS

Admittedly, our review on the state of knowledge regarding the neural underpinning and com-
putation of self-motion is broad in scope. Importantly, we find this to be an imperative toward
building true knowledge and consider that the ability to leverage implementation, algorithmic,
and computational (maybe even philosophical!) insights to reciprocally inform one another is a
true asset—maybe even the envy of other fields of study.

We have detailed the known cortical circuit involved in visual optic-flow processing as well as
the subcortical and cortical networks involved in vestibular processing. Perhaps more importantly,
we have highlighted that visuo-vestibular integration is a necessity for accurate and precise self-
motion-guided navigation. Gratifyingly, studying how these senses are combined for the purpose
of self-motion estimation has allowed more general sketching of the common principles underly-
ing cue combination as a whole, and hopefully it has informed the study of probabilistic coding.

Of course, however, for as much as we have learned, there is so much more we do not yet un-
derstand. As underlined in previous sections, the exact roles of different elements in the neural
circuitry are not yet clear. Similarly, there seems to be an inherent tension between information
converging in certain areas for or prior to integration (e.g., LIP) versus more distributed schemes.
The neural underpinning of causal inference, a general computation for attributing likely causes
to observations—particularly relevant for path integration during independent object motion, but
applicable to all sorts of problems—is not understood. Further, our understanding of basic ele-
ments such as how self-motion velocity estimates get accumulated over protracted periods of time
or how initial conditions are set (i.e., self-location) are only in their infancy and not always con-
sidered. In fact, a recent psychophysical study in humans has suggested that only optic flow with
time-varying velocity (i.e., evolving sequence of flow) is informative vis-à-vis heading direction
(Burlingham & Heeger 2020). This example highlights that we do not yet quite understand even
which particular elements of visual signals guide self-motion. Thus, the challenges moving for-
ward are numerous, and overcoming them will be important in furthering our understanding of
brain function. The next decades should see major advances, and we couldn’t be more excited to
go along for the ride.
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