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Abstract

Objects are the core meaningful elements in our visual environment. Classic
theories of object vision focus upon object recognition and are elegant and
simple. Some of their proposals still stand, yet the simplicity is gone. Recent
evolutions in behavioral paradigms, neuroscientific methods, and compu-
tational modeling have allowed vision scientists to uncover the complexity
of the multidimensional representational space that underlies object vision.
We review these findings and propose that the key to understanding this
complexity is to relate object vision to the full repertoire of behavioral goals
that underlie human behavior, running far beyond object recognition.There
might be no such thing as core object recognition, and if it exists, then its
importance is more limited than traditionally thought.
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1. INTRODUCTION

The recognition of objects has long been considered a relatively unitary goal of the visual sys-
tem. Together with the underlying neural pathway, referred to as the ventral visual “what” path-
way, object recognition, as the major component of object perception, is usually contrasted with
the “where/how” dorsal pathway computations that evolved for the purpose of more spatial and
action-related tasks (e.g., Goodale & Milner 1992). Based on this assumption, research in object
vision has attempted to understand how the ventral pathway solves the object recognition problem
and what code is used to represent the countless objects we constantly, and effortlessly, perceive
from the moment we open our eyes. Here, we argue that to better understand human object vi-
sion, we need to consider object recognition within the context of the human’s unique and rich
cognitive and behavioral repertoire. Objects and their features are represented for the purpose of
many goals, and this is reflected in the presence of very rich representations.

As a real-life example, think of the following. On your daily commute to work, you encounter
many objects such as buildings, cars, traffic lights, people, and so on. Depending on a given goal,
your brain extracts differential information from these objects. Some objects are likely to be ex-
ploited as landmarks during navigation (e.g., crossroads, buildings, streets), and others are to be
processed for their functional and action-related properties (e.g., your office key, the elevator but-
ton, the university’s badge). Surely, your brain needs to recognize your office’s key in order to
exploit useful information from it, but the type of information extracted from the key (i.e., action
related) is different from the type of information extracted from a busy crossroad (i.e., navigation).
In addition, many objects might serve multiple goals depending on the context. Since the visual
system does not just recognize objects for the sake of it, we need to consider how object represen-
tations can ultimately support behavioral goals in order to understand the object representational
code. In other words, object recognition is not a unitary problem that we can hope to solve with
a set of general properties equally useful in characterizing all objects.

This proposal is also supported by most recent developments in computational neuroscience.
Deep convolutional neural networks (DCNNs) have impressed the worldwide community with
their ability to reach human-level image classification behavior, yet they fail to explain the com-
plexity of human visual cortex organization. Despite initial evidence suggesting interesting sim-
ilarities in DCNNs’ ability to capture the large-scale object space observed in the brain, further
studies are now uncovering that large gaps still remain. We provide evidence suggesting that our
framework extends to computational neuroscience and has the potential to guide the creation of
DCNNs that might better capture human object vision. Specifically, the current computational
gap between brain and DCNN representations can be interpreted in terms of training goals and
scope.
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In Section 2,we first give an overview of how decades of research have considered object recog-
nition the ultimate computational goal of the ventral visual pathway and how this view has in-
fluenced the parallel progress of computational modeling in object vision. In Section 3, we go
on to describe the diversity of content that characterizes object representations, highlighting the
relevance of multiple and overlapping dimensions that span from low-level visual properties to
high-level semantic attributes. In Section 4, we lay out further diversity in the ventral pathway
representational space explained by embedding object recognition in the larger context of func-
tional behavior. We progress in parallel by alternating between a cognitive and computational
focus, which are necessarily interrelated and back up similar conclusions.

2. OBJECT RECOGNITION AND THE VISUAL VENTRAL PATHWAY

The question of how we can effortlessly recognize myriads of objects within a few milliseconds,
with high accuracy, and despite the huge variation of input coming from our eyes, is a fascinat-
ing one that has attracted the attention of many brain scientists. Initial psychological attempts to
understand object perception integrated behavioral findings with quantitative approaches (e.g.,
Attneave 1957, Shepard & Chipman 1970), but since the seminal discoveries made by Hubel &
Wiesel (1968) for simple and complex cells, cognitive neuroscience and computational neuro-
science have become increasingly important for the scientific understanding in this domain.Here,
we provide a general summary of the progress made in the last decades in this interdisciplinary
endeavor.

From early on, object recognition has been the focus of investigations in visual information
processing, and there have been elegant yet relatively narrow views on the type of representation
that needs to be built to achieve this goal (e.g.,Marr &Nishihara 1978,Hoffman&Richards 1984,
Biederman 1987). Marr (1980) described how this information processing would culminate in a
3Dmodel representation as an object-centered description of the three-dimensional structure and
organization of a viewed shape.While recent overviews consider muchmore elaborate underlying
representations, the focus upon object recognition has remained—sometimes rephrased as core
object recognition (DiCarlo et al. 2012).

The ventral visual pathway plays a critical role in object perception, as shown by seminal re-
search in neuropsychology and in neurophysiology (Mishkin & Ungerleider 1982, Goodale &
Milner 1992). Throughout the ventral stream’s hierarchical processing in monkeys, the responses
of neurons become increasingly selective from mid-level to high-level features; neurons in V4 re-
spond to form, texture, and color (Desimone et al. 1984, Hu et al. 2020) and more anteriorly, in
inferior temporal (IT) cortex, to object identity (Gross et al. 1972,Hung et al. 2005).Early on, neu-
rons with very different selectivity seemed mostly intermingled in IT with little clustering (Baylis
et al. 1987). Yet, neuropsychological case studies showed that representations of different object
categories can be dissociated neuroanatomically. Focal brain lesions within ventral visual cortex
cause category-specific recognition deficits (Caramazza& Shelton 1998) that cannot be accounted
for by visual differences in the stimuli such as image complexity and/or familiarity with certain
categories (Laiacona et al. 1993).More recently, transcranial magnetic stimulation confirmed that
temporarily disrupting localized areas in visual cortex results in transient category-specific recog-
nition deficits (Pitcher et al. 2009).

