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Abstract

Machine learning approaches to modeling of epidemiologic data are be-
coming increasingly more prevalent in the literature. These methods have
the potential to improve our understanding of health and opportunities
for intervention, far beyond our past capabilities. This article provides a
walkthrough for creating supervised machine learning models with current
examples from the literature. From identifying an appropriate sample and
selecting features through training, testing, and assessing performance, the
end-to-end approach to machine learning can be a daunting task. We take
the reader through each step in the process and discuss novel concepts in
the area of machine learning, including identifying treatment effects and
explaining the output from machine learning models.
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Testing: the
process of passing an
independent data set
(typically the
remaining data not
used in the training of
the model) to the
trained model,
producing various
performance metrics

Machine learning:
an umbrella term
encompassing a
multitude of
algorithms used for
prediction and
estimation of
treatment effects

Supervised machine
learning: a machine
learning approach
focused on predicting
an outcome of interest

INTRODUCTION TO EPIDEMIOLOGY

Epidemiology is defined as the study of the distribution and determinants of disease (25). Improve-
ments in population health and increased survival rates in humans can be traced to interventions
developed from evidence obtained through epidemiologic study (41). Data analytics are one of
the most critical underlying aspects of epidemiology; increasing computational power over the
past decade has vastly expanded our modeling capabilities and approaches (23). Due to the variety
of areas of study in epidemiology and the unique needs of each, novel computational modeling
strategies are highly prevalent in the scientific literature.

HISTORICAL RATIONALE FOR STATISTICAL MODELING

Frequentist statistical methodologies are the most commonly used approaches to analytics in epi-
demiologic studies to date (27). These methods are often confusing to nonstatisticians and are
steeped in the development of hypotheses and the calculation of probabilities that offer support
for or against rejection of these hypotheses. Basic statistical tests and multivariable regression
modeling are commonly used for testing hypotheses to define associations or treatment effects
between predictor and outcome variables under study. These traditional statistical approaches are
used in what is coined as the “data culture” (12).

Traditional regression-type modeling of health outcomes in epidemiology can be categorized
by the purpose of the model, whether it is necessary to predict a dependent variable given multi-
ple independent variables (e.g., predictive models) or to produce a measure of treatment effect or
magnitude and statistical association of individual independent variables on the dependent variable
(e.g., explanatory models) (57). Each modeling strategy provides useful information for investiga-
tors and practitioners. Most traditional modeling approaches are data focused and make various
assumptions about the data used within the model (12). Assumptions such as linearity, lack of
multicollinearity, and proportional risk/odds/hazards over time are well understood by epidemi-
ologists. As more data become available for analytics, Richard Bellman’s “curse of dimensionality”
becomes apparent (7). In this state, research questions become more advanced, traditional model-
ing assumptions become more difficult to meet, relationships are highly nonlinear, and newmeth-
ods must be utilized.Novel approaches in machine learning have become a focus in medicine,with
more limited use in population health (22) over the past several years. The purpose of this review
is to document the uses, strategies, and approaches, as well as the advantages and disadvantages of
machine learning models in the field of epidemiology and health outcomes research, with a main
focus on supervised machine learning methods.

INTRODUCTION TO MACHINE LEARNING

“Machine learning” is an umbrella term used to describe a wide variety of models and strategies
that focus on algorithmic modeling (45). In contrast, the term regression in epidemiology typ-
ically refers to a wide variety of frequentist regression models such as logistic, linear, and Cox
proportional hazards often used in epidemiology and biostatistics (28).

