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Abstract

The human microbiome contributes metabolic functions, protects against
pathogens, educates the immune system, and through these basic func-
tions, directly or indirectly, affects most of our physiologic functions. Here,
we consider the human microbiome and its relationship to several major
noncommunicable human conditions, including orodigestive tract cancers,
neurologic diseases, diabetes, and obesity. We also highlight the scope of
contextual macroenvironmental factors (toxicological and chemical environ-
ment, built environment, and socioeconomic environment) and individual
microenvironmental factors (smoking, alcohol, and diet) that may push the
microbiota toward less healthy or more healthy conditions, influencing the
development of these diseases. Last, we highlight current uncertainties and
challenges in the study of environmental influences on the human micro-
biome and implications for understanding noncommunicable disease, sug-
gesting a research agenda to strengthen the scientific evidence base.
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1. INTRODUCTION

Substantial advances have accumulated in the past 10 years in understanding the role of the human
microbiome in health and disease; this progress has been based largely on the transition from clas-
sic microbial culture-based assays to the use of high-throughput comprehensive microbiome char-
acterization through targeted bacterial 16S rRNA (ribosomal RNA) sequencing, whole-genome
shotgun sequencing, and, more recently, microbial transcriptomics and metabolomics. The Na-
tional Institutes of Health (NIH) Human Microbiome Project (47) and other international ini-
tiatives (40, 75) have provided resources, methods, and discoveries that link interactions between
humans and their microbiomes to health-related outcomes (47, 74). These advances have also been
greatly supported by the development of expanded microbial taxonomic databases, analytic bioin-
formatics pipelines, and novel statistical approaches for study of the microbiome’s relationship
to health and disease. Decreasing sequencing cost and rapidly expanding sequencing technology
further facilitated the development of relatively large-scale human and experimental studies, pro-
viding complementary insight on microbial determinants of disease in human populations and
on the underlying mechanistic basis of disease. Human studies have been strengthened by the
increased attention to microbiome-related sample collections in diverse populations, and experi-
mental studies have advanced through the development of experimental animal models, including
germ-free humanized mouse models.

Research is also advancing our understanding of the environment as a major driver of variability
in the human microbiome. Evidence from 2018 shows in families that genetic ancestry or indi-
vidual polymorphic variants have a minor role in gut microbiome composition (<2%), whereas
over 20% of the variance in microbiome diversity can be inferred from shared environmental fac-
tors, such as those associated with diet and lifestyle (95). In this article, we first review research on
the human microbiome and its relationship to several (classically considered) noncommunicable
human conditions, including orodigestive tract cancers, neurologic diseases, diabetes, and obesity.
Then, we highlight the scope of known and suspected environmental factors that may push the
microbiota toward less healthy or more healthy conditions, influencing the development of these
diseases. We consider the environment in the broad sense, involving the contextual social and
built environment and environmental toxicants, and with respect to individual behaviors, includ-
ing smoking, alcohol, and dietary intake (see Figure 1). Last, we highlight current uncertainties
and challenges in the study of environmental influences on the human microbiome and implica-
tions for understanding the microbial basis of noncommunicable disease, suggesting a research
agenda to strengthen the scientific evidence base.

2. THE HUMAN MICROBIOME AND ITS INTERINDIVIDUAL
VARIABILITY

The human microbiome is composed of bacteria, archaea, viruses, and eukaryotic fungal microbes
that reside in and on our bodies. These microbial cells that colonize the human body, including
the mouth and gut, are at least as abundant as our somatic cells and certainly contain far more
genes than our human genome. An estimated 500-1,000 species of microbiota exist in the human
body at any one time (127), although the number of unique genotypes could be orders of mag-
nitude greater than this estimate (61). Each bacterial strain has a genome containing hundreds of
genes, offering substantially more genetic diversity and hence flexibility than the human genome.
These microbes and their microbial molecular functions have tremendous potential to impact our
physiology, both in health and in disease (45).