Neuroimaging results do also point to a computational progression from processing low/mid-
level features relevant to supporting general object recognition to neural substrates devoted to
elaborating information on specific object categories (Figure 1). The lateral occipitotemporal
complex (LOC) appears to encode object shape regardless of category; it responds equally well
to (a) an object, whether it is a 3D image or a 2D line drawing (Kourtzi & Kanwisher 2001);
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Figure 1

Visual processing hierarchy as emphasized in traditional models of core object recognition. There is a
progression from processing of basic visual dimensions at lower levels (panels a, b) to a representation of
object category and meaningful object dimensions at higher levels (panels c, d). Basic visual dimensions
include (a) retinotopic position, which is the main organizing feature of visual areas V1 to V4 (image shows
medial view of posterior occipital pole) as well as (b) dimensions such as orientation and spatial frequency.
(c) High-level areas show strong focal selectivity for categorical distinctions (image shows the typical
locations of selectivity areas, indicated with pictograms) and (d) contain multidimensional representations of
objects (image shows a morphing space constructed with four objects: church, gorilla, hand, and hat). (e) A
similar progression exists in deep convolutional neural networks that are trained in complex visual tasks such
as image classification. Teal and green boxes on the left represent typical convolutional processing steps
(respectively convolution and max pooling), which feed into fully connected layers toward the right. Dotted
lines illustrate the interlayer connectivity. Panel a adapted from Gomez et al. (2018) (CC BY 4.0). Panel b
adapted from http://apps.usd.edu/coglab/schieber/images/sf_poster_3x6.jpg with permission from
Frank Schieber.
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(b) the whole object as well as its parts (Grill-Spector et al. 1998); and (c) familiar and unfamiliar
object shapes (Malach et al. 1995). Around and partially overlapping with LOC, occupying a large
part of lateral and ventral occipitotemporal cortex (OTC), there are multiple category-selective
areas, providing a confirmation of the predictions from earlier neuropsychological work.However,
category selectivity has been reported only for a limited number of categories, including faces
(Kanwisher et al. 1997), bodies (Downing et al. 2001), scenes (Epstein & Kanwisher 1998), tools
(Chao et al. 1999), hands (Bracci et al. 2010), and letter strings (Cohen et al. 2002). Each of these
categories is associated with multiple category-selective regions (Rosenke et al. 2021). For other
object categories (cars, flowers, etc.), there are no regions identified with strong object preference.
This does not directly translate to lack of selectivity for other object categories. Single neurons
show selectivity for relatively fine object changes (e.g., Kayaert et al. 2005), and even in fMRI
many different categories can be differentiated using sensitive analysis methods such as multi-
voxel pattern analyses (Cox & Savoy 2003). Yet, the selectivity and clustering seem particularly
strong for a small subset of categories. Further developments in spatial resolution of brain imaging
(e.g., scanning at higher magnetic fields), in analysis methods, and in the development of large-
scale data sets containing the neural responses to thousands of images will very likely increase the
number of categories and stimulus distinctions for which selectivity is found. This has recently
been illustrated by the presence of selectivity for food in OTC ( Jain et al. 2022, Khosla et al.
2022).

Quantitatively speaking, the dominance of a few categories can be understood when consid-
ering core object recognition as the one and only computational process at work. Strong cate-
gory selectivity might reflect exceptional needs for within-category discrimination. Rosch et al.
(1976) suggested that most objects are first recognized at the basic level (e.g., cats, dogs, persons).
Biederman (1987) estimated that there might be around 1,500–3,000 basic-level categories, and
that most of these categories might only contain a few discriminated types or exemplars. We can
compare these numbers with the recent estimate that people typically know around 5,000 faces
( Jenkins et al. 2018).Given these numbers, it might be reasonable that the neural territory devoted
just to the domain of faces would be comparable to the resources shared by thousands of other
object categories. However, the same reasoning might not work for other domains. In particular,
it seems unlikely that we would specifically recognize thousands of bodies or hands.

These general characteristics in neural information processing in the human brain have been
modeled in DCNNs (Figure 1). A very relevant early model is the HMAX standard model
(Riesenhuber & Poggio 1999), which proposed an alternation of linear and nonlinear pooling
mechanisms as an extension of the simple and complex cell scheme proposed by Hubel &Wiesel
(1968). The HMAX model succeeded in capturing many of the basic phenomena found in elec-
trophysiological studies in monkeys, such as tolerance for changes in object size and a graded
tolerance for the viewpoint from which an object is seen. Yet, it failed to simulate more complex
and fine-grained aspects of object vision, including the most prominent features and dimensions
that determine whether humans consider two shapes as representing the same object or as being
similar or not (Kayaert et al. 2005, Op de Beeck et al. 2008c)—properties that are often referred
to as representational geometry.

In the last decade, deeper models (i.e., models with more hierarchical layers) have been devel-
oped. The typical approach is to train DCNNs on image classification with more than a million
images that cover one thousand classes (ImageNet; Deng et al. 2009), a task on which DCNNs
have outperformed other computer vision approaches since 2012 (Krizhevsky et al. 2012). A thou-
sand categories is a decent number if compared with the aforementioned estimate obtained for
humans, and it might be better than the knowledge scope in themost advanced nonhuman primate
model: monkeys raised and tested in captivity.

www.annualreviews.org • Understanding Human Object Vision 117



PS74CH05_Op_de_Beeck ARjats.cls November 28, 2022 10:43

With such networks, computational neuroscientists canmimic themajor principles of informa-
tion processing and how representations are transformed along the visual pathway starting from a
2D image. Initial convolutional layers contain filters that analyze the image or the previous layer
responses locally, and the last layers are typically fully connected so that a unit has access to the
responses of all units from the previous layer. This arrangement is conceptually similar to the in-
crease in receptive field size that characterizes the successive processing stages in the human visual
system (for review, see LeCun et al. 2015).