The concept of machine learning has existed from the early 1950s to address the possibility of
having computers approximate the human thought process through pattern matching, recogni-
tion, and decision making (64). This work continued through the research of Arthur Samuel, who
wrote a program to learn to play the board game checkers (53), and that of Frank Rosenblatt (50),
who designed the first artificial neural network, which used the principles of neural biology to per-
form computation. Since that time, numerous machine learning algorithms have been developed

22 Wiemken • Kelley



PU41CH02_Wiemken ARjats.cls March 17, 2020 8:23

Unsupervised
(machine learning):
a machine learning
approach with no
outcome, used for
clustering and data
reduction

Label: the outcome
variable in a supervised
machine learning
model

Feature:
the variable(s) used to
assist the model in
predicting an outcome
or those used in a
cluster or data
reduction algorithm

Table 1 Linking terms and phrases in epidemiology and machine learning

Term in epidemiology and biostatistics
Term in machine/statistical

learning
Dependent variable; outcome variable; response variable Label/class
Independent variable; predictor variable; explanatory variable Feature
Contingency table; 2 × 2 table Confusion matrix
Sensitivity Recall
Positive predictive value Precision
Deep learning Artificial neural network with more

than 1 hidden layer
Outcome group with the highest frequency Majority class
Outcome group with the lowest frequency Minority class
Proportion of cases in each category of the outcome variable
(when outcome is categorical)

Class balance

to solve many learning problems. These algorithms are generally grouped into supervised or un-
supervised models. Supervised models are typically used to predict an outcome (known as a label
in machine learning), similar to predictive modeling using regression. Unsupervised models are
typically used to discover unknown patterns in data, without respect to a particular label. In this
review, we focus primarily on supervised models in epidemiology. Although these techniques have
been around for many years, machine learning was not accepted as a Medline Medical Subject
Heading (MeSH) term until 2016 (https://www.ncbi.nlm.nih.gov/mesh/2010029).

Although the termmachine learning is often used in today’s environment, “statistical learning”
is also commonly used in the literature.This variation in terminology is due to several novel strate-
gies that combine traditional frequentist biostatistical approaches, such as hypothesis testing, with
algorithmic approaches typical of machine learning models (7). This practice further blurs the
lines between traditional biostatistics and machine learning, resulting in the combined phrasing:
statistical learning. Regardless, the machine learning literature utilizes different terms for similar
concepts used in epidemiology. For the purposes of this review, we use machine learning termi-
nology. For clarity,Table 1 displays common terms used in epidemiology with their corollaries in
machine learning. Most notably, the term features refers to what epidemiologists would consider
independent variables, whereas the term label refers to the dependent variable.

THE MACHINE LEARNING APPROACH

Setting up a machine learning model such that the predictions are valid and accurate can be a
daunting task, not substantially different from developing a biostatistical regression model. Below,
we describe the end-to-end process of machine learning (Figure 1), with examples in epidemiol-
ogy and public health.

Sample Size

The literature includes numerous approaches for identifying appropriate sample sizes for ma-
chine learning models (6, 21, 47). However, sample size estimates are difficult to compute because
machine learning models are largely algorithmic based. Most do not utilize frequentist statistical
measures such as p-values, nor do they focus on effect sizes, two concepts central to the traditional
calculation of sample sizes.
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Figure 1

The end-to-end supervised machine learning workflow.

For unsupervised models, sample sizes should be based on the research question and inherent
variability of the data under consideration. Because unsupervised models can be used for hypoth-
esis generation or data reduction, sample size calculations may be unnecessary. For example, very
small data sets (13 unique individuals) have been used to detect clusters of patients with similar
inflammatory markers among hospitalized patients with pneumonia (70).

In short, many loose recommendations and heuristics are available for machine learning sam-
ple size estimation. Publications in machine learning sample size estimations are often specific to a
discipline. For example, genetic epidemiology may require smaller data sets (e.g.,<100 rows) (12)
as compared with a moderate size (several hundred cases) necessary for a behavioral/cognition
outcome evaluating functional magnetic resonance imaging (fMRI) (11). However, it is impor-
tant to note that the optimal sample size is dependent on the data available and is based on the
number of rows and the number and quality of features. If features included are redundant or not
predictive of the label, the model may be inaccurate regardless of the volume of features. Further-
more, if there are many features but few instances of the label, then models may have difficulty
matching patterns to the label for the full feature space and the model will be unlikely to function
appropriately in production (29). Much like any modeling scheme, results can be generated re-
gardless of the sample size. In machine learning, for the results to be accurate and generalizable,
the overall sample size needed should be carefully considered a priori and may be much larger
than anticipated (65).

