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Abstract

Influenza is a common respiratory infection that causes considerable mor-
bidity and mortality worldwide each year. In recent years, along with the im-
provement in computational resources, there have been a number of impor-
tant developments in the science of influenza surveillance and forecasting.
Influenza surveillance systems have been improved by synthesizing multi-
ple sources of information. Influenza forecasting has developed into an ac-
tive field, with annual challenges in the United States that have stimulated
improved methodologies.Work continues on the optimal approaches to as-
similating surveillance data and information on relevant driving factors to
improve estimates of the current situation (nowcasting) and to forecast fu-
ture dynamics.
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1. INTRODUCTION

Seasonal influenza epidemics mainly caused by influenza A and B viruses result in ∼3–5 million
cases of severe illness and 290,000–650,000 deaths worldwide each year (87). Seasonal influenza
viruses circulate annually during the winter in temperate locations, but influenza seasonality is
not well defined in tropical and subtropical locations and can circulate year-round (11, 78). In
contrast with seasonal influenza, novel influenza A strains capable of sustained person-to-person
transmission arise occasionally in global pandemics.

Influenza surveillance is an important public health activity. Influenza surveillance data can be
used to signal the start and end of an influenza season, to describe the impact of influenza sea-
sons, and to indicate the impact of control and mitigation measures. Laboratory-based influenza
surveillance can also provide samples of circulating strains in different parts of the world, which
is useful for making decisions on vaccine strain selection and for monitoring the prevalence of
resistance to antiviral drugs. The World Health Organization (WHO) Global Influenza Surveil-
lance Network (GISN) was founded in 1952 and renamed the Global Influenza Surveillance and
Response System in 2011 to coordinate global surveillance activities (99).

The science of surveillance has been rapidly evolving in recent years (40, 76). At the same
time, improvements in computational skill allow advancedmodeling techniques for prediction and
forecasting by incorporating multiple streams of data and complex underlying dynamics. These
improvements present new opportunities not only for understanding the current situation, re-
ferred to as nowcasting, but also for forecasting what might happen in future weeks, for example,
determining when the influenza season will reach a peak. Providing reliable forecasts of future
influenza activity can be extremely informative for allocating health resources and judging public
health measures. Figure 1 illustrates the different steps of tracking, predicting, and forecasting
influenza activity. In this review, we attempt to address, at each step, the potential uses, challenges,
and possible research gaps that need to be pursued in future courses of tracking, predicting, and
forecasting influenza virus circulation in the community.

2. INFLUENZA SURVEILLANCE AND TRACKING

The WHO defines public health surveillance as “an ongoing, systematic collection, analysis and
interpretation of health-related data essential to the planning, implementation, and evaluation of
public health practice and is undertaken to inform disease prevention and control measures” (89).
Public health surveillance has evolved considerably in recent decades (23).

Influenza surveillance is a common public health activity done around the world. The WHO
coordinates global influenza surveillance and provides recommendations for the conduct of
influenza surveillance in Member States (86). Having learned from the 1918–1919 pandemic, the
WHO established the Global Influenza Programme in 1947 and the Global Influenza Surveil-
lance Network (GISN) in 1952. The latter was renamed as the Global Influenza Surveillance and
Response System (GISRS) in 2011 and has expanded to include 143 institutions in 113 Member
States (88).

Broadly speaking, influenza surveillance is carried out via twomain approaches. First, to under-
stand the occurrence of influenza illnesses in the community, syndromic surveillance systems col-
lect information from outpatient clinics or hospitals and describe patterns in incidence over time.
Second, laboratory surveillance systems test samples collected from influenza patients and provide
information on the virologic characteristics of circulating strains. This information can be used in
vaccine strain selection and to monitor resistance against antiviral drugs. Some countries have es-
tablishedmultiple sources of influenza surveillance data,which can be synthesized to providemore
detailed information on influenza dynamics, improving the value of this information (Figure 1).
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2.1. Syndromic Surveillance