The information processing in DCNNs trained on object recognition corresponds to some
degree with processing in the human and primate brain. In contrast to earlier networks, the rep-
resentational geometry in these DCNNs overlaps to some extent with how humans perceive and
represent objects and their shape (Kubilius et al. 2016). Representations in early convolutional
layers correspond best with retinotopic visual areas, whereas fully connected layers capture im-
portant aspects of representations in higher-level areas in lateral and ventral occipitotemporal
cortex (Güçlü & van Gerven 2015, Kar et al. 2019, Schrimpf et al. 2020, Lindsay 2021). Yet, the
correspondences are not perfect, and the models can be fooled with adversarial images that would
have no or at least less of an effect for human observers (Nguyen et al. 2015,Dujmović et al. 2020).
Several approaches have been shown to further improve the correspondence between the repre-
sentations inDCNNs and human vision, including (a) the addition of human-like limitations, such
as dealing with noisy computations or an initial restriction to seeing only low spatial frequencies
(e.g., Kim et al. 2020, Avberšek et al. 2021); (b) a specific focus on global shape as opposed to local
features or texture (Geirhos et al. 2018, Baker et al. 2020); (c) the addition of feedback connec-
tions (Kietzmann et al. 2019); and (d) training with more ecologically valid image databases such
as Ecoset (Mehrer et al. 2021). Nevertheless, the effect size of many of these improvements seems
relatively small.

The traditional DCNN architecture and training regime does not provide sufficient informa-
tion about why we would see the emergence of category-selective regions where neurons with
similar preferences cluster. In neuroscience it is often proposed that clustering occurs because
it helps minimizing the wiring cost of intracortical connectivity (Chklovskii & Koulakov 2004).
When topographic DCNNs with such constraints are trained in image classification, they develop
category-selective regions (Lee et al. 2020, Keller et al. 2021, Blauch et al. 2022). Even without
such constraints, more traditional DCNNs show separated, module-like subsystems for face and
object processing when they are trained in both domains (Dobs et al. 2022). Normally, DCNNs
are trained for object classification, thus suggesting that the need for core object recognitionmight
be sufficient to explain many of the properties of the human visual system. It does not seem nec-
essary, though, because internal representations emerging in neural networks trained to generate
naturally looking images or in networks trained in an unsupervised manner also tend to represent
visually dissimilar images of the same category as being similar (Konkle & Alvarez 2022).

3. HOW ARE OBJECTS REPRESENTED IN THE VENTRAL
VISUAL PATHWAY?

The previous section suggests that objects are represented in terms of high-level dimensions and
that useful high-level representations would abstract away from low-level feature selectivity as it
exists in lower processing stages, which was an assumption in classic theories of object recogni-
tion (Marr & Nishihara 1978, Biederman 1987). Experimental studies in monkeys motivated by
these theories emphasized that IT neurons are not very sensitive to low-level dimensions such
as stimulus position and size (e.g., Ito et al. 1995), and similar conclusions were drawn from hu-
man fMRI (Grill-Spector et al. 1999). However, this situation changed in the 2000s, starting with
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several studies showing that IT neurons have surprisingly small receptive fields when probed with
relatively small stimuli (Op de Beeck & Vogels 2000, DiCarlo & Maunsell 2003), and object rep-
resentations in object-selective cortex are constrained by their position in the visual field (Kravitz
et al. 2013).

Since then, evidence has come around for selectivity in OTC for a wide range of features that
spans the full range, from low-level features typically associated with primary visual cortex all the
way up to semantic object properties (Figure 2). Studies in the literature have varied in howmuch
they emphasized the low-level selectivity versus high-level properties, and in some cases they ar-
gued that a particular level of selectivity is most important or is the primary factor from which

Figure 2

Higher levels of processing show selectivity for a wide variety of object and image properties, ranging from
basic visual dimensions to semantic dimensions. The activity map on the left visualizes one of the most
prominent categorical distinctions made in high-level visual cortex: faces versus scenes or buildings. The
diagram on the right illustrates the range of features for which these areas have shown selectivity, with basic
visual features at the bottom and semantic properties at the top. The bottom-up order of the features is
based upon the first level of processing with which that feature is typically associated, starting at the retina
for eccentricity bias and spatial frequency (adapted from Hasson et al. 2002, Canário et al. 2016, respectively,
with permission from Elsevier), V1 for orientation [adapted from Goffaux & Dakin 2010 (CC BY 4.0)],
V2-V4 for curvature, V4-LOC for shape, and lateral and ventral OTC for category, animacy, and real-world
size (Konkle & Oliva 2012). The purple-to-green color-coded label of each feature is an ordinal indication of
how many studies are found in a literature search aimed at studies of high-level areas (purple, a few; gray, a
few hundred; green, thousands). Red, blue, and orange boxes represent the feature selectivity of face-,
scene/building-, and body-selective regions, respectively. The top right image is adapted from https://www.
gettyimages.it/detail/foto/tourist-in-london-immagine-royalty-free/1285355810.
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other selectivity emerges. For example, it has been suggested that the existence of an eccentric-
ity organization early in development, together with the tendency to foveate faces and words but
not scenes, has caused face, word, and scene selectivity to emerge in specific anatomical locations
(Hasson et al. 2002, Arcaro & Livingstone 2021). Moving all the way up to semantic accounts,
other scholars have proposed that the organization of high-level visual cortex is driven by connec-
tivity with domain-specific networks for social cognition (faces), language (words), and navigation
(scenes and landmarks) (Mahon & Caramazza 2011, Saygin et al. 2012, Peelen & Downing 2017,
Powell et al. 2018). It is not necessary to consider these options as being mutually exclusive, and
multiple factors might be at work together (Op de Beeck et al. 2019).