The human microbiome, to maintain symbiotic relationships within the body, contributes
metabolic functions, protects against pathogens, and trains and develops the immune system, and,
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Figure 1

The effect of the environment on human health is a complex set of interactions between multiple exposures that, alone or more
commonly interdependently, affect various structures and functions of the microbiome. This figure illustrates how environmental
exposures have a direct impact on the human microbiome, implicated in human health and diseases, including orodigestive tract
cancers, neurologic diseases, diabetes, and obesity. These environmental exposures are influenced by and interrelated with the
macroenvironment, including the toxicological and chemical environment, built environment, and social environment, as well as the
microenvironment, including smoking, alcohol, and dietary factors. Although external environmental impacts are illustrated, individual
factors, such as age, sex, and genes, also interact with and eventually determine exposure, dose, and any subsequent response and effect.

through these basic functions, directly or indirectly affects most of our physiologic functions.
People tend to possess a core microbiome, sharing common microbiome members of microbial
species (45). However, different people harbor very different collections of microbes with sub-
stantially varying densities even among conserved taxa. This significant interindividual variability
between persons is a potential source for differential susceptibility to disease.

3. THE MICROBIOME IMPLICATION FOR NONCOMMUNICABLE
DISEASES

3.1. Orodigestive Tract Cancers

Microbes induce at least 60% of human orodigestive tract cancers (81), suggesting the tremendous
potential of controlling microbe-related processes for orodigestive tract cancer prevention and
treatment (13). Epidemiological studies consistently report the association between oral diseases
and risk of orodigestive tract cancers, including cancers of the head and neck, esophagus, stomach,
and pancreas. Because oral diseases have an important microbiologic basis, these observations
have led to the hypothesis that the oral microbiome is related to the development of orodigestive
cancer (4). Case-control studies nested within large population-based cohort studies found that the
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prediagnostic oral microbiome, assessed using mouth wash samples, is associated with subsequent
development of orodigestive tract cancers of the head and neck (3,43), esophagus (87) and pancreas
(34). Several studies have also pointed specifically to a link between gut microbiome Fusobacterium
and other species and colon cancer (5, 54, 116) and between the gut microbiome and inflammatory
bowel disease (47) and colorectal adenoma (85).

Microbial-derived signals modulate numerous hallmarks of cancer through diverse mecha-
nisms. In general, bacteria cannot directly induce cancer; the process is commonly accompanied
by chronic inflammation and requires independent mutations in oncogenic signaling pathways
(131). Studies further indicate (9, 89) that the cross talk between the microbiome and the host
is critical to orodigestive tract oncogenesis by regulating innate and adaptive immune function
in the tumor microenvironment (27). A bacteria—cancer model proposes that gram-negative bac-
teria promote carcinogenesis, as the lipopolysaccharide bacterial outer membrane provides the
immunogenic stimulus for innate immune system response via Toll-like pattern recognition recep-
tors, leading to genetic mutations caused by nuclear transcription factor NF-«kB protumorigenic
cytokine release, immune cell recruitment, and reactive oxygen release (131). Thus, a microbial
role in shaping of the tumor immune microenvironment is of great potential importance in the
pathogenesis of cancer, particularly of the orodigestive tract.

3.2. Neurologic Diseases

The gut and the central nervous system interact through the gut-brain axis, modulating central
nervous system function, including affective-like behavior, cognitive performance, fatigue, and
sleep. Research indicates that the gut microbiome, through influence on this gut-brain axis, may
play a role in certain neuropsychiatric and neurodevelopmental disorders (37, 97), altering be-
havior and potentially affecting the onset and/or severity of nervous system disorders. Germ-free
mice and mice treated with antibiotics display a host of neuroimmune dysfunction and behavioral
deficits (37). The gut microbiome has been linked, largely in preclinical models, to disorders of the
brain, including anxiety, depression, and epilepsy, as well as autism spectrum disorder (104). In hu-
mans, evidence for interplay between gastrointestinal pathology and neuropsychiatric conditions
has been reported in conditions such as anxiety, depression, and autism (124); however, causal-
ity remains unproven. Uncovering mechanisms that are utilized by the microbiome to mediate
gut-brain connections may provide novel opportunities to target therapies to the gut in order to
prevent and treat neurologic disorders.