Feature Selection

Parsimony is a central tenet of regression model building in epidemiology to prevent overfitting.
Selecting the relevant predictors with the appropriate level of explanation is critical to the model’s
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Feature selection: the
process of selecting a
subset of features to
include in a machine
learning model

Training: the
supervised machine
learning process of
creating a predictive
model through using a
subset of data, often
around 70%

success. Like regression modeling, overfitting is a major concern in machine learning model-
ing; parsimony is accomplished through feature selection in which the features in data sets are
thoughtfully chosen for the model. This approach is especially important for machine learning
models because they are applied to data sets that were collected for reasons other than a specific
hypothesis, as is the case with electronic medical record data (32) or genetic epidemiology data
(40). These types of data sets typically contain a large number of features compared to regres-
sion models; many of them are irrelevant to the model being constructed. One example outlines
a technique to detect and limit the set of variables to be used for modeling (known as the feature
set) in antigen discovery for vaccinology (18), which could be applied to any ‘omics data set.

The difficulty in the selection of a parsimonious feature set is more complex than just the
feature set’s impact on a particular study outcome (9). There are many other reasons to reduce
the number of features in one’s training data set prior to using a machine learning model. First,
the model will train faster, which is particularly attractive with complex modeling schemes under
local computation as opposed to cluster computing. Second, reducing the number of redundant
features or features that do not affect the outcome may decrease the likelihood of overfitting the
model.

Feature selection can be done in numerous ways including selecting clinically meaningful fea-
tures, simple correlations between features, and feature importance scores. Other machine learn-
ingmodels such as least absolute shrinkage and selection operator (LASSO) regressionmay also be
useful for feature selection (62, 69). Genetic algorithms for feature selection have become popular
and have been used for various purposes (63), including to understand the impact of uncontrolled
comorbidities on clinical outcomes in hospitalized patients with pneumonia (3). Regardless of the
method used for feature selection, investigators have suggested that the accuracy and stability of
the model should be considered when using feature selection algorithms (21). Otherwise, these
models risk overfitting.

In the era of ‘omics data, the feature set provided to epidemiologists for analytics has expanded
substantially (22).Many approaches for selecting features have been proposed (24, 25).One exam-
ple is ranked guided iterative feature elimination (RGIFE), which shows promise for identifying
enhanced clinically relevant biomarkers (26) (see the sidebar titled Ranked Guided Iterative Fea-
ture Elimination for Feature Selection). Regardless, much like in explanatory regression model
building, strict automation of feature selection is likely not an appropriate solution on its own.
In nearly all areas, domain experts should be enlisted to assist in feature selection for meaningful
models to be developed.

RANKED GUIDED ITERATIVE FEATURE ELIMINATION FOR FEATURE
SELECTION

Issue:Data sets with a large number of features are difficult to use because relevant features are difficult to identify.

Solution: Ranked guided iterative feature elimination (RGIFE), an algorithm that uses cross-validation to identify
relevant features in classification scenarios, is proposed. RGIFE first estimates the performance of a model with the
original feature set with k-fold cross-validation. The model then ranks the importance of the features to the classifi-
cation task. From there the model removes attributes from the end of the feature rank (lowest ranking features) and
runs the model again. Reduced feature sets that perform within a tolerable level are accepted until the performance
of the model fails below a specified threshold. The performance of this feature selection model was compared with
several commonly used feature selection methods.

Conclusion:RGIFE provided similar prediction performance with few features for several cancer-related data sets.
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Feature engineering:
the process of creating
new features from
existing features using
mathematical and
various combinatorial
approaches

Performance:
the various statistical
values gathered from
machine learning
models, used to assess
how well the model
achieves its intended
purpose

Feature Engineering

Creating or engineering new features from available data to capture latent effects is another impor-
tant facet of machine learning. Historically, feature engineering has been a manual and laborious
process, limited by many factors including the mathematical expertise, time available for analysis,
and domain knowledge of the study team.