To test the contribution of object visual properties in OTC object space, one approach has
been to remove the influence of category information by presenting the object’s structural prop-
erties only. Results from these studies (see Figure 2 for illustration) show coherent feature maps
that nicely correlate with category responses throughout OTC (Rajimehr et al. 2011, Nasr et al.
2014). Face selectivity overlaps with a preference for low spatial frequencies (SF) and curvilin-
ear feature maps, whereas scene selectivity overlaps with high SF and rectilinear feature maps.
Face- and scene-selective regions are also different in terms of mid-level feature selectivity, such
as texforms (texture synthetized images that preserve texture information but cannot be recog-
nized at the category level) (Long et al. 2018). Likewise, Jagadeesh & Gardner (2022) show that
information supporting object categorization in OTC is accessible, but its representation appears
to lack sensitivity to the spatial arrangement of features that characterize a specific object, thus
suggesting a representation of complex texture-like properties. These findings add to the many
studies showing that eccentricity maps that characterize low-level visual cortex for central versus
peripheral vision can predict the anatomical location of category-selective representations inOTC
(Levy et al. 2001,Hasson et al. 2002). The common denominator for exponents of visual accounts
relies on the assumption that there is nothing special about category-selective representations
in themselves. OTC is a general-purpose machine to recognize and categorize all objects; hence,
category-related effects observed inOTC are simply the tip of an iceberg whose underlying neural
geology can be better explained by distributed feature maps—of low and mid-level features—that
span across the full OTC territory (Levy et al. 2001, Malach et al. 2002, Rajimehr et al. 2011,
Baldassi et al. 2013, Nasr et al. 2014, Arcaro & Livingstone 2021). One possible criticism is that
for some of the feature biases it has not been established that the response strength and amount
of selectivity are equally strong or close to the response strength and selectivity at the category
level. Yet, if we combine selectivity for multiple features together, it is conceivable that together
they might explain the strength of selectivity at the category level even without the need to invoke
nonlinear mechanisms that further amplify category selectivity (Op de Beeck et al. 2008b). For
example, Hasson and colleagues (2002) already showed that the eccentricity preference in face-
and scene-selective cortex might be as strong as the category selectivity.

There is a problem, though, with such a low-level account when we consider the combina-
tions of feature biases. That is, one has to consider whether this account explains the exact com-
binations of preferred features. Such a description can work if the combination of feature pref-
erences is inherited from early areas like V1. In some cases, it might be. For example, Arcaro
& Livingstone (2021) suggested that a preference for curvature might go together with foveal
receptive fields, even in early visual areas. However, in other cases this does not work. In early
vision, foveal responses go together with a preference for higher spatial frequencies (Arcaro &
Livingstone 2017). The receptor characteristics and density in the retina preclude a sensitivity for
higher spatial frequencies at higher eccentricity. However, in high-level visual cortex, the foveal
bias in face-selective cortex goes together with a preference for lower spatial frequencies, and vice
versa in scene-selective cortex (i.e., peripheral bias and preference for higher spatial frequencies;
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Canário et al. 2016). Such peculiar feature preferences suggest that there is another reason we see
these combined feature preferences. Bracci and colleagues (2017) suggested that this reason can
be found at the level of category coding. In this framework, at least some of the feature maps of
object structural properties observed in OTC might be a result of category specificity/preference
rather than its cause. In other words, through visual experience, category-selective areas develop
feature-specific biases due to the lifelong exposure to natural co-occurrences of an object (e.g.,
face) and its structural properties (e.g., oval shape). Note that this assertion does not exclude the
possibility that some of the feature biases, such as eccentricity, might have played a role in driving
where selectivity clusters have emerged.

While it is worth paying attention to the evidence for feature biases, we should not forget that
most studies of high-level visual cortex have focused upon the category level (see green text in the
right side of Figure 2). This is how the functional architecture of lateral and ventral OTC was
first defined, with areas selective for specific categories. Evidence for category-selective deficits
following focal lesions in OTC (Barton et al. 2002) and fMRI evidence for category selectivity
and behavioral effects of object recognition (Yovel & Kanwisher 2005) do speak in favor of a
strong role for categorical coding. The category-level organization is not just one level, though.
The object space in OTC can be understood as a hierarchical semantic space. At the superordinate
level, the object space in OTC is separated along the mid-fusiform sulcus: The lateral fusiform
gyrus (FG) represents animate entities, and the medial FG represents inanimate entities. A strong
role of animacy has been confirmed in multiple studies.Within this macro division, at the ordinate
level different islands of selectivity can be found for animals, faces, and bodies within the animate
domain and for objects, tools, and places within the inanimate domain (e.g., Kriegeskorte et al.
2008, Grill-Spector & Weiner 2014).

Several studies have tried to disentangle the role of shape and semantic properties for this
superordinate categorical dimension of animacy. Shape and semantics are highly correlated in
our visual experience of objects. Faces are round and characterized by a unique configuration
of features; scenes are rich in rectilinear shapes. Attempts at orthogonalizing object shape and
semantic properties have revealed the importance of both dimensions (Bracci & Op de Beeck
2016, Proklova et al. 2016). A recent study in nonhuman primates confirmed the contribution of
both dimensions and more specifically defined the most dominant visual dimension (Bao et al.
2020), summarizing the first two dimensions of object space by category information (animate–
inanimate) and object aspect ratio (stubby–spiky). The role of aspect ratio fits with earlier monkey
fMRI work showing selective regions for stubby and spiky objects (Op de Beeck et al. 2008a). The
conceptualization in terms of these two dimensions is also in line with previous reports pointing
to continuous OTC maps for semantic categories (e.g., animacy continuum) as well as for aspect
ratio of objects (Kriegeskorte et al. 2008, Op de Beeck et al. 2008c, Connolly et al. 2012, Baldassi
et al. 2013, Sha et al. 2015) or shape more in general (Bracci &Op de Beeck 2016). Together, these
results point to an important role played by these dimensions in OTC object space (Figure 3).
Note that Figure 3 shows the best examples for this proposal; in other cases only one of these
dimensions is seen, such as only aspect ratio (Baldassi et al. 2013) or only animacy (human fMRI
data in Kriegeskorte et al. 2008).

However, it would be a mistake to believe that any small set of dimensions would provide a
good characterization of object representations, be it aspect ratio (or shape in general) and ani-
macy or any other set. Useful object representations show tuning for a rich repertoire of features
and dimensions, including low-level feature biases,many shape properties, and amultidimensional
categorical space. Finding a few primary dimensions is often a consequence of a study design that
neglects certain dimensions. As a simple example, the proposal in terms of two object dimensions,
animacy and aspect ratio, came from a study that showed all stimuli at the fovea (Bao et al. 2020). If
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Figure 3

Out of all object properties that are represented in primate occipitotemporal cortex, two dimensions seem
particularly important: animacy and aspect ratio. This finding was observed in studies with very different
designs and methods, including (left) monkey single-cell recordings with a broad set of object images
(adapted from Kriegeskorte et al. 2008 with permission from Elsevier), (middle) human fMRI with a design
that explicitly dissociates shape from category membership (adapted from Bracci & Op de Beeck 2016), and
(right) monkey fMRI and single-unit recordings (adapted from Bao et al. 2020 with permission from
Springer). The two dimensions are plotted so that animacy decreases from left to right, and aspect ratio [as
defined by Bao et al. (2020)] decreases from top to bottom.

object position had been varied, then position would also have been an important factor.Thus, ob-
ject representations are much higher-dimensional than one would deduce from such experiments.