3.3. Diabetes

A substantial body of literature has provided evidence for the role of gut microbiota in the etiology
of prediabetes and type 2 diabetes (47). A 2020 review (39) summarized more than 40 published
human studies. For example, in prediabetics, Zhou et al. (143) showed that molecular signatures
based on the gut microbiome and inflammation and immune markers predicted for the onset of
type 2 diabetes. Two seminal studies (51, 90) reported that gut microbiome profiles differ be-
tween type 2 diabetes patients and nondiabetic controls. A subsequent study (138) showed that
gut microbiota in type 2 diabetic patients mediates the therapeutic effects of metformin, which
is used for diabetes control. Zeevi et al. (142) developed personalized diets for optimizing blood
glucose level in type 2 diabetes patients, with consideration for personalized dietary habits, physi-
cal activity, and gut microbiota. The researchers then showed in a blinded randomized controlled
dietary intervention trial that application of this algorithm led to improved postprandial glucose
responses. The current challenge is to replicate the precise components of the gut microbiome
(39), which drive this heterogeneous, multifactorial, multiorgan disease.
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3.4. Obesity

The prevalence of obesity has increased on a global scale over the past several decades, leading to
premature death (2, 12) and many noncommunicable diseases (134). Although the fundamental
cause of obesity is an imbalance between energy intake and expenditure related to physical activ-
ity linked to work and home environments, gut microbial composition (57) is a well-established
factor for weight gain, along with other mechanisms, such as genetic variation (62) and epigenetic
regulation (133). Experiments in germ-free mice colonized with gut microbiota transferred from
wild-type mice (10), obese mice (128), or obese humans (92) have demonstrated that the micro-
biome plays a critical role in weight gain and adiposity in this test system, implicating gut microbes
in the establishment of the obese phenotype. These experimental findings lead to the question of
whether the microbial composition of the gut confers susceptibility to weight gain in humans,
whether genetically determined (58) or diet induced (44, 70, 125). An early report in a small sam-
ple of humans (59) was consistent with findings in mice that the obese state is associated with an
increase in the relative abundance of the Firmicutes phylum and a decrease in the relative abun-
dance of the Bacteroidetes phylum. However, studies in humans have not corroborated this specific
pattern: Some studies have observed a decrease in Bacteroidetes (but not an increase in Firmicutes)
associated with obesity (7, 126), whereas others have observed the opposite (18, 100) or have not
observed either of these phylum-level associations with body-mass index (BMI) (26, 35, 64, 122).
In addition, studies have identified different genus- and species-level taxa associated with BMI or
obesity (86, 132). Future downstream experimentation in animal models and humans can estab-
lish whether these candidate taxa play an etiologic role in obesity and, if so, suggest interventions
for obesity prevention and treatment. Because of the potential to modify bacterial communities
through various therapies (e.g., probiotics, prebiotics, antibiotics), the microbiome is an enticing
candidate to target for the prevention and treatment of obesity.

4. ENVIRONMENTAL DETERMINANTS OF THE HUMAN
MICROBIOME

4.1. Macroenvironment

4.1.1. Toxicological and chemical environment. The orodigestive tract and the respiratory
system are major pathways for entry and processing of environmental toxicants in the human body.
The rich metabolic repertoire of the human microbiome in these organ systems has a broad ca-
pacity for transformation of xenobiotic chemicals, sometimes opposite of the host patterns of bio-
transformation (1, 52). While oxidation and conjugation for excretion are typical of host metabolic
enzymes, the microbial enzymatic reactions involve mainly reduction and hydrolysis (111, 136)
and demethylation to generate carbon sources for further growth and division (113). Environ-
mental arsenic speciation is related to cardiovascular disease and other health effects; evidence
suggests that the methylation capacity of the microbiome resident in the orodigestive tract may
influence these toxicities (16). Immobilization of metals, such as cadmium and lead by a gut Lac-
tobacillus, may impact metal toxicities (20). Certain gut bacteria express azoreductase enzymes to
metabolize potentially mutagenic azo compounds (141). Environmentally persistent chemicals
from personal care products, such as triclocarban (3,4,4,9-trichlorocarbanilide, or TCC) and tri-
closan [5-chloro-2-(2,4-dichlorophenoxy)phenol, or TCS], are ubiquitous and linked to potential
shifts in the microbiome in rodents (42). Microbial metabolism of chemicals including endocrine
disruptors by gut microbiota can be accompanied by microbial dysbiosis: a change in the microbial
community structure, the induction of specific bacterial genes, and altered microbial transforma-
tion of molecules (82, 94). In addition, endocrine disruptors can be absorbed and transported to
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the liver, where they are conjugated and excreted back into the gut through bile secretion for fur-
ther microbial metabolism (129). Enzymes such as azoreductases, esterases, methylases, thiolases,
lipases, nitroreductases, B-glucuronidases, sulfatases, and B-lyases are also reported to be involved
in the microbial metabolism of environmental chemicals (82, 94, 129).