Simple feature engineering, such as taking the logarithm of a continuous variable to change its
distribution or aggregating two variables to account for multicollinearity, is sometimes necessary
in traditional regression modeling. For example, the performance accuracy of machine learning
models to predict early sepsis was improved by multiplying a shock index by age to derive a new
feature for regression (19).

Feature engineering is becoming more complex, with the potential to uncover latent effects
that would not be accounted for otherwise. One novel automated feature engineering approach is
deep feature synthesis, which combines multiple feature transformations and aggregations, of any
type or complexity, to create new features (33). Individual variables are precursors to these new
deep features, created through primitives, mathematical formulas used to transform or aggregate.
Primitives can range from simple to complex, including means, sums, principal components, or
even predicted probabilities or error terms from traditional regression models. Aggregations are
very useful for longitudinal features, whereas transformations are typically used for time-invariant
features.

In our experience, approaches to feature engineering often merge with feature selection, es-
pecially for longitudinal data sets. For instance, in clinical epidemiology, when selecting features,
investigators often must limit which laboratory values to include in a model because the number
of time points and frequency at which laboratory data are collected during a hospital stay vary.

External data sources are becoming important components of accurate machine learning mod-
els. Affixing data collected outside the primary data set provides machine learning algorithms ad-
ditional features from which to learn. In fact, researchers have suggested that different machine
learning algorithms are unlikely to provide a substantial improvement in model performance if
the same feature set is used for each (19, 25).

External data sets can be combined with primary data sets, including, among others, geographic
location, weather data, and aggregated population statistics. For example, area deprivation indices
have been used to predict health care outcomes. This deprivation score is an aggregate score
developed from US Census data (58), which can be linked to individual-level data to provide
some estimates of cluster effects. It has been successfully used to assist in the prediction of hospital
readmission (35) and outcomes in hospitalized patients with community-acquired pneumonia (68).
Investigators have used machine learning to aggregate Web search and location data, linked with
restaurant data, to identify potentially unsafe restaurants (51). Aggregate data such as these have
the capability to revolutionize the performance of model predictions in epidemiology.

Missing Data

Missing data, regardless of the mechanism creating the missingness, is an issue across all analytics.
Many traditional regression models will drop cases with missing data and run the model. The
majority of machine learning models will not run with missing data; therefore, care to ensure data
are complete is critical. One solution to this problem is data imputation, a technique to generate
reasonable synthetic values at random when data are missing completely. These approaches have
the opportunity to reduce error in missingness by accounting for nonlinear relationships in the
imputator (42). Examples of machine learning missing data imputers are ripe in the literature,
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Hyperparameter:
option(s) required in
many machine
learning algorithms to
fine-tune or optimize
the training of the
model

largely basing the models on random forest approaches (11, 55, 60). In epidemiology, variations
on this theme have been used to impute missing data in some studies to better define the role of
age-mixing patterns in HIV transmission dynamics (5), defining burnout and stress relationships
among health care workers (13), health care utilization in patients with spinal cord injuries (49),
and treatment completion prediction in patients with rape-onset post-traumatic stress disorder
(34).

Classification or Regression?

Another decision to make in machine learning model building is to determine the type of outcome
the investigator is interested in predicting. In machine learning, classification models are consid-
ered in the context of categorical labels, whereas regression models are used for continuous labels;
each model has different ramifications for model building.Nearly all supervised machine learning
models can handle both classification and regression problems. In-depth review of common
methods used in health research is beyond the scope of this review but can be found elsewhere
(71).

Pretraining/Hyperparameter Optimization

All supervised machine learning algorithms have various hyperparameters that should be adjusted
in order to provide a valid and accurate prediction. Some examples include the learning rate in neu-
ral networks, C and sigma in a support vector machine, or k in the k-nearest neighbor algorithm.
The process of adjusting these hyperparameters is called tuning. Although most machine learn-
ing models have default values for each hyperparameter, it is worth the effort to optimize these
parameters. To tune hyperparameters, a subset of the data is needed. There are many heuristics to
determine how much data should be used for tuning these parameters, but there is no consensus.
We recommend that ∼50% of the available data be randomly selected for hyperparameter tuning
through cross-validation. This is only a generic heuristic and should be modified on the basis of
the variation present in the features and outcome.