The relevance of high-dimensional representations with feature selectivity at multiple levels
is confirmed by computational modeling with DCNNs. Hong and colleagues (2016) investigated
properties such as position, size, and pose, and they showed that both monkey inferior temporal
population responses and DCNNs show an increase along the processing hierarchy in terms of
how easily such properties can be decoded. Population activity in inferior temporal cortex (or a
fully connected DCNN layer) is more useful than activity in primary visual cortex (or a convo-
lutional layer) to determine where an object is. This might seem counterintuitive, but note that
the coding of position here is not only the ability to say that something is present in an otherwise
empty scene, for which V1 responses would be perfectly fine, but also the ability to localize an
object in a complex and cluttered scene.

Li & Bonner (2021) trained a classifier to respond selectively to scenes using as input the
responses of a late convolutional layer, a layer that arguably represents features of a moderate
complexity. This approach can be seen as a model of how category selectivity (in this case, scene
selectivity) can emerge by taking responses from a nonselective filter bank like V4. Interestingly,
the resulting classifier not only was selective for other scenes but also showed a complex profile
of selectivity for many scene-relevant features that is reminiscent of what has been demonstrated
for the human parahippocampal place area.

Likewise, Zeman et al. (2020) showed that fully connected DCNN layers show a joint tuning
for shape and category in human OTC, as found in the human brain by Bracci & Op de Beeck
(2016). Also, in this case, similar to the findings of Hong and colleagues (2016), the tuning of more
complex aspects of shape actually increases in the brain regions that show clear category selectiv-
ity. The better a representation is for object recognition, the richer it is. This assertion suggests
that there are many reasons to believe that object representational spaces are high-dimensional.
When low-dimensional spaces are reported, results are often caused by using pure noise (useless)
representations as a baseline and by working with a relatively small and very ordered stimulus
space. In the latter case, a useful internal representation should indeed also be low-dimensional
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(e.g., Op de Beeck et al. 2001), and revealing such a regularization in biological and modeled
brains is important. However, it is the regularization that is the key point in such studies, not the
low dimensionality. The full object space turns out to be very high-dimensional in addition to be-
ing very ordered, at least when probed with sufficiently elaborate stimulus designs. For example,
Morgenstern and colleagues (2021) used over 100 shape features and a model with 22 linear
combinations of these features to characterize just one aspect of objects, their perceived shape.
Whereas aspect ratio was (again) present as an obvious dimension in a low-dimensional plot of
the shape space, a model with just one or a few dimensions performed poorly. Likewise, Hebart
and colleagues (2020) identified 49 highly reproducible object dimensions that explain most vari-
ance in human similarity judgments. Dimensions varied substantially in complexity, from labels
such as “colorful” and “round” up to “animal-related” and “eating-related.” As a computational
argument, Elmoznino & Bonner (2022) observed that DCNNs with a higher dimensional repre-
sentation show better generalization performance to previously unseen stimuli.

What could be the reason for an object space with such a high dimensionality? At first sight this
might be counterintuitive. An object code that allows fast object recognition might be more effi-
cient if all objects could be described by a general set of dimensions. However, object recognition
does not happen out of context. Therefore, to understand the code used by the brain to represent
objects, we need to consider object recognition in the context of higher-level behaviorally relevant
computations. We address this point in the next section.

4. A PICTURE IS WORTH A THOUSAND REPRESENTATIONS

Our visual behavior is guided by our need to move in and interact with our environment. Thus,
representations that support object recognition might be entangled with higher, and more com-
prehensive, domain-specific representations that support our actions and spatial and social behav-
ior.We suggest that these two operational levels might not be separated from each other. In other
words, the way our brain represents objects to support recognition might be intrinsically related
to the way object representations support the different behavioral domains. Hence, state-of-the-
art object recognition frameworks alone might not be sufficient to fully explain the content of
our percepts and the large diversity of representations that coexist in the human brain (Figure 4).
Evidence already present in the literature supports this shift of perspective based on the richness
and often overlooked complexity of OTC representational space.

Examples that help to unveil the complexity of OTC object space and the many factors that
drive this organization come from reports of representational similarities among objects that can-
not be easily explained by either visual or categorical similarities. Most striking is the representa-
tional overlap for hands and tools (Bracci et al. 2012,Bracci & Peelen 2013).Hands and tools differ
in many low-level visual aspects (shape, color, and motion) as well as high-level semantic prop-
erties (hands are animate, and tools are inanimate), yet their representations converge in OTC.
The object recognition framework cannot explain this representational overlap, which instead
can be better understood in terms of action-related relations. Namely, visual behavior that sup-
ports the way we interact with our surroundings is facilitated by proximity of representations that
need constant exchange of signal information. Tools, like human hands, are action effectors that
extend the functionality of our arms and are assimilated into the body schema to successfully con-
trol them (Miller et al. 2018). Amputees who regularly use prosthetic limbs to functionally over-
come the missing hand recruit visual areas devoted to visual representation of the hand (van den
Heiligenberg et al. 2018), although, within this region, a separated representation for the prosthe-
sis is maintained (Maimon-Mor &Makin 2020). These results can be interpreted when consider-
ing the relevance of object recognition in the context of specific behavioral goals. In the context
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Figure 4