The classic approach to syndromic influenza surveillance is sentinel outpatient surveillance. In
this approach, a network of outpatient clinics (“sentinels”) provide information at a specified fre-
quency, typically weekly, on the number of patients they have attended with influenza-like illnesses
(ILI) (6, 31, 61, 67, 75). A typical definition of an ILI is recent-onset fever plus cough. Examples
of this approach include the US Outpatient Influenza-like Illness Surveillance Network (ILINet)
(20) and the European Surveillance System (TESSy) at the European Centre for Disease Preven-
tion andControl (ECDC) (31).The catchment populations of the sentinel clinics are the preferred
denominator for these data so that the illness rates provide information on incidence rates of med-
ically attended influenza in the population. An alternative denominator in locations with unclear
catchment populations would be total consultations. In either case, rates of ILI in the community
indicate the start and end of influenza seasons, and comparisons between years can indicate which
seasons are more intense than others. As an alternative approach to tracking levels of influenza
in the underlying community, similar data can be captured from hospitals that have admitted pa-
tients with influenza (40, 79). More recently, other approaches to syndromic surveillance include
processing electronic medical records or telenursing calls for relevant diagnostic codes (15, 20, 39,
46, 51, 53, 98).

2.2. Laboratory Surveillance

Laboratory-based surveillance is an essential component of many influenza surveillance systems.
In the 1940s, growing virus in culture allowed antigenic characterization of strains and supported
vaccine development. This method is still widely used today as part of the process for antigenic
and genetic characterization of influenza viruses (21). In 1983, the development of the polymerase
chain reaction (PCR) technique by Kary Mullis revolutionized the field of infectious disease diag-
nosis. This molecular technique detects virus-specific RNA sequences rather than viral antigens
or antibodies and can provide results within a few hours.Most laboratory surveillance of influenza
is now done by PCR.

One other approach bears mention, and that is serological analysis. A few weeks after a per-
son recovers from an influenza virus infection, they will develop an antibody response against the
infecting strain, which can be detected in their peripheral blood. Testing of blood samples is a
diagnostic tool but, more importantly, may be used to provide surveillance data for a population.
For example, periodic collection of blood samples can allow researchers to analyze levels of infec-
tion or immunity in the population and indicate whether there might be vulnerability to certain
strains that are prevalent in other parts of the world (85).

2.3. Digital Surveillance and Emerging Data Sources

These conventional influenza surveillance approaches primarily describe outbreaks of influenza
based on reports from doctors or clinicians.More recently, researchers have explored the potential
for electronic data sources to provide more timely information on levels of influenza circulation in
the community. Examples of this approach include trends derived from (a) searches (e.g., Google
Search Trends,Wikipedia page views), (b) social media postings (e.g., Facebook posts, tweets), and
(c) participatory surveillance efforts (e.g., Flu Near You, Influenzanet) (2). These types of surveil-
lance enlist ProMED-mail (50), De Grote Griepmeting (45), webpage views used for influenza
surveillance (42), Google Ads click rate used for surveillance (32), HealthMap (14), Google Flu
Trends (25, 57), Flu Near You (77), FluSight (19), etc. The prime objective of these systems was
to provide timely reports of influenza incidence in local areas (16, 25, 77), and the resulting data
were often used for influenza prediction and forecasting.
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Digital surveillance data do have limitations, though. One of the problems occurs when these
systems capture changes in public awareness of the disease rather than changes in incidence of the
disease per se. For example, the inaccurate predictions by Google Flu Trends led to its discontin-
uation in 2015 (35) after it failed to detect the influenza A (H1N1) pandemic in 2009 and greatly
overestimated the peak intensity of the 2012/2013 season (57).Moreover, data from digital surveil-
lance often suffer from problems with stability, dependency, confounding in search terms, and rep-
resentativeness (13, 36, 64). Despite these challenges, digital surveillance data are comparatively
lower in cost and could supplement other more traditional sources of information rather than
replace them.One growing research area involves the development of hybrid systems, which cou-
ple traditional surveillance data with data from digital surveillance tools, including search queries,
social media posts, and crowdsourcing (2).

2.4. Multistream Data Assimilation and Synthesis

While ILI rates provide information on levels of influenza activity in the community, these rates
rarely decline completely to zero outside of the influenza season because of the circulation of
other respiratory virus infections. To provide a metric that better correlates with the incidence
of influenza virus infections in the community, Goldstein et al. (37) introduced the ILI+ proxy
by multiplying ILI rates with rates of influenza detection in the laboratory. This ILI+ proxy was
found to be a closer linear correlate of influenza virus infections in the 2009 influenza pandemic
than were ILI rates or laboratory detection rates alone (91), and it has now been widely adopted
as a good measure of representation for the influenza epidemic curve in a population (3, 4, 44, 66,
72, 92, 94, 96, 97).