The rationale for utilizing a large portion of the data for hyperparameter tuning is that the op-
timal parameters cannot be known before running a model. An invalid model may result if inves-
tigators do not provide appropriate values (59). Several approaches to tuning have been described
(8, 31). Grid search approaches are also easy to implement and allow for prespecification of a mul-
titude of possible values for many or all the necessary hyperparameters required by the model.
The limitation of grid searching for hyperparameters is the computationally intensive computa-
tion required. Since the investigator specifies a set of values for several hyperparameters in a grid
search, models must be built for all combinations of values.Model tuning is critical and continues
to be discussed as a salient concept in epidemiology. Tessmer and colleagues (61) showcase this
with respect to improving R0 calculations in infectious disease epidemiology and dynamics.

Another consideration is specifically for classification models. In this context, the pretraining
data set may need to be balanced with respect to the class label frequency. Here, the class label
with the lowest frequency of cases is termed the minority class, whereas the higher frequency
is termed the majority class. For many classification algorithms, having a relatively balanced
outcome is critical (what this means is debated, though as close to 50/50 as possible is ideal).
Imbalance in the outcome of a model is an issue when evaluating model performance statistics.
If one class label has a much higher prevalence than another, predictive accuracy may look good
while the model is predicting only the majority class. In this context, downsampling, upsampling,
and synthetic minority oversampling technique (SMOTE) (14) sampling of the data are common
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SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE FOR HANDLING CLASS
IMBALANCE

Issue: Class imbalance in the outcome for clinical and epidemiological data sets prevents machine learning algo-
rithms from learning accurately.

Solution: Synthetic minority oversampling technique (SMOTE) is a technique in which the minority class (e.g., the
group with the lowest frequency) in a classification problem is oversampled by creating synthetic samples that are
similar to actual samples. With this approach, the machine learning algorithm has more examples of the minority
class from which to learn. The algorithm can further be combined with undersampling of the majority class to
create more balanced outcomes in the data set.

Conclusion: The combination of SMOTE and undersampling performs better than undersampling alone because
it focuses learning on the minority class.

approaches (see the sidebar titled Synthetic Minority Oversampling Technique for Handling
Class Imbalance). Class balancing should be done only after splitting the data and should be
independent of both the training and the testing data sets. Balancing methods have been utilized
in many areas of epidemiology, including in cancer survivorship prediction (24, 67), groundwater
contamination (38), and mesothelioma patients (17). Alghamdi and colleagues (1) used data from
the Henry Ford Health system to predict incident diabetes with cardiorespiratory fitness data
using SMOTE to balance the outcome.

Furthermore, continuous data typically should be normalized prior to training to standardize
the scale of multiple continuous features and improve computational performance. It is important
to normalize the data after splitting the data sets into pretraining, training, and testing. It is not
advised to normalize and then split, as data leakage may occur, resulting in aberrant model perfor-
mance statistics. The goal of the test set is to make it as independent of the other data as possible.
If the cases ending up in the test set have features that have been scaled in consideration of some
of the data in the training set, leakage will become an issue. Standardization and normalization of
continuous data are necessary for many machine learning models. Seligman and colleagues (54)
used data standardization approaches to understand social determinants of health in the Health
and Retirement Study.

Training

After identification of optimal hyperparameters, the next step is to split the remaining data into
training and testing data sets.When defining the proportion of cases to use for a training data set,
researchers face many considerations, but there is no proportion that should be deemed always
acceptable.When selecting the proportion of cases for a training set,major considerations include
(a) number of cases, (b) number of features, and (c) amount of variation in the features. The im-
portance lies with how well one’s training data set describes all the possible patterns of data and
their potential prediction of the label. In the literature reviewed, 80% of the cases are most often
used for training, although this is simply a heuristic and is not evidence based.