Illustration of findings on the representational diversity in the primate brain. The three semicircles illustrate the level of detail at which
these representations have been studied. The images show spatial stimulus configurations in which stimuli that are highly similar in
terms of the elicited neural response are in close proximity. (Inner semicircle) The structure of the large object space as obtained with
stimulus-rich designs in which many dimensions covary (adapted from Kriegeskorte et al. 2008 with permission from Elsevier), which
already suggests an organization in terms of animacy. (Middle semicircle) More detailed views of within-domain object space in studies
that look into some of the important dimensions in which object space is structured. From left to right: face/body selectivity versus
animacy (adapted from Ritchie et al. 2021 with permission from the author), animacy continuum (adapted from Sha et al. 2015 with
permission from MIT Press), categorical shape features (object classes are clustered in terms of features such as spiky extrusions,
smooth edges, or straight edges; adapted from Op de Beeck et al. 2008c), and scene spatial layout information [adapted from Kravitz
et al. 2011 (CC-BY-NC-SA 4.0)]. (Outer semicircle) Detailed selectivity for fine within-category object distinctions. From left to right:
face identity space in the monkey’s face cells (adapted from Chang & Tsao 2017), viewpoint-invariant hand postures (the tree diagram
built from neural similarity matrix shows that similar hand postures tend to occupy the same branch, suggesting high similarity; adapted
from Bracci et al. 2018 with permission from Elsevier), bird taxonomy space in bird experts (a systematic similarity structure within the
domain of birds is shown by different colors; based upon Duyck et al. 2021), sparse selectivity for tree exemplars (ranked responses of a
monkey inferior temporal neuron to trees in green and nontrees in red, with the five most preferred images displayed on top; adapted
from Vogels 1999 with permission from John Wiley & Sons), fine-scale shape dimensions (the response of one single inferior temporal
neuron that prefers the top-left shape and whose response decreases as a function of distance in a two-dimensional shape space; adapted
from Op de Beeck et al. 2001), and layout selectivity in single cells [adapted from Mormann et al. 2017 (CC BY 4.0)]. Abbreviation:
VTC, ventral temporal cortex.

of object semantics, hands and tools are seen as two distal categories. On the contrary, hands and
tools are typically recognized in the context of action-related computations where they share the
common property of action effectors; hence this justifies their proximity in object space.

Object recognition does not happen out of context. Thus, the need to recognize an object
and the need to use the content of object representations to support specific computations might
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converge to an object space that maximizes distance/vicinity between representations not only in
terms of recognition needs but also in terms of needs to support output behavior. This obser-
vation is also in line with a recent proposal that suggests that the ventral pathway, traditionally
viewed as the object recognition pathway, might instead be organized in two separated pathways:
a ventral one for object recognition and a lateral one for action recognition (Wurm & Caramazza
2022). In a similar fashion, Pitcher &Ungerleider (2021) suggest a third pathway for social-related
perception. Together, these multiple lines of evidence suggest that trying to interpret the object
space in the ventral pathway just in terms of diagnostic features necessary to support core object
recognition goals will fail to capture the full complexity of its representational content.

An organizational space that reflects the way representations are used to support behavior is
also observed in other cortices other than visual cortex. In a series of elegant studies, Graziano &
Aflalo (2007) revealed how the multiple and overlapping body maps observed in motor cortex can
be better understood in terms of the behavioral repertoire of the animal. That is, the topographi-
cal organization of body parts in the wider motor cortex reflects the need for the motor system to
converge toward the animal’s complex actions, such as hand-to-mouth or climbing/leaping move-
ments, as opposed to the traditional view of an organization that reflects muscle proximity.

Apart from the object and action domains, other broad domains can be identified, such as the
social domain and spatial/navigational domain. The social domain is possibly one of the most
important cognitive domains that defines our species. Visual processing of other individuals (and
animals) is fundamental to support our social skills, allowing us to understand emotions, inten-
tions, and even the trustworthiness of our conspecifics. In OTC, representations for living entities
are encoded in the lateral FG (Kanwisher et al. 1997), whereas the medial portion of FG repre-
sents objects and scenes (Epstein & Kanwisher 1998, Chao et al. 1999). This division naturally
makes sense within the context of object recognition computations: It clearly separates represen-
tations allowing fast and efficient visual categorization for exemplars within categories as opposed
to between categories (Grill-Spector & Weiner 2014), and it predicts the straightforward object
space division between animate and inanimate entities that is often reported.However, also in this
case, examples of representational similarity that are difficult to explain within the general object
recognition framework are observed.

Connolly and colleagues (2012) showed that the classic animacy division might be better inter-
preted in terms of a continuum that spans from the most animate animals (primates) to the least
animate animals (insects), where the latter are represented as closer to inanimate objects (tools)
than to other animate entities (Sha et al. 2015). In a similar fashion, but in the opposite direction,
it was reported that inanimate objects that share animate-like features (e.g., a coffee mug shaped
as a cow) are represented as closer to real animals (e.g., cow) than to their matched inanimate
objects (e.g., a coffee mug) (Bracci et al. 2019). This result is particularly striking because from
the point of view of object recognition, a coffee mug with the shape of a cow is identical in all
respects (object identity in primis, but also visual aspects such as shape and size) to a plain coffee
mug. On the contrary, DCNNs trained on object recognition represent two mugs as being simi-
lar regardless of whether one is shaped like a cow (Bracci et al. 2019). Similar findings have been
reported in the face domain. Responses in human cortex to object images that induce face illusory
effects (pareidolia) confirm that the initial response in OTC to illusory face objects is strongly
face-like (Wardle et al. 2020). These results show that up to a certain stage of visual processing,
the relevance of diagnostic features to detect faces or features that characterize animate entities
overrules the relevance of diagnostic features necessary to recognize the identity of an object.

The diagnostic features that characterize a living entity might be visual, such as the presence of
eyes or a mouth, in line with recent studies showing that the presence of typical features of faces
and bodies explains the animacy organization over and above the animacy continuum (Ritchie et al.
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2021, Proklova & Goodale 2022). The underlying representation has to be sufficiently schematic
and abstract, though, in order to capture the many different forms that such features can take,
in particular when other dimensions also vary (see, e.g., Bracci & Op de Beeck 2016). Diagnos-
tic features to detect animacy might also be inferred by goal-directed actions in the absence of
animate-like visual stimuli, as shown in studies employing visual displays of geometric shapes that
move in an animate fashion (Martin & Weisberg 2003, Gobbini et al. 2007). These studies show
consistent activation in the lateral FG when visual displays of moving geometric shapes conveying
meaningful social interactions (e.g., chasing one another) are contrasted with matched displays
where the dots move in a mechanic/random way. Sensitivity to animacy-like visual and motion
properties such as face-like patterns or self-initiated movements of inanimate shapes appears to
be present already in human infants (Di Giorgio et al. 2017, Buiatti et al. 2019).