4.1.2. Built environment and emerging hypothesis. The built environment comprises all
structures built by humans, including our homes, workplaces, schools, and vehicles (36). Rely-
ing largely on microbial culture and other classic microbiologic techniques, investigators recog-
nize that numerous microbial pathogens may be present in the built environment. For example,
bacterial pathogens such as Mycobacterium tuberculosis, fangal pathogens such as Aspergillus funi-
gatus, and pathogenic viruses such as rhinovirus and influenza virus, and more recently severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019
(COVID-19), can be transmitted by direct inhalation in the built environment. Other pathogens,
such as Clostridium difficile and Enterococcus faecalis, as well as norovirus and influenza virus, can be
transmitted to humans through skin or mucus contact owing to fomite transfer from surfaces. In
addition to direct microbial transmission, microbial metabolic products in the built environment
may also be implicated in human health, including bacterial and fungal toxins, allergenic compo-
nents of the cellular wall, and microbial-derived volatile organic compounds (15, 53). Indoor air
and surfaces are associated with dust and microbial chemical products. Increased relative humidity
in the environment results in an increase in microbial metabolites in dust and on surfaces. Indoor
dampness and moldy conditions (for example, visible mold and mold odor) have been associated
with many different disease states, but associations between the composition and concentration of
microorganisms and their metabolites in the built environment and disease remain elusive. With
the application of targeted bacterial 16S rRNA sequencing and whole-genome shotgun sequenc-
ing, researchers have gained a fuller appreciation of the complexity of the microbial ecology of
the built environment, including the large diversity of culturable and nonculturable agents. Rec-
ognizing that the composition of microbial DNA sequences in an environmental sample may be
composed of significant nonviable residue (30), environmental microbial-associated DNA exhibits
a rich complexity reflective of human microbial sources, with a particularly strong relationship be-
tween the indoor built environment and human-derived microbial sources (103).

The concept of the hygiene hypothesis, which suggests that improved hygiene is possibly linked
to the rise in autoimmune conditions, is adaptable to the concept of beneficial microbial exposure
(28). Lax et al. (56) examined the correlative relationships between the human microbiome and the
microbiome of the built environment, focusing on home environments and mapping the sharing
of bacteria between occupants and their homes. This investigation demonstrated that the ma-
jority of bacteria associated with the surfaces had a significant probability of having originated
from the occupants of that home. Exposure to a complex microbial community in house dust has
been inversely associated with the likelihood of developing asthma (29). In another study, children
who were exposed to household dust from homes immediately adjacent to a farming environment
and who were actively working on the farm presented with a statistically significant reduction in
the risk of developing asthma compared with children who were not exposed to farming envi-
ronments (112). In summary, there is growing evidence of an interrelationship between the built
environment, our microbiome, and health, yet much work is needed to understand the ecology
and evolution of microorganisms in the built environment and human health.

Other notable hypotheses related to the built environment have emerged. One that is gaining
currency in the literature is the rewilding hypothesis, which suggests that changes to urban green
spaces that return them to a more natural state have the potential to change the microbiota
in the environment and subsequently in human populations. Studies in humans and animals
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demonstrated that rewilding may influence microbiome and host immune responses (101, 140).
Among other environmental factors, work from 2018 suggests that inhalational exposure to
particulate matter air pollution alters the composition of the gut microbiome (71). Also, daylight
exposure has been shown to modulate household dust bacterial communities, which may also
implicate sunlight and UV radiation in human microbiome composition, for example bacterial
communities on the skin (33). Climate change and extreme heat could also prompt physiological
changes that might favor certain microbiota in the ambient environment, in food or within the
body. Furthermore, in addressing the challenges of bringing together the multitude of microbiota
with the myriad of established and emerging exposures, untargeted evaluations and discovery
that couple bacterial metagenomics with environmental exposomics (130) may be one approach
as part of a forward-looking research agenda.