Similar to the hyperparameter tuning set described above, training data must be balanced with
respect to the outcome for many models in the context of classification. As above, they should be
balanced after splitting and be independent of all data in pretraining and testing data sets. Again
as described above for hyperparameter tuning, normalization or standardization of continuous
variables should be conducted after splitting.
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Testing

Once again, testing the performance of the tuned and trained machine learning model in a sepa-
rate data set (the test set) necessitates a proportion of the total data. The goal is to have a useful
representation of real life in the testing data set. One must be careful to ensure that there is no
spillover from training data sets. Here, no balancing of the outcome minority class should occur;
however, if features are normalized for training, they should also be normalized in the testing set.
Here, the normalization factors should be applied from the training set. For example, if a column
in the training set is normalized such that the individual value is subtracted from the columnmean
and divided by the column standard deviation in the training set (a common method of normal-
ization), the mean and standard deviation from the training set should be applied to the values
in the testing data set. The rationale for this approach arises when a model is in production. In
this scenario, a single row of data (i.e., an individual’s data) is supplied to the model for predic-
tion. Here, there would be no other data from which to standardize this individual, other than the
training data mean and standard deviation.

Estimating Treatment Effects

Machine learning has traditionally been focused strictly on predictive modeling, at the expense
of determining treatment effects. However, causal inference and treatment effect estimation are
central considerations for epidemiologists. In machine learning, treatment effects have historically
been of little interest because models are created to produce predictions of the future as opposed
to direct interpretation of predictor–outcome relationships (e.g., average treatment effects). This
approach does not translate to a model that is effective for causal inference of model parameters.
However, investigators have developed several methods for estimating treatment effects fromma-
chine learning models (20).

Heterogeneous Treatment Effects

Investigators utilizing machine learning approaches have begun to explore heterogeneous treat-
ment effects as opposed to the overall average treatment effects (2, 10, 16, 26, 30, 44). Heteroge-
neous treatment effects are those that are systematically different within different groups of study
subjects, often called conditional average treatment effects.One can think of identifying heteroge-
neous treatment effects as identifying effect modification; however, exploration of heterogeneous
treatment effects can be much more rigorous, comprising multiple features as opposed to just a
one-way or two-way interaction term in a regressionmodel. Investigators have developedmachine
learning models to detect these very specific clusters of individuals who showcase different treat-
ment effects within their cluster of similar individuals. The most prominent example of cluster
detection for calculating heterogeneous treatment effects is within causal forest models, a form
of random forests that allows for the detection of subgroups of similar individuals who display
different predictor–outcome effects (66). These models have been sparsely used in epidemiol-
ogy; a 2017 example from Baum and colleagues (4) evaluates heterogeneous treatment effects in
the Look AHEAD trial, an evaluation of weight loss interventions for reducing cardiovascular
complications of type 2 diabetes (see the sidebar titled Heterogeneous Treatment Effects in the
Look AHEAD Trial). Other methods are available for identifying these effects in machine learn-
ing, including through the use of Bayesian additive regression trees (BART) and artificial neural
networks (ANNs). In 2019, Künzel and colleagues (36) presented X-learner, a unified method to
calculate heterogeneous treatment effects that allows for computation in the presence of complex
distributions of treatment effects.
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HETEROGENEOUS TREATMENT EFFECTS IN THE LOOK AHEAD TRIAL

Issue: The Look AHEAD trial found no significant reduction in cardiovascular events in type 2 diabetic patients
when undergoing weight loss interventions. Therefore, the average treatment effect of the weight loss intervention
was not significantly associated with cardiovascular events in type 2 diabetics.

Solution:Using a causal forest, a type of machine learning algorithm, investigators were able to identify a subset of
75% of patients enrolled, in whom the intervention was significantly associated with reductions in cardiovascular
events.

Conclusion: Randomized trials, although providing the highest level of evidence, focus largely on average treat-
ment effects. Given the varied patients enrolled, investigators may be able to identify an ineffective treatment on
average. In this setting, there may be subpopulations in whom the treatments are effective or are harmful.