For humans, the necessity to recognize a living animal is fundamental for social interactions
and requires the visual processing of faces and bodies and the analysis of social cues that convey
identity, emotions, and posture. Since identification of someone’s identity or emotion requires the
analysis of the whole body, it has been proposed that face- and body-selective areas might be a
rather unified node that supports person perceptual analysis (Taubert et al. 2022). In addition,
processing of body part movements allows interpretation of other individuals’ complex behaviors.
Indeed, in contrast with interactions with inanimate objects, social interactions are dynamic and
necessitate the anticipation of possible reactions of other individuals to our actions (e.g., shaking
hands, hugging). The lateral OTC appears to play a special role in representing dynamic informa-
tion on agents, with the posterior portion of superior temporal sulcus (STS) encoding biological
motion of faces and bodies (Beauchamp et al. 2002, Grossmann & Blake 2002) as well as play-
ing an important role in processes that support our ability to infer other people’s mental states
(Saxe &Wexler 2005). These is also evidence showing that the object space in OTC reflects social
agency (Sha et al. 2015, Papeo et al. 2017, Thorat et al. 2019, Jozwik et al. 2021) and that the
representational space for body parts reflects action-related properties (Bracci et al. 2015, 2018)
as opposed to other visual dimensions. Taken as a whole, this evidence points toward a complex
scenario. Clearly, attempts to identify a few ideal dimensions that aspire to capture the whole
complexity of OTC object space are unrealistic. Most likely, a combination of bottom-up factors
(Levy et al. 2001) and top-down factors (e.g., connectivity constrains; Mahon & Caramazza 2011,
Saygin et al. 2012, Peelen &Downing 2017,Op de Beeck et al. 2019) contributes to shaping OTC
representational content, in a way that allows fast readouts of object identity as well as diagnostic
features relevant to support one of many possible behavioral goals.

Here, we focused upon a relatively small set of dimensions and domains that are particularly
prominent in the representational object space at both the psychological and the neural level, such
as animacy and faces. However, the same reasoning that behavioral goals are crucial to recognize
objects can be extended toward a wider range of object categories. For instance, recent evidence
shows that place-related processing is tied to the behavioral possibilities offered by a scene, with
separated representations depending on whether a scene conveys action-related information such
as close-up reachable spaces (e.g., sink with plates and cutlery) or spatial navigation information
for far-off sceneries ( Josephs & Konkle 2020). In a similar fashion, the function of an object is
an important determinant for categorization (Booth & Waxman 2002, Oakes & Madole 2008).
To take an example related to the affordance for actions as was already studied in the ecological
approach to vision (Gibson 1979), something is a chair only if one can sit on it (Grabner et al. 2011).
The behavioral goals that a category relates to not only are relevant for the action itself, a goal that
is typically associated with the dorsal visual stream (Goodale & Milner 1992), but also determine
the core features determining the perception, categorization, and indeed also recognition of an
object.
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The view proposed here—that in order to better appreciate OTC object space that supports
object recognition, we need to shift our perspective to integrate the operational level of output
behavior—does not mean to diminish the fundamental role that OTC plays in object recognition.
On the contrary, what we suggest is that representations that sustain object recognition goals
might be entangled with higher-level goal-directed representations. When processing our visual
surrounding, we do so with a goal in mind, whether we are walking toward a specific destination
or are looking for a friend with whom we have an appointment. In such a circumstance, the same
visual scenario needs to be processed depending on the given goal. Of course, before we can walk
toward and wave to our friend, we need to recognize their identity, and before we can successfully
reach our destination, we need to recognize the location of our appointment relative to a mental
map of the surrounding space.What we propose is that the same areas involved in exploiting this
information to support behavior are also engaged in recognition, given that an object becomes
relevant only in the context of a specific behavior. As William James (1890, p. 333) said, “There is
no property absolutely essential to any one thing. The same property which figures as the essence
of a thing on one occasion becomes a very inessential feature upon another.” Furthermore, the
same object might serve different computations, thus predicting differential relevance of different
object features. DCNNs provide a promising avenue to better understand the role of behavioral
output constraints in shaping OTC object space. In the next section we discuss current develop-
ments on this front.

5. DEEP CONVOLUTIONAL NEURAL NETWORKS NEED MORE
REPRESENTATIONAL DIVERSITY

The richness of the representational space that follows from the many behavioral goals served
by human object vision is a major challenge for computational efforts to model human vision.
Upon closer scrutiny, the correspondences that have been found between human vision and the
representations in trainedDCNNs turn out to be superficial and very incomplete.DCNNs trained
in general image classification develop representations that are often organized according to some
of the same dimensions as human vision, such as animacy, visual shape, and aspect ratio (Bao
et al. 2020, Zeman et al. 2020). However, there are a lot of domains in which these networks lack
any understanding. For example, humans know thousands of object categories and thousands of
individual faces, while DCNNs are typically not combining the two levels of expertise (Dobs et al.
2022). It has proven useful to study networks trained on specific goals within a particular domain of
stimuli, and often such networks have been shown to be superior in terms of how they correspond
to coding properties in specific domains and brain areas. Consider faces: Faces are important
from a social perspective, especially certain aspects of faces such as identity, facial expression, or
direction of gaze. DCNNs trained in face recognition show a good fit with neuronal responses to
faces in human intracranial recordings (Grossman et al. 2019). Similarly, in the domain of scene
perception, DCNNs can be trained on many specific aspects of scenes that are important for
scene cognition, such as scene categorization, 3D elements, and affordance. Some of these models
are particularly good at predicting representational similarity in specific scene-selective regions
(Bonner & Epstein 2018, Dwivedi et al. 2021).