4.1.3. Socioeconomic environment. Low socioeconomic status (SES) is associated with mul-
tiple health-related behaviors, such as reduced access to medical and dental care (6), increased
engagement in unhealthy behaviors such as smoking and alcohol dependency (66), and decreased
engagement in positive health behaviors such as healthy eating and exercise. Low-SES status is
associated with higher rates of morbidity and mortality (105) and higher incidence of some of the
health conditions previously mentioned in this review, such as obesity, diabetes, and cancer.

The role of microbiota in mediating these relationships between SES and health is under study
(94). Many characteristics associated with low-SES neighborhoods and lifestyles (e.g., processed
foods, sedentary lifestyle, psychosocial stress, exposure to pollutants and endocrine disrupters) are
also associated with reduced gut microbial diversity (19). Studies have examined differences in
microbial composition between high- and low-SES populations. In the United States, higher SES
was associated with greater alpha diversity and population abundance of particular microbes in the
gut microbiota (69). In other research, distinct differences in microbial composition were found
between the gut microbiota of low-income children in Bangladesh and upper- to middle-class
American children of the same age (60). Better understanding of the mediating relationship of
the microbiome in SES-related disease susceptibilities will require integrative study that includes
investigation of exposures at the community and individual levels. The built environment is one
component under such consideration.

4.2. Microenvironment: Specific Environmental Exposures

4.2.1. Smoking. Cigarette smoke is a source of numerous toxicants (135), which come into
direct contact with oral and upper respiratory bacteria; these toxicants can perturb the microbial
ecology via antibiotic effects, oxygen deprivation, or other potential mechanisms (63). Loss of
beneficial oral species due to smoking can lead to pathogen colonization and ultimately to disease;
this contention is strongly supported by the well-established role of smoking in the onset and
progression of microbially dependent periodontitis (76). Investigations in our lab (139) found
decreased diversity in overall oral microbiome composition in current smokers and a lower
relative abundance of the phylum Proteobacteria (4.6%) compared with never smokers (11.7%)
(false discovery rate ¢ = 5.2 x 1077). The current smokers had decreased microbial abundance
of genes associated with microbial aerobic metabolism pathways, including the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation, and increased abundance of glycolysis and other
oxygen-independent carbohydrate metabolism pathways. Other pathways depleted in current
smokers were certain xenobiotic biodegradation pathways relating to toluene, nitrotoluene,
styrene, chlorocyclohexane, and chlorobenzene degradation and cytochrome P450 xenobiotic
metabolism. Conversely, polycyclic aromatic hydrocarbon (PAH) and xylene degradation were
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enriched in current smokers. These chemicals are components of cigarette smoke (93), and
thus alterations in the oral community’s ability to degrade these substances may have toxic
consequences for the host. Aside from creating an anaerobic, acidic, and/or selectively toxic envi-
ronment, smoking is also known to have prominent effects on human immunity (110), which can
in turn influence the host’ ability to stave off colonization by pathogens. In summary, increasing
evidence indicates that smoking influences overall oral microbiome community composition
and the abundance of many taxa; smoking may promote an anaerobic oral environment and a
bacterial community with reduced xenobiotic degradation capabilities.

Observational and interventional studies (98) also suggest decreased diversity in the composi-
tion of the intestinal microbiome in smokers, generally demonstrating increases in Proteobacteria
and Buacteroidetes phyla and Clostridium, Bacteroides, and Prevotella genera and decreases in Actinobac-
teria and Firmicutes phyla and Bifidobacteria and Lactococcus genera. Mechanisms that may explain
the effects of smoking on the intestinal microbiome include oxidative stress enhancement, alter-
ations of intestinal tight junctions and intestinal mucin composition, and changes in acid—base bal-
ance (98). Some smoking-induced alterations of the intestinal microbiome resemble those demon-
strated in conditions such as inflammatory bowel disease and obesity. Further studies should be
performed to investigate this connection. Smoking has an effect on the intestinal microbiome and
is suggested to alter its composition. This interaction between smoking and the gut microbiome
may contribute to the development of intestinal and systemic diseases.