While the ILI+ proxy can provide a reasonable representation of the shape of the epidemic
curve for an influenza epidemic, the area under this curve would differ from the infection attack
rate in the population by an unknown constant of proportionality, sometimes referred to as the
reporting rate. The absolute rate of influenza virus infections in a population is challenging to es-
timate from these data streams because of (a) the uncertainties about the age- and strain-specific
likelihoods of consulting a physician upon contracting an influenza virus infection, (b) the sensi-
tivity of the laboratory testing of respiratory specimens, and (c) the lack of patient age recording
for influenza-positive specimens in many countries, including the United States (60).One possible
solution would be to integrate information from serological surveillance with data on ILI consul-
tations and virological testing of respiratory specimens to allow complete estimation of influenza
infection rates (both symptomatic and asymptomatic) during epidemics (7, 17, 58).

More timely information on influenza activity via digital surveillance has the potential to allow
a more accurate measure of the incidence of influenza virus infections in the community when
coupled with data from traditional surveillance. This data assimilation technique opens up an op-
portunity to develop the hybrid digital surveillance systems (47, 74) using web-based surveillance
with more traditional sources. Santillana et al. (68) combined Google, Twitter, and Flu Near You
data with ILI rates from symptomatic surveillance and found an improved measure of influenza
activity compared with usingGoogle FluTrends data alone. Several studies addressed the develop-
ment of the hybrid digital surveillance system by accounting for methodological biases, including
stability, dependency (13), confounding in search terms (69), and sampling bias or representa-
tiveness, along with the above data integration techniques. In comparison, big-data, cloud-based
electronic health record data sources are often available in almost real time, can be integrated with
ILI estimates of search engine data, and can provide more accurate predictions of influenza inten-
sity up to four weeks in advance (95). Data on the potential drivers of influenza transmission, such
as data on meteorological factors, could be incorporated with these surveillance data to improve
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predictions and forecasting (5, 43, 71, 72).We further discuss these seasonal drivers and their roles
in predicting influenza in Section 3.2 and Section 4.

3. INFLUENZA TRANSMISSION DYNAMICS: TRANSMISSIBILITY
AND SEASONALITY

Along with good-quality influenza surveillance data, having a clear understanding of the transmis-
sion dynamics of influenza, and how these dynamics might be influenced by social mixing patterns
or extrinsic factors that drive seasonality, can also be valuable.

3.1. Tracking Real-Time Transmissibility

Influenza is an acute contagious infection of the airways and lungs caused by an influenza virus in-
fection. Influenza transmission dynamics are characterized by several epidemiological parameters
estimated from available surveillance data. These dynamics include the incubation period, infec-
tious period, serial interval, generation time, exponential growth rate, and reproduction number,
among others. Reliable information on these parameters is important for influenza prediction and
forecasting studies, as discussed below.

The most widely used measure of transmissibility for any infectious disease is the reproduc-
tion number (R), which is defined as the average number of secondary cases generated per typical
infectious case. In theory, R depends on the population susceptibility (or immunity). When R is
estimated for a population that is entirely susceptible to infection (no prior immunity and no in-
tervention implemented), it is referred to as the basic reproduction number (R0). In contrast, the
effective reproduction number (Re) is estimated in a population with underlying immunity and
accounts for reduced population susceptibility to infection (12). To quantify real-time transmissi-
bility, the time-varying instantaneous reproduction number (Rt) can be estimated as the effective
reproductive number on day t (26, 55, 80). Biggerstaff et al. (9) reviewed estimates ofR for seasonal,
pandemic, and zoonotic influenza and presented the variation in the estimates by the assumption
on generation times and case definitions, along with the case data used from different locations.

3.2. Seasonality

Influenza seasonality describes a periodic surge in influenza virus infections during certain times
of the year (28). In temperate regions, influenza virus infections are characterized by a regular
influenza season (lasting for a total of 5–10weeks with a single peak), typically in the wintermonths
during which infections increase significantly while remaining at very low levels throughout the
rest of the year. In tropical regions, on the other hand, influenza epidemics are less regular, and the
timing and duration are not well defined. Some locations can experience year-round circulation
or multiple epidemics in a single year (22, 78, 90).