Defining heterogeneous treatment effects can be particularly useful in the case of a negative
study, when the results are inconclusive or suggest that the intervention is not effective. In these
negative studies, there may be subpopulations or clusters of individuals who will have a differ-
ent and sometimes clinically meaningful treatment effect (10). Although one can use traditional
methods to identify subpopulations through stratified regression modeling or the inclusion of in-
teraction terms, the epidemiologist will run into issues with multiple testing bias, a common pitfall
in frequentist statistics. In methods driven by hypothesis testing, each additional test run on the
data increases the amount of statistical error present. Therefore, if an epidemiologist wishes to
evaluate 10 different variables as providing different effects among the study sample, the level
of statistical error increases substantially. These novel machine learning methods do not suffer
from this issue because they are algorithmic approaches to defining treatment effects and not fo-
cused on hypothesis testing. Therefore, one can evaluate as many variables as desired for defining
heterogeneous treatment effects without increasing statistical error. Furthermore, because these
methods are not bound by the same assumptions as are frequentist statistical approaches, there is
no concern for the increase in statistical error when performing repeated hypothesis tests on the
same data (i.e., multiple comparisons bias).

These approaches are very timely as we move toward personalized medicine and personalized
health (46). To this end, epidemiologists can have a much better analytical handle on individual-
level variations in treatment effects.

Defining Model Performance

Many methods are available to define whether a trained model performs adequately to predict
the outcome with little error in the testing data set. Little novelty has been observed in the area
of model performance definition; most epidemiologists focus on mean squared error, root mean
squared error, accuracy, precision–recall, area under the receiver operating characteristic curves
(AUC ROC), and F1 statistics, depending on whether the epidemiologist is modeling continuous
or categorical outcomes.

All methods provide some evidence of overall model performance, though none should be
considered ideal in any particular circumstance. For example, the AUC in an ROC curve is often
used to define model performance. This value can be deceiving if modeling a categorical outcome
that is imbalanced. In this case, an acceptable AUC can be obtained even when the model predicts
only the majority class and predicts next to zero of the minority class. In this context, the early
retrieval rate from the ROC curve or precision–recall curves can be used (52). The early retrieval
rate can be obtained from the left-most area (generally 1-specificity of greater than 80%) of the
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ROC curve.Here, if themodel predicts only themajority class, one will see a low AUCbecause the
model has a low sensitivity where the false positive rate is low. This result suggests that the model
does not predict positive cases (typically the minority class). Care must be taken, when evaluating
any classification model, to ensure that if the labels are not balanced then appropriate measures
of model performance are used.

Explaining the Model

Machine learning algorithms are often called black boxes because most of these predictive models
are difficult to explain for a single individual. Here, the practitioner is forced to believe the model,
without any understanding of the potential for false positives or negatives for an individual pre-
diction. For example, if a classification model that has an 85% balanced accuracy is being used
in practice (e.g., accounting for any imbalance), it will still be wrong 15% of the time. If a new
data point is supplied to the model and provides a prediction, the practitioner cannot understand
whether this particular prediction is more or less likely to be in error. To correct this deficiency,
novel approaches such as the local interpretable model-agnostic explanations (LIME) tests have
been developed (48) and successfully used in epidemiologic studies. For example, Pereira and col-
leagues (43) used LIME to unbox a random forest classifier to enhance local interpretation of
features in brain lesion research.

FUTURE DIRECTIONS

Deep Learning

ANNs have been used in machine learning for many years. The phrase deep learning has become
popular to describe ANNs with many hidden layers. These models, while very complex, are ex-
tremely flexible and allow the epidemiologist to include an almost unlimited number of features
for classification or regression tasks, and they are very accurate at modeling highly nonlinear re-
lationships. The limitation of these approaches has largely been in hyperparameter selection and
training, as large ANNs may be too computationally intensive to run on local machines, reducing
their wide adoption. In 2018, Mocanu and colleagues (39) provided an alternative to traditional
ANN training, using a sparse evolutionary approach that mimics natural evolution: building mod-
els and adding features as long as the model performance improves. Taking a cue from network
analytics and graph theory, they provide a solution to the training time limitations without a de-
crease in model performance.