However, for all training regimes, and in particular for the most specific ones, we can question
the level at which these networks understand the structure and content of images. The typical
DCNNs trained on image classification might give the false impression that they have a human-
like understanding of the content of visual images, but they fall short of that. They do not even
understand what an object is in its most fundamental sense (defined as a material thing that can
be seen and touched). Even for the networks that received a broad training with one thousand
object categories, images are simply statistical patterns, and so might be the categories that they
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have learned to differentiate. A first sign of trouble can be found in the characteristics of many
adversarial images. For example, adversarial images often contain some features of an object class
but no object at all (Nguyen et al. 2015). A pattern of alternating black and yellow rectangles might
be classified with high confidence as an (American) school bus, even though no object is present.
Often such errors are illustrative of the general tendency of DCNNs to rely more upon texture
and ignore global shape, in contrast to human observers (Baker et al. 2020).

A more recent illustration was obtained through testing DCNNs and the human visual sys-
tem with images that contain strong object-to-background correspondence (Bracci et al. 2022). In
ImageNet as well as in real life, some objects are typically depicted against specific backgrounds.
A ladybug is typically found on green leaves; yet, the leaves are not part of the ladybug. Human
object recognition can be helped by using such correspondences, as shown by better and faster
recognition when an object is shown in its typical context (Biederman 1972, Kaiser et al. 2019),
yet objects and backgrounds are represented in different parts of the visual system. No region in
the human visual pathway responds similarly to a ladybug and a leaf, not even when participants
are searching for such correspondences (Bracci et al. 2022). This indicates that the coding of such
correspondences is built on top of a more primary understanding that ladybugs and leaves are
fundamentally different, even though they often go together. DCNN models build up a very dif-
ferent type of representation.The fully connected DCNN layers that in other experiments show a
good correspondence with human visual cortex are not able to separate objects from backgrounds:
These layers show a similar response pattern to ladybugs and to leaves. Such problematic behavior
is not simply solved by extending network architecture to higher depth or recurrence. The strong
mixing of representing objects and background is also seen in deep ResNet architectures, which
are shown to also mimic the possibility of recurrent processing to deal with object/background
clutter (Seijdel et al. 2021, Bracci et al. 2022).

There are various related approaches that focus upon tasks and signals that bring us closer
to the aforementioned definition of “object.” It is possible to perform the segmentation prior to
feeding images into a recognition network or to enrich a DCNN architecture with segmentation
routines (e.g., Zhang et al. 2020). Recent work also showed that the representational space in
modern generative networks contains latent dimensions that differentially tag foreground and
background (Voynov & Babenko 2020). These findings suggest that DCNNs can come up with at
least some sub-solutions needed to understand the concept of object, and a more diverse training
and task regime might prove relevant. The point is that networks are needed that incorporate
training for multiple goals.

If even DCNNs trained on one thousand object categories struggle to account for very ba-
sic properties of images such as the presence of objects, how do we evaluate DCNNs trained in
more specific domains? We can indeed question the image understanding of networks trained on
specific tasks such as face identification, facial expression recognition, scene affordance, and the
like. A network trained in face identification does not even know what a face is. It will respond as
strongly to nonface images as it does to face images, even by definition (the most common output
transformation in DCNNs is a softmax operation, which normalizes all output to 1). In human vi-
sion, recognizing a face builds on top of detecting a face and segmenting it from the background.
There is a multitude of processes and representations involved when humans recognize a face,
processes that are often not specific to a particular domain but that strongly influence the un-
derstanding of this domain. It is interesting that recent attempts to model the face preference in
human face-selective cortex found that starting from broadly trained models (e.g., trained on one
thousand ImageNet categories) perform better than domain-specific models trained, for example,
in face identification (Ratan Murty et al. 2021). Apparently, a broad experience helps to simu-
late the general face preference of the region as a whole. However, this training regime would be
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counterproductive to building up a representation that is useful for the more specific tasks for
which we use the face network, such as face identification. Human face-selective cortex does it
all: It can detect faces in general and supports face individuation. In conclusion, what we need to
simulate the processing in domain-specific cortex such as face regions are networks trained not
only in the differentiation among face images in terms of, for example, identity and emotion, but
also in the detection and differentiation of faces from other categories and in other more generic
processes such as object/background segmentation. To go one step further, we need to train these
networks to solve real-world person-related tasks (e.g., what are these two people talking about?
Do they know each other? Is the older one helping the younger one?) used inmultimodal networks
that integrate vision and other modalities such as language (Bernardi & Pezzelle 2021).

Thus, we lack computational systems containing representations of many different aspects of
images that are developed havingmultiple goals in mind and within the context of a system trained
for the bigger picture, where domains interact. This is only the start. If an image is already worth
one thousand representations, or whatever the exact number, then what to think about movies and
about multimodal input? We are certainly narrowminded when we focus here upon the percep-
tion of still images. A true understanding of images might be unlikely or even impossible without
additional sources of information. One step further is image motion. Image motion is a powerful
cue for image structure in human perception, such as in the Gestalt principle of common fate, and
its temporal development is a key property to allow DCNNs such as predictive coding networks
(PredNet; Lotter et al. 2020) to implicitly learn object and scene structure. Furthermore, multi-
sensory convergence might be needed to come to a real understanding of “a material thing that
can be seen and touched.”Without this additional context a DCNN (or a human, for that matter)
might never truly transcend its understanding beyond the level of learning image statistics.

6. CONCLUSION

As our brain evolved to support adaptive behavior, our visual system, too, might be at the service
of our behavioral needs. Object recognition does not happen in a vacuum. Therefore, the way our
visual system represents objects might be intrinsically related to the representations employed to
support behavior. We suggest that to crack the code of object vision, object representations need
to be investigated at multiple levels of detail, and their multidimensional nature should be taken
seriously. Furthermore, we need to consider the interaction between different domains: Even a
domain-specific system like the face recognition system has evolved in the context of a much
larger visual system and interfaces with many domains at multiple levels. Likewise, a computa-
tional model aimed at fully capturing human cognition in a particular domain will also need to
incorporate how this domain interacts with other domains. It is the rich and across-domain rep-
resentational zoo that grants the human brain its exceptional powers in multipurpose information
processing.
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