To explain these spatiotemporal differences in the seasonality of influenza virus circulation, sev-
eral intrinsic and extrinsic drivers have been proposed. Intrinsic biological drivers of seasonality
include viral evolution and the immune response to the virus and seasonal host health (48). Slow
but steady antigenic changes in circulating influenza viruses, referred to as antigenic drift, occur in
response to selection pressure from population immunity (27). Limited immune cross-protection
against antigenic variants can generate cyclical patterns, closely resembling the seasonal patterns
of influenza virus circulation (33). Seasonal variations in host health and physiological status are
quite common; even the immune system may experience a pattern of ebb and flow that could
leave a host more vulnerable to infection (34, 41, 48). By comparison, extrinsic drivers include
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meteorological, environmental (e.g., pollutants), and social determinants (e.g., school closures) as
well as vaccination programs. These extrinsic drivers could affect the survivability and viability of
the virus in different ambient settings or could change the potential for infection to be transmit-
ted from one individual to another. These external seasonal determinants can contribute to the
seasonality of influenza virus transmission and would be important complementary data sources
for influenza prediction and forecasting (72, 73, 78), discussed further in Section 4 below.

Although the seasonal recurrence of influenza epidemics in temperate regions has been com-
paratively well characterized for decades, explanations of seasonal influenza virus circulation in
the tropics and subtropics are still poorly understood (30). For example, low absolute humidity
in temperate locations is associated with influenza circulation; however, in the tropics, influenza
epidemics occur during periods with both low humidity and very high humidity, resulting in a
U-shaped association between humidity and influenza (78).

4. INFLUENZA PREDICTION AND FORECASTING

Data on influenza surveillance and knowledge on influenza transmission dynamics can be used to
construct models for predicting future influenza activity or for creating counterfactual scenarios
about what might have happened in alternative circumstances, for example, with or without the
implementation of particular public health measures. The prediction of influenza activity involves
the art of integrating these data and information under model development exercises. In general,
studies on the prediction of influenza are classified into two categories: projection and forecasting
(52). A projection is a realization or comparison of what would happen under certain assumptions
and hypotheses (e.g., effectiveness of control measures), whereas a forecast is a quantitative esti-
mate of what will happen in the future (e.g., upcoming influenza activity).The studies on influenza
projection have a longer history, whereas influenza forecasting is comparatively newer. In the past
10 years, there has been a growing effort to develop the systems and methods for forecasting dif-
ferent characteristics of influenza epidemics. The ability to predict future incidence, timing of
epidemics, and peaks of influenza epidemics in a timely manner could be extremely valuable for
health care planning and resource allocation.

4.1. Development of Predictive Models for Influenza Forecasting

Influenza forecasting, as illustrated in Figure 1, requires predictive models along with influenza
surveillance data. The advances in computational facilities and data assimilation techniques allow
complex algorithms and models to be constructed and applied.Models are usually trained on data
from a training period and used for predicting future events (forecast outcomes) during a forecast-
ing period. The most accurate forecasts would generally, although perhaps not always, be made
by a model that has good predictive performance. The forecast outputs are of two types: tempo-
ral outcomes (e.g., peak timing, epidemic duration) and intensity outcomes (e.g., peak magnitude,
attack rates). One early study was reported by Longini et al. (49), who evaluated ILI activity and
the peak timing of the 1968/1969 Hong Kong influenza pandemic. Before the 2009 influenza
pandemic, several notable works were published on forecasting influenza activity (1, 62, 83), peak
timing (1, 38, 81), and peak magnitude and epidemic duration (1, 38). The number of studies in-
creased significantly after the 2009 influenza pandemic, highlighting the increased recognition
and importance given to preparedness and public health planning strategies for influenza. The
models in these studies have their own advantages and limitations, which are reviewed extensively
by Nsoesie et al. (56) and Chretien et al. (24), who also highlighted the prospective opportunities
in the area of influenza forecasting.
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Figure 2

Illustration of forecasting outcomes and their measures to quantify the forecasting performance under
possible counterfactual scenarios. The dashed curves in different colors are the forecast of influenza activities
by four different models. Presented are the results of four models on forecasting the peak timing (bold dots),
peak magnitude (vertical dotted lines), and attack rate (area under the curves) of a typical outbreak. For a
particular model, the forecast outcomes are presented as peak timing from the observed phase (brown
horizontal dotted line), peak magnitude (brown vertical line), and attack rate (light orange). Abbreviation: t, time.