One novel area of deep learning in clinical epidemiology andmedicine is image recognition and
computer vision. This has been a broad area of research in the biomedical sciences, with reviews
published on the topic (15) and many international competitions devoted to image analytics, such
as theMedical Image Computing and Computer Assisted Intervention conference and the Image-
CLEF evaluation campaigns. Areas of work range from image segmentation to object tracking and
image detection. Evaluations of the work in this area found that many concerns exist with respect
to the generalizability of research and competition findings (37). Regardless of these concerns,
this area will continue to be important, with applications in epidemiology for many years.

Interventional Machine Learning

The black box issue of many machine learning models imposes some difficulty for the initiation
of interventions to reduce the risk of poor health outcomes.We offer two concerns: First, because
models do not explicitly provide estimates of the impact of each individual feature on the label
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of the model, targeting interventions on modifiable risk factors is difficult; and second, if inter-
ventions do take place to reduce the risk of a poor health outcome, model performance statistics
will be poor without constant retraining. For example, if a model identifies an individual with a
high probability of death, but an intervention occurs to reduce the probability and the individual
survives, the model’s prediction was actually incorrect. The model predicted death, but the indi-
vidual survived. A workaround could be to influence the model with an indicator for intervention;
however, on initial training, this indicator would be zero for all individuals and the model would
fail to learn the patterns from it at a reasonable pace.

Novel neural networks have been developed to assist in reducing these issues. A 2019 example
from Shickel and colleagues (56) used gated recurrent unit neural networks to identify individuals
at risk of in-hospital mortality. This model not only allowed practitioners to model the probability
of death longitudinally, but also provided the ability to document the magnitude of how various
time points contributed to the prediction. Therefore, the investigators could provide targeted
intervention on the basis of the model predictions as well as model changes in the probability
over time. Models such as these have a bright future in epidemiology, finally allowing researchers
to model many nonlinear relationships in a longitudinal manner while reducing our reliance on
blindly obeying what the model predicts.

PUTTING IT ALL TOGETHER AND LEARNING MORE

Machine learning continues to be a burgeoning area in data analytics.Computing software is mak-
ing it increasingly easier to learn to create, build, tune, and implement machine learning models.
Open-source software such as H2O (https://www.h2o.ai) and Keras (https://keras.io) as well as
the multitude of pay-for-model platforms are widely available and extremely powerful, many of
which limit or eliminate the need for any knowledge of computer programming. Learning from
scratch can be a daunting process, though many online and in-person courses are available, as well
as programs resulting in Bachelor, Master, and Doctoral degrees in Computer Science, Machine
Learning, Data Analytics, and Data Science.

Partnering with new team members is another pathway to the creation of machine learning
models for various needs. Various academic areas such as data science, biostatistics, data analytics,
business, computer science, and computational biology are helpful places to begin a search for
experts. Outside of academia, many businesses and various industries are employing experts in the
fields of machine learning. Networking through colleagues and at local, regional, national, and
international congresses can build a team of experts quickly.

CONCLUSIONS

In conclusion, machine learning is becoming increasingly popular not only for developing
predictive modeling, but also for defining treatment effects in epidemiology. Improving these
approaches, explaining risk factors, and producing full-scale production algorithms for rapid
prediction and improvements in population health all serve as ripe areas for continued research.

SUMMARY POINTS

1. Machine learning is a rapidly advancing area of data analytics.

2. Traditional regression models can be used for machine learning needs, though more
algorithmic methods are often considered machine learning.
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3. Development of a machine learning model includes feature selection, feature engineer-
ing, dealing with missing data, training the model, tuning the hyperparameters, test-
ing the model, evaluating its performance, and explaining or operationalizing the final
trained model in production.

4. The complexities of machine learning applications are being greatly reduced with the
introduction of open-source machine learning platforms, many of which have a point-
and-click interface as opposed to tools that necessitate in-depth knowledge of computer
or statistical programming.
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