4.2.2. Alcohol. Alcohol intake may impact the human oral microbiome in several ways: First,
oral bacteria and fungi metabolize alcohol and dietary sugars to carcinogenic acetaldehyde (67,
73), interact with cigarette smoke condensate (102), produce carcinogenic nitrosamines (55), and
experimentally promote oral carcinogenesis (78). The oral microbiota has a more potent abil-
ity to produce acetaldehyde from ethanol in smokers, both in vitro and in vivo (68, 96). In vitro
and animal studies also point to possible mechanisms by which oral microbiota contribute to oral
carcinogenesis, including inhibition of apoptosis, activation of cell proliferation, promotion of cel-
lular invasion, induction of chronic inflammation (80, 84), and cooperation of bacteria and fungi in
oral polymicrobial communities (41). Second, alcohol may yield direct cytotoxic effects on bacteria
(46). Animal studies showed that 20% alcohol intake increases colonization by Streptococcus mutans
(50) and dramatically decreases the number of detectable bacterial species in the oral biofilms of
rats (48). In human studies, drinking red wine was associated with reduced species richness and a
reduction in certain anaerobic bacteria in sub- and supragingival plaque (106), while excessive co-
use of tobacco and alcohol was associated with reduced species richness and decreased abundance
of Neisseria, Aggregatibacter, and Fusobacteria in oral mucosa biofilms (121). In addition to its direct
effects, alcohol may indirectly impact the oral microbiota (31, 65, 99, 119) through disturbing the
host defense system (77, 83, 114, 115), subsequently resulting in host-mediated periodontitis (11,
88). Large population-based studies have demonstrated that at least one standard drink per day
increases periodontitis risk by 15-27% (88, 120) and links to poor oral health (49). Evidence shows
that the oral microbiome is closely tied to oral health status (21, 117).

Alcohol and the gut microbiome have been studied largely in the context of heavy alcohol
use, which may alter intestinal barrier function leading to gut leakiness, the production of proin-
flammatory pathogenic microbial products, and disturbed liver metabolic pathways (32). Studies in
heavy users of alcohol and cirrhotics show that the relative abundance of bacteria from the phylum
Bacteroidetes decreases as those from the phylum Proteobacteria increase and that individuals with
cirrhosis exhibit a unique increase in Fusobacteria (17, 72). While heavy use of alcohol is related to
intestinal dysbiosis, red wine, a rich source of dietary polyphenols, may, in moderation, favorably
alter the gastrointestinal microbiota community composition. Red wine polyphenol significantly
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increases the abundance of Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes, whereas gin
consumption significantly decreases these same bacterial phyla (91).

4.2.3. Dietary factors. The Western diet is characterized by the consumption of high fat, high
sugar, high levels of red and processed meat, high levels of refined grains, and a lower level of fiber
intake (22). Many studies have linked the Western diet to inflammation, diabetes, cardiovascular
risks, obesity, metabolic syndrome (144), and cancer (8, 14). While a Western diet has a broad
physiologic impact, influencing many different cell types such as adipocytes, immune cells, and
endocrine cells, this diet is also strongly linked to shifts in the microbiome (79), characterized by
lower microbial diversity and species richness (38) and an increase of the phyla Firmicutes and a
decrease in Bacteroidetes (58). On a genus level, a Western diet shows a decrease in Bifidobacteria
and Lactobacilli, while being high in Enterobacteria (107).