In 2013, the US Centers for Disease Control and Prevention (CDC) launched an annual
national-level influenza forecasting competition, Predict the Influenza Season Challenge, as a
collaboration with academic researchers (18). The CDC set forecasting targets relevant to pub-
lic health decision makers through real-time forecast (1–4 weeks ahead) of the influenza seasons
in the United States; the forecast outcomes include the timing of the onset of the influenza sea-
son, the timing of the peak, and the peak intensity (Figure 2). More than 30 teams currently
submit their models for competition each year with the objectives of continuing to improve the
research gaps on forecasting model development, evaluation, and adoption by decision makers, in-
cluding the need to develop standardized metrics to assess forecast accuracy and consistent ways
to communicate forecasts and their uncertainty. One particular emphasis of that consortium was
on the probabilistic forecasting framework (i.e., what is the probability that the influenza season
will peak next week, or in 2 weeks, etc.?) rather than simple all-or-nothing forecasts (8, 10). Re-
cently, Xu et al. (93) investigated predictive utility of online social media and web search queries
to forecast new cases of ILI in Hong Kong. Such models with alternative or parallel sources of in-
formation (such as search engine queries) could improve real-time influenza prediction and could
be deployed for forecasting (54). A rigorous computational framework for real-time forecasts of
seasonal influenza outbreaks, using a data assimilation technique (either the ensemble adjustment
Kalman filter or modified particle filtering under a compartmental model), commonly applied in
numerical weather prediction, was developed by Shaman & Karspeck (71) and further developed
using other variables (e.g., climatic, seasonal forces) (96). As the disease dynamics are not often
completely observed, researchers have proposed an alternative approach to considering influenza
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transmission as a partially observed process through a state-space model motivated by a compart-
mental model with a Bayesian framework for inference and forecasting (59). Incorporating evo-
lutionary change into such a mechanistic epidemiological model setup improved the forecasting
accuracy of influenza A (H3N2) epidemics in the United States (29).

Many years of data are available from the CDC forecasting challenge, allowing some general
conclusions on the performance of different types of models (8, 10). In earlier years, the model
performances for this forecasting challenge were evaluated relative to the results of the ILINet
benchmark. The performance of the models submitted for the 2014/2015 influenza season pre-
sented a wide variation in accuracy; the most accurate forecast models (mechanistic and statisti-
cal) used data on ILINet, specific humidity, and crowdsourced forecasts in US regions. For the
most recent influenza seasons, the submitted models provided more accurate predictions than
those using ILINet’s historical baseline (70); therefore, the CDC proposed to implement those
top-performing models for the FluSight system. Probabilistic forecast distributions allow for a
quantitative evaluation of accuracy, which can be used to compare and communicate forecast per-
formance (10).

Broadly speaking, two general approaches have been used to make forecasts in these studies.
One approach uses statistical and phenomenological methods, such as time series models, gen-
eralized linear models, classification algorithms, regression models, and Bayesian networks. The
second approach uses mechanistic models such as compartmental models and agent-based mod-
els.Whilemechanistic approaches can sometimes better account for nonlinear infection dynamics,
they also require a much larger number of parameters and assumptions.

Among the statistical approaches, predictive models are typically developed where the response
variable is a relevant measure of influenza activity (e.g., ILI+ proxy). This response variable is
linked by some type of regression model to a number of covariates, possibly with nonlinear com-
ponents, to allow for infection dynamics. The forecast validations are generally performed with
out-of-sample validation, where the model parameters are recomputed for each forecast by using
only the training data from the previous weeks and the upcoming weeks for validation. Fore-
cast accuracy is evaluated by considering one or more of the following measures, including root
mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error
(MAE).

In a typical mechanistic approach, influenza activity has to somehow be translated to a measure
of incidence, with additional assumptions about population immunity. Transmissibility can then
be estimated in the constructed model, accounting for covariates. The probabilistic forecast distri-
butions allowed for a quantitative evaluation of accuracy, which can generally be used to compare
and communicate forecast performance. These models have their own advantages and challenges.
For example, in the first and second years of the CDC challenges, ∼56% of proposed models
were statistical models and 44% were mechanistic models. Forecast accuracy of these models var-
ied widely even evaluated for the same influenza season. Among the proposed models, a statistical
model and a mechanistic model were found to have the most accurate forecasts for peak timing
and seasonal targets (8, 10). The statistical model used ILINet and crowdsourced data to produce
many different influenza forecasts and finally to generate an aggregate forecast. The mechanistic
approach used a compartmental model with ILINet and specific humidity data, combined with
three different ensemble filter algorithms (12 model–filter combinations).

While disease forecasting has developed as an innovative discipline over the last decade, it is
not yet fully integrated into public policy. Forecasting models for influenza continue to improve,
and policy makers should have growing confidence in their ability to make reliable short-term
forecasts based on these models.
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4.2. The Future of Prediction and Forecasting

Better forecasting performance depends on a series of steps (Figure 1), starting from (a) real-time
detection and tracking of influenza cases; (b) understanding of the transmission dynamics for es-
timating model parameters outside/inside predictive models; (c) identification of the intrinsic and
extrinsic drivers (predictors) of influenza transmissibility and seasonality; and, finally, (d) applica-
tion of predictive models, which requires integrating all this information simultaneously. There-
fore, the forecasting model development exercise should incorporate parameter optimization and
reparameterization, evaluation of comparative models using common input data with validation
and accuracy metrics, calibration of analogous monitoring frameworks for implementing a prob-
abilistic forecast, and integration of multistream data in the model under different forecasting
schemes. In fact, the CDC influenza forecasting challenge, which is focused on short-term (up to
four weeks) prediction of the trajectory of influenza outbreaks in US regions, encouraged the use
of social media data to predict influenza (8, 10, 19). In 2019, the study by Reich et al. (65) is one
such example of multiyear (seven years) forecasting of seasonal influenza, which featured a variety
of modeling approaches with consistent model formulations and forecasting targets throughout
the study period. Their modeling framework includes a portfolio of both statistical and mecha-
nistic models and a range of data streams, including digital surveillance, meteorological data, and
social media content such as Google queries and Twitter posts, along with case counts. Therefore,
the study by Reich et al. (65) has set a benchmark for future forecasting model exercises, which
will be much-needed for further improving the models (84).

Forecasting performance of predictive models can vary by location (65). It would be informa-
tive to disentangle the reasons for these regional differences by exploring reporting artifacts or
heterogeneities in transmission dynamics along with the various possible drivers, including de-
mographic and environmental differences and social mixing patterns in these regions. Because no
two successive influenza seasons are identical, it can be important to include in the models some
key biological and epidemiological features, such as population immunity, antigenic changes in
the virus, and vaccine coverage. Improved prediction approaches could even open up the possi-
bility of forecasting influenza dynamics in the tropics. In general, statistical models seem to have
better performance for short-term forecasting, whereas mechanistic models can be more flexible
and tend to allow more accurate longer-term forecasts (65, 84). So far, prediction models have
been based mostly on ILI or ILI+ proxies of influenza activity (72). Prediction accuracy can vary
depending on which proxy measure is used, and neither of them may be a gold standard reflec-
tion of the underlying incidence of influenza virus infections in the community. These proxies can
suffer reporting biases, biases due to health care–seeking behavior, missing data, and the contri-
bution of other respiratory virus infections (84). Another general issue is the typical 1–2-week lag
in influenza surveillance data, such that forecasting models are even required to estimate levels
of influenza activity today (known as nowcasting) (63, 82). There remain many opportunities to
improve influenza prediction and forecasting models.

5. CONCLUSIONS

In this review, we have outlined the characteristics of influenza surveillance systems and the
approaches that have been used to predict and forecast influenza activity. Each step of the
surveillance, analysis, and interpretation process is important for influenza prediction and fore-
casting (Figure 1). Influenza prediction and forecasting challenges have been established and run
mostly by public health institutions; however, in the future, we may see broader collaborative net-
works emerge, including infectious disease modelers as well as the end users in local public health
agencies and health care providers.
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