Fiber intake, in particular, is an appealing modifiable dietary factor, given its postulated bene-
ficial biologic effects. Several studies have shown that fiber may be protective against conditions
such as type 2 diabetes, cardiovascular disease, colon cancer, and obesity (25, 108). Fiber speeds
colonic transit and may decrease exposure of colonic epithelial cells to ingested carcinogens. In
addition, fiber undergoes fermentation by the microbiota to yield short-chain fatty acid end prod-
ucts, such as butyrate, which is essential for colon energy metabolism and epithelial proliferation
and, in mouse models, exhibits tumor-suppressive activity through histone deacetylase inhibition
(23). Consequently, there has been growing interest in understanding the impact of dietary fiber
on gut microbiota composition, which may ultimately affect one’s risk of cancer and other diseases.
High-fiber diets are associated with higher gastrointestinal microbial richness and diversity and,
in particular, are linked to a greater abundance of Prevorella and Treponema, as well as decreases
in inflammatory signaling, protection against obesity, and possible decreases in the presence of
colorectal cancer (109). Although short-term dietary intervention trials have demonstrated that
different amounts of fiber intake can significantly alter microbiota composition in a span of a few
weeks (79, 118), few studies in humans have evaluated the effect of long-term dietary habits of
fiber intake on the gut microbiota (137).

5. SYNTHESIS: THE MICROBIOME, THE ENVIRONMENT,
AND HEALTH

Research is advancing on the relationship in human populations between the environment, in a
broad sense, and microbiome composition. Advances have also been made in identifying micro-
bial components related to a variety of noncommunicable diseases and conditions. Building on
this base, investigators are beginning to investigate more comprehensively the noncommunicable
disease outcomes in relation to the interplay between the environment and the microbiome, with
consideration of the role of the microbiome as both a target and a mediator of environmental
exposure. Each of these three elements of an environmental science of the human microbiome
and health are individually complex, presenting challenges for their integration. Environmental
factors are often complex; the multitude of environmental factors to consider, let alone the ever-
expanding understanding of the microbiome, make it difficult to grasp the full picture of how the
external environment plays a causal role in disease incidence and mortality. In real-life settings,
these factors often interact and are dynamic over time. Chemical toxicants frequently present in
mixtures, as is the case, for example, with cosmetics and endocrine disruptors. Furthermore, expo-
sures may vary throughout the life course as may age-dependent risks, conceptualized as windows
of susceptibility. Owing to this complexity, it remains profoundly challenging to determine the
microbial characteristics that directly or indirectly influence human health and disease.
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New approaches will be needed to fully evaluate existing and as yet unknown factors that
may influence the microbiome and human health. Prospective cohort studies are a mainstay of
research on the environment and human health, particularly because this study design is im-
portant in establishing the natural temporal sequence of cause and effect, which is often diffi-
cult to disentangle in cross-sectional or retrospective research. Oral wash collections that are
useful for oral microbiome assessment have been a component of cohort research for several
decades; however, prospective collection of stool samples is only recently being developed. Sim-
ilarly, collections for analyzing the human microbiome at other body sites and longitudinal col-
lections of serial samples are only recently coming to a scale needed for epidemiologic research.
Large population-based cohorts, which incorporate diverse racial, socioeconomic, and geographic
groups with stool and oral microbiome specimens, are needed. Advances are also being made
in experimental animal studies, with the development of germ-free (123) and humanized ani-
mal models, as well as simple animal models (24), such as zebrafish, Drosophila Melanogaster, and
Caenorbabditis elegans. Also, advances in sample collection, identification, and extraction, in se-
quencing samples, and in data analysis have moved forward rapidly through initiatives such as the
Human Microbiome Project (47) and the International Human Microbiome Standards project
(http://www.microbiome-standards.org/index.php). Furthermore, the environment and the
microbiome influence health status multidimensionally, which reinforces the need to integrate
other ‘omics, including metabolomics, transcriptomics, genomics, and immunomics. Relevant data
integration tools and pipelines need to be developed.

In conclusion, this review has highlighted many of the factors in the environment that have as-
sociations with noncommunicable disease by influencing the human microbiome. We are clearly
in an era when complex interactions, upstream causal factors, and multiple pathways of causa-
tion must be considered. Applying the results of these studies will be in the realm of individual
modification of environmental factors, potentially involving microbial control, and in the realm of
public policy, which is often more efficient for achieving changes that improve health. The chal-
lenge for microbiome science is to use observational epidemiology, exposure science, toxicology,

and mechanistic studies to produce the best evidence possible for the betterment of population
health.
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